
Manageability Design for an Autonomic Management
of Semi-Dynamic Web Service Compositions

Christof Momm, Ignacio Pérez Hallerbach,
Sebastian Abeck

Universität Karlsruhe (TH), Institute of Telematics, C&M
IT Research, Zirkel 2,

76131 Karlsruhe, Germany
{momm, hallerb, abeck}@cm-tm.uka.de

Christoph Rathfelder
FZI Research Center for Information Technology,

Software Engineering
Haid-und-Neu-Straße 10-14
76131 Karlsruhe, Germany

rathfelder@fzi.de

Abstract—Web service compositions (WSC), as part of a service-
oriented architecture (SOA), have to be managed to ensure
compliance with guaranteed service levels. In this context, a high
degree of automation is desired, which can be achieved by
applying autonomic computing concepts. This paper particularly
focuses the autonomic management of semi-dynamic
compositions. Here, for each included service several variants are
available that differ with regard to the service level they offer.
Given this scenario, we first show how to instrument WSC in
order to allow a controlling of the service level through switching
the employed service variant. Second, we show how the desired
self-manageability can be designed and implemented by means of
a WSC manageability infrastructure. The presented approach is
based on widely accepted methodologies and standards from the
area of application and web service management, in particular
the WBEM standards.

Keywords- Web Service Composition Management; Autonomic
Computing; Manageability Design; Instrumentation; WBEM; CIM

I. INTRODUCTION
Today, companies require IT support that is tightly aligned

with their business processes and highly adaptive in case of
changes. These requirements can be met by employing a
service-oriented architecture (SOA). In SOA, functionality
required for executing business processes is provided by
atomic web services (WS) or by web service compositions
(WSC) [1].

Each service – composite or atomic - is characterized by the
fact that it is operated by a service provider and the terms of
use are contractually fixed by means of service level
agreements (SLA). While providing the service the provider
has to assure the compliance with the corresponding SLA. To
this end, the provider has to be able to monitor the actual
service levels and be able to control the service execution in
order to prevent SLA violations. These management functions
should be automated as far as possible [2]. so that the vision of
an “on-demand” provisioning of services can be reached [3].

An automated service level management for WSC can – at
least partly - be achieved by applying autonomic computing
concepts as presented in [4]. The managed resources in this
context are the WSC. These resources should be equipped with
self-management capabilities, which are realized through

autonomic managers. More precisely, the autonomic managers
implement so-called intelligent control loops, which generally
comprise a monitoring, analyze, plan and execute function.
Hence, the managed resources, in our case the WSC, have to
provide an adequate manageability interface allowing
monitoring and controlling access. This interface is also
referred to as “instrumentation”.

This paper focuses on the controlling instrumentation of
WSC based on the Business Process Execution Language
(BPEL) and the enhancement of a WSC manageability
infrastructure by incorporating autonomic management
concepts, in the following referred to as self-manageability.
The approach is based on the design and implementation of a
manageability infrastructure for WSC based on the Web-Based
Enterprise Management (WBEM) standards [5]. We assume
the WSC to be of semi-dynamic nature. This means that the
composition logic itself is static but several variants of the
included services are available that differ with regard to the
service levels they offer [6]. The concretely employed service
variants may be selected during or prior to the execution. In
this way, the service levels of WSC can be controlled.

The contribution of this paper is twofold. First, we present
and discuss different approaches to a controlling
instrumentation (i.e. effectors) of WSC. To ensure universal
applicability, we focus on BPEL-based WSC without any
vendor-specific extensions of the employed BPEL engines.
Second, we show how self-manageability can be designed and
implemented by means of a WSC manageability infrastructure.
Here, we leverage the WBEM standards to obtain a flexible
solution that may easily be integrated into existing
management environments.

II. RELATED WORK
The monitoring and self-management capabilities for WSC

may be used within an SLA management infrastructure. In
literature, two major solutions for a SLA-based management of
WS and WSC have been presented. In [3], a solution for an
automated SLA-driven management on basis of Web Service
Level Agreements (WSLA) is presented. However, this
solution mainly focuses on monitoring SLA compliance of
atomic WS and does neither adequately support the monitoring
nor the controlling of WSC. In [7], the approach is extended

839978-1-4244-2066-7/08/$25.00 ©2008 IEEE

with interfaces using the Common Information Model (CIM),
which allow an integration into traditional management
application. In [2], a competing solution is presented which
supports an automated SLA compliance monitoring of atomic
WS and WSC. However, the solution represents a very
proprietary approach as the manageability interface is not built
on standards. Furthermore, the solution is also limited to
monitoring capabilities. In [6], an approach that focuses on
discrete web service offerings is presented. In contrast to
WSLAs, the customer cannot freely negotiate all kinds of
service level parameters, but may rather choose from
predefined service variants. A corresponding management
infrastructure limited to the monitoring of atomic WS is
presented in [8] However, the idea of offering discrete service
variants of one service serves perfectly well as a basis for
(autonomically) controlling the service level of a WSC. This is
because algorithms and protocols to determine and negotiate
the optimal service allocation for a WSC are much simpler.

Given a discrete set of service variations for a WS included
in a WSC, the WSC provider still requires a clear
understanding of the dependencies between the service levels
offered by the WS and the resulting service level of the WSC.
This aspect is particularly addressed in [9]. In [10], a
completive approach is presented, which also addresses the
optimization of the service selection for dynamic WSC. A
corresponding execution infrastructure is provided in [11].
However, this infrastructure builds on a proprietary workflow
engine. Furthermore, the automated adaptation of the WSC is
triggered by changing service offerings or user preferences. An
adaptation on basis of self-manageability is not considered.

In [12], an interesting approach to the specification of such
self-manageability policies is presented. The author proposes to
create health models based on finite state machines to model
the autonomic behaviour as a starting point for the
manageability design. Unfortunately, it is not shown how these
models are actually implemented by means of a manageability
infrastructure.

With regard to the controlling instrumentation, the concept
of parameterized web services flows described in [13]
represents a very promising approach. This allows a dynamic
selection of included WS at runtime by adding and evaluating
corresponding mapping rules within the WSC. Unfortunately,
these selection rules may not be changed at runtime. They are
rather set at design time. So our solution can be regarded as
complementary to the aforementioned approach.

III. CONTROLLING INSTRUMENTATION DESIGN
To provide self-manageability a controlling instrumentation of
the WSC is required in the first place. More precisely, non-
functional extensions of the WSC implementation are
necessary that allow a dynamic reconfiguration of the actually
employed service variants at runtime. In this context, two
major requirements must be met: Support for reconfiguration
of running WSC instances and applicability to all kinds of
BPEL engines.

Taking these requirements into account we identified two
feasible approaches. The first one represents the employment

of proxy WS. In this case, a proxy is generated for each
included WS which offers the same WS interface as the
original WS. The WSC includes only the proxy WS. When
calling it, the proxy determines the service endpoint of the
actual WS variant, invokes it and returns the result to the
WSC. The endpoint may either be retrieved from a responsible
configuration provider or a local properties file or database. In
the latter case, the proxy has to offer an interface to the
provider for updating this information.

This approach has some advantages. First, the proxy can
easily be generated as its interface is identical to the original
WSDL and internal logic is straight forward. Second,
configuration changes directly affect all running instances as
well as instances that will be newly created without having to
explicitly change/reconfigure them. As a major drawback, this
solution in either case requires at least one additional call of the
proxy. This is why - after implementing this approach - we
looked for a less resource demanding alternative.

Figure 1. Controlling Instrumentation - BPEL Alternative

The second approach uses dynamic endpoint references.
This mechanism allows a reconfiguration of the actually
invoked service endpoint for a given partnerLink at runtime.
However, the WSC has to be provided with the information on
which endpoint it has to use for a particular partnerLink.
Moreover, it has to be possible to change this configuration
information within a running WSC instance. Figure 1 shows an
instrumentation pattern for extending arbitrary BPEL
definitions with controlling capabilities.

First, an additional invocation activity retrieves the service
variant configuration from a configuration provider published
as a WS. This information is stored in a newly added BPEL
variable. An inserted AND split divides the execution path into
two branches executed in parallel. The first branch holds the
original composition definition without the first receive activity
as an embedded sub process. Moreover, an <assign> that
initializes the dynamic partnerLinks is added before each
embedded <invoke> activity. The second branch enables the
asynchronous receiving of configuration updates which are
stored in the local configuration variable. To continuously
provide the possibility of reconfiguration, these activities are
placed within an endless loop. The composition terminates as
soon as the original composition situated in the first branch
terminates. As standard BPEL does not support OR joins the
employed <flow> activity is terminated through a custom fault
event that is thrown after the original composition has

840

completed. The fault event is caught in an empty exception
handler added to the outmost <scope>. In this way, the whole
composition is terminated.

We argue that the BPEL-based instrumentation is a more
efficient approach than the proxy alternative in terms of
management-related overhead at runtime. This is because
additional service invocations are only required once at the
beginning and as soon as a reconfiguration is actually desired
by the manager. Nevertheless, at design time this approach
causes a higher complexity. For this reason, we implemented
an XSLT based transformation to extend the BPEL
composition definition with the necessary management code.

IV. WSC MANAGEABILITY DESIGN
The self-manageability model defines the autonomic

behavior, namely the control loop, which is implemented by an
autonomic manager. We decided to use a finite state machine
to specify this aspect. This basically follows the health models
presented in [12], but in an adapted and simplified way. Figure
2 shows a self-manageability model. That is a basic control
loop for adjusting the response time procured by a service
operation through dynamically switching between the available
service variants for the included Service.

Figure 2. Sample Self-Manageability Model

Each transition comprises two parts: A condition that leads to
its triggering and an action that is executed. A state transition
is triggered in case certain conditions for relevant metrics are
met. The observation of the metrics and the evaluation of the
conditions are realized by the monitoring function.

The required metrics, actions as well as necessary
monitoring and configuration information have to be specified
in terms of a management information model. In the following,
we present a corresponding WSC information model based on
CIM. The model elements required for the monitoring of WSC
have already been presented in [5]. Here, managed elements
(ME) for the WSC as a whole, the different internal WSC
elements and the included WS are specified. For each ME,
information about each executed WSC instance and
information related to the general definition of the WSC, like
configuration settings, is distinguished. In the following, we
present excerpts of the WSC information model that are most
relevant to enabling the desired self-manageability. First, we
focus on the definition of the required metric (see Figure 3).

Figure 3. WSC Information Model – Metric Definition

By extending a CIM_BaseMetricDefintion, we first define a
metric for an average receive workload. This generic metric
definition reflects the average number of received requests per
minute within a specified sample interval. Furthermore, this
metric is associated with a CM_ReceiveTaskDefinition. This
allows for navigating all executed instances, each represented
as an instance of ReceiveTaskExecution. In addition, the WSC
information model has to store information about the available
service variants and offer means for assigning the actually
selected variant (Figure 4). The following model fragment
shows the proposed solution to this problem.

Figure 4. WSC information model –Serivce Variant Configuration

A CM_WSDefinition is created for each available service
variant and associated with the corresponding
CM_ServiceTaskDefintion through the custom association
CM_AvailableWSVariants. This association implies that all
linked WS definitions are compatible with the service task.
The actually used WS variant, which has to be contained in
the set of available WS variants, is specified by means of the
custom association CM_SelectedWSVariant. The responsible
CIM provider supports a modification of this association.
Thus, the required action of reconfiguring the service selection
corresponds to a modification of this association. The provider
then uses the WSC instrumentation to effectively change the
selection. A detailed explanation of the selection procedure is
provided in the following section.

V. WSC MANAGEABILTIY INFRASTRUCTURE
IMPLEMENTATION

In this section, we present the implementation of a WSC
manageability infrastructure following the previously
introduced design. This implementation is based on our
preliminary work [5]. Accordingly, a manageability
infrastructure for the monitoring of WSC was already
available.

As the interface between the CIMOM and associated CIM
provider is not standardized, provider implementations for a
specific CIMOM cannot typically be used with another
CIMOM without modification [14]. Therefore, we draw a
distinction between a CIMOM-specific and CIMOM-
independent part (see Figure 5). The CIMOM-specific part
comprises different CIM provider responsible for the managed
WSC elements. Since the employed execution environment is
based on a JEE application server, we decided to build the
CIMOM independent part on Enterprise Java Beans (EJB3).
The CIMFacade contains generic provider implementations,
which allow an easy migration to another CIMOM
implementation. Entity beans subsumed under the
ManagementRepository are used to persistently store the

841

management information. As described in [5], we use Oracle-
specific sensors added to the WSC definition which
communicate with the OracleSensorAdapter. In case another
WSC execution environment or instrumentation approach, like
polling the engine’s audit trail, is used, this adapter component
can easily be replaced by an adequate one.

ManagedWSC

CIMOM
specificCIMOM independent

OracleSensorAdapter
<<WSC>>
Composition

CIMFacade

Management-
Repository
Management-
Repository

CIMOM

WSCControlBPELAdapter

<<SBean>>
WSSelection

EffectorAdapter

<<SBean>>
WSSelection
Controller

<<Autonomic
Manager>>
MgmtAgent

<<WS>>
WSCService
Configuration

Figure 5. WSC Manageability Infrastructure Implementation

To support self-manageability through dynamic selection of
WS variants at runtime further components and modifications
are required. First, we introduce a simple AutonomicManager
component implementing the state machine presented in
section IV. The agent polls the metric for detecting a threshold
exceedance and modifies the association SelectedWSVariant to
change the selected WS variant. This configuration is provided
to the WSC by the WS WSCServiceConfiguration. With a
proxy-based instrumentation these extensions would already be
sufficient. But when using the BPEL-based instrumentation, all
currently running WSC instances additionally have to be
updated. This particular requirement is tackled by the
WSCControlBPELAdpater. Here, the WSSelectionEffector-
Adapter provides a unified interface to control the WSC. The
WSSelectionController assures that the configuration update is
propagated to all relevant WSC instances. The currently active
instances are identified by querying the Management-
Repository for all WSCExecution objects for the respective
WSCDefinition where the status equals “active”. Then for each
retrieved WSCExecution object, the operation
updateConfigurationData is invoked.

VI. DISCUSSION AND OUTLOOK
In this paper, a pragmatic approach to the conceptual design

and implementation of a WSC manageability infrastructure
with support for self-manageability has been presented. To this
end, different techniques for realizing the required controlling
instrumentation have been introduced. So far, however, the
solution is limited to semi-dynamic WSC. Further research on
the modeling of autonomic behavior for more complex
scenarios is required. In this case, the employment of finite
state machines could result in an unacceptable amount of
states. An optimization of the selection that considers cost
aspects is not yet supported either. As to the scenario, the
general question arises whether the employment of load
balancing on the WS level would be a superior approach for
automatically adjusting to a given workload. This research
question has not been addressed in this paper. However, one
argument against load balancing is that it causes more
complexity for the WS provider. In contrast to the WSC
provider, the WS provider does not know about workload
peaks implied by the business process. Consequently, it is

harder for the provider to anticipate workload peaks and react
to them.

Our current research particularly focuses on a methodology
for an automated generation of the WSC manageability
infrastructure along with the required WSC instrumentation.
This comprises the design of domain-specific meta models that
allow for the modeling of manageability aspects as part of an
integrated WSC development process. Moreover,
transformations to a fully functional manageability
infrastructure are targeted. In this way, modifications to the
target platform, like the employment of a different BPEL
engine or the support for different management protocols, can
be supported by defining specific transformations.

REFERENCES
[1] F. Leymann, D. Roller and M.-T. Schmidt, “Web services and

business process management”, IBM Systems Journal, vol. 41, no.
2, 2002.

[2] A. Sahai, V. Machiraju, M. Sayal, A. van Moorsel and F. Casati,
“Automated SLA Monitoring for Web Services”, Proc. 13th
IFIP/IEEE International Workshop on Distributed Systems:
Operations and Management (DSOM 2002), Springer-Verlag,
2002, pp. 28-41.

[3] A. Dan, D. Davis, R. Kearney, A. Keller, R. King, D. Kuebler, H.
Ludwig, M. Polan, M. Spreitzer and A. Youssef, “Web services on
demand: WSLA-driven automated management”, IBM Systems
Journal, vol. 43, no. 1, 2004, pp. 136-158.

[4] IBM, “An architectural blueprint for autonomic computing”, 2004;
http://www-03.ibm.com/autonomic/pdfs/ACBP2_2004-10-04.pdf.

[5] C. Momm, C. Mayerl, C. Rathfelder and S. Abeck, “A
Manageability Infrastructure for the Monitoring of Web Service
Compositions”, Proc. 14th HP-SUA Workshop, 2007.

[6] V. Tosic and B. Pagurek, “On comprehensive contractual
descriptions of Web services”, Proc. IEEE International
Conference on e-Technology, e-Commerce and e-Service (EEE
'05), 2005, pp. 444-449.

[7] M. Debusmann and A. Keller, “SLA-Driven Management of
Distributed Systems Using the Common Information Model”,
Proc. 8th IFIP/IEEE International Symposium on Integrated
Network Management (IM 2003), 2003.

[8] V. Tosic, W. Ma, B. Pagurek and B. Esfandiari, “Web Service
Offerings Infrastructure (WSOI) - a management infrastructure for
XML Web services”, Proc. IEEE/IFIP Network Operations and
Management Symposium (NOMS 2004), 2004, pp. 817-830
Vol.811.

[9] M.C. Jaeger, G. Rojec-Goldmann and G. Muhl, “QoS aggregation
in Web service compositions”, Proc. The 2005 IEEE International
Conference on e-Technology, e-Commerce and e-Service
(EEE'05), 2005, pp. 181-185.

[10] L. Zeng, B. Benatallah, M. Dumas, J. Kalagnanam and Q.Z.
Sheng, “Quality driven web services composition”, Proc.
Proceedings of the 12th international conference on World Wide
Web, 2003, pp. 411-421.

[11] L. Zeng, B. Benatallah, A.H.H. Ngu, M. Dumas, J. Kalagnanam
and H. Chang, “QoS-aware middleware for Web services
composition”, IEEE Transactions on Software Engineering, vol.
30, no. 5, 2004, pp. 311-327.

[12] V. Kapoor, “Services and autonomic computing: a practical
approach for designing manageability”, Proc. 2005 IEEE
International Conference on Services Computing, 2005.

[13] D. Karastoyanova, F. Leymann and A. Buchmann, “An approach
to parameterizing web service flows”, Proc. 2005 International
Conference on Service-oriented Computing (ICSOC'05), 2005, pp.
533-538.

[14] M. Debusmann, M. Schmidt, M. Schmid and R. Kroeger, “Unified
service level monitoring using CIM”, Proc. Seventh IEEE
International Enterprise Distributed Object Computing
Conference, 2003, pp. 76-85.

842

