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Abstract. In this paper we discuss the interaction of expression tem-
plates with OpenCL devices. We show how the expression tree of expres-
sion templates can be used to generate problem specific OpenCL kernels.
In a second approach we use expression templates to optimize the data
transfer between the host and the device which leads to a measurable
performance increase in a domain specific language approach. We tested
the functionality, correctness and performance for both implementations
in a case study for vector and matrix operations.
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1 Introduction

In the last years the computer architecture has changed from a single-core de-
sign to a multi-core architecture providing several processor cores on a single
CPU. This new way of processor design has the intention to circumvent the
physical constraints of increasing the performance of a single-core CPU by using
symmetric multi-core processors to parallelize the computation [4].

Additionally the GPU has recently come into focus for general purpose com-
puting by the introduction of CUDA (Compute Unified Device Architecture) [16]
as well as the open standard OpenCL (Open Computing Language) [8] to exploit
the tremendous performance of highly parallel graphic devices.

CUDA is NVIDIA’s parallel computing architecture on GPU’s which could be
used for GPGPU (General Purpose Computing on Graphics Processing Units)
through CUDA C [15], CUDA Fortran [20] or OpenCL [18].

OpenCL is an open standard for general purpose parallel programming across
CPU’s, GPU’s and other processors [8]. It provides a C like programming lan-
guage to address the parallel concept of heterogeneous systems. In contrast
to CUDA C, which is the common programming language for CUDA devices,
OpenCL is not limited onto a specific GPU architecture. OpenCL is rather avail-
able for NVIDIA CUDAGPU’s [18], multi-core CPU’s and the latest GPU’s from
AMD [2], Intel Core CPU’s [7], DSP’s [8] and many other architectures.
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Both technologies, CUDA as well as OpenCL, have a huge impact onto the
world of scientific computing. At the moment the fastest super computer, the
Chinese Tianhe-1A system at the National Supercomputer Center in Tianjin,
reaches 2.57 petaflop/s by using a heterogeneous architecture of 7168 NVIDIA
M2050 GPU’s and 14,336 Intel Xeon CPU’s [21]. But also scientists without an
access onto a super computer as well as the normal user could benefit from the
tremendous performance of GPU’s in their workstation and desktop computers.

Alongside the use of standard applications like Mathematica [27], Matlab [11]
or the operating system Mac OS X 10.6 [3] which support CUDA or OpenCL,
users are able to write their own applications running on GPU’s. But this is bur-
dened with many new concepts and techniques which are necessary to address
the parallel programming on GPU’s or heterogeneous systems. The program-
mer has to take care about the data transfer between the host system and the
CUDA or OpenCL device, he has to organize the thread local or shared memory
as well as the global memory and he has to use specific parallel programming
techniques [14, 17].

All these new concepts and techniques could be a real challenge for unexpe-
rienced developers in the area of GPGPU. In the worst case the program on a
GPU has a inferior performance compared to a plain old sequential approach on
a CPU caused by the bottleneck of inappropriate data transfers between host
and device, misaligned memory access and bank conflicts, inappropriate load
balancing, deadlocks and many more.

Hence, our intention was to investigate techniques and concepts to provide
user-friendly libraries with an interface completely integrated into C++ hiding
all the GPGPU specific paradigms from the user. Additionally the C++ concept
of operator overloading offers the possibility to integrate the library interface as
a domain specific language (DSL). Furthermore expression templates [23] are
used to optimize the data transfer between the host and the device.

In this paper we used OpenCL as the hidden layer under the C++ interface
using operator overloading and expression templates to utilize the benefits of
GPU’s as well as of multi-core CPU’s. As an application area we chose matrix
and vector operations which are particularly suitable to show the capability of
a domain specific language embedded into C++ using expression templates and
OpenCL.

2 Expression Templates

One of the outstanding features of C++ is the feasibility to overload several
operators like the arithmetic operators, the assignment operator, the subscript
operator or the function call operator. This offers a developer of particularly
mathematical data types to implement the interface of this types as a domain
specific language embedded into C++. But besides the possibility to define an
easy and intuitively usable data type, the operator overloading in C++ has a
drawback called pairwise evaluation problem [25]. This means that operators
in C++ are defined as unary or binary functions. For expressions with more
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than one operator like r = a + b + c this has the consequence that a + b are
evaluated first and than their result, stored in a temporary variable, is used
to perform the second operator to evaluate the addition with the variable c.
Obviously this leads to at least one temporary variable for each + operator but
if the data types are e.g. vectors it also performs several consecutive loops to
perform the particular vector additions. Both the temporary variables as well
as the consecutive loops are a performance penalty compared to a hand coded
function computing the result with a single loop and no temporaries [25, 22], see
Listing 1.

for (int i = 0; i < a.size (); ++i)

r[i] = a[i] + b[i] + c[i];

Listing 1. Hand coded and optimal computation of r = a + b + c.

Expression templates [23] are a C++ technique to avoid this unnecessary
temporaries as well as the consecutive loops by generating an expression tree
composed of nested template types. Furthermore this expression tree is explic-
itly visible at compile time and could be evaluated as a whole resulting in a
similar computation as shown in Listing 1. This could be achieved by defining a
template class BExpr<typename T, class OP, typename A, typename B> as
an abstract representation of an binary operation1 specified by the template pa-
rameter OP as an exchangeable policy class [1] working on the arguments of the
types A and B which are stored as reference member variables.

template <typename T, class OP , typename A, typename B>

class BExpr {

A const& a_;

B const& b_;

public:

BExpr(A const& a, B const& b) : a_(a), b_(b) { }

T operator [] (size_t i) const {

return OP.eval (a_[i], b_[i]);

}

...

};

Listing 2. Class BExpr<typename T, class OP, typename A, typename B>.

Thereby the template type T specifies the type of the vector elements which
is important to implement the element-wise evaluation using the subscript op-
erator. In principle the subscript operator uses the policy class specified by the

template parameter OP to compute the ith element of the result of the operation.
Listing 3 shows an implementation of a policy class for a vector addition.

template <typename T> struct Add {

1 Types for operations with a different order are defined in a similar manner. Further-
more we have shown in [12] how a general type for operations of a arbitrary order
could be specified using a C++0x.
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static T eval (T a, T b) { return a + b; }

};

Listing 3. Policy class ADD<typename T>.

With these building blocks it is quite easy to overload the arithmetic opera-
tors for vector and scalar types to implement the operations like the vector sum
or the multiplication with a scalar returning an expression tree. Figure 1 shows
the composed tree structure for the expression Scalar * (Vector + Vector).
Therefore expression templates are a technique to compose expression trees with
nested template classes at compile time.

BExpr<double, Mul<double>, •, •>

Scalar BExpr<double, Add<double>, •, •>

Vector Vector

Fig. 1. Tree structure for the expression Scalar * (Vector + Vector).

The evaluation of such an expression tree then could be performed as a whole
by overloading the assignment operator. For the example with vector operations
it is quite easy by using one loop over the size of the vectors computing the
result element-wise by calling the overloaded subscript operator of the tree2.

Obviously there are a lot of small objects and inline functions used for the
expression template approach but due to modern compilers this evaluation leads
almost to a similar machine code as Listing 1.

Using expression templates for vector operations to avoid unnecessary loops
and temporaries is the classical example used in [23] to introduce these powerful
technique. Besides loop fusion the expression templates are used in many other
areas like the adaptation to grids in finite element methods [6] or to increase the
accuracy in dot product expressions [9].

In addition we are working in the area of interval arithmetic and primarily
used expression templates to reduce the necessary but time-consuming round-
ing mode switches of the floating point unit to speed up the computation [13].
Because this showed promising results we investigated an optimized expression
template approach and combined it with additional functionality like the auto-
matic differentiation [12] at compile time using template meta programming [24].

2 Note that for this approach it is required that the Vector class as well as the Scalar
class overload the subscript operator. For an Scalar it could easily return the value
of the scalar.
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3 Implementation

Recently we started to investigate the usage of GPU’s for reliable computing
and especially interval arithmetic. Hence, the tremendous computing power of
GPU’s motivated us to research the potential of a GPU as a back end for a
C++ interval library which is based on expression templates and template meta
programming. Our goal in this context is to offer the user a domain specific
language for interval computations which is able to utilize GPU’s for specific
algorithms or problem solvers. The aim of this work was to have a case study
for the combination of expression templates and GPU’s.

We chose OpenCL in place of CUDA as the framework for our case study
because it offers the possibility to generate and compile the OpenCL code at
run time and additionally it is possible to run it on different GPU’s as well as
on CPU’s.

As a field of application we chose vector and matrix operations for the case
study and we implemented two different approaches. The first one is to use ex-
pression templates to generate specific OpenCL code for the expressions. The
second one uses precompiled OpenCL kernels which are utilized by the expres-
sion templates. Both approaches are compared against an implementation using
standard operator overloading to realize the domain specific language in C++
and computing the result on the GPU.

3.1 OpenCL code generation

The approach of generating specific OpenCL kernels with expression templates
needs to address three different problems. The transfer of the data between
the host and the device, the unique mapping between the data and the kernel
parameters and the generation of the kernel itself.

In a domain specific language approach there are two different possibilities to
realize the transfer of the data onto the device. The first one is to allocate and fill
the cl::Buffer on the device at the creation of the vector or matrix. For this,
the two OpenCL memory flags CL MEM READ WRITE and CL MEM COPY HOST PTR

are used to initialize a read-write buffer with data from the host. The second
one is to allocate the buffer and copy the data within the assignment operator
prior to the execution of the kernel. Both of them have their advantages and
disadvantages. The first one has to copy the data only once but the required
memory, which is limited on a GPU, is used all the time and the access of the
data from the host is more costly. The second one has to copy the data for each
expression but it only uses the required memory for the ongoing expression and
the access from the host is easy.

For the unique mapping of the data and the kernel parameters we used the
singleton pattern [5] to implement a class to generate unique id’s which are
requested at the construction of the vectors and matrices and stored as the
member id . Additionally the vector and matrix classes provide two methods
getIdent and getCode which return the string ‘‘v’’ + id as an identifier and
the string ‘‘v’’ + id + ‘‘[index]’’ as the code snippet to access the data.
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Both methods are required to generate the specific OpenCL kernels out of the
expression tree inside the assignment operator and to access the required data.
For scalar types it is not required to return the identifier. In this case the method
getCode returns the value of the scalar itself which is included as a constant into
the kernel code.

The generation of the kernel itself is then subdivided into three parts. The
first one is the computation of all required parameters. For this task an instance
paramSet of the STL [19] container type std::set is recursively filled with all
vectors or matrices of the expression3.

Then afterwards this paramSet could be used to generate the header of the
kernel while iterating over the set declaring the parameters of the expression,
see Listing 4. Additionally a constant for the index of the work item is declared.

std:: string code = "__kernel void CLETGenVectorKernel ( ";

for ( it = paramSet .begin() ; it != paramSet .end (); it++ ) {

code += "__global float* " +

(*it ). getObject (). getIdent () += ", ";

}

code += " const unsigned int size )" +

"\n{ \n" +

" const int index = get_global_id (0); \n";

Listing 4. Generation of the kernel header and the constants.

The last but most important part is to generate the body of the kernel itself.
This is done by calling the method getCode for the result type as well as for the
expression tree, see Listing 5.

code += " " + result.getCode () + " = " +

expression .getCode () + ";\n};\n \n";

Listing 5. Generation of the kernel body.

Obviously the method getCode is a replacement of the subscript operator
of the expression template implementation introduced in Section 2. Hence the
nodes of the expression tree used for the code generation, which are almost
similar to the class BExpr in Listing 2, have to implement the method getCode.
But this is quite easy by using specific policy classes to concatenate the strings
of the recursive call of the child nodes with the required arithmetic operator, see
Listing 6.

std:: string getCode () const {

return std :: string("(" + a_.getCode () +

" + " + b_.getCode () + ")" );

}

Listing 6. Method getCode of a tree node for the addition.

Subsequently the generated kernel string could be compiled and executed
using the OpenCL API functions inside the assignment operator.

3 The vectors or matrices are stored as a constant reference in a wrapper class to
afford a sorted organization of the paramSet. The method getObject offers access
to the stored object.
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3.2 Utilize precompiled OpenCL kernels

In addition to the implementation in Section 3.1 to generate specific kernels out
of the expression tree we inspected the use of expression templates in place of
operator overloading to minimize the data transfer of a domain specific language
using precompiled kernels on a GPU back end. The aim of this case study is
to realize a DSL where some parts of the computation, e.g. vector or matrix
operations, are executed on a GPU without the requirement to transfer the data
between the host and the device manually by the user. A classical approach using
operator overloading suffer from the pairwise evaluation problem, see Section 2,
where data is transferred from the host to the device, then the result is computed
on the GPU and transferred back onto the host for every single operation. With
expression templates the unnecessary data transfers can be eliminated.

The implementation of the expression templates are almost similar to the
approaches in Section 2 and Section 3.1 respectively. The most important differ-
ence is that in addition to the leaf nodes (vectors, matrices . . . ) of the expression
tree all inner nodes of the tree are annotated with unique id’s. These id’s are
required to map the several operations of the expression, performed by opera-
tion specific precompiled kernels, onto the temporaries used for the results of
the operations.

The evaluation of the expression tree is as well performed inside the assign-
ment operator. But in contrast to the implementation in Section 3.1 there is
no OpenCL code generated. Rather two traversals of the expression tree are
required.

The first traversal is used to allocate all the necessary memory for the leaf
nodes (vectors, matrices . . . ) as well as for the temporary results of the operations
of the inner nodes on the OpenCL device. For each leaf node with a new id a
cl::Buffer is allocated and initialized from the host. Additionally the id of
the leaf node as well as the associated cl::Buffer are stored in a instance
paramMap of the STL container std::map [19]. This approach has the benefit
that the data of a leaf node is transferred only once even if the same associated
variable/parameter is used multiple times in an expression. For inner nodes of
the tree the required memory is only allocated for the temporary results of
the related kernel of the operation. Certainly these allocated memory areas are
stored in the paramMap together with their id’s.

The second traversal of tree performs the computation of the expression on
the OpenCL device by using the method compute4 of the nodes recursively. This
method could be subdivided into two parts. First of all the recursive calls of the
method compute of the child nodes take place to evaluate the subexpressions.
Afterwards the operation specific parts are performed, which could be also im-
plemented with policy classes to generalize the code of the implementation, see
Section 2. These parts are the determination of the required memory areas for

4 This is the correspondent method to the subscript operator or the method getCode

of the implementations in Section 2 or Section 3.1, respectively.



8 Uwe Bawidamann and Marco Nehmeier

the parameters5 and the result of the operation using the paramMap and the id’s
of the nodes as well as the execution of the operation specific precompiled kernel.

After the second traversal the evaluation of the expression is finished and
the result is stored in the associated memory area of the root node of the tree.
These data is transferred back to the host and the allocated device memory is
freed.

4 Experimental Results

We have tested our two implementations on a AMD Radeon HD 6950 GPU.
For the code generation approach (Section 3.1) it has been shown that for

standard vector operations the compile time for the generated kernel is out of
scale for most of the problems. For example the time required for the expression
v1 + v2 + v1 * 5 is shown in Table 1. In this comparison the code generation
approach as well as the operator overloading approach use device memory which
is allocated and initialized during the construction of the vectors. Hence only the
time for the compilation as well as for the execution of the kernel is measured.
In contrast the operator overloading approach uses precompiled kernels.

Table 1. Performance comparison of the code generation approach (Section 3.1).

Vector size Code generation Operator overloading

4096 63 ms 1,2 ms

1048576 63,2 ms 1,3 ms

16777216 64,8 ms 5,7 ms

However, if we don’t regard the compile time, we have measured an execu-
tion time of 3 ms for a vector size of 16777216 which is almost the half of the
execution time with operator overloading. Hence, it could be a good choice for
harder problems. Since expression templates are explicit types only one com-
pilation of identical expression trees is required. Another application is to mix
in the problem specific code into preassembled problem solvers, e.g. mix in the
computation of a function and their derivative, using automatic differentiation,
into a preassembled interval Newton method.

On the other hand we have inspected the approach using precompiled kernels
against an implementation using operator overloading for matrix operations. For
this case study the data of both approaches are kept on the host and are only
transferred for the execution of the expression template or for the particular op-
eration, respectively. Table 2 shows the required time for the execution of three
different expressions for a matrix size 2048× 2048. Note that for the second ex-
pression where the matrix M1 occurs two times the expression template approach

5 These are the memory areas which are initialized by the evaluation of the child nodes
or which are defined by the leaf nodes during the first traversal.
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Table 2. Performance comparison of the precompiled kernel approach (Section 3.2).

Expression Precompiled kernels Operator overloading

(M1 + M2) + (M3 + M4) 26 ms 51 ms

(M1 + M2) + (M3 + M1) 21 ms 51 ms

(M1 * M2) * (M3 * M4) 183 ms 218 ms

is 5 ms faster than the first expression which also adds 4 matrices whereas the
operator overloading approach is identical. This speed up was reached because
the matrix M1 is in this approach transferred to the device memory only once.

For the third expression the speed up of the expression template approach
is not such significant because the execution of the matrix multiplication on the
GPU predominate the required latency time for the data transfer from the host
to the device.

As a last remark to the execution time of OpenCL kernels we have compared
the kernels on a AMD Radeon HD 6950 GPU against a Intel Core i7-950 CPU.
Due to the latency time for the data transfer from the host to a GPU the
execution of an expression is only worth for a big enough problem. For example
the execution time including the data transfer for a matrix multiplication of two
square matrices is almost similar for 256 × 256 matrices. For smaller matrices
the CPU is significantly faster than the GPU. To avoid this runtime penalty we
can use template meta programming6 at compile time or normal branches at run
time to decide, if we would run the kernels on the GPU or CPU, respectively.

5 Related Work

In [26] a analogical approach as in Section 3.1 is used to generate CUDA C
for vector operations but they have only measured the pure execution time of
the kernels neither with a regard for the time of the compilation nor the data
transfer.

6 Conclusion and Further Research

In this paper we have shown that it is possible to use expression templates to
build a bridge between a domain specific language in C++ and OpenCL. We
have presented two different approaches.

The first one is to generate and compile the problem specific OpenCL kernels
out of the expression trees. A drawback of this approach is the time required
to compile the kernel, which is generated at the evaluation of the expression
template. On the other hand this specifically generated kernels showed a good
performance for the pure execution time on the GPU. Hence, the code generation
approach could be a good choice for hard problems where the compile time is
almost irrelevant.
6 If the problem size is available at compile time.
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Our second implementation is used to reduce the necessary data transfers
between the domain specific language and the OpenCL device by using precom-
piled kernels which are called in an optimized way. Thanks to the expression
templates it has the benefit that the necessary data transfer is reduced to mini-
mum.

Further investigations are planned to improve the interaction between domain
specific languages, expression templates and template meta programming on the
host and OpenCL and CUDA on the device to offer libraries for heterogeneous
systems which are fast and easy to use.
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