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Abstract. The event-driven communication paradigm is used increas-
ingly often to build loosely-coupled distributed systems in many indus-
try domains including telecommunications, transportation, and supply
chain management. However, the loose coupling of components in such
systems makes it hard for developers to estimate their behaviour and per-
formance under load. Most general purpose performance meta-models for
component-based systems provide limited support for modelling event-
driven communication. In this paper, we present a case study of a real-life
road traffic monitoring system that shows how event-driven communica-
tion can be modelled for performance prediction and capacity planning.
Our approach is based on the Palladio Component Model (PCM) which
we have extended to support event-driven communication. We evaluate
the accuracy of our modelling approach in a number of different workload
and configuration scenarios. The results demonstrate the practicality and
effectiveness of the proposed approach.

1 Introduction

In event-driven component-based systems, system components communicate by
sending and receiving events. Compared to synchronous communication using,
for example, remote procedure calls (RPCs), event-driven communication among
components promises several benefits [1]. For example, being asynchronous in
nature, it allows a send-and-forget approach, i.e., a component that sends a
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message can continue its execution without waiting for the receiver to acknowl-
edge the message or react on it. Furthermore, the loose coupling of components
provides increased flexibility and better scalability.

However, the event-driven programming model is more complex as applica-
tion logic is distributed among multiple independent event handlers and the flow
of control during execution can be hard to track. This increases the difficulty of
modelling event-driven component-based architectures for performance predic-
tion at system design and deployment time. The latter is essential in order to
ensure that systems are designed and sized to provide adequate quality-of-service
to applications at a reasonable cost. Performance modelling and prediction tech-
niques for component-based systems, surveyed in [2], support the architect in
evaluating different design alternatives. However, most general purpose perfor-
mance meta-models for component-based systems provide limited support for
modelling event-driven communication. Furthermore, existing performance pre-
diction techniques specialised for event-based systems (e.g., [3]) are focused on
modelling the routing of events in the system as opposed to modelling the inter-
actions and message flows between the communicating components.

In [4, 5], we described an extension of the Palladio Component Model [6] that
provides native support for modelling event-based communication in component-
based systems. The Palladio Component Model (PCM) is a design-oriented per-
formance meta-model for modelling component-based software architectures. It
allows explicit capture of component context dependencies (e.g., dependencies on
the component usage profile and execution environment) and provides support
for a number of different performance analysis techniques. Based on our ap-
proach in [4], we developed a model-to-model transformation from the extended
PCM to the original PCM allowing the use of existing analytical and simulative
analysis techniques that significantly reduce modelling effort and complexity.

In the above publications, we briefly described the proposed PCM exten-
sion and model transformation with no validation of their effectiveness and ac-
curacy. In this paper, we apply our modelling approach to a case study of a
real-life road traffic monitoring system in order to validate its practicality, effec-
tiveness and accuracy. The system we study is developed as part of the TIME
project (Transport Information Monitoring Environment) [7] at the University of
Cambridge. The system is based on a novel component-based middleware called
SBUS (Stream BUS) [8] which supports peer-to-peer event-based communica-
tion including both continuous streams of data (e.g., from sensors), asynchronous
events, and synchronous RPC. The contributions of this paper are: i) a refine-
ment of our model transformation described in [4] to reflect the characteristics of
the SBUS framework, ii) a case study of a real-life system showing how our ap-
proach can be applied to model event-driven communication, and iii) a detailed
evaluation of the model accuracy in a number of different scenarios representing
different system configurations and workloads.

The remainder of this paper is organised as follows. Sect. 2 introduces the
PCM, which are the basis of the performance model and the SBUS framework,
which is the communication middleware used within the case study. Sect. 3



presents the case study a traffic monitoring system and the resulting performance
model followed by a detailed experimental evaluation of the model predictions
in Sect. 4. Next, we present an overview of related work and finally in Sect. 6 we
conclude with a brief summary and a discussion of ongoing and future work.

2 Foundations

In this section, we briefly introduce the Palladio Component Model that our
modelling approach is based on. Furthermore we present an overview on the
middleware SBUS (Stream BUS), which is the foundation for the traffic moni-
toring system presented as case study in Sect. 3.

2.1 Palladio Component Model

The Palladio Component Model (PCM) [6] is a domain-specific modelling lan-
guage for modelling component-based software architectures. It supports au-
tomatic transformation of architecture-level performance models to predictive
performance models including layered queueing networks [9], stochastic process
algebras [10], and simulation models [6, 11]. In PCM, architectural models are
parametrized over the system usage profile and the execution environment. This
allows reuse of models in different contexts for different usage scenarios and
execution environments.

Software components are the core entities of PCM. They contain an abstract
behavioural specification for each provided component service called the Re-
source Demanding Service Effect Specification (RD-SEFF). RD-SEFFs describe
by means of an annotated control flow graph how component services use sys-
tem resources and call external services provided by other components. Similar
to UML activities, RD-SEFFs consist of different types of actions:

– InternalActions model resource demands and abstract from computations
performed inside a component. To express the performance-relevant resource
interaction of the modelled computations, an InternalAction contains a set
of ParametricResourceDemands.

– AquireAction and ReleaseAction are used to acquire and respectively
release a semaphore which can be used, for example, to model a thread
pool.

– ExternalCallActions represent component invocations of services provided
by other components. For each external service call, component developers
can specify performance-relevant information about the service input pa-
rameters. External service calls are always synchronous in PCM, i.e., the
execution is blocked until the call returns.

– Loops model the repetitive execution of a set of actions. A probability mass
function specifies the number of loop iterations which can depend on the
service input parameters.

– Branches represent “exclusive or” splits of the control flow, where only
one of the alternatives can be taken. In PCM, the choice can be either
probabilistic or it can be determined by a guard. In the former case, each



alternative has an associated probability determining the likelihood of its
execution. In the latter case, boolean expressions based on the service input
parameters determine which alternative is executed.

– Forks split the control flow in several parts that are executed in parallel.
Usually, forks are asynchronous, i.e., the original control flow continues to
execute directly after the parts are forked.

2.2 SBUS

The SBUS framework was designed to support distributed transport applica-
tions. Data are collected from multiple sources, are processed in ways that may
or may not be envisaged by the data owners, and are presented to users in useful
ways. All communication in the SBUS world is by means of events. Details of the
system are given by Ingram [8]; what follows is a summary to make the paper
self-contained. SBUS is shown schematically in Figure 1. The basic entity is
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Fig. 1. The SBUS world.

the component. Components communicate via messages and this is how all data
exchange is effected. Messages emanate from and are received by endpoints; each
endpoint is plugged into one or more others. An endpoint specifies the schema of
the messages that it will emit and accept. The framework enforces matching of
sender and receiver schemas, ensuring that only compatible endpoints are con-
nected. A system for polymorphic endpoints facilitates writing components that
don’t know ahead of time the schemas of the messages that they will produce or
consume. The act of connecting two endpoints is called mapping. Each endpoint
can be a client, a server, a source, or a sink. Clients and servers implement re-
mote procedure call (RPC) functionality, providing synchronous request/reply,
and are attached in many-to-one relationships. On the other hand, streams of
events emitted from source endpoints are received by sinks. This communication
is entirely asynchronous and attachment is many-to-many .

Each component is divided into a wrapper, provided by the SBUS framework,
and the business logic that makes up the component’s function. The wrapper
manages all communication between components, including handling the net-
work, registration of endpoints and management of their schemas, and reporting



on the component’s status, including providing reflection. The separation of the
wrapper is deliberate as it insulates business logic from dealing with unreliable
network infrastructure as well as providing resilience in the face of failure of
connected components. The business logic specifies its endpoints’ mappings and
the wrapper takes care of ensuring that these are carried out.

3 Case Study

The system we study is developed within the TIME project (Transport Infor-
mation Monitoring Environment) [7] at the University of Cambridge. We first
give an overview on the different components the system consists of. In the sec-
ond part of this section, we present the performance model of this system. The
prediction results and the validation is presented in Sect. 4.

3.1 TIME Traffic Monitoring System

The application estimates the speed of buses that are near traffic lights when
they turn red. This application is interesting because it requires information
describing the current state of traffic lights alongside location information from
buses. These two sources of data are, in many cases, not maintained by the same
organisation, meaning that our application must fuse data provided by multiple
organisations. This is the type of environment for which SBUS was designed
as it precludes a centralised approach. Our implementation of this application
uses four classes of SBUS components (see Figure 2) described below. Due to
the middleware SBUS, it is possible to distribute these components over several
computing nodes as well as centralize them on one node without any changes of
the components’ implementation. Finding the maximal processable event rate
for a given deployment option or a resource-efficient deployment scenario that
still meets all requirements regarding the event processing times is a complex
task. Using performance prediction techniques eases the analysis of performance
attributes for different deployment scenario and event rates without prototypical
implementations or test environments.

GPS 
Location 

Data

SCOOT
Traffic
Light

Status

Proximity
Detection

ACIS Location
Storage

Fig. 2. The application’s components.

Bus location provider (the “ACIS component”) The bus location provider uses
sensors (in our case, GPS coupled with a proprietary radio network) to note the
locations of buses and report them as they change. Such a component produces



a stream of events, each containing a bus ID, a location, and the time of the
measurement.

Location storage The location storage component maintains state that describes,
for a set of objects, the most recent location that was reported for each of them.
The component has no knowledge of what the objects are—each is identified
only by name. The input is a stream of events consisting of name/location pairs
with timestamps, making a Bus Location Provider a suitable event source. The
location state is not conceptually a stream of events so, in our implementation,
it is stored in a relational database that other components may query.

Traffic light status reporter (the “SCOOT component”) The city of Cambridge,
UK provided the testbed for our application. The city’s traffic lights are con-
trolled by a SCOOT system [12], designed to schedule green and red lights so
as to optimise use of the road network. As a necessary part of controlling the
lights, SCOOT knows whether each light is red or green4 and can transmit a
stream of information derived from vehicle detecting induction loops installed in
the road. This component supplies a source endpoint emitting a stream of events
corresponding to light status changes (red to green and green to red), a second
source endpoint emitting a stream of events that reflect SCOOT’s measurements
of traffic flow, and two RPC endpoints that allow retrieval of information about
a junction (such as its name and its location) and links between junctions (the
junction the link attaches to, the location of the link’s stop line, and so on).

Proximity detector This is the only application-specific component in our system.
It receives a stream of trigger events reflecting when lights turn from green to
red; this stream is emitted by the SCOOT component. Upon such a trigger,
the SCOOT component’s RPC facility is used to determine the location of the
light that just turned red. This is collated with current bus locations (stored in
a relational database by the location storage component) to find which buses
are nearby. The identities of these buses are then stored again in the relational
database for use by the user interface; these are removed in response to a second
stream of trigger events indicating when lights turn from red to green. No events
are emitted by the proximity detector component because the user interface does
not communicate using SBUS.

3.2 Performance Model

The current version of PCM only supports synchronous call-return communi-
cation between components. As we demonstrated in [4], it is possible to model
asynchronous communication using a combination of non-synchronised fork ac-
tions and external service calls. In this paper, we use these extensions of PCM
to model the TIME traffic monitoring application described in the previous sec-
tion. We have refined the model transformation proposed in [4] to reflect the
characteristics of the SBUS framework.
4 Amber is not under the control of SCOOT but is managed by hardware near each

light.



As shown in Figure 3, each event source is substituted by an SBUS-specific
component, the SBUSSourceEP, which provides the interface I SBUSEventSource-

EP and requires the interface I SBUSEventSinkEP once for each connected event
sink. The event sinks of the receiving components are substituted by SBUSSinkEP

components. The latter provide the I SBUSEventSinkEP interface and require
the I SBUSEventSourceEP interface, respectively. The behaviour of the two
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Fig. 3. Integration of SBUS-specific components.

SBUS-specific components is specified using RD-SEFFs. The RD-SEFF describ-
ing the emit method, which is part of I SBUSEventSourceEP, is depicted in
Figure 4(a). After an InternalAction modelling the CPU usage induced by the
SBUS library, a semaphore encapsulated in a separate component is acquired.
This semaphore reflects the single threaded behaviour of the SBUS wrapper. The
wrapper’s internal resource consumption is modelled with a second InternalAc-
tion followed by a ForkAction. The ForkAction contains a forked behaviour,
which includes an ExternalCallAction for each connected I SBUSEventSinkEP

interface.
Similarly to SBUSSourceEP, the RD-SEFF of the deliver method, which is

part of the I SBUSEventSinkEP interface, includes actions to acquire and re-
lease a semaphore representing the single threaded implementation of the SBUS
wrapper. The complete RD-SEFF of this method is illustrated in Figure 4(b).
After an InternalAction representing the CPU usage by the SBUS wrapper, the
deliver method of the connected component is called. As the component runs
in a separate process from the wrapper, the call of the component and the Inter-
nalAction representing the CPU usage induced by the library are encapsulated
in a ForkAction.

As discussed in Sect. 2.2, the SBUS framework also supports client-server
communication following an RPC style. Therefore, we also add an SBUS-specific
component for each client-server interface provided or required by a component
in our scenario. The respective RD-SEFFs look very similar to those already
described, however, they do not include the ForkAction used to model asyn-
chronous control flow. Figure 5 illustrates the resulting PCM model showing the
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Fig. 4. SBUS-specific behaviour of components.

components of the TIME scenario in grey and the SBUS-specific components in
white.

In order to derive the CPU demand for each InternalAction, we extended the
SBUS framework with several sensors that collect the time spent within a com-
ponent itself, within the library to communicate with the wrapper, and within
the wrapper to communicate with the library and the receiving component. For
each component, we ran experiments and measured the time spent in the compo-
nent, the library, and the wrapper under low workload conditions. We took the
mean value over more than 10000 measurements whose variation was negligible.
The results, shown in Table 1, were used as estimates of the respective resource
demands.

Component Endpoint Time in Component Time in Library Time in Wrapper

ACIS feeds 0,5172 ms 0,0369 ms 0,0097 ms

Location feeds 0,6343 ms 0,0088 ms 0,0088 ms

SCOOT lightred 0,6266 ms 0,0400 ms 0,0167 ms
lightgreen 0,6266 ms 0,0400 ms 0,0192 ms
linkinfo 0,5225 ms 0,0180 ms 0,0137 ms

Proximity lightred 0,4511 ms 0,0005 ms 0,0072 ms
lightgreen 0,3139 ms 0,0005 ms 0,0072 ms
linkinfo 0,0000 ms 0,0090 ms 0,0197 ms

Table 1. Results of resource demand estimation experiments.
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4 Experimental Evaluation

Our experimental environment consisted of 12 identical machines, each equipped
with a 2.4 GHz Intel Core2Quad Q6600 CPU, 8 GB main memory, and two
500 GB SATA II disks. All machines were running Ubuntu Linux version 8.04
and were connected to a GBit LAN. The experiments were executed on one or
more of these systems. In order to validate the developed performance model, we
considered several different deployment scenarios of the TIME traffic monitor-
ing application. For each scenario, we run multiple experiments under increasing
event rates resulting in increasing utilisation levels of the system. We then com-
pared the model predictions against measurements on the real system in order
to evaluate the model accuracy. The selection of different deployment scenar-
ios allows us to separate different possible influence factors like single-threaded
implementations of components or influences from concurrently running compo-
nent instances. These influence factors are then combined in the later scenarios.
In the following, we summarise the results for each of the four scenarios we
considered.

Scenario 1 As described in Sect. 3, the SCOOT component is connected to the
Proximity Detector and the ACIS component is connected to the Location Stor-
age component. To explore each of these interactions individually, we deployed
ACIS together with Location Storage on one machine and SCOOT with Prox-
imity Detector on another one. In Tables 3 and 2 we show the measurements of
CPU utilisation5 and compare them with the model predictions. The results are
visualised in Figure 6. The prediction error is below 10% in most of the cases
with exception of the cases under very low CPU utilisation. However, in these

5 The CPU utilisation shown is over all four cores of the respective machine.



cases, the error is only 1% when considered as an absolute value which is negli-
gible and can be explained by normal OS tasks. Note that each component has
two threads, one executing the business logic and one executing the wrapper6.
However, given that the resource demands of the wrapper are very low, most
of the processing time is spent in the thread executing the business logic such
that in practice only one thread per component is active most of the time. This
explains why the CPU utilisation did not exceed 50% since each machine was
running only 2 components while it had 4 cores available.

Event rate [1/sec] 86,82 153,36 399,88 787,32 1197,6

Measurement 3,55% 6,4% 12,7% 24,75% 36,2%

Prediction 3% 5,3% 12,1% 26,9% 40,9%

Error 15,49% 17,19% 4,72% 8,69% 12,98%

Table 2. Scenario 1: CPU Utilisation (SCOOT and Proximity Detector).

Event rate [1/sec] 95,05 182,02 391,45 660,18 976,4 1809,9 1880,2 1917,85

Measurement 3,4% 6,4% 11,6% 21,2% 29% 41,4% 45,2% 44,4%

Prediction 2,9% 5,5% 11,8% 19,4% 28,6% 39,8% 45,8% 47,9%

Error 14,71% 14,06% 1,72% 8,49% 1,38% 3,86% 1,33% 7,88%

Table 3. Scenario 1: CPU Utilisation (ACIS and Location Storage).
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Fig. 6. Scenario 1: CPU Utilisation.

Scenario 2 The first scenario did not include CPU contention effects since
there were more CPU cores than active threads. In this scenario, we use the
same setup as before however with multiple instances of the components. Each
component has three instances which results in 6 active threads per machine.
In addition to considering CPU utilisation, this time we also analyse the effect
of CPU contention on the event processing times. Tables 4 and 5 compare the
predicted CPU utilisation against the measured CPU utilisation. The event rates

6 In reality, each component has a separate thread for each endpoint. Thus, the
SCOOT component actually has 4 threads: 1 for the wrapper and 3 for the three end-
points it provides. However, since the 2 RPC endpoints are not used that frequently,
we only count the thread of the source endpoint.



listed there are per instance of the component and thus the overall processed
event rate is three times higher. As we can see from the results, with exception
of the cases under very low load, the modelling error was less than 5%.

We now consider the event processing times. We compare the measured pro-
cessing time of the Location Storage component with the model predictions. The
results are listed in Table 6 and visualised in Figure 7. As we can see, the model
predictions are 5% to 10% lower than the measurements on the system.

Event rate [1/sec] 95,05 182,02 391,45 660,18 976,4 1809,9

Measurement 9,7% 18% 35,6% 57,6% 80,59% 91,59%

Prediction 8,6% 16,4% 35,6% 58,3% 80,3% 92,5%

Error 11,34% 8,89% 0,00% 1,22% 0,36% 0,99%

Table 4. Scenario 2: CPU Utilisation (ACIS and Location Storage).

Event rate [1/sec] 86,96 154 398,6 792

Measurement 9,94% 16,95% 40,21% 82,37%

Prediction 8,90% 15,80% 40,80% 81,60 %

Error 1,14% 1,38% 0,98% 4,36%

Table 5. Scenario 2: CPU Utilisation (SCOOT and Proximity Detector).

Event rate [1/sec] 95,05 182,02 391,45 660,18 976,4 1809,9

Measurement [ms] 0,657 0,695 0,676 0,703 0,780 0,846

Prediction [ms] 0,634 0,634 0,634 0,634 0,700 0,855

Error 3,57% 8,71% 6,14% 9,88% 10,22% 1,06%
Table 6. Scenario 2: Mean processing time of Location Storage.

Scenario 3 The previous scenarios evaluated the SCOOT and ACIS interac-
tions on separate machines. In this scenario, all four components are deployed
on the same machine. Similarly to Scenario 1, we deployed only one instance
of each component. The results for CPU utilisation are shown in Table 7. As
previously, with exception of the cases under very low load, the modelling error
was below 5%.

Even though in this case, we have 4 active threads (one per component), it
was not possible to scale beyond a CPU utilisation of 75%. This is because the
computational load is not spread uniformly among the four threads and they are
not running independently of one another (i.e., the Proximity Detector compo-
nent is triggered by SCOOT and the Location Storage component is triggered
by ACIS). As a result of this, not all four threads are always active at the same
time and the 4 CPU cores cannot be saturated. The model predictions for the
event processing times were of similar accuracy to the ones shown in the previous
scenario, so we omit them here.

Scenario 4 In this last scenario, similarly to the previous one, we again deployed
all components on one machine, however, this time we used two instances of each
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Event rate ACIS [1/sec] 94,81 180,05 393,25 940,10 1328,39 1144,95 1084,29

Event rate SCOOT [1/sec] 106,80 153,18 396,39 776,68 777,15 943,15 1145,35

Measurement 6,81% 11,90% 26,50% 53,66% 63,78% 65,14% 70,81%

Prediction 6,50% 10,70% 25,30% 55,10% 66,40% 67,40% 74,20%

Error 4,50% 10,07% 4,53% 2,68% 4,11% 3,47% 4,79%
Table 7. Scenario 3: CPU Utilisation.

component. The latter results in 8 active threads processing business logic of the
four components. The results for CPU utilisation are shown in Table 8. As we
can see, the higher number of threads allows to saturate the machine. Compared
to the previous scenarios, the prediction error is slightly higher, however, it is
still mostly below 10%. Again, the model predictions for the event processing
times were of similar accuracy to the ones shown in Scenario 2, so we omit them.

Event rate ACIS [1/sec] 94,57 178,30 578,50 711,74 764,65

Event rate SCOOT [1/sec] 86,76 153,10 394,38 545,19 609,98

Measurement 12,81% 23,04% 61,91% 82,94% 93,55%

Prediction 11,7% 21,4% 65,8% 91,4% 98,5%

Error 8,65% 7,12% 6,28% 10,20% 5,30%
Table 8. Scenario 4: CPU Utilisation.

In summary, the developed model proved to capture the system behaviour
well and to provide accurate performance predictions under varying configura-
tions and deployment scenarios. With a few exceptions, the modelling error was
mostly below 10%. Using the model, we were able to predict the CPU utilisation
for a given event rate as well as the maximum event rate that can be sustained
in a given deployment. In many cases, the maximum CPU utilisation that could
be reached was lower than would be expected due to the uneven distribution
of the computational load among the active component threads. The model en-
abled us to accurately predict the maximum event rate that could be reached
with a given number of component instances deployed on the physical machines.
Furthermore, the model provided accurate predictions of the event processing
times in scenarios with CPU contention. The developed model provides a tool
for performance prediction and capacity planning that can be used to detect



system bottlenecks and ensure that the system is designed and sized to sustain
its expected workload satisfying performance requirements.

5 Related Work

The work related to the results presented in this paper can be classified into two
areas: i) architecture-level performance meta-models for component-based sys-
tems and ii) performance analysis techniques specialized for event-based systems
including message-oriented middleware.

Over the last fifteen years a number of approaches have been proposed for
integrating performance prediction techniques into the software engineering pro-
cess. Efforts were initiated with Smith’s seminal work on Software Performance
Engineering (SPE) [13]. Since then a number of architecture-level performance
meta-models have been developed by the performance engineering community.
The most prominent examples are the UML SPT profile [14] and its successor
the UML MARTE profile [15], both of which are extensions of UML as the de
facto standard modelling language for software architectures.

In recent years, with the increasing adoption of component-based software
engineering, the performance evaluation community has focused on adapting and
extending conventional SPE techniques to support component-based systems
which are typically used for building modern service-oriented systems. A recent
survey of methods for component-based performance-engineering was published
in [2].

Several approaches use model transformations to derive performance pre-
diction models (e.g., [16–18, 6]). Cortellessa et al. surveyed three performance
meta-models in [19] leading to a conceptual MDA framework of different model
transformations for the prediction of different extra-function properties [20, 21].
The influence of certain architectural patterns in the system’s performance and
their integration into prediction models was studied by Petriu [17, 22] and Go-
maa [23]. In [17, 22], UML collaborations are used to modelle the pipe-and-filter
and client-server architectural patterns which are later transformed into Layered
Queueing Networks.

In the following, we present an overview of existing performance modelling
and analysis techniques specialized for event-based systems including systems
based on message-oriented middleware (MOM). A recent survey of techniques
for benchmarking and performance modelling of event-based systems was pub-
lished in [24]. In [25], an analytical model of the message processing time and
throughput of the WebSphereMQ JMS server is presented and validated through
measurements. The message throughput in the presence of filters is studied and
it is shown that the message replication grade and the number of installed filters
have a significant impact on the server throughput. Several similar studies using
Sun Java System MQ, FioranoMQ, ActiveMQ, and BEA WebLogic JMS server
were published. A more in-depth analysis of the message waiting time for the
FioranoMQ JMS server is presented in [26]. The authors study the message wait-
ing time based on an M/G/1−∞ queue approximation and perform a sensitivity
analysis with respect to the variability of the message replication grade. They



derive formulas for the first two moments of the message waiting time based on
different distributions (deterministic, Bernoulli and binomial) of the replication
grade. These publications, however, only consider the overall message through-
put and latency and do not provide any means to model event-driven interactions
and message flows.

A method for modelling MOM systems using performance completions is
presented in [27]. Model-to-model transformations are used to integrate low-level
details of the MOM system into high-level software architecture models. A case
study based on part of the SPECjms2007 workload is presented as a validation
of the approach. However, this approach only allows to model Point-to-Point
connections using JMS queues.

In [28], an approach to predicting the performance of messaging applications
based on Java EE is proposed. The prediction is carried out during application
design, without access to the application implementation. This is achieved by
modelling the interactions among messaging components using queueing network
models, calibrating the performance models with architecture attributes, and
populating the model parameters using a lightweight application-independent
benchmark. However, again the workloads considered do not include multiple
message exchanges or interaction mixes.

Several performance modelling techniques specifically targeted at distributed
publish/subscribe systems exist in the literature. However, these techniques are
normally focused on modelling the routing of events through distributed broker
topologies from publishers to subscribers as opposed to modelling interactions
and message flows between communicating components in event-driven appli-
cations. In [3] an analytical model of publish/subscribe systems that use hier-
archical identity-based routing is presented. The model is based on continuous
time birth-death Markov chains. This work, however, only considers routing ta-
ble sizes and message rates as metrics and the proposed approach suffers from
several restrictive assumptions limiting its practical applicability. In [29, 24],
a methodology for workload characterization and performance modelling of dis-
tributed event-based systems is presented. A workload model of a generic system
is developed and analytical analysis techniques are used to characterize the sys-
tem traffic and to estimate the mean notification delivery latency. For more
accurate performance prediction queueing Petri net models are used. While the
results are promising, the technique relies on monitoring data obtained from the
system during operation which limits its applicability.

6 Conclusions and Future Work

In this paper, we presented a case study of a real-life road traffic monitoring
system showing how event-driven communication can be modelled for perfor-
mance prediction and capacity planning by means of an extended version of
the Palladio Component Model (PCM). We refined our PCM extension from [4]
customising it to the specific middleware framework used in the considered sys-
tem. We developed a performance model of the system and conducted a detailed



experimental evaluation of the model accuracy in a number of different scenar-
ios representing different system configurations and workloads. The presented
case study is the first validation of our modelling approach demonstrating its
practicality, effectiveness and accuracy.

The results presented in this paper form the basis for several areas of fu-
ture work. Currently, we are working on integrating the meta-model extensions
into the Palladio tool chain and fully automating the proposed transformation.
Furthermore, we plan to refine the transformation to separate general platform-
independent event-based behaviour from platform-specific resource demands and
behaviour. This separation will allow modelling of event-driven communication
independently of the infrastructure used. The platform-specific resource demands
will be added later using predefined extension points and completions. As a next
step, we plan to work on extracting prediction models automatically at run-time.
The resource discovery component (RDC) which is part of the SBUS framework
provides methods to determine the connections between endpoints. This infor-
mation can be used to create the system model. Additionally, we plan to extend
the instrumentation we integrated in the SBUS framework making the measured
resource demands available during operation. This will allow to extract model
parameters dynamically at run-time and will make it possible to use the models
for adaptive run-time performance management.
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