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Abstract—To fulfill Mark Weiser’s vision that “the most
profound technologies are those that disappear”, pervasive
computing systems inherently have (i) to interact with
the environment and the users but also (ii) to adapt
their behavior to changes in their environment. Due to
the dynamic, non-deterministic environment of pervasive
computing systems, uncertainty arises. In this paper, we
conduct a case study in the domain of driver assistance
systems and show that uncertainty in proactive adaptations,
i.e., adaptations in advance, increases with an extension of
the planning horizon.

Index Terms—Uncertainty, human-in-the-loop, self-
adaptive systems, utility function, vehicle routing

I. INTRODUCTION

Pervasive computing systems aim to provide seam-

less support of users in their daily life with intelligent

information technology [1]. Accordingly, those systems

have to automatically adjust their behavior to changes

in their context as well as the user preferences or the

user group, respectively. As an adaptation in reaction to

those changes always includes a delay—and potentially

downtime in the service of those systems—planning in

advance and proactive adaptation might be beneficial.

However, the larger the scope for the planning in ad-

vance, the higher the risk of unanticipated changes or

wrong forecasts of future system and environment states

due to uncertainty in the dynamic environment of the

system. Human-in-the-loop integration as an essential

requirement for interacting pervasive systems increases

the severity of the uncertainty issue as users’ behavior is

uncertain and, further, the users’ objectives are difficult

to predict. However, those highly influence the process

of adaptation planning [2].

In this paper, we study the effects of uncertainty in

the scope of proactive adaptation planning. This means

that we already take the effects of uncertainty in the

planning phase into account to minimize the probability

of unforeseen change affecting the adaptation. Based on

the observation of highly volatile fuel prices in some

countries (see an example from Germany in Figure 1),

we study those claims in CostSAVeR, a pervasive navi-

gation system that applies multi-criteria optimization for

cost-aware routing. The application includes a decision

Fig. 1. Fuel price of a gas station in Heidelberg, Germany on Oct.,
17, 2019 (data from www.clever-tanken.de).

logic to analyze possible routes using utility functions.

Using our evaluation testbed, we assess the performance

of our utility functions as well as the importance of

reasoning on the uncertainty of price stability with travel

distance or time. We disregard an ad-hoc approach that

continually analyzes the route. This shifts the uncertainty

in the adaptation to another point of time as it is never

guaranteed that the currently cost-optimal route will

finally be the cost-optimal one. Summarizing, we make

the following contributions:

• Definition of utility functions that support cost-

aware decision making under uncertainty in our

application area.

• Comparison of our cost-aware utility functions us-

ing a self-developed, reusable evaluation testbed.

The remainder of this paper is structured as follows.

First, we summarize related work and discuss the limita-

tions of these approaches in Section II. Next, Section III

presents the use case system for the case study and six

different utility functions that cover aspects of cost-aware

vehicle routing under uncertainty. Section IV describes

the results of our case study investigating the influence of

uncertainty for proactive adaptation planning in different

planning horizons as well as the influence of user pref-

erences on the adaptation planning. Based on the case

study, Finally, Section V summarizes the paper and gives

an outlook into future work.



II. RELATED WORK

In pervasive computing systems, often more than

one attribute influences the decision-making process. In

literature, several authors propose a multi-dimensional

approach for utility functions [3], [4]. Thus, each adapta-

tion dimension has its own independent utility function.

The adaptation is decided based on the weighted sum of

all utility values [4]. So far, research focuses more on in-

corporating different factors into a utility function rather

than choosing or switching between utility functions at

runtime. With this work, we want to motivate why this

can be beneficial.

Human-in-the-loop interaction is often seen as a po-

tential source of uncertainty [2], [5]. Cámara et al. dis-

cuss different types of involving humans in self-adaptive

systems but focus on integrating humans for doing tasks

that are difficult or infeasible to automate [6]. Here, the

human is seen in the function of a system administra-

tor. Similarly, the framework of Gil et al. provides a

design of human participation in the control loops [7].

Huang and Miranda present an approach to adding

users’ intentions through neural input into the adaptation

decision [8]. Consequently, this enables to adjust the

system’s behavior to the goals of the users. Similarly,

Becker, Hähner, and Tomforde present an approach to

integrate flexibility through incorporating changing user

goals in a learning-based adaptation decision making

[9]. Cámara, Moreno, and Garlan define a modeling

approach for reasoning about the humans’ capability

for being involved in self-adaptation. The modeling

approach relies on stochastic multiplayer games [10].

Summarizing, those works integrate humans for (i) ad-

ministrative tasks, (ii) reasoning on system goals, and

(iii) incorporating information about the user’s context

to optimize the service. However, little work is done

on investigating how to switch between different utility

functions depending on the users’ preferences. In this

work, we motivate the need for such a meta-adaptation

of the adaptation planning mechanism by comparing the

appropriateness of different utility functions to measure

various objectives.

III. COST-AWARE, ADAPTIVE VEHICLE ROUTING

Several authors proposed adaptiveness for vehi-

cle routing (e.g., [11], [12]) and traffic management

(e.g., [13], [14]). In line, we also study the ef-

fects of uncertainty and integrating user preferences

in the adaptation decision process in a case study

on traffic navigation, the CostSAVeR system. As Cost-

SAVeR operates in a highly dynamic environment in

which (i) the fuel prices are highly volatile and (ii) the

traffic conditions vary spontaneously due to accidents,

construction works or variability in the traffic volume,

we are faced with high uncertainty in the planning of

trips. To handle those circumstances, we design our

system as a self-adaptive system [15]. Hence, the system

is able to modify its parameters and utility functions at

run-time to adapt to the changes in its environment. In

our case, we focus on an adjustment of the route for

re-directing a vehicle (i) to a gas station and (ii) as a

reaction to changing traffic conditions.

A. CostSAVeR

We designed our system as a self-adaptive system

composed of a managing subsystem, called adaptation

logic, which controls and adapts a managed subsys-

tem [15]. The adaptation logic integrates a MAPE con-

trol loop [16] for controlling the adaptation. It incorpo-

rates the functionality for monitoring the environment –

i.e., fuel prices, the current traffic flow, as well as pos-

sible traffic congestion – and the managed subsystems,

for analyzing the situation, for planning the route, and

for outputting the result to the UI or an interface for au-

tonomous vehicles. Adaptations in our use case depend

on the route, on user-specified optimization constraints,

or the dynamics of the traffic circulation. We integrate

cost-efficiency as such constraint, hence, adaptations can

be caused by changes in current fuel prices. However,

for future work, it might be possible to add other factors

for personalized routing.

We implemented CostSAVeR as a web-based proto-

type. As frontend client, an Android application1 sup-

ports our adaptive navigation. It further supports real-

time navigation based on the Google Maps navigation

service. The backend receives the requests from the

frontend, calculates the utility functions, and returns a

ranked list of alternative routes to the frontend. In case

of the web frontend, the calculation is performed once

before the start of the journey. The Android app is able to

adjust the route while driving. As the backend delivers

a set of possible assessed routes so that the user can

decide according to his preferences (e.g., using a specific

route or focusing on gas station brands) our approach

integrates the users in the loop.

First, the required input is collected from the con-

nected interfaces2: preference of the user (i.e., the goal

of the user), origin and destination of the trip, average

fuel consumption, price of the last filling, vehicle type,

fuel type, and remaining driving range. Besides the user-

related data, the system collects data about its environ-

ment, that is, alternative routes, traffic information, and

fuel prices. Here, we use the Google Maps API for

requesting routes, the Here WeGo API for retrieval of

gas stations, and the Tankerkoenig API3 for requesting

current gas prices. Next, the system uses the collected

data to identify the current situation and to analyze if

1We published the Android installation file anonymously on zenodo:
https://doi.org/10.5281/zenodo.4067966.

2We focus on the collection of data from the user interface and omit
the integration of the OBD-II interface to collect data from the car.

3https://www.tankerkoenig.de/



the current situation requires an update of the route.

We analyze a form of proactive adaptation by planning

refueling in advance, i.e., at the beginning of the trip,

and omit run-time adaptation as a reaction to changes

in the fuel prices. Afterwards, the system performs the

calculation of the possible routes and the optimization

by determining the quality of the routes. Therefore, the

planning component uses the information retrieved in the

monitoring step combined with the determined situation

of the analyze step. The combination of information

about routes and gas stations forms new routes with

potential detours for reaching a gas station. Each of these

routes is assessed using the later defined utility functions.

The planning component returns a ranked list of routes.

For choosing a route, the system either integrates the

user or decides autonomously, for example, in the case

of an autonomous vehicle.

B. Utility Functions

Utility functions represent one way to evaluate which

adaptation from a search space fits best to perform

self-optimization [17]. We introduce six different utility

functions as a representative set of three categories:

(i) integrating measures of the gas price, distance, and

duration; (ii) coping with the uncertainty of volatile gas

prices; and (iii) selecting either the nearest or completely

random gas stations. Each utility function calculates the

utility per route.

Price-aware. The first utility function integrates the

already paid costs for the remaining amount of fuel

and the new refueling costs. Equation (1) presents the

calculation of the estimated costs using the price per

liter of the last refueling (plast), the number of liters

remaining (lremaining), the current price per liter (pcur)

at the desired station, and the number of liters required

(lnew) for the planned tour.

costest = plast · lremaining + pcur · lnew (1)

For using the estimated costs as utility, we define a

vector presentation of the estimated costs for all routes

costest[i] with i being the index of the i-th route. We use

a modified version of the min-max scaling formula [18]

to calculate a ranking. Thus, Equation (2) normalizes the

values to the bounds [0, 1] so that the highest costs have

a utility of 0 and the smallest costs a utility of 1:

x[i]reversed =
x[i]−max(x)

min(x)−max(x)
(2)

By integrating the described cost calculation and the

min-max scaling, the price-aware utility function is de-

fined as:

UPr =
costest[i]−max(costest)

min(costest)−max(costest)
(3)

Duration-/Distance-aware. The duration-/distance-
aware utility function (Dur/Dist) also uses min-max

scaling and includes the duration and distance into one

function by forming a weighted sum as defined in

Equation 4. Again, the reversed min-max scaling of

Equation (2) is used. The developer defines the weights

wi, which must sum up to one. Considered attributes i
might be costs or duration.

UDD =
∑
i

wi · x[i]reversed (4)

Since the other utility functions mainly focus on the

cost attribute, weighting every attribute equally in this

work will show the other attributes’ impact on the

solutions. These weights can be changed in the future

to get different solutions but are fixed for our work.

Volatility-aware. Since gas prices are highly volatile,

the volatility-aware utility function tries to minimize the

uncertainty of price changes. Based on the assumption

that the probability of a change of the price at a gas

station increases with a larger distance towards the gas

station, the idea is to reward closer gas stations with a

utility bonus. The price-aware utility function defined

in Equation (5) is calculated and a bonus is added

concerning the distance of the station (dstation) from

the distance to the destination (ddest). We introduce the

weights are called α for weighting the utility of the price-

aware utility function and β for weighting the added

bonus.

UV = UPr ∗ α+

(
1− dstation

ddest

)
∗ β (5)

We set the parameter α to 3
4 and the parameter β to 1

4 .

The reason for this weighting is to still let the cost factor

dominate the function. Otherwise, only gas stations that

are very close to the origin might be chosen.

Penalty-aware. The penalty-aware utility function

also tries to minimize unforeseen changes in prices. In

contrast to the volatility-aware utility function, it uses the

required time it takes to reach the gas station (tstation)

instead of rewarding closer distances. A punishment p
is added to the price-aware utility function for each

period (period) it takes to reach the station as defined

in Equation (6).

UPen = UPr −
⌊
tstation
period

⌋
∗ p (6)

We set the period to a value of 1800 seconds and the

value of p to 0.05.

Nearest Station. With this utility function, we model

behavior to refuel at the closest gas station. Therefore,

we use the start location for a distance-based search for

the closest gas station and calculate the costs according

to Equation (1). In the evaluation, this utility function

serves as a comparison for the other utility functions as

it does not consider any route or cost-awareness.

Random. This utility function selects a gas station

among the identified gas stations within the search radius



1. Route-Getter 2. Simulator 3. UI

Tankerkoenig
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Saved Routes

Fig. 2. Workflow of the evaluation tool showing the simulation core at
the bottom center as well as different input sources and a user interface.

randomly. This process is performed 30 times to receive

average costs for comparison.

IV. EVALUATION

We implemented a tool that evaluates the quality and

appropriateness of our utility functions w.r.t. user prefer-

ences as well as uncertainty in the planning horizon. To

guarantee our results’ reproducibility, we designed our

tool to contain all the required data for our evaluation.

A. Evaluation Tool

Our tool evaluates the quality of the utility functions

w.r.t. user preferences and uncertainty in the planning

horizon. Therefore, the tool integrates all utility functions

and limits the execution time of the evaluation runs by

storing predefined routes and all gas stations alongside.

We use historical gas prices provided by Tankerkoenig

combined with predefined routes as we want to compare

the actual gas prices once the driver arrives at the station.

This allows for an in-depth evaluation of the utility

functions with the advantage of being fully reproducible

when the routes, found gas stations, and departure times

are identical.

Figure 2 displays the workflow of used components

and saved data of the evaluation tool. First, the Route-
Getter provides automation of downloading relevant

information for the predefined routes. Using the Google

Maps API, the Route-Getter receives the routes between

origin and destination. Afterward, the Here WeGo API

is used to find possible gas stations within a specified

radius and the Google Maps API is again used to find

routes that integrate the gas stations as waypoints - one

at a time. The Route-Getter component is used only

once in an early phase of this work to retrieve data of

a predefined set of routes and dates. The data is stored

locally as Saved Routes. In the second step, the Simulator
combines the saved data and implements the utility

functions from Section III-B. The Tankerkoenig database

provides locally stored historical fuel prices. Third, a

frontend is provided, enabling the user to overview the

evaluation results easily. This can be done in two ways:

(i) evaluation of a single route at one predefined date

or (ii) evaluation of all possible routes and a set of

predefined dates automatically.

B. Metrics

As the gas prices might change during travel time to

the gas station, we introduce two metrics and one ad-
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Fig. 3. Percentage deviation of actual and optimal costs.

ditional utility function to evaluate our utility functions’

quality.

Estimated Costs: The utility functions calculate the

estimated costs based on the gas prices at planning time.

Actual Costs: The actual costs are the costs when

using the actual fuel prices at arrival at the gas station

for calculating the costs with the utility function.

Optimum Costs (OPT): The OPT utility function is a

theoretical utility function that is used to calculate the

utility functions’ theoretical optimum when having com-

prehensive information regarding possibly changing gas

prices. This utility function is calculated the same way

as the price-aware utility function but with the arrival

time’s actual fuel prices. As it incorporates the actual

gas prices, we can evaluate retrospectively which gas

station would have been cost-optimal for this scenario.

C. Evaluation Methodology

To evaluate the performance of the different utility

functions, we aimed at defining a representative data set

concerning different routes all over Germany and several

dates during the year 2018. The 22 selected routes cover

Germany’s roadside to a large extent and show differing

route lengths (between 50 km and 900 km) and used road

types. The 18 dates are chosen with regards to vacations

or holidays, regular weekdays, and weekends. For each

date, three different timestamps are used as the start time

of the journey: 6:00 AM, 12:00 PM, and 4:00 PM. The

average cost per route is around 25 e .

D. Quality of the Utility Functions

To evaluate the quality of the used utility functions,

we look at the cost deviation the selected route has

to the theoretical optimum (cf. Section IV-B). Figure 3

shows the mean deviation of the costs for the selected

route from the optimum costs for each utility function

in percent. The mean is calculated over all combinations

of routes and dates.

The figure shows that price-aware, volatility-aware,

and penalty-aware utility functions have the lowest per-

centage deviation to the optimum of around 0.4%, which

refers to a mean loss of 0.09 e per route.
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The duration-/distance utility function has a higher

percentage deviation of around 1.6% (0.41 e ). This is

due to its characteristics of additionally integrating the

duration to the distance of a planned route. The percent-

age deviation of the nearest station utility function is

around 5% (1.13 e ) and of the random utility function

around 10% (2.25 e ) per route. This can be explained

by the nature of the utility functions, as they ignore any

metric and choose the gas station randomly.

E. Planning with User Preferences

To analyze how user preferences might influence the

adaptation of the planning logic, we use three different

categories of preferences and measure how often each

of the six applied utility functions selects the cheapest,

fastest, or shortest route. Besides, we compare the so-

lutions to the theoretical cost-optimum, i.e., how often

each utility function selects the solution that would have

been selected if all information was available previ-

ously (cf. Section IV-B).

Figure 4 shows the percentage for each utility function

of selecting the cheapest, fastest, shortest, and cost-

optimal route. The sum of all utility functions for

one category does not necessarily sum up to 100% as

multiple utility functions can select the same route and

achieve the same score. When looking at the results

for the cheapest, shortest, and cost-optimal percentages,

the gray bar (price-aware utility function) always shows

the highest percentage of around 70-85%, followed by

the blue (volatility-aware utility function) and the green

bar (penalty-aware utility function) around 65-80%. The

orange bar (duration-/distance utility function) shows

substantially lower percentages of around 35-55%, and

the yellow (nearest station) and dark blue bars (random

utility function) show very low percentages of around 6%

and 0%, respectively. This means that the price-aware

utility function performs best in terms of calculating the

cheapest, shortest, and cost-optimal route. However, the

duration-/distance and nearest station utility functions

perform better w.r.t. the selection of the fastest route.

This happens since this utility function is the only one

considering the duration factor in its calculations and by
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Fig. 5. Difference between estimated and actual costs for each utility
function with regards to three categories of route lengths.

selecting the nearest gas station, the incurred detour is

very low. These results show that user preferences have

an impact on the selection of the optimal utility function.

F. Planning under Uncertainty

Our hypothesis of increasing uncertainty with a longer

planning horizon implies that the longer the planning

horizon, i.e., the longer the route, the larger the differ-

ence between estimated and actual costs. Therefore, we

categorized the routes into three categories: (i) shorter

than 100 km, (ii) between 100 km and 400 km, and (iii)

longer than 400 km.

Figure 5 visualizes the difference between estimated

and actual costs for each utility function with regards

to the three categories of route lengths. The gray bars

(< 100 km) show for all utility functions except the

nearest station the smallest difference between estimated

and actual costs of around 0.03 e and 0.09 e . The

orange bars (100 - 400 km) show a noticeable increase

in cost difference between 0.09 e and 0.22 e . The

blue bars (> 400 km) show especially for the duration-

/distance and random utility function strong increases

in cost differences between 0.52 e and 0.56 e while

the cost increase for the other utility functions is less

significant. The nearest station utility function does not

reflect these characteristics as only a slight increase can

be shown between short and medium route lengths, and

is even reduced slightly for long routes. This can be

explained by the selection criterion since the travel time

to the gas station is short and price changes occur very

rarely. These results indicate that the size of the plan-

ning horizon and that integrating uncertainty parameters

into utility functions is necessary to handle unforeseen

situations.

G. Threats to Validity

We identified the following threats to the validity

of the evaluation results. First, since a diverse set of

objectives lies in the nature of vehicle routing, we

cannot cover the entire area. However, we focused on the

most meaningful objectives and showed that even these

intuitive utility functions enable us to assess the effects



of uncertainty and differing user preferences. Second,

the category opt-cost could bias the evaluation results as

it is only based on the gas price and hence might favor

the price-aware utility function. Nevertheless, we have

chosen the opt-cost utility function for our comparison

as we want to inspect the uncertainty in terms of costs

per route. Third, we studied the user preferences of the

cheapest, fastest, and shortest routes. However, these

categories represent the most common user preferences

provided by navigation systems. Fourth, our set of dates

and routes used for the evaluation is limited to 18 dates

within one year and 22 routes. However, we carefully

selected dates regarding holidays or vacations, working

days, and weekends and the 22 routes represent routes

that cover Germany to a large extent. Finally, our tool

CostSAVeR supports self-adaptivity at runtime, i.e., the

adaptation of the route while driving in response to

changing gas prices. As it is hard to evaluate this self-

adaptation due to the dynamic environment (such as

changing road traffic), we decided to omit the evaluation

of adaptations at runtime.

V. CONCLUSION

In this paper, we studied the effects of adaptation plan-

ning under uncertainty induced by the non-deterministic

environment or the requirement to adapt to the pref-

erences of possibly changing user groups, i.e., inte-

grating human-in-the-loop [2]. To asses our hypotheses,

we used CostSAVeR, a self-adaptive route calculation

system that applies multi-criteria optimization for cost-

aware routing, for comparing utility functions from three

categories: (i) two utility functions incorporate the gas

price, distance, and duration, (ii) two utility functions

try to cope with the uncertainty of volatile gas prices,

and (iii) two utility functions serve as a comparison and

select the nearest gas station or completely random ones.

The uncertainty analysis showed that the time horizon

for proactive planning impacts the quality of the result

significantly, i.e., the wider the planning horizon the

higher the deviation of the estimated to the actual costs.

This supports our hypotheses that uncertainty as well

as user preferences are essential aspects for adaptation

planning.

Based on our findings and the results of our use case

study, we identified the following future work. Using

existing taxonomies on uncertainty (e.g., [2], [19], [20]),

we plan to provide a model for identifying necessary

characteristics of a situation w.r.t. uncertainty. A taxon-

omy will accompany this for describing how specific

utility functions tackle uncertainty. This supports the

mapping of uncertainty functions to uncertainty in a

situation, which is the first step towards meta-adaptive

planning under uncertainty. Finally, an interesting com-

parison could be to compare our approach to integrating

predictions and forecasting (e.g., based on [21]) into the

decision making process for taming uncertainty. This can

also help to learn the reasons for uncertainty and improve

the utility functions at runtime.
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[21] M. Züfle, A. Bauer et al., “Autonomic Forecasting Method
Selection: Examination and Ways Ahead,” in Proc. ICAC, 2019.


