
prep
rin

t - non-ed
ite

d dra
ft

IEEE IC SI ON MICROSERVICES AND CONTAINERS 1

The SPEC-RG Reference Architecture for FaaS:
From Microservices and Containers to

Serverless Platforms
Erwin van Eyk, Johannes Grohmann, Simon Eismann, André Bauer, Laurens Versluis, Lucian Toader,

Norbert Schmitt, Nikolas Herbst, Cristina L. Abad, Alexandru Iosup

Abstract—Microservices, containers, and serverless computing belong to a trend toward applications composed of many small,
self-contained, and automatically managed components. Core to serverless computing, Function-as-a-Service (FaaS) platforms
employ state-of-the-art container technology and microservices-based architectures to enable users to manage complex applications
without the need for systems-level expertise. Victim of its own success, and partially due to proprietary technology, currently the
community has a limited overview of these platforms. To address this, we propose a reference architecture and ecosystem for FaaS
platforms. Based on a year-long survey of real-world platforms conducted within the SPEC-RG Cloud Group, we highlight specific
components and identify common operational patterns.

Index Terms—Reference Architecture, Serverless Computing, Function-as-a-Service, FaaS, Microservices, Containers.

F

1 INTRODUCTION

For the past three decades, many applications have been
shrinking in size and exploding in number. Continuing a
trend already occurring in grid computing [1], cloud com-
puting technology and software development practice have
enabled more diverse workloads and more focused tasks.
Recently, advances in container technology (such as Docker)
leveraged this shrinking trend to decrease the build-time
and the deployment overhead of software, enabling far
more granular processes compared to traditional server-
based provisioning and even to Virtual Machines (VMs).
In parallel, aiming to improve development time, and sys-
tem resiliency and scalability, development practices have
promoted new architectures of fine-grained microservices
over the traditional monolithic and service-oriented archi-
tectures. The emerging technology of serverless computing
combines these advances [2], taking one more step towards
computing as an Internet-based utility. But what is the status
of serverless technology and where is it heading?

Serverless computing is a set of (cloud) computing tech-
nologies that adhere to three principles [3]: (1) operational
logic is abstracted away from users; (2) users only pay
for the resources they need, with fine granularity; (3) the
computing model is event driven and operations are scaled
elastically.

• University of Wuerzburg: Johannes Grohmann, Simon Eismann, André
Bauer, Norbert Schmitt, Nikolas Herbst
E-mail: {firstname}.{lastname}@uni-wuerzburg.de

• Escuela Superior Politecnica del Litoral: Cristina L. Abad
E-mail: cabad@fiec.espol.edu.ec

• Vrije Universiteit Amsterdam, the Netherlands: Alexandru Iosup, Lucian
Toader, Laurens Versluis
Contact: A.Iosup@vu.nl

• Vrije Universiteit Amsterdam and Platform9 Systems: Erwin van Eyk
E-mail: E.vanEyk@atlarge-research.com

Manuscript received February 1, 2019.

Function-as-a-Service (FaaS) is a model for serverless oper-
ations offered “as a service”. Cloud users provide functions
to the cloud provider, who, for a pre-agreed payment, is
responsible for the full operational lifecycle—from deploy-
ing the function in the datacenter to ensuring that security
patches are applied to the software stack executing the
function.

FaaS offers good reasons to exist within the already rich
cloud service landscape. It provides high-level abstractions
of distributed computing elements, reducing the need for
users to be experts in distributed systems, or to manage
complex microservice-based architectures themselves. It lets
users delegate operational issues, allowing organizations to
focus on addressing business concerns.

The market uptake of serverless computing and FaaS is
large and rapidly increasing. The market currently hovers
at around $5 billion and is predicted to be worth nearly
$15 billion by 2023.1 Correspondingly, every major pub-
lic cloud provider already offers a FaaS solution as well
as other serverless products, such as serverless-friendly
databases (AWS Aurora). In the open-source community,
numerous FaaS platforms and serverless projects are ac-
tively being developed. Finally, the potential of serverless
computing has triggered the academia [4], [5], [6].

Yet, reminiscent of the early days of cloud computing,
serverless computing lacks a community-wide consensus on
the fundamental architectures, components, and practices.
(We and others have already proposed terminology and
properties [3].) Compounding the problem, for FaaS the
cloud providers lack an incentive to make their serverless
platforms transparent, or even open source. This could
obscure emerging solutions and hamper the development of

1. https://www.marketsandmarkets.com/Market-Reports/
serverless-architecture-market-64917099.html

prep
rin

t - non-ed
ite

d dra
ft

IEEE IC SI ON MICROSERVICES AND CONTAINERS 2

Resource Orchestration Layer

Naming Service Resource
Manager

Resource
Scheduler Node Agent

Function Management Layer

Function Registry Function Builder Function Deployer Function Instance Function Router Function
Autoscaler

Workflow Composition Layer

Workflow Registry Workflow Engine Workflow
Scheduler

Workflow
Execution Store

Business
Concerns

Operational
Concerns

W1 W2 W3 W4

F1 F2 F3 F4 F5 F6

R1 R2 R3 R4

Fig. 1: The SPEC-RG reference architecture for FaaS platforms.

best practices, design patterns, and knowledge of how the
field evolves. For example, as we show in this work, the cur-
rent approaches for managing functions and the workflows
developers compose from them are poorly understood.

For grid and cloud computing, prominent reference ar-
chitectures [7], [8] were designed early, and helped guide
from public discussion to system design. So, toward a
community-wide view on serverless computing, we pro-
pose a reference architecture for FaaS platforms. Started as
a project in the SPEC-RG Cloud Group,2 whose goal is to
investigate performance and operations in cloud computing
settings, ours is the first systematic approach to identify the
architectural patterns and components that enable FaaS opera-
tion. To show the usefulness of the reference architecture,
we have spent nearly a year tracking, cataloging, and in-
vestigating dozens of existing FaaS platforms and related
systems.

Our work complements an emerging body of research in
serverless computing, from academia [9], [10] and industry3,
and existing reference architectures for workflow manage-
ment [11] and cloud resource management [12]. Focusing
on FaaS platforms, and in contrast to this body of related
work, this work makes a three-fold contribution:

1) We design a reference architecture and ecosystem
for FaaS platforms (Section 2). Our reference archi-
tecture is the first comprehensive approach to iden-
tify the common layers and operational components
of FaaS platforms. It models a wide range of system
designs and abstractions, from entire FaaS platforms
orchestrating workflows, to FaaS layers managing
individual functions, to components responsible for
managing resources.

2) We provide a summary of the systematic anal-
ysis of existing FaaS platforms (Section 3), in
which we identify 47 FaaS-like systems. We cover
diverse open-source and closed-source platforms,
from workflow composition engines (e.g., Fission
Workflows and AWS Step Functions), to single-
function engines (e.g., Apache OpenWhisk and

2. https://research.spec.org/working-groups/rg-cloud.html
3. https://github.com/cncf/wg-serverless/blob/master/

whitepapers/serverless-overview/cncf serverless whitepaper v1.
0.pdf

AWS Lambda), to cloud resource managers (e.g.,
Kubernetes). The analysis in this section not only
explains the architecture and components of the
platforms we study, but also gives strong evidence
that the reference architecture is comprehensive.

3) We identify a set of common operational patterns in
FaaS platforms (Section 4) and leverage the analysis
results to create knowledge about common solu-
tions adopted by FaaS platforms to common op-
erational problems. We present three such patterns
for building and executing functions, and for exe-
cuting workflows. The analysis in this section also
emphasizes how the reference architecture can give
system designers and engineering an instrument for
reaching consensus on emerging patterns.

The proposed reference architecture aims to bring many
practical and long-term benefits. We have already men-
tioned the role reference architectures have played for grid
and cloud computing; in general, this reference architec-
ture could play a similar role. Specifically, it could guide
developers of serverless functions, by providing them with
a better understanding of the common architectural and op-
erational patterns of serverless platforms. It also facilitates
public discussion about the serverless computing model, by
providing stakeholders with a common terminology and
understanding of serverless platforms. Additionally, teams
looking to develop custom serverless platforms can use the
reference architecture as a blueprint for innovation, against
which new designs can be compared. Already, a serverless
workflow platform has been co-designed and built in paral-
lel with the reference architecture and drew guidelines from
it [13].

2 REFERENCE ARCHITECTURE

The key conceptual result of this work is the reference ar-
chitecture. Figure 1 depicts its three hierarchical layers, each
of which captures a set of core responsibilities of a generic
FaaS platform. The reference architecture is the result of a
number of design choices, including:

1) The current serverless ecosystems include much
possible functionality, e.g., user interface, monitor-

prep
rin

t - non-ed
ite

d dra
ft

IEEE IC SI ON MICROSERVICES AND CONTAINERS 3

ing, security. We consider the entire ecosystem ex-
plicitly in Section 2.4, but focus the reference ar-
chitecture on the functionality needed to execute
(workflows of) functions. This includes elements
from composing workflows down to orchestrating
the resources needed to run them.

2) The reference architecture omits explicit data, con-
trol, and—specific to serverless computing, see Sec-
tion 2.2—function-code flows between components.
We found throughout our study of FaaS platforms
(see Section 3) that, in practice, their components
can form many communication topologies and use
diverse communication styles. Thus, a general refer-
ence architecture should not fix either the topology
or communication style.

2.1 Resource Orchestration Layer

At the lowest level in the reference architecture, the Resource
Orchestration Layer is responsible for the management of
physical resources of a cluster of machines. The components
in this layer manage the operational lifecycle of the contain-
ers or VMs, which are consolidated on physical resources.

We separate this generic resource layer from the FaaS-
specific layers, to indicate where the FaaS platforms fit
into the existing cloud infrastructure, and to capture the
common approach of FaaS platforms to delegate resource
management to more mature systems (such as Kubernetes).

The Resource Orchestration Layer consists of:

1) Naming Service: provides cluster-wide unique and
consistent naming to resources. This allows compo-
nents to identify each other. In some cases, naming
is extended to also store cluster-wide configurations.

2) Resource Manager: manages the available resources
of cluster-nodes through node agents, ensuring that
the state of the resources (eventually) conforms with
the desired state. It also monitors resources for
changes, and executes actions if needed.

3) Resource Scheduler: determines which actions are
needed to ensure that the current state of the re-
sources converges towards the desired state of the
resources in the most efficient way. In general, the
scheduler decides for each job, on which resources it
should be deployed.

4) Node Agent: is deployed on each node in the
cluster. It monitors the local resources, informs the
resource manager, and executes instructions it re-
ceives from the Resource Manager.

2.2 Function Management Layer

The Function Management Layer contains the core compo-
nents responsible for the (operational) lifecycle of individual
FaaS functions: deploying function instances, executing func-
tions triggered by events, and elastically scaling functions.

Whereas the Resource Orchestration Layer is concerned
with the management of arbitrary resources, the Function
Management Layer manages arbitrary functions. In this
layer, the components rely on the lower-level layer for the
correct management of the resources.

At its core, the Function Management Layer consists of:

1) Function Registry: serves as a (local or remote)
repository of functions. In practice, this registry is
often further split into a function metadata store, for
low-latency look-ups of function metadata, and a
function store, which contains the binaries of the
function (the function-code).

2) Function Builder: turns function sources into de-
ployable functions. Functions typically have to un-
dergo transformations (e.g., compiling, validating,
dependency resolving) before they are stored in
the function registry or deployed by the Function
Deployer.

3) Function Deployer: ensures an instance of an arbi-
trary function, a Function Instance (see next compo-
nent), is deployed. The Function Deployer combines
the configuration stored in the Function Registry,
the parameters supplied by the requester, and other
factors into a decision of how the function should be
deployed, including how many and what kind of
resources it should receive. Though it decides how
the Function Instance should be deployed, the de-
ployment of the Function Instance itself is delegated
to the Resource Orchestration Layer.

4) Function Instance: is a self-contained worker—
typically a container—capable of handling function
executions. For scalability, a function can have mul-
tiple, concurrent Function Instances.

5) Function Router: routes incoming requests or
events to the correct Function Instance. If no Func-
tion Instance is available, the Function Router
queues the events to await the deployment of new
instances.

6) Function Autoscaler: monitors the demand and
supply of resources, and elastically scales the num-
ber of Function Instances—adding or removing in-
stances as needed.

2.3 Workflow Composition Layer

Modern applications require the orchestration of multiple
functions and the management of inter-function state. We
consider these two related concerns—state management and
interdependent functions—to be the responsibility of the
higher-level Workflow Composition Layer.

Previous work [3] identified workflows as an appropri-
ate abstraction for function composition. A workflow is a
set of interdependent tasks (functions) that together form a
larger, structured computation or data-processing operation.
A workflow management system (WMS) orchestrates the
workflow; it is responsible for ensuring that executions (or
instances) of this workflow progress to completion correctly,
e.g., by passing the output of a task to its successors despite
the failure of individual tasks. (In specialist terms, work-
flows cover both control flows and data flows.)

The motivation for a separate, higher-level layer is two-
fold. First, composing functions into more complex work-
flows depends on the components in the Function Manage-
ment Layer to ensure the correct deployment and execution
of individual functions. This allows the higher-level layer
to focus solely on concerns such as scheduling the correct
functions, transferring state from one function to another,

prep
rin

t - non-ed
ite

d dra
ft

IEEE IC SI ON MICROSERVICES AND CONTAINERS 4

User Interface

Data Management

Service Integrations

Development
Environment

Event Management

CI/CD Pipeline

FaaS

Monitoring Security

Platform
(see Fig. 1)

Fig. 2: The FaaS ecosystem with the FaaS reference architec-
ture represented in the center.

etc. Second, although the notion of workflows is useful,
not every FaaS platform includes support for it yet; often
platforms only offer the execution of individual functions
and leave the complexity of managing workflows to the
user.

As with the Resource Orchestration Layer, we rely on the
extensive existing work on WMSs for the components of this
layer. The difference with original workflow systems is that
serverless workflows are smaller, executed more frequently,
and have more demanding performance requirements.

The Workflow Composition Layer consists of:

1) Workflow Registry: serves as a (local or remote)
repository of workflows. To be admitted to this
registry, the workflow typically requires validation
and compilation of its individual tasks.

2) Workflow Engine: is responsible for monitoring
workflow executions. It takes the appropriate action
based on decisions from the Workflow Scheduler,
such as triggering execution of functions in the
workflow whose predecessors have completed.

3) Workflow Scheduler: decides which functions to
execute when. It makes these decisions based on a
number of factors, including the current state of the
workflow execution and historical data.

4) Workflow Execution Storage: ensures the persis-
tence of data of workflow executions. To ensure
reliable workflow executions, a database holds the
state of workflow executions. The strictness of the
persistence depends on the level of reliability guar-
anteed by the FaaS platform.

2.4 Reference Ecosystem
Balancing conciseness with completeness in a reference ar-
chitecture is a delicate task. Too much detail makes it dif-
ficult to comprehend and remember; too little detail makes
it miss fundamental components. We therefore keep the ref-
erence architecture focused, but also, to complement it, we
propose a reference ecosystem: what components and systems
are not vital or specific to the core of executing (workflows
of) functions, but are typically present in production-ready
FaaS platforms?

The reference ecosystem in Figure 2 positions the FaaS
platform (described by the reference architecture) as the

4. Azure open sourced most of their FaaS tools and local emulators,
but has not released details on their internal production-grade FaaS
platform.

functional core of a broader FaaS ecosystem. Production-
grade FaaS platforms, such as those from major cloud
providers, contain additional components to improve de-
veloper experience, maintainability, event management, and
data management.

Components in the reference ecosystem include:

• User Interface: allows users to manage and interact
with the FaaS platform, which range from simple
command-line interfaces, to full-fledged (visual) edi-
tors.

• Developer Environment: reduces the difficulty of
developing functions and workflows, by integrating
with popular editors and tools, and by providing
local emulators of (proprietary) FaaS platforms.

• Event Management: manages the lifecycle of the
events triggering the operation of a FaaS platform.
Although the FaaS reference architecture deploys
and executes functions based on the arrival of events,
it does not include the lifecycle of these events.

• Data Management: manages the lifecycle of data
in the FaaS ecosystem—how the data is stored
and transferred. Ideally, a Data Management system
stores and transfers data efficiently in-between the
functions, ensuring low latency and availability for a
low cost.

• Continuous Integration (CI) and Deployment (CD):
manages the lifecycle of function sources. Depending
on those processes, the CI/CD pipeline typically con-
sists of staging environments, complex dependency
resolving, multiple stages of testing, governance
checking, and (manual) approval steps—before the
function is submitted to the Function Builder.

• Service Integration: manages integrations between
the FaaS and other cloud services.

• Monitoring and Logging: monitors and logs metrics
on arbitrary layers and components, for online or
later visualization and analysis.

• Security: ensures proper user (and function) autho-
rization and authentication to access and change
parts of the FaaS platform.

3 SURVEY AND MAPPING

To validate the FaaS reference architecture and gain insight
into real-world FaaS platforms, we conducted a year-long
process of identifying, mapping, and analyzing FaaS-like
platforms, that is, platforms for resource, function, and
workflow management. We describe first the process, then
summarize5 the mappings (see also Table 1), and finally
present our main findings.

We have identified 47 relevant platforms through a sys-
tematic survey of: (1) FaaS platforms of the major public
cloud providers in the US and Europe, e.g., Amazon, Mi-
crosoft, IBM, and Google; (2) open-source efforts present
on GitHub or under the guidance of open-source founda-
tions, such as Apache and CNCF; (3) academic projects

5. The full mapping can be found at https://go.uniwue.de/
faasmapping.

prep
rin

t - non-ed
ite

d dra
ft

IEEE IC SI ON MICROSERVICES AND CONTAINERS 5

TABLE 1: Mappings of platforms to reference architecture. Symbols: : Yes; #: No; G#: Delegated; — : Unknown.

Open Resource Orchestration Function Management Workflow Composition

Platform Source? R1 R2 R3 R4 F1 F2 F3 F4 F5 F6 W1 W2 W3 W4
Kubernetes # # # # # # # # # #
Marathon (Apache Mesos) # # # # # # # # # #
AWS Lambda # — — — — — — — — — — # # # #
Fission G# G# G# G# # # # #
Knative Serving G# G# G# G# G# — G# # # # #
Apache OpenWhisk G# G# G# G# # # # #
Apache Airflow G# G# G# G# # # #
AWS Step Functions # G# G# G# G# G# G# G# G# G# G# — — — —
Azure Durable Functions G#4 G# G# G# G# G# G# G# G# G# G# —
Fission Workflows G# G# G# G# G# G# G# G# G# G#

published6 in top systems venues co-sponsored by IEEE,
ACM, and USENIX.

We then mapped the FaaS platforms to the reference
architecture, using a pair-reviewing system. Each platform
was assigned to 2 out of the 10 participating reviewers.
We distributed the platforms among the reviewers to mini-
mize the number of platforms reviewed by the same pair
of reviewers—each pair of reviewers analyzed the same
platform at most twice. Then, the reviewers analyzed the
assigned platforms independently, by surveying the cor-
responding scientific publications, online documentation,
technical reports, presentations, and source code (when
available). The result of each mapping was, for each com-
ponent of each platform, a decision of whether the com-
ponent was explicitly present (“Yes” in Table 1), explicitly
delegated to another platform (“Delegated”), or clearly not
present (“No”). We also encountered a fourth situation,
“Unknown”, where the reviewers were not able to find
any information about whether a component exists or not;
although reviewers could make educated guesses about the
existence of at least some of these components, they could
not find evidence to support this. Twelve (closed-source)
platforms did not disclose any concrete information for any
of the components. Rather than exclude these, we kept these
systems in the overview to highlight the opaqueness of
some serverless platforms.

When merging the mappings across all reviewers, for any
conflict (i.e., reviewers’ opinions differ), the reviewers com-
pared their notes and tried to reach a consensus. This was
possible for all conflicts, as the most frequent type of conflict
was that one reviewer found additional documentation (for
example, a new blog post).

Summary of results across all platforms: The major-
ity (62%) of the platforms we analyzed are open source.
This includes all platforms focusing on the Resource Or-
chestration layer (10), and all the WMSs that are actually
not specific to FaaS (9). However, only roughly half of the
serverless platforms were open source. From the platforms
for which we could establish a mapping, those focusing
on the Resource Orchestration layer include components
R1–R4; a de facto standard. In the Function Management
layer, all platforms include components F1 and F6; the other

6. We use the procedure to identify relevant papers proposed by
Papadopoulos et al. [14], traversing systematically all articles published
in the past 7 years in 16 top systems conferences and journals.

components are identifiable in some but not all platforms.
Finally, in the Workflow Composition layer, over 80% of
the platforms contain components W1–W4; additionally, the
platforms that do not contain W1–W4, are not specifically
designed for the serverless domain.

Summary of results for the platforms in Table 1: To
illustrate the recurring themes we found in our analysis, we
highlight a representative subset of the mapped systems in
Table 1, and describe them in the remainder of this section.
This includes 7 well-known projects originating from major
cloud providers (e.g., Google, Amazon, Microsoft) and/or
present in the CNCF and Apache open-source ecosystem,
plus 3 full-featured projects that operate independently and
release open-source artifacts (i.e., Knative Serving, Fission,
and Fission Workflows).

Kubernetes (K8S) is currently a de facto standard for
container-based resource orchestration—many of the FaaS
platforms in our study depend on K8S. K8S maps to
the entire Resource Orchestration Layer, confirming its
representativeness.

Marathon is part of the Apache Mesos project, for which
it offers resource management functionality. Although
not often used to support FaaS platforms, it offers similar
functionality to K8S, indicating the Resource Orchestration
Layer is approaching standardization.

AWS Lambda is a representative for other managed FaaS
platforms (e.g., Azure Functions, Google Cloud Functions).
AWS Lambda highlights a key issue in this domain:
the proprietary nature of these systems. As argued in
Section 1, this has significant drawbacks, e.g., it limits the
understanding of system internals.

Fission is a representative for the wide ecosystem of
open-source alternatives evolved in response to the closed-
source, managed FaaS platforms. Fission has a wide range
of Function Management components, and delegates
resource management to K8S.

Knative Serving is the part closely resembling the core of
a FaaS platform, from the Knative set of projects aiming to
provide mature tooling for common (serverless) use cases

prep
rin

t - non-ed
ite

d dra
ft

IEEE IC SI ON MICROSERVICES AND CONTAINERS 6

Function
Router

Function
Deployer

Function
Registry

Function
Instance

Resource
Manager

If no function instance is available

Event

deploy function

get function

provision function instance

execute function

Function
Router

F5 Function
Deployer

F3 Resource
Manager

R2Function
Instance

F4

provision

Function
Registry

F1

Function
Router

Function
Deployer

Function
Registry

Function
Instance

Resource
Manager

while workflow is not finished

Event

schedule next function execution

update workflow state

Workflow
Engine

W2 Workflow
Registry

W1 Function
Router

F5Workflow
Execution Store

W4Workflow
Scheduler

W3

get workflow

trigger function execution

 see above

Fig. 3: Two operational patterns: (top) function execution. (bottom) workflow execution.

running on K8S. It is positioned to be an extension to K8S
itself, to which it delegates most functionality. Knative also
highlights a recurring issue in open-source FaaS platforms:
it lacked detailed documentation, such as architecture
diagrams, which made the mapping difficult.

Apache OpenWhisk is one of the most production-ready,
open-source FaaS platforms. OpenWhisk maps to the entire
Function Management Layer. It is one of few open-source
FaaS platforms that (to our knowledge) is deployed in a
large cloud (IBM Cloud), hinting that other proprietary
FaaS platforms do not differ much architecturally from the
open-source alternatives.

Apache Airflow is a representative of workflow engines
re-purposed from their original workloads to also serve
FaaS workloads. As reflected by the lack of mapped
components (corresponding cells marked “No” in Table 1),
running this as a full-fledged FaaS WMS requires additional
engineering. As with OpenWhisk, Airflow is available
both open-source and as a managed service offered by a
major cloud provider—Google Cloud Composer is based
on Airflow.

AWS Step Functions popularized in the cloud community,
together with AWS Lambda, the notion of composing
functions into workflows. Like Lambda, Step Functions is

closed source, making it difficult to analyze. For example,
although we believe it relies on other components for the
Function and Resource Management layers, the actual
architecture and details remain unclear.

Azure Durable Functions operates in the Workflow
Composition Layer, but employs a different programming
model than the other FaaS platforms: it requires users
to write their own simple workflow scheduler, instead
of writing declarative workflow definitions. This allows
users to express orchestrations without requiring a special
workflow language, but requires a different skill set. In
part due to its alternative take on workflows, it contains
comprehensive documentation on the key concepts and on
some of its internal details.

Fission Workflows7 is one of few workflow engines built
to specifically target serverless workflows. It focuses on
the fast and frequent execution of serverless workflows. As
the name suggests, it integrates well with the Fission FaaS
platform.

Overall analysis: from Table 1, we make three key
observations: First, the different FaaS platforms map well
to the layers of the introduced reference architecture. The

7. Full disclosure: the lead author, Erwin van Eyk, leads the develop-
ment of this platform.

prep
rin

t - non-ed
ite

d dra
ft

IEEE IC SI ON MICROSERVICES AND CONTAINERS 7

platforms split functionally as predicted by the reference
architecture, as indicated by the separation between AWS
Lambda and AWS Step Functions, and Fission and Fission
Workflows. They also rarely cross the layer responsibilities
defined in the reference architecture. Instead, they delegate
responsibilities of other layers to other platforms.

Second, even for the subset of systems in Table 1, we
identified significant differences between the systems with
regard to the functionality provided by the same type
of component (e.g., the way the Function Router handles
cold starts is system dependent). Thus, including finer-
granularity components in the reference architecture would
have the potential to mispredict what is used in practice
and possibly stifle innovation due to overfitting to current
conditions.

Third, we have identified a significant number of
FaaS-like platforms, over 15, that are closed source and
thus difficult to map and analyze. We ask the developers of
these platforms to open source, both to help the community
develop and as an incentive to attract lock-in-adverse clients.

4 DISCOVERING OPERATIONAL PATTERNS

We focus in this section on identifying operational patterns:
recurring solutions that FaaS developers have included in
their FaaS architectures to address prevalent problems. The
patterns we identify show how the components of the refer-
ence architecture can interact with each other to facilitate
common functionality, and appear in the FaaS platforms
we have studied for this work (Section 3). We address in
the following three key operational patterns: building func-
tions, executing functions, and executing workflows. These
patterns are not binding, meaning other approaches are
possible, but they are widespread in current FaaS platforms.

4.1 Function Building
A common operational pattern is that of a user submitting
functions to the FaaS platform, as source code. The source
code traverses the CI/CD pipeline defined by the user (see
Figure 2) before arriving at the FaaS platform. After initial
validation, the source code is sent to the Function Builder,
which transforms it into a deployable function.

This process depends on the implementation of the
FaaS platform—it can be nearly non-existent—but typically
involves build steps that are language-specific, such as com-
piling Java to bytecode or resolving Python dependencies.
Once the building process has completed, the resulting
artifacts are stored in the Function Registry. From there, the
function is available to the FaaS platform as a deployable
function.

4.2 Function Execution
Function execution in FaaS (Figure 3 (top)) inherently in-
volves the function deployment, as function instances scale
up from zero and scaled back to zero after inactivity. First, an
event, such as a HTTP request, arrives at a Function Router,
which triggers the deployment of a function instance if
none is available—a cold start. Then, the Function Deployer
fetches the function (metadata) from the Function Registry

to decide the appropriate configuration of the function
instance. It then tasks the Resource Manager with ensuring
that a function instance with the appropriate configuration
is deployed. Once the function instance is fully deployed,
the event can be passed to it to start the function execution.

If a function instance is already available for handling
the execution, the expensive cold start process can be by-
passed. The Function Router directs the event to the exist-
ing function instance—be it directly over RPC, or using a
message queue.

4.3 Workflow Execution

The workflow execution pattern in Figure 3 (bottom) builds
on the pattern for individual function execution by main-
taining inter-function state and transferring data between
functions. An event arrives at the Workflow Engine, either
proxied by the function router or directly from connected
event sources. It contains a workflow identifier, which is
used to fetch the related workflow definition from the
Workflow Registry. Then, the Workflow Engine queries the
Workflow Scheduler for decisions on which functions to
execute next. Based on these decisions, the Workflow En-
gine triggers the execution of the individual functions, and
persists the operations and data to the Workflow Execution
Store. This process continues until the workflow execution
is completed.

5 OPEN CHALLENGES

The FaaS reference architecture is merely a starting point for
further research around the serverless model. In previous
work, we identified over 20 challenges in software, systems,
and performance engineering [3], [15]. We link a subset of
these to the new insights offered by the reference architec-
ture:

1) By identifying common architectural and opera-
tional patterns, our reference architecture provides
a needed conceptual step for defining a community-
wide benchmark for serverless platforms. The
SPEC-RG Cloud Group is currently developing such
a benchmark, aiming to peer into each of the layers
and components identified in the reference archi-
tecture. But benchmarks are, by their broad nature,
a limited tool for performance analysis; they can
answer the question “how well?”, but not “why?”,
for different platforms, and even for different con-
figurations of the same platform or component. To
answer the “why?”, the reference architecture could
help peer meaningfully into each component, by
emphasizing the interplay between the components
and the full-platform (cost of) operation.

2) The cold-start impact on the performance of FaaS
is still a key obstacle to serverless adoption, espe-
cially for latency-sensitive workloads. As Figure 3
shows, the cold-start process involves multiple steps
and components, which ensure correct operation
but also slow it down. Promising directions in this
space include reducing overhead through better engi-
neering, introducing more sophisticated scheduling

prep
rin

t - non-ed
ite

d dra
ft

IEEE IC SI ON MICROSERVICES AND CONTAINERS 8

policies, and profiling function performance more
accurately.

3) Within the FaaS ecosystem, many concepts remain
relatively unexplored. What kind of programming
models are intuitive for developing functions and
workflows at scale? How do event- and data-
management systems benefit from the characteris-
tics of serverless computational models?

4) We foresee that the use of the reference architecture
can guide the development and tuning of serverless
systems, e.g., a team developing a new serverless
platform could, from their first design session, al-
ready have a set of target components for their new
architecture. How can the reference architecture guide
these processes? How can we leverage the architecture
and patterns to improve the likelihood of good designs
and fast time-to-market of serverless systems? Addition-
ally, a common reference architecture could foster
designs of reusable, open-source solutions for the
individual components of serverless platforms. How
to design interfaces of the individual components of a
serverless platform be designed, to enable reuse?

6 CONCLUSION

Serverless computing, and its cloud variant of Function-as-
a-Service (FaaS) deployed on containers, promise to enhance
existing microservice architectures by running them as more
centrally-managed services. This would allow software de-
velopers to focus on business concerns and defer opera-
tional logic to specialized (internal) cloud providers. Al-
ready, tens of serverless and FaaS platforms exist. To achieve
their full potential, and to prevent that improving them
or selecting between them become unnecessarily daunting
problems, we ask: What is the current FaaS technology?
Where is it heading?

Addressing these questions, in this work we design a
reference architecture and ecosystem for FaaS platforms.
Concluding a long-term, systematic investigation, we map
to the reference architecture 47 FaaS-like platforms. We find
that real-world platforms map well to the architecture, and
match the layered structure. We further use the reference
architecture to discover operational patterns, and to present
directions for future research.

The FaaS reference architecture offers a much needed
analytic framework to industry and academia. It provides
representative layers and components that are common to
dozens of serverless and FaaS platforms in the field. By
providing a higher-level abstraction, it can help conquer or
limit the inherent complexity required to design, to tune,
and even to compare such systems. Concretely, it has al-
ready guided the design of a serverless workflow platform,
and is at the core of a new serverless benchmark within the
SPEC-RG Cloud Group.

We conclude with a call to action for providers of closed-
source platforms to reveal their designs or even their entire
source code. This will enable the community to develop,
and increase the level of trust that potential users have in
these FaaS platforms.

Data Availability: The authors of this study follow open
science processes. All the data presented in this study are
published on Zenodo: https://go.uniwue.de/faasmapping.

REFERENCES

[1] A. Iosup and D. H. J. Epema, “Grid Computing Workloads,” IEEE
Internet Computing, vol. 15, no. 2, 2011.

[2] E. van Eyk, L. Toader, S. Talluri, L. Versluis, A. Uta, and A. Iosup,
“Serverless is More: From PaaS to Present Cloud Computing,”
IEEE Internet Computing, vol. 22, no. 5, 2018.

[3] E. van Eyk, A. Iosup, S. Seif, and M. Thömmes, “The SPEC Cloud
Group’s Research Vision on FaaS and Serverless Architectures,” in
WoSC, 2017.

[4] S. Hendrickson, S. Sturdevant, T. Harter, V. Venkataramani, A. C.
Arpaci-Dusseau, and R. H. Arpaci-Dusseau, “Serverless Compu-
tation with OpenLambda,” in HotCloud, 2016.

[5] E. Jonas, Q. Pu, S. Venkataraman, I. Stoica, and B. Recht, “Occupy
the cloud: distributed computing for the 99%,” in SoCC, 2017.

[6] A. Klimovic, Y. Wang, P. Stuedi, A. Trivedi, J. Pfefferle, and
C. Kozyrakis, “Pocket: Elastic ephemeral storage for serverless
analytics,” in USENIX OSDI, 2018, pp. 427–444.

[7] F. Liu, J. Tong, J. Mao, R. Bohn, J. Messina, L. Badger, and
D. Leaf, “NIST cloud computing reference architecture,” NIST
special publication, vol. 500, no. 2011, pp. 1–28, 2011.

[8] I. Foster and C. Kesselman, The Grid 2: Blueprint for a new computing
infrastructure. Elsevier, 2003.

[9] J. Spillner and M. Al-Ameen, “Serverless literature dataset,” 2018,
2nd generation dataset, ODP converted to JSON files. [Online].
Available: https://doi.org/10.5281/zenodo.1436432

[10] P. G. López, M. S. Artigas, G. Parı́s, D. B. Pons, Á. R. Ollobarren,
and D. A. Pinto, “Comparison of production serverless function
orchestration systems,” CoRR, vol. abs/1807.11248, 2018.

[11] D. Hollingsworth and U. Hampshire, “Workflow management
coalition: The workflow reference model,” Document Number
TC00-1003, vol. 19, 1995.

[12] R. B. Bohn, J. Messina, F. Liu, J. Tong, and J. Mao, “NIST cloud
computing reference architecture,” in IEEE SERVICES, 2011.

[13] E. van Eyk, “The design, productization, and evaluation of a
serverless workflow-management system,” 2019.

[14] A. V. Papadopoulos, L. Versluis, A. Bauer, N. Herbst, J. von
Kistowski, A. Ali-Eldin, C. Abad, J. N. Amaral, P. Tuma,
and A. Iosup, “Methodological Principles for Reproducible
Performance Evaluation in Cloud Computing - A SPEC
Research Technical Report,” SPEC Research Group — Cloud
Working Group, Standard Performance Evaluation Corporation
(SPEC), Tech. Rep. SPEC-RG-2019-04, April 2019. [Online].
Available: https://research.spec.org/fileadmin/user upload/
documents/rg cloud/endorsed publications/SPEC RG 2019
Methodological Principles for Reproducible Performance
Evaluation in Cloud Computing.pdf

[15] E. van Eyk, A. Iosup, C. L. Abad, J. Grohmann, and S. Eismann, “A
SPEC RG Cloud Group’s Vision on the Performance Challenges of
FaaS Cloud Architectures,” in ICPE, 2018.

Erwin van Eyk leads the research effort into serverless and FaaS
architectures within the SPEC RG Cloud group. He is part of the AtLarge
research group at the Vrije Universiteit and Delft University of Technol-
ogy in the Netherlands and works as a Software Engineer at Platform9
Systems. His research interests include resource management and
scheduling in distributed systems, specifically serverless computing.

Johannes Grohmann is a PhD student at the chair of software engi-
neering at the University of Würzburg and serves as election manager of
the SPEC Research Group. His research topics include machine learn-
ing, performance modeling and model learning, self-aware computing
as well as cloud and serverless computing.

Simon Eismann is a PhD student at the chair of software engineering at
the University of Würzburg. His research topics include cloud computing,
serverless, devops as well as performance modeling.

prep
rin

t - non-ed
ite

d dra
ft

IEEE IC SI ON MICROSERVICES AND CONTAINERS 9

André Bauer is PhD student at the chair of software engineering at
the University of Würzburg. He serves as elected newsletter editor of
the SPEC Research Group. His research topics include elasticity in
cloud computing, auto-scaling and resource management, autonomic
and self-aware computing, and forecasting.

Laurens Versluis is a PhD student at Vrije Universiteit Amsterdam,
The Netherlands. He works on workflow scheduling in datacenters with
functional and non-functional requirements. His research interest are
distributed systems, privacy and security, gaming, and image process-
ing. Laurens is part of the AtLarge research group where he is the tech
lead of the MagnaData project.

Lucian Toader is an MSc student at Vrije Universiteit Amsterdam, The
Netherlands, where he studies modern distributed systems. He is part of
the AtLarge research group at the Vrije Universiteit and Delft University
of Technology in The Netherlands. He received an MSc from University
Politehnica of Bucharest in 2018. His work on massivizing computer
systems led him to serverless computing.

Norbert Schmitt is a doctoral researcher at the Chair of Software
Engineering at the University of Würzburg. His research interests is the
energy efficiency of cloud and edge computing as well as interconnected
IoT devices. Making the system aware of its energy consumption and
allowing for autonomous decision making.

Nikolas Herbst is a research group leader at the chair of software
engineering at the University of Würzburg. He received a PhD from the
University of Würzburg in 2018 and serves as elected vice-chair of the
SPEC Research Cloud Group. His research topics include elasticity in
cloud computing, auto-scaling and resource management, performance
evaluation of virtualized environments, autonomic and self-aware com-
puting.

Cristina L. Abad is a professor at Escuela Superior Politecnica del
Litoral, ESPOL, in Guayaquil, Ecuador. She received her MS and PhD
degrees from the Computer Science department of the University of
Illinois at Urbana-Champaign, where she was a recipient of the Com-
puter Science Excellence Fellowship and a Fulbright Scholarship. From
2011 through 2014, she was a member of the Hadoop Core team at
Yahoo, Inc. At ESPOL, Cristina has been the recipient of two Google
Faculty Research Awards. Her main research interests lie in the area of
distributed systems.

Alexandru Iosup is full tenured professor and University Research
Chair at Vrije Universiteit Amsterdam, the Netherlands. He received
his PhD in computer science from TU Delft, the Netherlands. He is the
chair of the SPEC RG Cloud group. His work in distributed systems and
ecosystems has received prestigious recognition, including the yearly
Netherlands ICT Researcher of the Year (2016), the yearly Netherlands
Higher-Education Teacher of the Year (2015), and the SPEC community
award SPECtacular (last in 2017).

