

Performance and Security Influence of Augmenting IDS using SDN and NFV

SSP 2017

Lukas Iffländer & Jonathan Stoll

2017/11/9

http://se.informatik.uni-wuerzburg.de/

- Motivation
- Background
- > Approach
- Evaluation
- Conclusion

MOTIVATION

Motivation

Signatur:

alert tcp \$EXTERNAL_NET any -> \$HOME_NET 12345:12346
(msg:"MALWARE-BACKDOOR netbus getinfo"; flow:to_server, established;
content:"GetInfo|0D|"; metadata:ruleset community;
classtype:trojan-activity; sid:110; rev:10;)

- Attack detection requires DPI
- In inline mode IDS presend an active and potentially limiting component.

Problem

- Active in-line IDS are a bottleneck
- IDS detect false-positives in overload scenarios

> (Expected) Benefit

- Load removal from the IDS
 - Improves network performance
 - Improves attack detection
- Allows global reaction to attacks in the network

Action

 Develop SDN based algorithms to route only relevant traffic over the IDS

Idea

 Route only relevant traffic over the IDS

BACKGROUND

IDS Categories

SDN

UNI WÜ Performance and Security Influence of Augmenting IDS using SDN and NFV

Related Work

- [CKR+14] Po Wen Chi, Chien Ting Kuo, He Ming Ruan, Shih Jen Chen und Chin Laung Lei: An AMI Threat Detection Mechanism Based on SDN Networks. In: Eighth International Conference on Emerging Security Information, Systems and Technologies(SECUWARE 2014). IARIA, Nov 2014.
- [XXHM14] Tianyi Xing, Zhengyang Xiong, Dijiang Huang und Deep Medhi: SDNIPS: Enabling Software-Defined Networking Based Intrusion Prevention System in Clouds. In: 10th CNSM and Workshop. IFIP, Nov 2014.
- [YPL+15] Changhoon Yoon, Taejune Park, Seungsoo Lee, Heedo Kang, Seungwon Shin und Zonghua Zhang: Enabling security functions with SDN: A feasibility study. In: Computer Networks, Band 85, Seite 19–35. Elsevier B.V., May 2015.

APPROACH

Performance and Security Influence of Augmenting IDS using SDN and NFV

Assumptions

- > Attacks only from the outside
 - \rightarrow only incoming traffic to be monitored
 - → outgoing traffic is benign
- > Only applications the IDS has signatures for are relevant
- Only the first packets of a connection contain attacks (e.g. HTTP-Requests)

Routing Concepts

Development of three SDN-based algorithms for routing traffic via the IDS

> Adaptive Blacklisting

- Permanent blacklists for some services
- Temporal blacklists for selected connections

> Adaptive Whitelisting

- Permanent whitelists for some services
- Temporal whitelists for selected connections

Selective Filtering

• Permanent routing of selected services over the IDS

New Connection

Blacklisting

- (1) New connection
- (2) Route via IDS for X seconds
- (3) No attack detected: Direct routing after X seconds for Y seconds

Attack detected: Permanent routing via IDS

Whitelisting

(1) New connection

- (2) Route via IDS
- (3) Require information weather attack occured within X packets

If not permanent routing from Q to S

Direct routing between Q and S

UNI WÜ

Selective Filtering

Normal traffic:

UNI

WÜ

Direct routing between Q and S

Used technologies

- SDN: OpenFlow + Ryu Controller
- IDS Snort with barnyard2
- > Application: Apache Webserver
- Virtual Switch: Open vSwitch
- SDN Controll: L7sdntest

Performance and Security Influence of Augmenting IDS using SDN and NFV

Reference Scenarios

UNI

WÜ

Intelligent Routing Scenarios

Performance and Security Influence of Augmenting IDS using SDN and NFV

UNI WÜ

Metrics and Workloads

- Throughput [Mbit/s]
- Delay [ms]
- Alarm-Rate
 - False positives
 - False negatives
- HTTP Requests

Workload 1: Constant Load $a = \frac{\lambda}{\mu} = 1$

Workload 2: Overload $a = \frac{\lambda}{\mu} > 1$

Workload 1: Througput [Mbit/s]

Performance and Security Influence of Augmenting IDS using SDN and NFV

UNI WÜ

Workload 1: Delay [ms]

Performance and Security Influence of Augmenting IDS using SDN and NFV

UNI WÜ

Workload 1: Alerts

Performance and Security Influence of Augmenting IDS using SDN and NFV

UNI WÜ

Workload 2: Througput [Mbit/s]

Performance and Security Influence of Augmenting IDS using SDN and NFV

UNI WÜ

Workload 2: Delay [ms]

Performance and Security Influence of Augmenting IDS using SDN and NFV

UNI WÜ

Workload 2: Alerts

Performance and Security Influence of Augmenting IDS using SDN and NFV

UNI WÜ

Workload 2: Packets via IDS per Second

Performance and Security Influence of Augmenting IDS using SDN and NFV

UNI

WÜ

Summary

- Throughput was increased
- Delay was decreased
- Improved attack detection [further work needed for more precise statemens]
- Large differences between native and virtual switches
- Packet throughput at IDS indicator for system performance

Future Work

- Evaluation with other Hardware Switches
- Extension by load balancing solutions for IDS
- > Evaluation of other IDSes (Bro, Suricata, Snort2, ...)
- More detailed inspection of attack detection results
- > Application of learned knowledge for function chaining of security VNFs

Thank you for your attention!

lukas.ifflaender@uni-wuerzburg.de

https://twitter.com/bladewing678

Performance and Security Influence of Augmenting IDS using SDN and NFV