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Abstract—In 2008 the IEEE interval standard working group
P1788 has been founded to enlarge the acceptance of interval
arithmetic. One of the main challenges for the working group was
to cope with different approaches of interval arithmetic. Such
as set based interval arithmetic or modal interval arithmetic,
which have been developed during the last 50 years. For this
reason a concept called flavors is defined by the standard. The
concept specifies the behavior of the operations. Additionally, a
so called decoration system is introduced to treat mathematical
events like discontinuity or undefinedness of an expression for a
given interval box.

The C++ library libieeep1788 tries to implement all features
of the tentative interval standard in a clear and straightforward
manner. The main goal is to have a faithful reference implemen-
tation of the standard and not to use dubious optimizations and
“hacks”. The main design concept of the library is to map the
flavors concept one-to-one onto the implementation. To achieve
this requirement the so called policy based class design is used.

In this paper we will present the key concepts of the faithful
C++ library libieeep1788 which will be accompanied by an
overview of the preliminary IEEE P1788 interval standard.

I. INTRODUCTION

Floating point arithmetic is afflicted with rounding errors
which can not be treated by a correction computed with paper
and pencil. Further it is tedious, cuambersome and error-prone
to investigate every single source of error. The computers
must be enabled to check their results for correctness. This
is mandatory for applications which require a certain kind of
accuracy of the computations like chemical engineering and
control theory as well as computer graphics and computer-
aided design.

Interval arithmetic is a tool that can help in this situation.
Instead of calculating with floating point numbers, i.e. approxi-
mations of real numbers, interval arithmetic computes rigorous
bounds for “real” real numbers.

Note, however, that this guarantee is generally not obtained
by only changing the data type from floating point to interval
because dependencies between intervals lead to overestimation.
Hence, new algorithms have to be defined and the underlying
arithmetic has to compute rigorous bounds. This has been done
in the last 50 years and we now have the interval Newton
method, branch and bound algorithms for global optimization,
self validating algorithms for linear and nonlinear equations,
rigorous ODE solvers, and much more.

II. IEEE INTERVAL STANDARD P1788

In 2008 the IEEE interval standard working group P1788
has been founded to enlarge the acceptance of interval arith-
metic [1]. The presumable standard defines (set based) inter-
vals as connected, closed, not necessarily bounded subsets of
the reals:

2,7 ={zxeR|z<z<T}

In this definition £ can be —oo , T can be +o00, but the
infinities never are members of an interval. In this paper we use
x as a shorthand for [z,7]. The set of all intervals including
the empty set is denoted as IR. The basic arithmetic operations
are defined as powerset operations'.

xey={zxoy|z€x,y€Ey,if it is defined}

The interval operations compute the interval hull of these sets.
Continuous functions could be defined in a similar manner [2]
and for discontinuous functions the hull of the continuous parts
is computed. Since a computer representation of an interval
uses floating point numbers for the bounds, directed rounding
toward —oo or +o00 is necessary to compute a true enclosure.

The enclosure of all real results of a basic operation or
a function is the fundamental property of interval arithmetic
and is called inclusion property or Fundamental Theorem of
Interval Arithmetic (FTIA). Basically it means that an interval
extension f : TR" — IR on an interval box (X1, ...,Xzn) con-
tains the range of the corresponding real function f : R” — R
over this interval box [3]:

f(Xl,. ..

,Xn) C f(X]_,...,Xn)

A. Flavors

One of the main challenges of the working group was to
cope with different approaches of interval arithmetic which
have been developed during the last 50 years [4]. On the one
hand we have the classical Moore interval arithmetic [5] and
on the other hand the more advanced and modern theories like
set based interval arithmetic, containment sets [6], or modal
interval arithmetic [7].

It was quickly decided by the working group that the
classical Moore arithmetic which only allows bounded and

Note that monotonicity properties could be used to define the result of an
interval operation or function only using the bounds of the input intervals.



nonempty intervals is not sufficient for an interval arithmetic
standard that has to master all the different applications of
interval arithmetic. Also containment sets was not a big topic
for the working group to be part of the standard. But it was
a lively debate between the advocates of set based interval
arithmetic and modal interval arithmetic to decide on which
theory the standard should be based on. Neither of both
approaches is the magic bullet of interval arithmetic and comes
with their advantages and disadvantages.

For this reason a concept called flavors [8] is defined by the
standard which specifies the behavior of the operations. In this
connection it is important that the operations (interface of an
implementation) are always the same, the flavors only specify
how the interval operations should behave in the required
context. This is comparable to a well known design pattern
called strategy pattern or policy pattern [9]. This allows to have
a standard capturing different interval behaviors and theories
with clearly defined extension points.

As the main condition for an individual flavor it is required
that this flavor extends the classical Moore arithmetic which is
commonly fulfilled by the different interval arithmetic theories.
And additionally a standard compliant implementation has to
provide at least one of the flavors defined in the standard. Up
to now the preliminary standard contains a specification for
set based interval arithmetic but an introduction of a flavor for
modal intervals is planned.

B. Decorations

Typically (set based) interval arithmetic is seen as an
exception free calculus [10] but effectively there are some
situations like division by zero or an evaluation outside a
function domain where “exceptions” can happen. Like the
IEEE 754 standard for floating point arithmetic [11] the
upcoming standard for interval arithmetic requires an execution
without interruption. Formally, a global flag was commonly
used in implementations to comply with such a requirement but
nowadays multithreading is almost everywhere and the usage
of global flags is burdened with a lot of drawbacks [12].

To cope with the request for an interruption free and thread
safe interval standard which can treat mathematical events like
discontinuity or undefinedness of an expression for a given
interval box a so called decoration system D is introduced [1],
[13].

Basically a decoration is one of the five properties shown
in Table I which is combined with an interval to a decorated
interval®. The decoration of an decorated interval then can be
seen as a property storing the “history” of the computation.
This “history” is realized by a propagation or quality order of
the decorations which equals the order in Table I from com
(good) to 111 (bad) [1]. The decoration part of the result of a
function is then determined by returning the worst decoration
of the inputs of the function together with the decoration
computed by applying Table I onto the bare intervals of
the input of the function. Hence, the evaluation of interval
functions with decorated intervals is an intuitional process
which is driven by the propagation order of Table I. And also
the construction of a decorated interval out of a bare interval

2Note that the interval part of an decorated interval is called bare interval.

TABLE L. THE SET D OF DECORATIONS [3]

Value | Short description Definition
com common x is a bounded, nonempty subset of Dom( f);
f is continuous at each point of x;
and the computed interval f(x) is bounded.
dac defined & continuous | x is a nonempty subset of Dom(f), and

the restriction of f to x is continuous.
x is a nonempty subset of Dom(f).
always true.

Not an Interval; formally Dom(f) = (.

def defined
trv trivial
ill ill-formed

x is managed by Table I. The decoration is simply set to
com if x is nonempty and bounded, to dac if x is nonempty
and unbounded, and to trv if x is empty [1]. Note that the
decoration 111 is used for marking an ill-formed interval
as Nal (Not an Interval) which only can happen during the
construction of a decorated interval using ill-formed or illegal
numbers for the bounds.

With the knowledge about the propagation of decorations,
the introduction of decorated intervals is a big surplus for
the user. Especially the renunciation of global flags and the
usage of “expression local” flags simplifies the observation of
necessary properties like the continuity of a function to fulfill
the Brouwer’s fixed point theorem [12].

C. Functions and Operations

Obviously an interval standard has to specify a generally
admitted set of operations. Essentially there was a consensus
about the required functionality in the working group. But
in some cases like the exact dot product it was a debate on
principles [14], [15], [16].

Mainly the specification captures the same functions as the
IEEE 754 standard for floating point arithmetic [11], [17], of
course with an interval arithmetic specific adaption, but also
completely new functions were added.

1) Required operations in all flavors: With the introduction
of the flavors concept it is necessary to have a common set of
operations which has to be supported by all compliant flavors.
Basically this are the most important arithmetic operations
known form the IEEE 754 standard [11], [17]:

Basic operations: neg, add, sub, mul, div,
recip, sqr, sqrt, fma

Case function: case

Power functions: pown, pow, exp, exp2, expl0,
log, log2, loglO0

Trigonometric/hyperbolic  functions: sin, cos, tan,
asin, acos, atan, atan2, sinh, cosh, tanh,
asinh, acosh, atanh

Integer  functions: sign, ceil, floor, trunc,
roundTiesToEven, roundTiesToAway

Absmax functions: abs, min, max

As described above for the transition from a real function
(or floating point function) to an interval function the convex
hull of the powerset is computed.

Additionally to the common arithmetic functions the
cancellative  addition cancelPlus and subtraction
cancelMinus are required. Thereby the function



cancelMinus(x,y) returns a unique interval z such that
y +z = x follows as long as x is as least as width as y [18].
cancelPlus(x,y) is equivalent to cancelMinus(x, —y).

The other required functions listed below are self-
explanatory:

Set operations: intersection, convexHull

Constructors: numsToInterval, textToInterval

Numeric functions: inf, mid, wid,

mig

sup, rad, mag,

Boolean
disjoint

functions: equal, subset, interior,

2) Operations in the set based flavor: Besides the com-
monly required functions defined for all flavors which are all
applicable onto classical Moore intervals the set based flavor
adds its own additional functions. And obviously with the
introduction of empty or unbounded intervals the requirement
for isEmpty and isEntire is very useful. Also the function
intervalToText as a counterpart to the commonly re-
quired textToInterval is a logical requirement to specify
the IO functionality for set based intervals.

Another very useful function which is required for the set
based flavor is divToPair(x,y) which delivers a tuple of
two intervals® [19]. Simply in the case of a division by zero
divToPair(x,y) returns the disjoint intervals of x/(y N
[—00,0[) and x / (y N]0, 00] ) otherwise the common division
is performed and the second element of the tuple is left empty.

One of the most popular applications for interval arithmetic
is solving constraint problems for which the so called reverse-
mode is very feasible. The reverse interval extension @Rev
for a unary function ¢ is an interval fulfill the following
requirement [1], [20]:

¢Rev(c,x) O {z € x | p(x) is defined and in c}

For a binary function ¢ than there are naturally two reverse
interval extensions ¢Rev1 and pRev2, see [1], [20] for more
details.

The set based flavor requires the following set of reverse
functions for the corresponding (forward) functions:

For wunary functions:
pownRev, sinRev,

sqrRev,
cosRev,

recipRev,
tanRev,

absRev,
coshRev

For binary functions: mulRev, divRevl,
powRevl, powRev2, atan2Revl,

divRev2,
atan2Rev2

Since the comparison of two intervals are not as straightfor-
ward as the comparison of two numbers* the standard defines
some more specific boolean functions which are required by
the set based flavor, see Table II [1], [21]. In addition a function
inspired by J.F. Allen who defined a relation in a temporal
logic setting [22] is recommended for the set based flavor.
This overlapping function compares two intervals x and y and
returns one out of 16 states describing the relation between

3divToPair is typically used for the interval Newton method to cope
with nonhomogeneous functions.

4E.g. does x < y mean that sup(x) < inf(y) or is JpexIycy T < Y
enough?

TABLE II. ADDITIONAL COMPARISON FUNCTIONS REQUIRED BY THE

SET BASED FLAVOR.

Name | Symbol | Definition

less x<y Vzexayey z<vy /\vyeyazexw <y
precedes x =y VeexVyey ¢ < y

strictLess x<y VeexTyey T < Y AVyecyTeexx < y
strictPrecedes | x <y VeexVyey ¢ <y

them [23]. Figure 1 illustrates the functionality of the over-
lapping function comparing two nonempty intervals capturing
the 13 different states described in [22]. For handling of empty
intervals 3 additional states bothEmpty, firstEmpty and
secondEmpty are specified.

Beside the required functions the set based flavor recom-
mends a set of additional functions.

Recommended elementary functions:
exp2ml, explOml, logpl, log2pl, loglOpl,
compoundml, hypot, rSqgrt, sinPi, cosPi,
tanPi, asinPi, acosPi, atanPi, atan2Pi

rootn, expml,

Recommended boolean functions: isCommonInterval,
isSingleton, isMember

Recommended slope functions: expSlopel, expSlope2,
logSlopel, logSlope2, cosSlope2,
sinSlope3, asinSlope3, atanSlope3,
coshSlope2, sinhSlope3
Recommended complete arithmetic:
convert, completeAdd, completeSub,
completeMulAccum, completeDotProduct
before
d
meets
+
finishedBy | overlaps — starts
1 | 1
contains equals containedBy
1 1 1
startedBy — |overlappedBy| < finishes
d
metBy
+
after
XDy XCy
Fig. 1. Overlapping function for two nonempty intervals x and y: shifting

x from left to right

5See [11, [14] for details.



III. C++ LIBRARY LIBIEEEP1788

The C++ library libieeep1788 tries to implement all fea-
tures of the tentative interval standard in a clear and straight-
forward manner. The main goal is to have a faithful reference
implementation of the standard and not to use dubious opti-
mizations and “hacks”.

A. Flavors and the policy based class design

The main design concept of the library is to map the flavors
concept one-to-one onto the implementation. To achieve this
requirement the so called policy based class design [24] which
has been successfully applied to other interval libraries [25] is
used. In detail the implementation is divided into two parts, the
frontend or interface which specifies all the required operations
and the backend or “flavors” which implements the concrete
operations. These two parts are joint together using C++
templates and template metaprogramming [26]. The benefit of
this approach is that the flavors are easily exchangeable and
the library can be used as a toolbox for different flavors or for
optimized implementations.

Policies Interface

iTiclass 77 !
:_Flavor :template<class> class,

set_based_flavor interval

+operation() <~ - + -{+operation() O
[
R v
—— 4 T:class! 1
kaucher_flavor [
1

return Flavor<T>::operation() ;ﬁ

+operation()

Fig. 2.
flavors

Basic concept of the policy based class design for the realization of

Figure 2 shows the basic concept of the policy based class
design on a simplified example. The interface is realized by
the generic class interval with its two template parameters
T and Flavor. In this case T is the type used for the bounds
of the interval, e.g. double. The template-template parameter
Flavor specifies the concrete policy which implements the
functionality of the flavor. All the operations or functions of
the interface interval are only wrappers around a static
call of the corresponding function of the specified policy class
Flavor. Note that the policy class Flavor is distincted with
the type T, see Fig. 2.

The benefit of the policy based class design in contrast
to the classical object oriented strategy pattern [9] is the
better optimization at compile time. All the information of the
generic types is available at compile time. Hence, the compiler
is able to smelt the the interface interval and the policy
Flavor into one unique class. A function call of the interface
will than directly perform the corresponding function of the
policy class without the detour of a virtual function table.

Additionally the usage is quiet easy. In the following
example there is first a type alias I defined for a set based
interval with a generic bound type. Then this type alias can be
used in a straightforward manner by specifying the required
bound.

template<typename T>
using I = interval<T, set_based_flavor>;
I<double> x (1.0, 2.0), y(1.0, 1.0);

I<double> z = sqgrt(x) + y;

B. Library design

Obviously an implementation of the library libieeepl788
is a little more complicate then the simple example in
Sec. III-A. First of all there are two basic types nec-
essary, interval and decorated_interval which
have a big similarity. The bigger part of the interface of
interval and decorated_interval is identical. The
only difference is that they work with intervals or
decorated_intervals, respectively. An implementation
with two completely distinctive types for bare and decorated
intervals will lead to a lot of code duplication which is hard
to handle. Especially for an implementation of a preliminary
standard which tries to keep track of all revisions.

In this case the classical objectoriented programming can
cause a false conclusion if the class decorated_interval
is derived from the class interval. At the first sight a
derivation of decorated_interval from interval is
logically because a decorated interval is a bare interval with
a decoration. But the danger of this approach comes with
user-defined functions. E.g. a user defines a function func
only for the type interval. Because of polymorphism the
decoration of the decorated interval x will be thrown away and
the function func will be performed with a bare interval. Then
the result (bar interval) of func will be transformed back into
a decorated interval y. Hence, the history of the computation
is not completely tracked and could be wrong.

template<typename T>

using DI = decorated_interval<T,
set_based_flavor>;

DI x =

DI y = func(x);

To avoid this problem we decided to introduce a class
base_interval which centralizes the shared functionality
and both interval and decorated_interval are de-
rived from base_interval, see Fig. 3.

The main idea behind the base_interval is that it has a
private member rep representing the internals of an interval or
decorated interval. The type of this member is specified by the
template parameter RepType. Typically this representation
types are tuples like std: :pair<T,T> or std::pair<
std::pair<T, T>,decoration> which are distincted
from the typedefs Flavor<T>::representation or
Flavor<T>::dec_representation, respectively.
This approach has the advantage that the internal
representation can be completely specified by the derived
class interval or decorated_interval. The other
new template parameter ConcretelInterval typifies
the concrete type of the derived class. This “trick” allows
the base class base_interval to create instances of
its subclasses which are usually unknown to the base



Ticlass T TTTT j
1 Flavor: template<class> class!
1 RepType:class !

base_interval

-rep: RepType

+base_interval(RepType)

+concrete_interval(RepType): ConcreteInterval
+shared_operation(base_interval<T,Flavor
RepType,ConcreteInterval>): ConcreteInterval

V '?&Té}q
set_based_flavor TTTr

typedef std::pair<T,T> representation - - -

interval

typedef std::pair<representation, decoration> dec_representation

- +interval(lower:T,upper:T)
+constructor(lower:T,upper:T): representation +interval(Flavor<T>::representation): interval
+dec_constructor(lower:T,upper:T): dec_representation +operation(interval): interval

e '
1T:class

+shared_operation(representation): representation

+shared_operation(dec_representation): dec_representation
+operation(representation): representation < ——— -~ = =
+dec_operation(dec_representation): dec_representation

1
! Flavor:template<class> class

_______ decorated_interval

+decorated_interval(lower:T,upper:T)

+decorated_interval(Flavor<T>::dec_representation)

+dec_operation(decorated_interval): decorated_interval
T

<<enumeration>> |
decoration

com
dac
def
trv
ill

Fig. 3. Sketch of a simplified libieeepl788 class design

class. Therefore, the <class interval<T,Flavor>
is publicly derived from base_interval<T,Flavor,
Flavor<T>::representation, interval<T,Flavor
>> and decorated_interval<T,Flavor> is
publicly derived from Dbase_interval<T,Flavor,
Flavor<T>::dec_representation,
decorated_interval<T,Flavor>>

Basically, in the view of the class design, the library has
to handle three different tasks:

1) Creation of new instances of type interval
or decorated_interval: If a new instance of the
type interval is requested by the call of the con-
structor interval (lower,upper) the two parame-
ters lower and upper are passed to the function
Flavor<T>::constructor which returns an initialized
instance of the type Flavor<T>: :representation. This
representation is then used to call the constructor of the
base class base_interval to initialize the private member
rep. The creation of decorated intervals follows the same
procedure, only Flavor<T>::dec_constructor and
Flavor<T>::dec_representation are used®. There-
fore, the whole representation and creation of an interval
is controlled by the flavor. The classes base_interval,
interval, and decorated_interval are only skeletons
and all the functionality is implemented by the policy class
Flavor.

2)Call of a shared operation: The «call of a
shared operation is almost similar to the creation of
intervals. The difference is that the shared operation
is implemented in the base class base_interval
which uses polymorphism to work with subclasses like
interval or decorated_interval. If a shared
operation, e.g shared_operation in Fig. 3, is called

%Note that decoration is determined from the two parameters lower and
upper according to the specification in Sec. II-B.

with a parameter of a subclass like interval the internal
representation rep is then passed to the corresponding

function Flavor<T>::shared_operation. Note
that in Fig. 3 there are two implementations of
Flavor<T>::shared_operation. One working

with representation and one working with
dec_representation. Hence, the polymorphism of
C++ is used to choose the right function automatically. The
result of the function Flavor<T>: :shared_operation
is than used to create the right return type for the shared
operation by invoking the function concrete_interval
from the class base_interval which is than forwarded to
the constructor of ConcreteInterval.

3) Call of an interval or decorated interval specific op-
eration: The call of an interval or decorated interval spe-
cific operation follows the same procedure as the construc-
tion of intervals or decorated intervals. A specific opera-
tion like dec_operation is called and the internal rep-
resentation rep is passed to the corresponding function
Flavor<T>::dec_operation. The returned instance of
the representation type is than used to initialize the return type
of the operation. Specific operations for the type interval
are implemented in the same manner.

C. Set based flavor implementation

At the moment an implementation of the set based flavor is
under heavy development to keep track with the progress of the
working group. This implementation is based on MPFR [27]
to achieve the main requirement for a faithful reference im-
plementation.

IV. CONCLUSION

In this paper we presented the key concepts of the prelimi-
nary IEEE P1788 interval standard as well as the faithful C++
library libieeepl788. The main goal of this library is to have



a straightforward implementation of the IEEE P1788 interval
standard. Special attention was turned on the realization of the
flavors concept. In this case the policy based class design was
a perfect match offering flexibility and adaptability. Hence, our
approach allows to have different flavor implementations and
could also be used as a toolbox for other developers.
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