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Abstract—Modern distributed systems and IoT applications
are governed by fast living and changing requirements. Moreover,
they have to struggle with huge amounts of data that they
create or have to process. To improve the self-awareness of
such systems and enable proactive and autonomous decisions,
reliable time series forecasting methods are required. However,
selecting a suitable forecasting method for a given scenario is a
challenging task. According to the “No-Free-Lunch Theorem”,
there is no general forecasting method that always performs best.
Thus, manual feature engineering remains to be a mandatory
expert task to avoid trial and error. Furthermore, determining
the expected time-to-result of existing forecasting methods is a
challenge.

In this article, we extensively assess the state-of-the-art in time
series forecasting. We compare existing methods and discuss the
issues that have to be addressed to enable their use in a self-aware
computing context. To address these issues, we present a step-by-
step approach to fully automate the feature engineering and fore-
casting process. Then, following principles from benchmarking,
we establish a level-playing field for evaluating the accuracy and
time-to-result of automated forecasting methods for a broad set
of application scenarios. We provide results of a benchmarking
competition to guide in selecting and appropriately using existing
forecasting methods for a given self-aware computing context.
Finally, we present a case study in the area of self-aware data-
center resource management to exemplify the benefits of fully
automated learning and reasoning processes on time series data.

Index Terms—Time series forecasting, self-aware computing,
feature engineering, forecasting competition, time series analysis.

I. INTRODUCTION

DURING the past decade, many different research com-
munities have explored the aspects of self-awareness

in computing systems, each from their own perspective. To
the artificial intelligence community, the natural unit of self-
awareness is the software agent; to those who study autonomic
computing, it is the autonomic element. One can identify
at least a dozen other research communities for which the
self-awareness of a computing system is a central issue.
However, the underlying commonalities in these notions of
self-awareness are often obscured by the differences in the
nomenclature and the lack of precise definitions.

Our notion of self-aware computing is in line with the con-
sensus at the 2015 Dagstuhl Seminar 150411 (see Section II).

A deployed self-aware system is continuously monitoring
itself and its environment; this typically involves building
series of various kinds of sensor data over time. The collected
time series data can then be leveraged to enable proactive and
autonomous decisions.
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Self-aware computing systems often implement complex
prediction methods to reason about future states of the en-
vironment and how they affect the system behavior as time
progresses. In nature, animals or humans have the ability
called intuition to “foresee” upcoming events. In science, time
series forecasting based on statistical analysis is established
as an active field of research. We consider forecasting as
prediction when there is an explicit time component involved.
In 1970, Box and Jenkins achieved a milestone in the field
by publishing their book “Time Series Analysis Forecasting
and Control” [1]. Nowadays, forecasting is an established
and essential pillar in many disciplines that require means to
“foresee” the future by examining past observations.

Time series forecasting aims to forecast how a time series
develops as time progresses. The time series may represent
some monitoring data provided by a sensor, where each
measurement is labeled with a time stamp. Many real-life
scenarios where forecasting is needed have stringent require-
ments on the speed of the forecasting mechanism and the
reliability (i.e., accuracy) of the provided forecasts. Also, the
end-to-end process of forecast execution from feature and
method selection, to data pre-processing, model building and
prediction, needs to be fully automated as no human expert
can be involved in the internals of a self-aware computing
system. However, selecting a suitable forecasting method for
a given scenario is a challenging task. According to the “No-
Free-Lunch Theorem”, there is no general forecasting method
that always performs best. Thus, manual feature engineering
remains to be a mandatory expert task to avoid trial and
error. Furthermore, determining the expected time-to-result of
existing forecasting methods is a challenge. We consider the
challenge of constructing an automatic and generic workflow
for time series forecasting that achieves robustly accurate
results with reliable time-to-result as crucial for a self-aware
system that relies on forecasting.

In this article, we present the major building blocks for
fully-automated time series forecasting and assess state-of-the-
art methods in the area. We summarize and compare existing
methods, while discussing issues that have to be addressed
to enable their use in a self-aware computing context. While
covering a broad spectrum of relevant methods for feature
engineering, feature selection, and forecasting, our goal here
is not to present a general and exhaustive survey of these
areas. We instead focus on outlining a step-by-step approach
to fully automate the feature engineering and forecasting
process. Finally, following principles from benchmarking, we
establish a level-playing field for evaluating the accuracy
and time-to-result of forecasting methods for a broad set of
application areas, including in particular established reference
scenarios for self-aware computing. We provide results of a
broad benchmarking competition to guide in selecting and
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appropriately using existing forecasting methods.
The paper is structured as follows: We start by introducing

the basic terms and definitions in the context of self-aware
computing (Section II) and time series forecasting before
reviewing existing forecasting methods based on statistical
analysis and machine learning (Section III). We discuss the
strengths and weaknesses of the individual methods and pro-
vide a brief tutorial on their practical use including R code
snippets and example plots. Following this, in Section IV,
we address the question of how to automatically extract and
select the important features for forecasting, while apply-
ing appropriate transformations for increasing the forecast
accuracy. Building on this, in Section V, we address the
question of how to build a generic forecasting approach that
delivers robust forecasting accuracy with a reliable time-to-
result. Finally, in Section VI, we address the question of how
to compare different forecasting methods in a fair manner by
using suitable/reliable measures for quantifying the forecast
quality. We conclude the paper by presenting an excerpt of
results of a comprehensive forecast method competition and
illustrate the benefits of time series forecasting in the reference
scenario of a self-aware data center (Section VII).

II. FORECASTING FOR SELF-AWARE SYSTEMS

“Cogito, ergo sum” (in English: “I think , therefore I am”)
is a philosophical proposition by René Descartes. Inspired by
self-awareness in humans, there has been a lot of research on
aspects of self-awareness in computing systems. Consequently,
different notions and approaches have been proposed [2], [3].
In this section, we introduce the notion of self-awareness as
defined by the 2015 Dagstuhl Seminar 150412. Moreover, we
discuss which aspects of self-awareness are prerequisites for
time series forecasting and how time series forecasting can can
be leveraged in the context of established reference scenarios
of self-aware systems.

A. Definition of Self-Awareness

The consensus at the 2015 Dagstuhl Seminar 15041
“Model-driven Algorithms and Architectures for Self-Aware
Computing Systems” was that self-aware computing systems
have two main properties [4], [5]. They
• learn models, capturing knowledge about themselves and

their environment (such as their structure, design, state,
possible actions, and runtime behavior) on an ongoing
basis; and

• reason using the models (to predict, analyze, consider, or
plan), which enables them to act based on their knowl-
edge and reasoning (for example, to explore, explain,
report, suggest, self-adapt, or impact their environment)

and do so in accordance with high-level goals, which can
change.

In other words, these properties enable self-aware systems
to act autonomously based on their knowledge and reasoning
(e.g., to explore, explain, report, suggest, self-adapt, or impact
their environment). More precisely, self-aware systems are

2http://www.dagstuhl.de/15041

designed from the ground up to gather and maintain infor-
mation about their state and their environment, and they use
this information to learn models at run time and reason about
their behavior. Consequently, a self-aware system is more than
only applying simple rules or heuristics defined during the
design phase. Further, a self-aware system is expected to not
only observe and react, but also to learn, reason, and act. The
term “model” in this context is used in a generic manner and
includes knowledge about the self, its environment, and its
goals. The goals consist of higher-level goals that are not under
the direct control of the system and lower-level goals that may
be generated during the learning or reasoning.

Models
(self, environment, goals, ...)

Learn Reason Act

High-level Goals

Phenomena
(environment, other systems, humans, ...)

Empirical Observations

Actions

SELF
ENVIRONMENT

self-
moni-
toring

self-
adaptation

SELF-AWARENESS

Fig. 1. Model-based learning and reasoning loop (LRA-M) [6].

Similar to autonomic systems that use the MAPE-K
loop [7], the principle and structure of a self-aware system can
be represented by a LRA-M loop (model-based learning and
reasoning loop) as depicted in Figure 1. The figure shows the
environment in which the self-aware system (self) is operating.
Based on the empirical observations of the environment and
the higher-level goals, different activities may be performed
within the self. More precisely, the empirical data are used
for the ongoing learning process, and the reasoning process
may trigger actions affecting both the self as well as possibly
the environment. Moreover, these actions can also affect the
learning and reasoning activities. Although the learning and
reasoning are mentioned separately, these two processes may
be intertwined with each other. To sum up, self-aware systems
must be able to gather necessary knowledge of what is relevant
to their goals, learn models on an ongoing basis, and use
the learned models to reason about this knowledge and act
appropriately.

The basic idea of time series forecasting is to learn from
historical data a suitable model that allows one to forecast
how the data will evolve. While considering the notation of
self-aware systems, the forecasting tasks can be mapped to
elements of the LRA-M loop: The historical data consists of
empirical observations of phenomena obtained by the sensors.
In the learning process, the observations are used to train or
update the parameters used for building and maintaining the
forecasting model. In the reasoning process, the forecasting
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model can then be used to obtain a forecast on how the
observations will develop as time progresses. The system may
act based on the forecast and/or the current observed data.

B. Levels of Self-Awareness

As self-aware systems are inspired by the self-awareness of
human beings, Lewis et al. [8] introduced in a previous work
five levels of self-awareness derived from the self-knowledge
of a human. In a more recent work, Lewis et al. [9] introduced
three overarching levels of self-awareness that are considered
in this paper: (i) pre-reflective self-awareness, (ii) reflective
self-awareness, and (iii) meta-reflective self-awareness.

A pre-reflective self-awareness is the lowest level of self-
awareness and it is a prerequisite for the higher levels. A
system at this level is only aware of its sensors and is thus
able to make observations. That is, a pre-reflective self-aware
system lacks on time awareness [9]. In other words, such a
system is not aware of the existence, the interaction, and the
causality of historical data. Consequently, time series fore-
casting is not possible at this level. Therefore, pre-reflective
self-aware systems are limited to trigger-based rules and can
only adapt based on the current observation [9].

Reflective self-aware systems deal mainly with a relation-
ship between the entity conducting the reflection and the entity
being reflected upon [9]. More precisely, a reflective self-aware
system is able to create a conceptual model of the knowledge
gathered and experiences perceived. A system at this level
begins as a pre-reflective self-aware system, but then starts
building models of the data collected by its sensors during
operation. Thus, this level allows building models on how the
observations evolve over time or how observations as well as
actions affect the environment. Consequently, reflective self-
awareness supports time series forecasting.

The highest level is the meta-reflective self-awareness, also
called meta-self-awareness. A system at this level possesses
reflective self-awareness and beyond that, it is also aware of
its self-awareness. In other words, a meta-self-aware system
creates a conceptualization of the underlying reflective self-
awareness and/or its associated output (i.e., the reflective
model). That is, such a system can judge its behavior and can,
for instance, change the learning mechanisms to achieve better
quality. At this level, it is possible to change the forecasting
method during run-time as the system knows due to its meta-
self-awareness how well a particular method performs.

C. Reference Scenarios

The idea of self-aware computing can be applied in various
domains. Kephart et al. [10] define three reference scenarios
that cover a broad set of characteristics and issues that one
may encounter in self-aware computing systems, while span-
ning different domains and a variety of scales and levels of
complexity. Please note that self-aware computing systems are
not limited to the enumerated reference scenarios and may
be deployed in various further use cases. The first scenario
focuses on an adaptive sorting algorithm; it exemplifies how
a self-aware individual system element may adapt to changes
in the data on which it operates, the environment in which it

executes, or the requirements or performance criteria to which
it manages itself. The second scenario is a self-aware data cen-
ter; it exemplifies the issues of coordination, cooperation, and
competition that arise within self-aware applications composed
of multiple interacting self-aware elements or components. For
instance, in a data center, service providers aim to optimize the
application performance while minimizing the costs for using
the data center infrastructure; the data center owner aims to
maximize the resource efficiency and minimize energy con-
sumption by efficiently sharing resources among different ap-
plications and services. In this context, time series forecasting
can be leveraged to predict how application workloads change
over time and thus make it possible to allocate and schedule
resources efficiently. Indeed, forecasting provides the basis
for enabling elastic resource provisioning where the system
can proactively adapt to workload changes by provisioning
and de-provisioning resources in an autonomic manner, such
that at each point in time the available resources match the
current demand as closely as possible. In Section VII, we show
how time series forecasting can be employed in a self-aware
data center scenario to enable proactive resource provisioning.
The last scenario focuses on cyber-physical systems. In this
scenario, different use cases such as a thermostat, smart
home, smart micro-grid, and system of autonomous shuttles
are introduced. In all these cases, time series forecasting may
be beneficial. For instance, while forecasting the electricity
consumption and price, the smart home or smart grid can buy
the required electricity cheaply in advance and accumulate
it in a battery. In the context of the autonomous shuttles, if
the number of expected passengers can be forecast, either a
suitably-sized shuttle or the required amount of shuttles can
be planned to be available for the transport at the right time.

III. FORECASTING BASICS

In 2010, Peter Sondergaard (Gartner Research) stated “In-
formation is the oil of the 21st century, and analytics is the
combustion engine”. To better understand how this “treasure”
can be efficiently used, we introduce the basics of time series
analysis and forecasting. Moreover, we provide the foundation
for understanding the rest of the paper.

A. Terms and Definitions

A univariate time series is an ordered collection of values
of a quantity obtained over a specific period or since a
certain point in time. In general, observations are recorded in
successive and equidistant time steps (e.g., hours). Typically,
internal patterns exist such as auto-correlation, trend, or sea-
sonal variation. Mathematically, if yt ∈ R is the observation
at time t, a univariate time series is defined by

Y := {yt : t ∈ T} . (1)

Especially in the context of self-aware computing systems,
there are typically multiple sensors. The observations of each
sensor can either be stored separately forming a univariate time
series or they can be stored together to form a multivariate time
series. In other words, a time series can also be multivariate,
that is, it may have multiple observations for each point in
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time. Indeed, while using a multivariate time series more
information can be used for the forecasting task, but most
state-of-the-art methods can only forecast/predict one variable
while taking the other information into account. To this end,
we focus on univariate time series forecasting. This way, we
do not narrow the spectrum of methods and can cover classical
statistical frameworks.

1) Components of a Time Series: A time series can also be
seen as a composition of trend, seasonality, cycle, and irregular
components. The long-term development in a time series (i.e.,
upwards, downwards, or stagnate) is called trend. Usually, the
trend is a monotone function unless external events trigger a
break and cause a change in the direction. The presence of
recurring patterns within a regular period in the time series
is called seasonality. These patterns are caused by climate,
customs, or traditional habits such as night and day phases.
Rises and falls within a time series without a fixed frequency
are called cycles. In contrast to seasonality, the amplitude and
duration of the cycles vary over time. The unpredictable part of
a time series is called irregular component possibly following
a certain statistical noise distribution. It is also considered as
the residual time series after all other components have been
removed. Methods for decomposing a time series are presented
in Section IV-A1.

Although not supported in many time series modeling
frameworks, bursts [11] are considered part of the irregular
component. Bursts are time-periods limited in duration with
(usually positive) extreme values. As bursts can stem from
planned events or be derived from known correlations, they
could in some cases be predicted. On the other hand, we
consider an unforeseeable burst as anomaly [12] that may be
detected and removed from the time series data in order not
to deflect predictions.

2) Stationarity: One of the most important characteristics
of a time series is the stationarity. Hence, most statistical
forecasting methods have the assumption that the time se-
ries is either stationary or can be “stationarized” through
a transformation. The statistical properties (such as mean,
variance, auto-correlation) of a stationary time series do not
change over time. Therefore, a stationary time series is easier
to model and forecast. In practice, however, time series are
usually showing a mix of trend or/and seasonal patterns and
are thus non-stationary [13]. To this end, time series are
transformed, seasonally adjusted, made trend-stationary by
removing the trend, or made difference-stationary by possibly
repeated differencing (i.e., computing the differences between
consecutive observations).

3) Forecasting a Time Series: While performing a forecast,
one can distinguish between one-step-ahead and multi-step-
ahead forecasting. As the name indicates, when performing
a one-step-ahead forecast, only the next value is forecast,
whereas when performing a multi-step-ahead forecast, several
values are forecast at a time. The term forecast horizon
represents the number of values that are forecast at a time.

The forecasting task itself can usually be divided into eight
basic steps: (i) problem definition, (ii) data analysis, (iii) data
pre-processing, (iv) feature engineering, (v) method selection,
(vi) model fitting, (vii) forecasting, and (viii) evaluation. In

general, the steps (iv) and (v) are done manually. However,
the decisions in both steps form a crucial part. In a self-aware
computing system, the last step can be leveraged to provide
feedback for improving all previous steps. Indeed, at the meta-
self-awareness level, the system can continuously optimize
and self-improve the previous steps, reflecting changes in the
observed data patterns or in the forecasting requirements. For
example, an input feature may increase in relevance over
time, which may trigger the selection of a different method
or a combination of multiple methods as part of an ensemble
forecast.

B. Forecasting Methods
As the forecasting accuracy heavily depends on the fore-

casting method, the choice of the most suitable forecasting
method is a crucial part. According to the “No-Free-Lunch
Theorem” [14], there is no forecasting method that performs
best for all time series. To this end, we introduce different
state-of-the-art forecasting methods.

1) sNaı̈ve: The Naı̈ve forecast is the simplest way of pre-
dicting future values based on historical data. More precisely,
the naı̈ve forecast repeats the latest observation of the training
part for the entire forecasting horizon:

yt = yt−1. (2)

In this equation, yt is the forecast value and yt−1 is the value
of the latest observation. sNaı̈ve is an extension of Naı̈ve that
integrates the seasonal pattern for the forecast. That is, instead
of the latest observation, the observation at the point of time
exactly one period (freq) ago is chosen as forecast:

yt = yt−freq. (3)

Due to their simplicity, these methods are typically only used
as baseline methods.

2) Theta: Theta is a forecasting method that decomposes
the de-seasonalized time series into short and long term
components [15]. V. Assimakopoulos and K. Nikolopoulos
proposed this approach in 2000 [15]. To adjust the curvatures
of the time series, the authors introduce the θ coefficient. This
coefficient is multiplied with the second derivative of the time
series. More formally, the Theta model can be formulated as:

ŷ′′t = θy′′t = θ · (yt − 2yt−1 + yt−2). (4)

In this equation, yt are the observed values and ŷ the adjusted
values. A small value of θ (θ < 1), which represents the
long term component, flattens the time series and a high value
(θ > 1), which stands for the short term component, increases
the curvature. V. Assimakopoulos and K. Nikolopoulos sug-
gest creating two θ lines, that is, applying θ = 0, which
results in a linear regression line, and θ = 2. Each θ line
needs to be forecast using a proper forecast method. The
linear regression line can simply be continued and exponential
smoothing is applied on the θ = 2 line. Then, a simple average
is used to combine the two forecasts. Finally, the forecast
is re-seasonalized. Although according to R. Hyndman and
B. Billah [16], the Theta model is similar to simple exponential
smoothing with drift, R. Hyndman provides the Theta model
as a separate method in his forecast package [17].
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3) ETS: One approach to forecast time series without
trend component and seasonal pattern is the Simple Expo-
nential Smoothing (SES). In 1956, R. Brown introduced this
method [18]. The typical form for SES is the component form:

ŷt = α · yt + (1− α) · ŷt−1. (5)

In this equation, 0 ≤ α ≤ 1 denotes the smoothing factor,
yt the recent observation, and ŷt−1 the most recent forecast.
In 1957, C. Holt extended SES with an estimate of the
trend [19]. In 1960, P. Winters improved Holt’s method to
capture seasonality [20]. The resulting exponential methods
use different ways to combine the seasonal pattern with the
trend component: either additive, multiplicative, or not present.
The components and the observation itself can be seen as
a state. Hence, exponential methods can be seen as state
space models. In 2002, Hyndman et al. [21] introduced a state
framework for automatically using the most suitable method.
To this end, a third component called error is introduced. The
resulting state space model is labeled as ETS for Error, Trend,
Season or ExponenTial Smoothing. Each component can be
either additive, multiplicative, or not present, whereas their
weightings are adjustable.

4) sARIMA: In 1938, H. Wold laid the groundwork for
using ARMA models for time series [22]. An ARMA model
is a combination of autoregressive AR(p) model and moving-
average MA(q) model. As the term autoregressive indicates,
the observed variable is represented as a linear combination
of its past values. The AR(p) model, where the order p
determines the number of past values, is formulated as:

yt = c+ εt +

p∑
i=1

ϕi · yt−i. (6)

In this equation, yt−i are the past values, ϕi the weights of the
combination, εt is white noise (i.e., random vector with zero
mean, finite variance, and statistically independent), and c is
a constant term. In contrast to the autoregressive model, the
moving-average MA(q) model uses the past forecast errors
to represent the observed value as a linear combination. Here,
the order q determines the number of past errors. The MA(q)
can be formulated as:

yt = c+ εt +

q∑
j=1

Θj · εt−j . (7)

In this equation, εt−j are past forecast (white noise) errors,
Θj the weights of the combination, and c is a constant term.
ARIMA models are a variant of ARMA models relaxing the
requirement for stationary time series through differencing3.
The latter is represented by the ’I’ (for integrated) in ARIMA.
The parameters that determine the ARIMA model are the
order p of the AR model, the order q of the MA model, and
the degree d of the differencing. The ARIMA model can be
formulated as:

(1−
p∑
i=1

ϕiB
i)(1−B)dyt = c+ (1 +

q∑
j=1

ΘjB
j)εt. (8)

3Time series with trends or with seasonality are not stationary.

In this equation, the variables are the same as in the ARMA
model and B is the backshift notation with Biyt = yt−i.
sARIMA is a variant of an ARIMA model that is capable of
modeling seasonal patterns. To this end, each non-seasonal
component of the ARIMA model is extended with its seasonal
counterpart. In addition to the parameters of the ARIMA
model, the sARIMA model [23] is specified by the parameters
of the seasonal components (P , Q, and D) and the number of
periods per season m.

5) tBATS: In 2011, De Livera et. al [24] introduced an
extension of the exponential smoothing state space model
(see Section III-B3). This extension was developed to over-
come the bad performance in detecting complex seasonal
patterns achieved, for instance, by ETS. For modeling complex
seasonal patterns, a trigonometric representation based on a
Fourier series is used. Further, the data is transformed with
a Box-Cox transformation (see Section IV-C) and the error
component is represented as ARMA model. This extension is
called tBATS where the acronym stands for the key features:
trigonometric, Box-Cox transformed, ARMA errors using
Trend and Seasonal components.

6) ANN: There are different kinds of ANNs (Artificial
Neural Networks) that can be used for time series forecasting.

a) Feed-forward Neural Networks: A simple ANN is a
feed-forward neural network, trained with lagged values (i.e.,
back-shifted values) of a time series. The network consists of
one hidden layer. The number of lags and the number of nodes
in the hidden layer are automatically selected [17]. The model
of the time series can be written as:

yt = f(Φl(yt−1)) + εt. (9)

In this equation, εt is the error series, f is the neural network,
and Φl(yt−1) = (yt−1, . . . , yt−l) is a vector containing l
lagged values. This network is able to detect non-linear
patterns and it may thus outperform statistical methods.

b) Other Neural Network Variations: Recently, other
types of neural networks have become more and more popular
in machine learning. These networks have the advantage of
being able to work with most kinds of data without requiring
much manual pre-processing and feature engineering. They
extract features directly from the raw data. Of particular
interest for time series forecasting are long short-term memory
(LSTMs) [25] and convolutional neural networks (CNNs) [26].
Models based on these neural networks have shown promising
results [27], [28] and specialized architectures have been
proposed [29]. However, their reliance on very large amounts
of training data and rather long training time makes them hard
to apply in the context of self-aware computing systems.

7) XGBoost: In 2014, a scalable end-to-end tree boosting
system called XGBoost [30] (eXtreme Gradient Boosting) was
released. For a data set of n examples and m features, a tree
ensemble model with k additive functions is created where
each function corresponds to an independent tree structure.
Depending on the target value, decision or regression trees are
used. For time series forecasting, the leaves of regression trees
are summed up to predict the output. To learn the functions,
a regularized object is used that selects a model with simple
and predictive functions. As the functions cannot be optimized
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with traditional methods, the model is learned in an additive
greedy manner. This approach is also known as gradient
tree boosting. To reduce overfitting, two additional techniques
besides the regularized objective are used. The first technique
is shrinkage, which reduces the influence of each individual
tree to leave space for future trees. The second technique is
feature subsampling.

8) Random Forest: Random forest is an ensemble method
that consists of multiple decision trees. The construction of
each decision tree is based on a certain degree of randomness.
The first method towards random forests, as typically used
today, was developed by T. K. Ho in 1995 [31]. He introduced
the concept of using random subspaces of the feature space for
decision tree generation. The so-called random decision forests
were extended by L. Breiman in 1999 [32] who combined his
version of bagging with the random feature subspace selection
of T. K. Ho. It was Breiman who coined the term random
forest.

9) SVM: In 1995, V. Vapnik et al. developed the SVM
model (Support Vector Machines) [33]. Typical use cases for
SVMs are classification and pattern recognition. The basic idea
of using an SVM for binary classification (e.g., a positive and a
negative class) is to find a linear separation line that partitions
the training data into the two classes maximizing the margin
between the line and the borderline cases. That is, training
samples are represented by their feature vectors in a high-
dimensional space and the SVM is trained to find a line where
all positive training samples are on one side and all negative
samples on the other side. In order to enable fitting a hyper-
plane even when the points are not perfectly linearly separable,
SVMs allow for some leeway by the use of slack variables.
Analogous to SVMs, Support Vector Regression (SVR) has
been proposed [34], which is based on the same principle
but allows the prediction of numerical values. In this case, a
threshold of ε is given, which defines a margin of acceptable
errors for numerical predictions. The slack variables are then
used to regulate the punishment for errors above this threshold.

Since it is not always possible to linearly separate the
two classes, the Kernel Trick [35] can be used to implicitly
transform the feature vector to a higher-dimensional space,
where the data is linearly separable. The Kernel Trick is based
on the fact that the calculations done during the optimization
of the SVM only rely on the dot product between two vectors,
not on the vectors themselves. Thus, if the dot product between
the transformed, higher-dimensional vectors can be written in
terms of the original vectors, calculating the transformation
becomes unnecessary.

C. Comparison of the Forecasting Methods
Looking at the different forecasting methods with their

inherent advantages and limitations, we can conclude that
each method has its use cases and sweet-spots. For a given
scenario, the selection of a suitable method may be determined
by the following criteria [36]: (i) is the seasonal component:
(a) non-existent, (b) multiplicative, or (c) additive?; (ii) is the
trend component: (a) non-existent, (b) multiplicative, or (c)
additive?; (iii) is the time series dominated by trend or season?;
(iv) is there an exponential or linear growth?

Based on our experience and in accordance with other
scientific work [37], [23], we outline the advantages and
drawbacks of the described forecasting methods. The meth-
ods can be grouped into two classes: (i) statistical methods
(sNaı̈ve, Theta, ETS, sARIMA, and tBATS) and (ii) machine
learning-based methods (ANN, XGBoost, Random Forest,
and SVM). In general, machine learning-based methods are
rather fast compared to the statistical methods, but achieve
lower accuracy when trend data comes into play. Indeed, if
there is enough data available the trend can be modeled, but
usually time series do not cover the required time span. If a
measure of the uncertainty of a forecast is required, statistical
methods can be used as they provide a prediction interval
(i.e., an estimate of an interval in which a future observation
is expected to fall with a certain probability). Further, the
statistical methods cannot handle covariates while machine
learning-based methods become more accurate by leveraging
this additional information. A summary of the strengths and
weaknesses of all individual forecasting methods presented in
this section is shown in Table I [37], [23].

1) sNaı̈ve: As the naı̈ve and sNaı̈ve do not create a fore-
casting model, both methods provide the forecast instantly.
However, both of these methods only produce static repeating
patterns for long multi-step-ahead forecasting. That is, they
cannot capture changes in the trend.

2) Theta: The Theta model is good for time series with
a strong trend, but struggles with long or multiple seasonal
patterns.

3) ETS: ETS is good for time series with strong trend and
exhibits good performance in detecting sinus-like seasonal
patterns, but is rather bad in detecting long and complex
seasonal patterns. In addition, this method requires positive
values.

4) sARIMA: sARIMA is used as black box-model and offers
a family of models to provide accurate forecasts. Moreover,
this method can handle non-stationary time series. However,
the selection and identification of a model are time-consuming.
That is, the runtime may be quite high and unpredictable.

5) tBATS: In contrast to ETS, tBATS has an improved
capability to handle complex seasonality, but also requires
positive values.

6) ANN: Neuronal networks are able to detect non-linear
patterns. A wide variety of architectures can be used to
build a model. Consequently, the networks are difficult to
design. Due to their inherent black-box design, there is no
direct explainability. Moreover, these networks may tend to
overfitting and training is often computationally expensive.

7) XGBoost: Although XGBoost is a fast and accurate
method, it requires many hyper-parameter settings and is
sensitive to overfitting if the data is noisy.

8) Random Forest: Random Forest integrates overfitting
prevention and is also able to identify complex correlations
between input features and forecasting performance. However,
it provides a poor explainability of the result.

9) SVM: This method is robust to small training sets and
employs mathematical methods to avoid over-fitting. However,
SVM (with an active kernel) is very sensitive to hyper-
parameter settings and thus, hyper-parameter optimization is
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TABLE I
STRENGTHS AND WEAKNESSES OF FORECASTING METHODS.

Method Strengths Weaknesses

sNaı̈ve + almost no run-time − provides no useful values for multi-step-ahead forecasting
+ very easy to use and intuitive forecast − captures no trend

Theta + good for time series with a strong trend − cannot handle long or multiple seasonalities very well

ETS + good for time series with a strong trend − cannot handle long or multiple seasonalities very well
+ good for detecting sinus-like seasonal patterns − requires positive values

sARIMA + can handle non-stationary time series − unpredictable and high run-time for model training
+ option to automatically estimate parameters − insights are limited to parameters

tBATS + can handle complex seasonal patterns − requires positive values

ANN + can detect non-linear patterns − tends to overfitting of training data
+ data-driven approach − training often computationally expensive

XGBoost + fast run-time − cannot handle trend data very well
+ accurate method − requires many hyper-parameter settings

Random Forest + identifies correlations between features and performance − has poor explainability of the result
+ integrates overfitting prevention − cannot extrapolate trend data very well

SVM + use mathematical models to prevent overfitting − is highly sensitive to hyper-parameter settings
+ is robust to small data sets − training often computationally expensive

essential. In addition, training is often computationally expen-
sive.

D. Forecasting Methods R Code Snippets

After providing a brief introduction of the most common
forecasting methods, we present some R4 code snippets. The
function calls shown here are explicitly held simple without
many parameter settings. Before presenting the forecasting
function calls, some basic code has to be executed where
train is a vector of the original time series values and freq
is the frequency of the time series.

# required packages
library(forecast)
library(xgboost)
library(randomForest)
library(e1071)

# used for statistical method training
history <- ts(train, frequency = freq)

# used for ML method training
ind <- seq(1,length(train))
period <- seq(1,length(train)) %% freq
features <- as.matrix(cbind(ind, period))

# used for ML method prediction
len <- length(train)
ind <- seq(len+1,len+horizon)
period <- seq(len+1,len+horizon) %% freq
future <- as.matrix(cbind(ind, period))

The following function calls are very generic and simple.
Domain-specific parameter optimization can be performed for
almost all methods. In contrast to the other methods, XGBoost
does not offer default settings. Therefore, we only report for
this method the parameters.

4We use R version 3.4.0.

# sNaive
fc <- snaive(history, h = horizon)
# sARIMA
fit <- auto.arima(history, stepwise = TRUE)
fc <- forecast(fit, h = horizon)
# ETS
fit <- ets(history)
fc <- forecast(fit, h = horizon)
# tBATS
fit <- tbats(history)
fc <- forecast(fit, h = horizon)
# Theta
fc <- thetaf(history, h = horizon)
# ANN
fit <- nnetar(history)
fc <- forecast(fit, h = horizon)
# XGBoost
fit <- xgboost(label = train, data = features,

max.depth = 4, eta = 1, nround = 10,
objective = "reg:linear", nthread = 2)

fc <- predict(fit, future)
# Random Forest
fit <- randomForest(y = train, x = features)
fc <- predict(fit, future)
# SVM
fit <- svm(y = train, x = features)
fc <- predict(fit, future)

The resulting forecasts of two example time series are shown
in Figure 2 (AirPassengers from R package datasets) and
Figure 3 (taylor form R package forecast). For both time
series, there is no forecasting method that performs best. The
machine learning methods struggle with the first time series
as it has only 120 observations and has a multiplicative trend.
ETS cannot handle the period length of the second time series.
Random Forest, SVM, tBATS, and XGBoost have problems
with the seasonal pattern of the second time series.

IV. TIME SERIES FEATURE ENGINEERING

“At the end of the day, some machine learning projects
succeed and some fail. What makes the difference? Easily
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Fig. 2. Forecasts of all individual methods on an example time series with strong seasonal and trend patterns.
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Fig. 3. Forecasts of all individual methods on a seasonal example time series with no trend.

the most important factor is the features used” [38, p. 5].
The essence of this quote from Pedro Domingos, University
of Washington, is that the key to success in both forecasting
and classification is solid feature engineering.

A feature is an individual measurable property or character-
istic of an observed or extracted phenomenon that can be used
for forecasting as long as it is useful for the model. Simply
spoken, a feature is information (e.g., the seasonal pattern of
a time series) that can help in forecasting. The choice of in-
formative, discriminatory, and independent characteristics is a
crucial step. To this end, in this section, we look at approaches
to automatically extract and select the important features for
forecasting, while applying appropriate transformations for
increasing the forecast accuracy.

A. Intrinsic Time Series Feature Extraction

Besides the raw time series data, extrinsic and intrinsic
data may help to increase the forecast accuracy. That is,
more information (features) can be extracted from external
correlated data sources (e.g., weather information) or from the
given time series (e.g., seasonal effects).

1) Time Series Decomposition: As a time series consists
of different components (see Section III-A1), a common
approach is to break down the time series into its components.

The parts can either be used for modifying the data (e.g.,
removing the trend or seasonality) or they can be used as
intrinsic features. The classical decomposition originated in
the first half of the last century. There are basically two
forms of decomposition: (i) additive and (ii) multiplicative.
Simply spoken, for an additive time series, the amplitude of the
seasonality stays roughly the same, whereas, for multiplicative
time series, the amplitude evolves with the trend. That is, if
there is an increasing trend, the amplitude of the seasonal
pattern increases.

The classical approach uses moving averages with the win-
dow size of the seasonality to smooth the seasonal influences
for calculating the trend. However, while using this method,
the first and last m/2 observations for the trend would be
unavailable when using moving average with a window size of
m. Further, classical decomposition assumes that the seasonal
component does not change over time; usually, the seasonal
component does not change, but in long time series changes
in the seasonal pattern may occur. An improvement of the
classical decomposition is the X-11 method [39]. This method
allows to access all observations from the trend and can handle
slow changes in the seasonal pattern. Based on this method,
the X-12 and X-13 (also known as Seasonal Extraction in
ARIMA Time Series) were developed [40]. However, these
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methods can only handle time series with monthly or quarterly
observations. Nowadays, there exist different decomposition
methods (such as the one from Facebook [41], which de-
composes a time series into trend, season, holiday effects,
and irregular) leading to diverse components (season, trend,
cycle, events, linear part & non-linear part, . . . ) and differ-
ent forms of decomposition (e.g., a multiplicative trend and
an additive season). A common method that overcomes the
drawbacks of the aforementioned methods is STL (Seasonal
and Trend decomposition using Loess) [42]. Figure 4 depicts
an exemplary decomposition based on this method. STL was
established 1990, it can handle any type of seasonality, allows
the seasonal pattern to change over time, and dissembles the
given time series into the components trend T , season S, and
irregular I (also called remainder):

Y (t) = T (t) + S(t) + I(t). (10)

Although STL uses an additive decomposition, it can also be
used for multiplicative time series by applying the logarithm:

Y (t) = T (t) · S(t) · I(t) equals to
log Y (t) = log T (t) + logS(t) + log I(t). (11)
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Fig. 4. Example decomposition.

2) Fourier Terms & Frequency Detection: In many fields,
especially for forecasting, it is helpful to know the frequencies,
i.e., the lengths of the seasonal patterns. For instance, if the
most dominant frequency is unknown for a given time series,
the time series cannot be decomposed (see Section IV-A1).
By dominant frequencies we refer to the most frequent period
or seasonal pattern such as days in the year. Also, if the
dominant frequency is available, the information on the next
dominant frequency (e.g., the week within the year) is helpful.
Consequently and following the basic idea in mathematics to
break down complex objects into more simpler parts, a time
series can be represented as a weighted sum of sinusoidal
components. Each component, also referred to as Fourier term,
can be characterized by its coefficient and frequency.

A powerful mathematical tool for frequency analysis is the
Fourier transformation. More generally, the Fourier transfor-
mation decomposes a function of time into its compound

frequencies. That is, the Fourier transformation gives insight
into the time series at different frequencies, but does not
provide information on how the time series evolves over time.
When using the Fourier transformation, the distribution of the
frequencies in a time series or the spectral density of the
time series can be determined. The spectral density assigns
significance of different frequencies in time series data to
identify any intrinsic periodic signals.

Based on information from the Fourier transformation, we
can: (i) derive (at least) the dominant seasonal patterns from
the time series (see Section IV-A1) and (ii) extract for each
frequency its Fourier term. These terms allow, on the one hand,
to approximate the original time series with the sum of the
relevant terms. On the other hand, the relevant Fourier terms
can be used as additional information to fit a better forecasting
model.

However, there are time series that cannot be “nicely”
decomposed into sinusoidal components. Consequently, an
estimator for the spectral density is required. To this end,
A. Schuster [43] introduced the mathematical tool peri-
odogram in 1899. An example outcome is depicted in Figure 5,
where the horizontal axis shows the frequencies and the
vertical axis the spectrum. The most dominant frequency in
this example is 12 and every multiple of 12 is dominant.
The periodogram calculates the spectrum for many differ-
ent possible frequencies by using Fourier transformations.
Theoretically, it is possible to find sines and cosines with
the frequencies νk = k/T in a time series with the length
T/2 and k ∈ 1, . . . , T . While using the frequencies νk,
the spectral density and periodogram are identical [44]. The
first step is to calculate the discrete Fourier transformations
X(ν1), . . . , X(νT ):

X(νk) =
1√
T

T∑
t=1

e−2πitνkyt

=
1√
T

(
T∑
t=1

cos(2πtνk)yt − i
T∑
t=1

sin(2πtνk)yt

)
.

(12)

Then, the periodogram calculates the squared absolute value
of the discrete Fourier transformation as follows:

I(νk) = |X(νk)|2

=
1

T

∣∣∣∣∣
T∑
t=1

e−2πitνkyt

∣∣∣∣∣
2

=
1

T

( T∑
t=1

cos(2πtνk)yt

)2

+

(
T∑
t=1

sin(2πtνk)yt

)2
 .

(13)

B. Feature Selection

Besides the actual time series values, additional information
(e.g., information derived by the intrinsic feature extraction,
see Section IV, or external features) can be considered to build
a forecasting model. However, in forecasting, as well as in
classification, it is often desirable to reduce the number of
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Fig. 5. Example periodogram with dominant frequency 12.

features that a model receives as input. Focusing on the most
important features has several advantages: First, it can prevent
the model from overfitting by removing features that help to
predict single examples very well, but fail to generalize to
others. Second, reducing the number of input variables/features
can significantly speed up the training and prediction of the
model leading to better time-to-result. Finally, knowing which
features are most important can improve the understanding
of the underlying data and can thus help to derive a better
forecasting model. There exists a multitude of methods for
assessing the importance of individual features and selecting
the most important ones. Our goal in this section is not to
provide a complete overview over the field of feature selection
(which can easily fill a separate paper), but to convey the
main ideas and provide some commonly used examples, which
are relevant for time series forecasting. For a more detailed
overview, we refer to [45]. The following methods can be
roughly categorized into three groups:

1) Statistical Feature Selection: This group uses statistical
analysis to determine the influence of features on the target
value, that is, the observed values recorded in a time series.
To this end, an arbitrary measure for the relatedness of two
or more variables can be used. The general procedure is to
calculate the relatedness of all variables to the target value and
select the n most important ones. To the best of our knowledge,
there is no general rule of thumb for selecting the “best” value
of n, that is, the number of features for building the forecast
model. In practice, the number of features can be determined
by evaluating different sizes of feature sets and then deciding
on a number based on the specific requirements for training
time and model accuracy. To assess the influence of a feature,
there exist different methods. In the following, we describe
the Coefficient of Determination R2 as an example and give a
brief overview of other measures that can be used for statistical
feature selection.

a) Coefficient of Determination: One common measure
is the Coefficient of Determination R2 that describes how
much of the variance in an output variable can be explained
from an input variable by a linear function:

R2 = 1−
∑
i (xi − yi)2∑
i (yi − y)

2 . (14)

In this equation, xi are the values of the input variable, yi the
values of the target variable and y is the average of all yi. The
R2 measure typically lies in the range between 0 and 1, where
1 means that the input explains all variance in the output and 0

means that it cannot explain any of the variance. Technically,
it is possible that the R2 measure is negative. However, this
would indicate that a model using variable xi for prediction
would perform worse than a model that always predicts the
mean value of y, which is unlikely. Thus, higher values of the
R2 measure for a feature indicate a more important feature.

b) Other Statistical Measures: Simple alternatives are
correlation measures such as Pearson correlation [46], Spear-
man rank-correlation [47] or others [48]. A more sophisticated
measure comes from information theory and is called Mutual
Information [49]. This measure captures the joint probability
distribution and the product of the marginal probability dis-
tributions of two variables. Similarly, Gini Impurity can be
used to select important features, but requires discretization
of the variables [50]. Another method that is able to deal
with multiple input variables is the Analysis of Variance
(ANOVA). The ANOVA was developed by Ronald Fisher [51]
and calculates for a set of variables their individual as well as
joint importance for the output.

2) Model-internal Feature Selection: In contrast to the
first group, this feature selection is made a-posteriori. That
is, we train one of the following models that allow us to
extract the importance of individual features from their internal
parameters once they have been trained.

a) Linear Models: In linear classifiers like Support
Vector Machines without kernels and the related regression
methods (see Section III-B9), the absolute value of the weight
wi for feature i can be used directly as a measure of the
importance [52]. Consequently, it is possible to rank features
by their weights wi and select the most relevant features
according to this ranking. Note that, to use the weights of
the features as a measure for the importance of a feature, the
input variables have to be normalized. Otherwise, the scale
of the variables could greatly influence the weights that are
assigned by the model.

b) Tree-based Models: Tree-based methods provide an
explicit ranking of the input features, as they rely on some of
the aforementioned statistical feature weighting methods, or
similar methods [53]. That is, a decision tree is constructed
by repeatedly splitting the data set according to the value of
a variable. To select the variable for the next split, features
are weighted by their importance according to a statistical
measure of “impurity” for the resulting split (e.g., Entropy or
Gini Impurity [54]). The criterion for the split is the variable
that brings the largest reduction in impurity. Intuitively, this
can be thought of as follows: Given the dataset D and the
subsets D1 and D2 (D1 ∪D2 = D) that result from splitting
the dataset according to one variable, how much better would
a majority classification, that is, assigning the most frequent
label in the (sub-)dataset, work on D1 and D2 compared to
D? Formally, this is defined as the difference Idiff between the
impurity ID in D and the sum of impurities in D1 and D2:

Idiff = ID − ID1
− ID2

. (15)

The splitting is repeated until a predefined threshold is met;
that is, the remaining features are not important enough to
help much in the prediction. Although this method is described
for classification, it can be easily adapted to regression tasks
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by dividing the values of the output variable into a set of
“buckets”. The features can then be selected by taking the
variables that are used in the n layers of the decision tree
closest to the root. As a more fine-grained alternative, the
reduction of the impurity Idiff in the data set achieved by
splitting it according to a variable can be directly used to rank
the features. Similar to decision trees, this procedure can also
be applied to random forests [55].

3) Wrapper Methods: This last group is sometimes referred
to as wrapper methods, as they are based on wrapping other
models in a feature selection loop [56]. In other words, an
inner model is repeatedly trained and evaluated, varying the
subset of features selected as input. That is, the best feature set
can be selected that leads to the best accuracy when trained
on the training data and evaluated on a separate validation
data (that is disjoint from both the training and test data).
When having only a small feature set, an exhaustive search
can be applied. However, for a large number of features,
sophisticated methods are required. In general, there exist two
different approaches: (i) Starting from an empty subset and
adding features (Forward Selection) or (ii) starting from the
full set and removing features (Backward Elimination). Both
approaches work iteratively until some stopping criterion (e.g.,
a maximum training time, a minimum prediction quality or a
maximum/minimum number of features) are met.

a) Greedy Best First Search: One simple forward se-
lection strategy is the Greedy Best First Search (GBFS) [57],
[58]. It is based on repeatedly adding the single best feature to
an initially empty subset of features until a stopping criterion
is met. Since GBFS is a greedy algorithm, it may not find
the best overall feature subset, but can often be used as an
estimation of a good feature set.

b) Simulated Annealing: A more sophisticated strategy is
simulated annealing initially used as a method for optimizing
arbitrary complex functions [59]. Generally, it can be used as
both forward selection and backward elimination method or
even starting from a random subset of features. Since training
on fewer features is faster, we use this method for forward
selection. This allows the method to evaluate more feature
subsets in the same time compared to using it as a backward
elimination method. The high-level idea of simulated anneal-
ing is to choose an initial element from the search space and
then select a “neighbor” of the current element until some
criterion is met. In the context of feature selection, the search
space is the set of all possible feature subsets S ⊆ F , where
F is the set of all available features. The quality of S is then
evaluated by training the specific method on this subset of
features and evaluating its prediction quality. At each step,
the algorithm randomly decides whether or not to select the
currently evaluated neighbor S′ based on the prediction quality
of S and S′, where a higher prediction quality of S′ leads
to a higher probability of selecting S′. The probability of
selecting a neighbor also depends on the current progress of
the optimization, usually making the model less likely to select
a neighbor that decreases the performance towards the end
of the optimization. This is sometimes implemented using a

temperature parameter5 or the current iteration count. Note
that simulated annealing has a chance to select a neighbor that
performs worse than S. This is intended, as it can prevent the
algorithm from getting stuck in local maxima. More formally,
simulated annealing can be expressed in pseudo-code as shown
in Algorithm 1.

Data: Set of all features F = {f1, ..., fn}, method m
Result: A subset of features S
Initialize the feature set as S = ∅;
for k ∈ 1, ..., kmax do

S’ = neighbor(S);
select prob = P(scorem(S), scorem(S’), k);
if select prob ≥ random(0,1) then

S = S’;
end

end
return S;

Algorithm 1: Simulated Annealing

A neighbor of a state S is any state S′ ⊆ F where only one
feature is removed or added. The function neighbor(S)
returns one randomly selected neighbor of S. scorem(S)
returns the prediction quality of method m when trained and
evaluated on S and P (old,new, k) is defined as follows:

P (old,new, k) =

{
1, new > old

ek∗
new−old
|old| else.

(16)

c) Recursive Feature Elimination: This method is a
backward elimination strategy and is basically a reversed
version of the Greedy Best First Search described in Paragraph
IV-B3a. Recursive Feature Elimination (RFE) starts from the
full feature set and, in each iteration, removes the least
important features. This procedure requires a regressor that
provides an estimate of a feature’s importance, for example,
linear regression or decision trees.

4) Comparison of Feature Selection Techniques: One ad-
vantage of the statistical methods is that they do not rely on
training a method first, but can be directly calculated from the
data. On the other hand, the features selected by these methods
may not be optimal for all models, as they only capture how
well the model that is the basis of the statistical measure can
predict the target value. Thus, a feature subset can be selected
that does not perform well for the final forecasting model.

The model-internal methods can partially address this issue.
Since they extract features considered particularly important
directly from a model (e.g., linear regression or random
forests), it can be assumed that these features are indeed the
most helpful for this kind of model. However, the selected
features are only helpful when the same type of model is used
for feature selection and prediction: for instance, the features
weighted highly by a linear regression may not be the most
helpful for a random forest model. As these methods are not
applicable for all forecasting methods and it may be quite
time-consuming, they may not be suitable in all situations.

5The temperature provides the analogy to annealing in metal work, explain-
ing the name of the method.

O
nl

y 
fo

r p
er

so
na

l u
se

!



THIS ARTICLE HAS BEEN ACCEPTED FOR INCLUSION IN A FUTURE ISSUE OF THIS JOURNAL. 12

The forward search wrapper methods have the advantage
of being applicable to all types of forecasting methods and,
therefore, being able to extract the most relevant feature
subsets in any situation. However, the usage of these methods
is associated with a potentially very high extraction time:
The wrapper methods rely on training a forecasting method
repeatedly on varying subsets of features, which may not be
computationally feasible. The same issues apply to backward
elimination strategies, which additionally require models that
provide an estimate of their features’ importances.

Therefore, when applying feature selection techniques, a
trade-off between the additional time-wise cost of wrapper
methods against the potentially worse, but faster, statistical
methods has to be considered.

C. Feature Transformation

Data may be quite complex, e.g., having high variance
and/or multiplicity within a time series, an adjustment or
simplification of this data can improve the forecasting model.
To this end, there exist different methods that transform time
series. Daily life examples are currency exchange rates (e.g.,
Euro into US dollar). However, this example is a linear
transformation and does not affect the data complexity. More
precisely, the data distribution is not changed. In practice, non-
linear transformations are used. For instance, a common and
useful transformation is to apply the logarithm as it reduces
both variance and multiplicative effects. Although this method
may improve the forecasting model, the transformed data may
not be normally distributed, so the improvement may not reach
its full potential. The Box-Cox transformation [60] tries to
transform the data into “normal shape”. To this end, this
transformation offers logarithm and power transformations.
The Box-Cox transformation is defined as follows:

wt =

{
ln(yt) if λ = 0

(yλt − 1)/λ otherwise
(17)

where wt is the transformed time series, yt the original time
series, and λ the transformation parameter that determines the
function.

Based on this transformation, forecasts can be conducted.
Note that the forecasts have to be re-transformed to be in
the right scale. To re-transform the time series, the same λ is
required:

yt =

{
exp(wt) λ = 0

(λwt + 1)1/λ otherwise.
(18)

As the transformation and therefore the accuracy of the
forecasting model depends on the the transformation parameter
λ, V. M. Guerrero [61] proposes a method that estimates the
best λ by minimizing the coefficient of variation for the time
series.

D. Feature Engineering R Code Snippets

After providing a brief introduction of feature engineering,
we present some R6 code snippets for extracting intrinsic

6We use R version 3.4.0.

features and a wrapper method with an exhausting search.
Before presenting the snippet, some basic code has to be
executed where train is a vector of the original time series
values, freqs is a list of all the frequencies sorted descending
regarding their dominance of the time series, ind is an index
for dividing the time series into training and validation set,
and end is the length of the time series.

# required packages
library(forecast)
library(ggm)

# used for statistical method training
his <- msts(train, seasonal.periods = freqs)
# get the season, trend, and remainder
his.stl <- stl(his, s.window = ’periodic’,

robust = TRUE)$time.series
# get the Fourier term for each frequency
fou <- fourier(his, K = rep(1,length(freqs)))

# build the feature combinations
features <- cbind(his,fou,his.stl)
s.feat <- powerset(1:ncol(features))

acc <- c()

# wrapper with exhausting search
for(i in 1:length(s.feat)){

feat <- as.matrix(features[,s.feat[[i]]])
model <- nnetar(his[1:ind],

xreg = feat[1:ind,])
fc <- forecast(model,

xreg = feat[(ind+1):end,])
# get MASE based on validation data
acc[i] <- accuracy(fc,

his[(ind+1):end])[12]
}

# get features with lowest MASE
best.set <- s.feat[[which(acc == min(acc))]]

V. ADVANCED FORECASTING

In 1997, the “No-Free-Lunch Theorem” for optimization
algorithms [14] was formulated. In short, there is not a single
algorithm that performs best for all scenarios since improving
the performance of one aspect normally leads to a degradation
in performance for some other aspect. In fact, this theorem also
applies to time series forecasting. Through the diversity of time
series, the tuning of one forecasting method on a given time
series would result in a worse forecast on another time series.
Taking the inherent drawbacks and limitations of forecasting
methods into account (see Section III-C)) and keeping the
“No-Free-Lunch Theorem” in mind, it can be concluded that
there is no monolithic forecasting method that performs best
for all kinds of time series.

In this section, we discuss the challenge: How to build/find
a generic forecasting approach that delivers robust forecasting
accuracy? Robust here means that the variance in forecast-
ing results should be reduced, not necessarily improving
the forecasting accuracy itself. In academia, many hybrid
or ensemble forecasting mechanisms and forecasting method
recommendation systems have been proposed to face the
”No-Free-Lunch Theorem”, that is, minimizing the variance
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of monolithic forecasting methods. As the combination of
different forecasting methods may increase variance in time-
to-result, we pose ourselves the challenge: How to build a
generic forecasting approach that has a reliable time-to-result?
To this end, we design an automatic forecasting workflow
aiming to have robustly accurate forecasts with reliable time-
to-result.

A. Hybrid and Ensemble Forecasting

To overcome the drawbacks of individual forecasting meth-
ods, many hybrid and ensemble forecasting methods have been
developed. These approaches combine at least two individual
forecasting methods. In terms of ensemble forecasting [62],
[63], [64], n individual forecasting methods mi, i = 1, . . . , n,
are applied on the same time series resulting in n individual
forecasts Fmi . Each of these forecasting methods mi has a
weight wi assigned. By definition, the weights sum up to one:

n∑
i=1

wi = 1. (19)

There exist many different approaches for weight assignment,
ranging from simply equal weights to highly sophisticated
algorithms. In the case of unequal weights, they can either
be learned in an offline pre-processing phase or based on the
training error of each specific time series. The final forecast F
is calculated as a weighted sum of all individual forecasts Fmi :

F =
n∑
i=1

wi · Fmi
. (20)

Using ensemble forecasting reduces the variance in forecasting
performance and thus, the risk in trusting one individual
forecasting method. This characteristic is often called robust-
ness. However, the quality of the forecast highly depends on
the weight assignment algorithm. Also, the run-time of such
ensemble methods is comparably high since all individual
forecasting methods mi need to be applied.

In contrast to ensemble forecasting, hybrid forecasting
methods aim at explicitly compensating for disadvantages of
specific individual forecasting methods by adding other meth-
ods that are strong in the respective aspects. There exist two
common hybrid forecasting strategies: (i) applying multiple in-
dividual forecasting methods sequentially on the remainder of
the previous method [65], [66] and (ii) decomposing the time
series and applying a certain individual forecasting method
for each component [67], [68], [69]. Let Y be the time series
used to train the forecasting method m. Further, let m consist
of n individual forecasting methods, m1 to mn. The trained
forecasting model of mi on Y is formulated as Tmi(Y ). Now,
strategy (i) can be described as a step-by-step modeling of Y :

Y = Tm1(Y ) + Ŷ1

Ŷi = Tmi+1
(Ŷ ) + Ŷi+1. (21)

In this equation, Ŷi represents the remainder, that is, the part
of the time series that was not captured by the forecasting

methods m1 to mi. The final forecast is calculated as a simple
sum of the forecasts Fmi

of all individual methods mi:

F =
n∑
i=1

Fmi
. (22)

Of course, using many forecasting methods (i.e, a high n),
can lead to overfitting of the training data. Thus, a trade-
off between modeling the training data perfectly and keeping
the set of models robust is required. A typical selection of
forecasting methods is to use one statistical method first (e.g.,
sARIMA), followed by one machine learning technique (e.g.,
ANN). On the contrary, strategy (ii) can be formulated as:

Y =
n∑
i=1

Ỹi (23)

where Ỹi represents a component (e.g., trend) of the time
series. The decomposition does not necessarily need to be ad-
ditive. For instance, multiplicative decompositions are possible
too. Each component Ỹi is then modeled using a particular
forecasting method mi resulting in a trained model for each
time series component. Again, the final forecast is a simple
sum of the forecasts Fmi of all individual methods mi:

F =

n∑
i=1

Fmi . (24)

Typical decomposition methods are seasonal and trend decom-
position using Loess (STL) [42], wavelet decomposition [67],
and empirical mode decomposition [68].

B. Forecasting Method Recommendation

Another approach to avoid the downsides of individual
forecasting methods is to use recommendation systems. A
variety of recommendation systems for time series forecasting
methods exists ranging from manually created expert sys-
tems [70] to dynamically and automatically learned rules [71],
[72], [73]. For automatic rule learning, typically various time
series characteristics, referred to as meta-features, are calcu-
lated. Then, rule generation algorithms (e.g., decision trees or
classifiers) are applied to capture dependencies between the
meta-features and the best performing forecasting method. To
recommend a forecasting method for a new time series, the
meta-features are calculated and the rules or classifiers are
applied to them. However, some challenges for forecasting
method recommendation are the representativeness of the
data set used for learning, the choice of meta-features, and
the choice of rule generation algorithm or classifier. A less
representative data set leads to a poor generalization of the
rules, while a bad selection of meta-features and rule learners
results in the relationship between time series characteristics
and the performance of the forecasting method being missed.

C. Telescope: Automated Forecasting Workflow

The assumption of data stationarity is an inherent limitation
for time series forecasting. Any time series property that eludes
stationarity, such as non-constant mean (trend), seasonality,
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non-constant variance, or multiplicative effect, poses a chal-
lenge for the proper model building. Consequently, we take all
the techniques and information discussed in this article into
account to design an automated forecasting workflow called
Telescope that addresses these issues. Telescope automatically
transforms the time series, derives intrinsic features from the
time series, selects a suitable set of features, and handles each
feature separately. Figure 6 shows the high-level Telescope
forecasting workflow. The white rounded rectangles represent
data or information, the blue boxes are actions, the green
parallelograms mark features, and the grey rounded rectangles
are the target variable. Although the diagram seems to be
sophisticated, the procedure can be split into 5 phases: (i) pre-
processing (Frequencies Estimation), (ii) feature engineering
(Box-Cox Transformation, Fourier Series, Decomposition, and
Remove Trend), (iii) model building (XGBoost Train), (iv)
forecasting (Continue Pattern, ARIMA Forecast Trend, and
XGBoost Predict), and (v) post-processing (Add Trend and
Inv. Box-Cox Transformation).

In general, self-aware systems are governed by human
interactions. That is, time series produced or observed by these
systems are subjected to human habits and are thus seasonal.
Therefore, most of the mentioned actions assume a seasonal
time series. In the unlikely case where no seasonality exists
within a time series, the forecasting method has a fallback and
makes a forecast with the ARIMA model.

1) Pre-processing: The algorithm estimates the most dom-
inant frequencies from the time series (i.e., the lengths of
the most significant periods) by applying periodograms (see
Section IV-A2) on the data. The Telescope forecasting work-
flow iterates over the found frequencies and matches each
frequency with reasonable frequencies (e.g., daily, hourly, and
yearly). If a frequency matches a reasonable frequency with
a tolerance (< 5%), this frequency is considered. We assume
that reasonable frequencies match multiples of natural time
units. The most dominant frequencies are derived by putting
the likely (the threshold is greater or equal than 50% of the
most dominant one) reasonable frequencies to a set.

2) Feature Engineering: Forecasting methods, especially
machine learning methods, struggle with changing variance
and multiplicity within a time series [74]. To this end, the
pre-processed time series is adjusted by applying a Box-Cox
transformation (see Section IV-C). This step reduces both
variance and multiplicative effects of the time series. That
is, the adjustment results in a simpler model, which leads to
an improved forecast model. As the Box-Cox transformation
depends on the transformation parameter, the parameter is
estimated by the method proposed by Guerrero [61] and
restricted to values greater than or equal to zero.

Although most forecasting methods assume stationary time
series (i.e., the mean and variance of a time series do not
change over time), many time series exhibit trend or/and
seasonal patterns. That is, in practice, time series are usually
non-stationary [13]. To tackle the non-stationarity, the Tele-
scope forecasting workflow decomposes the time series and
then handles each part separately. The trend is removed to
make the time series trend-stationary and the seasonality is
used as an intrinsic feature. To this end, the adjusted time

series is split with STL (see Section IV-A1) and the most
dominant frequency into its components: trend, seasonality,
and remainder.

As time series may have multiple seasonal patterns (such
as daily and weekly), Fourier terms (see Section IV-A2) for
each dominant frequency found in the pre-processing step
are extracted from the adjusted time series for modeling the
different patterns.

3) Model Building: After the feature engineering step, sev-
eral features are available that can be considered for building a
forecasting model. As stated before in Section IV-B, there are
several methods that propose the best subset of the features. To
have a reliable and timely forecast, this approach avoids using
such methods due to their inherent long and unpredictable
run-times. That is, the approach uses semi-automatic rules for
selecting the best feature set.

Firstly, as a strong trend both increases the variance and
violates stationarity, the trend was removed during the feature
engineering step and the time series is now trend-stationary.
That is, the considered features include seasonality and Fourier
terms. Consequently, the target value corresponds to the ad-
justed, de-trended time series. Although seasonality can also
violate stationarity, time series models usually explicitly take
seasonality into account. Also, machine learning methods
are suitable for pattern recognition. To this end, we keep
the seasonality as a feature. Secondly, the remainder of the
time series is not explicitly considered a feature. That is,
the machine learning method learns the remainder as the
difference that is missing to fully recreate the target value. We
apply XGBoost as machine learning method due to its success
at Kaggle challenges7. A further motivation is that XGBoost
supports a watchlist preventing overfitting and is time efficient.

4) Forecasting: To forecast the adjusted time series, each
feature and the trend has to be forecast separately. As the
seasonality and the Fourier terms are recurring patterns per
definition, these features can merely be continued. Based on
the trend component, an ARIMA model without seasonality
is determined that forecasts the future trend of the time series.
We select ARIMA as it is able to estimate the trend even from
a few points and we use an automatic version that selects the
most suited model [17].

To predict and assemble the future adjusted time series,
the same features are required as used for the model building
(see V-C3). That is, the forecast patterns of the seasonality
and Fourier terms in combination with the model are used to
predict the future de-trended, adjusted time series. Then, the
forecast trend is appended to the prediction to create the future
adjusted time series.

5) Post-Processing: As the time series was adjusted with
the Box-Cox transformation, the forecast adjusted time series
has to be re-transformed. To this end, the inverse Box-Cox
transformation with the identical transformation parameter
from the pre-processing is applied to the forecast adjusted time
series. After this re-transformation, the forecast of the original
time series is available.

7XGBoost winning challenges: https://github.com/dmlc/xgboost/tree/
master/demo#machine-learning-challenge-winning-solutions
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Fig. 6. The Telescope automated time series forecasting workflow.

VI. FORECASTING METHODS COMPETITION

As time series forecasting is an essential pillar in many
decision-making fields, there is a broad range of academic
work concerning forecasting. To decide which method is the
most suitable for a specific problem, one normally has to
trust the performed evaluation of the authors. In order to
investigate how trustworthy and meaningful these state-of-
the-art evaluations are, in this section, we review scientific
papers matching the terms time series forecasting, time series
analysis, or time series prediction. The papers were collected
from the search engines: Google Scholar, Mendely, IEEE
Xplore, and Semantic Scholar. We filtered and considered
only papers that were published during the last 40 years and
contain an evaluation section. From these, we select papers
that have received an average of at least 8.5 citations per
year (Google Scholar) resulting in a data set containing 100
scientific papers.8 The found papers were published between
1982–2019 and were cited between 29–2440 times. Moreover,
the selected papers cover different topics, for example, supply
chain management, river flow, tourism, traffic, stock prices,
electric/power demand, and many more. In our view, auto-
mated time-series analysis is a central building block of self-
aware systems as a general concept. To this end, our review
is not limited to papers that are directly related to self-aware
systems.

We are interested in the following questions: (I) How many
time series were used? (II) How many forecasting methods
were evaluated? (III) How many measures were considered for
the evaluation? Figure 7 shows the distribution as a box plot
of how many time series, forecasting methods, and measures
were used in the reviewed papers. The median, that is, 50%
of the reviewed papers used no more than three time series,

8The list of reviewed articles is available at https://doi.org/10.5281/
zenodo.3716035
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Fig. 7. Distribution measures, methods and times series in the evaluations of
the selected TOP 100 scientific papers on time series analysis.

considered maximal four methods and used maximal two
measures for formulating academic results. Even 75% of the
studied papers used at maximum nine time series, maximal
eight forecasting methods and maximal four measures. There
are papers, which are outliers and depicted as points in the
figure, that used more than 1000 time series. However, these
articles used the M-competitions or the Watson macroeco-
nomic database and therefore the considered time series have
a high degree of similarity. For the ranking of the methods,
almost all papers consider MAPE, RMSE, or related error
measures, but do not investigate statistic measures of the error
values like standard deviation. Moreover, none of the observed
papers takes the time-to-result into account as part of their
evaluation. No information is provided on the run-time of
forecasting methods. Often in offline scenarios, predictions
are not time-critical. However, especially when used in the
context of self-aware computing systems, forecasts have strict
deadlines to allow timely and reliable planning.

Based on our review, we can conclude that most papers only
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compare a small set (mostly related) methods in their empirical
evaluation while considering only the forecast error and not
the time-to-result. Consequently, these evaluations are not very
helpful to compare/choose a suitable forecasting method. To
this end, we pose ourselves the questions: How to compare
different forecasting methods in a fair manner? and What are
suitable/reliable measures for quantifying the forecast? Our
idea is to establish a forecast benchmark that enables a fair,
meaningful, and reliable comparison of forecasting methods.

A. Benchmarking in a Nutshell

Quoting the Scottish engineer, mathematician, and physicist
William Thomson (1824-1907) - also known as Lord Kelvin:
“To measure is to know... If you cannot measure it, you cannot
improve it.”, we consider benchmarks as a key instrument for
improvement and competition. A benchmark is a tool for the
evaluation and comparison of systems, components or methods
with respect to specific characteristics, such as performance,
reliability, or security [75]. In the context of forecast methods,
key concerns among others are accuracy and time-to-result.

Benchmark designers must balance several, often conflict-
ing, criteria to be fair and successful. Several factors must
be taken into consideration, and trade-offs between various
design choices will influence the strengths and weaknesses of
a benchmark. When developing a new benchmark, the goals
should be defined so that choices between competing design
criteria can be made in accordance with those goals to achieve
the desired balance.

The key characteristics can be organized in the following
groups:
• Relevance How closely the benchmark behavior corre-

lates to behaviors that are of interest to users.
• Reproducibility Producing consistent results when the

benchmark is run with the same test configuration.
• Fairness Allowing different test configurations to com-

pete on their merits without artificial limitations.
• Verifiability Providing confidence that a benchmark re-

sult is accurate.
• Usability Avoiding roadblocks for users to run the bench-

mark in their test environments.
Each benchmark is composed of three key elements: (I) met-

rics9, (II) workload and data set definition, and (III) measure-
ment methodology (also known as run rules). The measures
determine what values should be derived based on measure-
ments to produce the benchmark results. The workload and
data set definition determine under which usage scenarios
and conditions measurements should be performed to derive
the measures. Finally, the measurement methodology defines
the end-to-end process to execute the benchmark, collect
measurements, and produce the benchmark results.

B. Measures

Basically, a forecast can either be evaluated a-priori or a-
posteriori. As an a-posteriori evaluation requires the future

9In the context of benchmarking the term metric is often used instead of
measure. Not considered as metrics in the mathematical sense, both terms can
be seen equivalent for the following.

values (typically data that is not available at the time of the
forecast), the accuracy of a forecast can only be quantified
afterward. In contrast, for a-priori evaluation, the forecasting
method is evaluated before the real forecast is performed.
Consequently, an estimator for the forecast error is required.
One solution is to use the fitted model error as an indicator
for the forecast error. However, this approach is not reliable
because of, for instance, overfitting. That is, a method could
perfectly match the historical data, but by doing so, the method
loses its predictability and is not able to capture future values.
To tackle such issues, V. Vapnik [33] introduces a complex
theory that allows setting an upper bound for the forecast error.
Expressed in a very simplified manner, this theory implies that:

forecast error < model error + structural risk. (25)

In other words, the forecast error is bounded by the model
error of the fitted model and the theoretical risk that considers
the model complexity due to the accompanying overfitting
threat. Actually, the estimation of the risk is hard as methods
are quite sophisticated or worked as black-box. A more
common practice is to split the time series into a train set
and test set. The train set is used to fit the model. Based on
this model, a forecast is performed and then compared against
the test set. As the test data is not used for the model fitting,
this practice should deliver a reliable indicator. Typically, a
time series is split into 80% train and 20% test. Note that,
we use both forecast accuracy and forecast error as terms for
quantifying forecasts: the lower the error or the higher the
accuracy, the better the forecast. In general, there are three
types of error measures [76], [13]:

1) Scale-dependent error measures: The forecast error is
on the same scale as the data. That is, the interpretation of the
results are intuitive when comparing different methods on time
series with the same scale. However, these measures cannot be
used to compare forecast across time series that have different
scales. Examples are the mean forecast error (MFE) or root
mean squared error (RMSE), where n is the forecast length,
yt the actual value, and ft the forecast value:

MFE :=
1

n

n∑
t=1

yt − ft, (26)

RMSE :=

√√√√ 1

n

n∑
t=1

(yt − ft)2. (27)

2) Percentage error measures: On the one hand, this kind
of measure is scale-independent and it can thus be used to
compare forecasting methods across different time series. On
the other hand, the forecast error is infinite or undefined if
the actual value is zero. Further, outliers have a significant
impact on the forecast error. Prominent examples are the
mean absolute percentage error (MAPE) and symmetric mean
absolute percentage error (sMAPE), where n is the forecast
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length, yt the actual value, and ft the forecast value:

MAPE :=
100%

n

n∑
t=1

|yt − ft
yt
|, (28)

sMAPE :=
200%

n

n∑
t=1

|yt − ft
yt + ft

|. (29)

3) Scaled error measures: To approach the problem of
dividing by the actual value, scaled errors normalize the
forecast error by a baseline. This normalization makes the
forecast scale-independent and thus, the measures can be used
to compare forecasts across time series that have different
scales. However, if the baseline has values that are equal to
each other, the forecast error is undefined as a division by zero
has to be done. Examples are the mean absolute scaled error
(MASE) or root mean square scaled error (RMSSE), where n
is the forecast length, yt the actual value, ft the forecast value,
p the length of the period (if there is no seasonality, p = 1),
h̃ the length of the history, and hi the historical values:

MASE :=
1
n

∑n
t=1|yt − ft|

1
h̃−p

∑h̃
i=p+1|hi − hi−p|

, (30)

RMSSE :=

√√√√√ 1

n

n∑
t=1

 |yt − ft|
1

h̃−1

∑h̃
i=p|hi − hi−1|

2

. (31)

4) Discussion of the measures: Several error measures
can be used to evaluate a forecasting method. Each measure
has its use cases, benefits, and drawbacks. For instance, the
MFE shows the direction of the error while the RMSE does
not, or the MAPE and sMAPE do not penalize extremes
and deviations but are scale-independent. A finer distinction
between different error measures is done in the works of M. V.
Shcherbakov et. al [77], R. Adhikari and R. K. Agrawal [13],
or R. J. Hyndman and A. B. Koehler [76]. In general, it is
impossible to prove the correctness of a measure; it is more
a common agreement on how to quantify the given property.
To counter the weaknesses of a specific error measure, it is
better to consider more than one of these measures when
evaluating forecasts. Also, different measures provide different
insights and thus, a better understanding of the forecast can
be obtained. In the following, we include pivotal measure
characteristics:
• Definition A measure should come along with a precise

clear mathematical expression to assure consistent appli-
cation and interpretation.

• Interpretation A measure should be intuitively under-
standable. Furthermore, it is important to specify: (i) if
a measure has a physical unit or is unit-free, (ii) if it is
normalized and if yes how, and (iii) clear information on
the value range and the optimal point.

• Repeatability Repeatability implies that if the measure is
computed multiple times using the same forecast method
and time series, the same value is obtained.

C. Benchmarking Forecasting Methods
Based on our survey, we have found that the degree of

quality of the evaluations suffers, on the one hand, due to

the lack of commonly used and representative data sets, on
the other hand, due to issues with the used methodology,
for example, restriction to only a few competing methods
or only few measures. To this end, we design a forecasting
benchmark that allows a systematic, reproducible, comparable,
and automated comparison of forecasting methods.

The forecasting benchmark allows to compare a specific
forecasting method against state-of-the-art methods based on
different measures (see Section III-B). In more detail, the
benchmark offers a broad data set with a high degree of
diversity (predicted one time series at a time and passed on to
the benchmark for quantification), different quality measures,
and a comparison to standard methods. The time series data
set is split into four domains: (i) economics, (ii) finance, (iii)
human access, and (iv) nature and demographics. Each domain
contains 100 time series from different sources and different
characteristics. The designed procedure for investigating how
well a specific forecasting method performs is as follows:

1) The application domain is selected in which the fore-
casting method has to be investigated.

2) The time series from the domain are transferred to the
forecasting method in a random order one after another.

3) For each time series, the method conducts a multi-step-
ahead forecast and passes it to the benchmark.

4) The measures for each forecast time series are calcu-
lated.

5) A detailed overview and ranking compared to the state-
of-the-art methods is shown.

From a statistical point of view, only the next value is im-
portant, but especially in the context of self-aware computing,
where a fine granularity leads to several data points in a short
time, planning requires several values in advance. Thus, the
method performs a multi-step-ahead forecast and both the one-
step-ahead and the multi-step-ahead forecast are quantified.

1) A Representative Set of Time Series: To have a sound and
broad evaluation of forecasting methods, a highly heteroge-
neous data set that covers different aspects is required. Indeed,
there are numerous data sets available online: competitions
(e.g., NN310, M311, and M412), kaggle, R packages, and many
more. For instance, the M3 competition contains 3003 time
series from different domains. However, most time series have
a high degree of similarity and a length below 100 data
points. Although, for instance, the M4 competition set contains
100,000 time series, these time series have low frequencies (1
∼ yearly, 4 ∼ quarterly, 12 ∼ monthly, and 24 ∼ daily) and
short forecasting horizons (6 to 48 data points). Further, the
median length of a time series is 106. That is, we assume
that if both data set are used alone, they are not suitable for
benchmarking forecasting methods for self-aware systems as
time series in this domain are generally larger and/or have
a higher frequency. For instance, when sampling data each
second, actions that are planned hourly have to take 3600 data
points into account.

10NN3 competition: http://www.neural-forecasting-competition.com/NN3/
11M3 competition: https://forecasters.org/resources/time-series-data/m3-

competition/
12M4 competition: https://www.mcompetitions.unic.ac.cy/the-dataset/
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To this end, we assemble a data set containing 400 publicly
available time series that are divided into 4 different domains:
(i) economics (gas, electricity, sales, unemployment, . . . ),
(iii) human access (calls, SMS, Internet, requests, . . . ) , (ii)
finance (stocks, sales prices, gold, exchange rate, . . . ), and
(iv) nature and demographics (rain, birth rate, solar hours,
temperature, . . . ). The time series are publicly available and
originate from 50 different sources, including also time series
from M3 and M4. We group the sources into authorities from
different countries, M3 competition, M4 competition, other
competitions (e.g., kaggle), different universities, R packages,
and other publicly available data sets (not assignable to the
other groups). Further, our data set covers different frequencies
(1 ∼ yearly to 3600 ∼ every second) and lengths (20 to
372,864). Both distributions are depicted in Figure 8. We
transform the data set because each time series is available
online and therefore the forecast is already known. To this end,
each time series Y is linearly mapped to u ·Y + v where u is
a normally distributed random variable and v is a uniformly
distributed variable.
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Fig. 8. Distribution of the time series lengths used in the data set.

2) Further Measures: Based on our survey and in order
to use common measures, the benchmark uses sMAPE and
MASE as error measures (see Section VI-B) due to their
scale independence. In addition to the error measures, the
benchmark also records the time-to-result. As the time-to-
result depends on the operating system and hardware, the
benchmark forecasts all time series with sNaı̈ve beforehand.
Then, the time-to-result of the specific method is normalized
by the time-to-result of sNaı̈ve that also has to be conducted on
the test system. We choose those measures as all of them come
with a deterministic mathematical expression, are simplistic as
they can be described each in a compact sentence or formula,
and are either unit-less (or have the unit of the time series) or
a normalized ratios (percentage) with the values lying in the
interval (−∞;∞) where 0 is the optimal value. Besides the
average values of each measure, the benchmark also reports
the distribution and standard deviation.

Besides the commonly used measures, the benchmark also

proposes new measures that are easy to interpret and scale-
independent. That is, these measures give useful insights into
the forecasting method and allow to compare them across
different time series.

a) Mean Wrong-Estimation Shares: These measures cap-
ture the tendency of the forecasting method to whether under-
or over-estimate actual values. That is, the mean under-
estimation share (MUES) is the number of forecast values
relative to the whole forecast where the forecast value is
below the actual value. Analogously, the mean over-estimation
share (MOES) is the relative number of values where the
forecast value lies over the actual value. Values of this measure
lie in the interval [0, 1]. The best value 0 is achieved when
the forecasting method does not under-estimate or not over-
estimate the actual values. Both measures can be defined while
n is the forecast length, yt the actual value and ft the forecast
value:

MUES :=
1

n
·
n∑
t=1

max(sgn(yt − ft), 0), (32)

MOES :=
1

n
·
n∑
t=1

max(sgn(ft − yt), 0). (33)

b) Mean Wrong-Accuracy Shares: These measures de-
scribe how much the forecasting method under- or over-
estimate the actual values on average. That is, the mean under-
accuracy share (MUAS) is the mean absolute percentage error
between the forecast values and the actual values where the
forecasting method under-estimates the actual values. Analo-
gously, the mean over-accuracy share (MOAS) is the mean
absolute percentage error where the forecasting method over-
estimates the actual values. Values of this measure lie in the
interval [0,∞), where 0 is the best value and indicates that
there is no under- or over-estimation. Both measures can be
defined while n is the forecast length, yt the actual value and
ft the forecast value:

MUAS :=

{
α, ∃t : ft < yt

0, ∀t : ft ≥ yt

with α :=
1

n ·MUES
·
n∑
t=1

max(yt − ft, 0)

|yt|
, (34)

MOAS :=

{
β, ∃t : yt < ft

0, ∀t : yt ≥ ft

with β :=
1

n ·MOES
·
n∑
t=1

max(ft − yt, 0)

|yt|
. (35)

D. Excerpt of the Competition Results

To investigate how well the summarized standalone fore-
casting methods (see Section III-B) perform in comparison
to the presented automated forecasting workflow, we use the
aforementioned forecasting benchmark. Due to space limi-
tations, we are not able to report detailed results (i.e., all
statistical measures and for each domain). To this end, we
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TABLE II
EXCERPT OF THE BENCHMARKING RESULTS.

Measure Telescope ANN ETS Random Forest sARIMA sNaı̈ve SVM tBATS Theta XGBoost

avg. sMAPE [%] 19.97 24.82 28.95 37.43 20.63 21.82 58.63 23.62 21.10 23.80
std. sMAPE [%] 31.29 40.13 64.58 361.12 35.64 30.08 541.36 76.01 48.96 34.68
avg. MASE 0.77 1.12 1.20 1.67 0.73 1.02 2.13 0.88 0.94 1.01
std. MASE 2.23 3.72 3.43 6.56 2.17 3.27 9.46 2.83 2.97 3.27
avg. MUES 0.48 0.54 0.53 0.59 0.52 0.61 0.60 0.55 0.58 0.61
avg. MOES 0.52 0.46 0.47 0.41 0.48 0.39 0.40 0.45 0.42 0.39
avg. MUAS 0.64 0.16 0.70 0.16 0.22 0.15 0.19 0.15 0.14 0.32
avg. MOAS 3.35 7.43 20.19 10.22 6.07 5.46 9.47 3.48 16.52 7.14
avg. timesnaive 143.27 625.56 429.09 1.43 ·103 8.13 ·105 1.00 646.99 7.66 ·103 10.66 5.46
avg. time [s] 0.59 2.56 1.34 6.41 2.50 ·103 5.41 ·10−3 42.90 27.70 0.04 0.01
std. time [s] 4.34 10.63 7.50 25.61 2.43 ·104 0.03 815.14 92.63 0.16 0.03

show only an excerpt of the results that the benchmark offers.
The following results are the data that will be stored in the
benchmark itself as reference for future methods. That is, each
method is executed ten times on each time series and all values
are stored within the benchmark.

Table II shows for each forecasting method while perform-
ing a multi-step-ahead forecast the averaged value over ten
runs for each measure that the forecasting benchmark report.
Note that, the lower the measures, the better. Consequently,
the best value for each measure is 0. The best average sMAPE
exhibits the Telescope method closely followed by sARIMA.
In contrast, the best average MASE and standard deviation are
shown by sARIMA followed both by Telescope. SVM exhibits
the highest standard deviation for MASE. The lowest standard
deviation for sMAPE is shown by sNaı̈ve closely followed
by Telescope. Although sARIMA achieves a good forecasting
accuracy, it is 1,000 times slower than most methods, is
800,000 times slower than sNaı̈ve, and has a time-to-result
standard deviation of almost 25,000 seconds. In other words,
sARIMA may achieve a good forecast, but the time-to-result
may be unpractical for the reliable and timely planning of
self-aware systems (the maximal time-to-result of sARIMA is
465,574 seconds that is almost 5.5 days).

As there are different superior methods for sMAPE and
MASE, we take further metrics (see Section VI-C2) into
account. Since MOES or MUES either reflects whether the
forecasting method over-estimates or under-estimates the fu-
ture time series, we can investigate the tendency of the
forecasting methods: all state-of-the-art forecasting methods
tend to under-estimate the actual values (MUES > 50%).
Especially, sNaı̈ve under-estimates on average almost 2/3 of
a time series. However, during the under-estimation, the fore-
casting methods are more accurate than over-estimation the
time series. In contrast, the Telescope approach has the lowest
difference between MOES and MUES, i.e., there is almost
no tendency for either over- or under-estimation. Moreover, it
has also the lowest error during the over-estimation, but the
second worst error during the under-estimation.

As self-aware systems might have strict deadlines to allow
timely and reliable planning, the time-to-result is as important
as the accuracy. Due to its simple procedure, sNaı̈ve has
the lowest time-to-result followed by XGBoost, Theta, and
Telescope. Methods like sARIMA, random forest, and tBATS

are at least 1,000 times slower than sNaı̈ve. In other words,
sNaı̈ve has an average time-to-result of 0.005 seconds, whereas
sARIMA has on average 25,000 seconds. Our approach takes
on average 0.6 seconds to produce a forecast.

Although the mean and standard deviation are practical
statistical measures, we also investigate the distribution of
the forecast errors (sMAPE) and the time-to-result. Figure 9
shows on the top the time-to-result distribution and at the
bottom the error distribution. Both horizontal axes show the
associated measure (seconds and percentage in log scale);
the vertical axes depict the forecasting methods. For the
distribution, both the values and a boxplot is shown for each
method. In terms of the time-to-result, there are methods like
sNaı̈ve, XGBoost, and our approach that have a compact
distribution, i.e., a reliable time-to-result. In contrast, SVM and
sARIMA exhibits a wide distribution of their time-to-result.
Thus, these methods have an unpredictable run-time. For the
error distribution, the forecasting methods have comparable
distribution between the interquartile range (i.e., between the
25% and 75% quantile). That is, all methods have a robust
forecasting accuracy, whereas having an outlier with a small
forecasting error is more likely than having a high forecasting
error. Figure 9 further supports the “No-Free-Lunch Theorem”
stating that there is no method that outperforms the other
methods.

In summary, sARIMA shows a good forecasting accuracy,
but has a highly unpredictable time-to-result. However, several
methods have comparable forecasting accuracy. The Telescope
method is the most balanced method as MOES and MOAS are
almost equal and is, according to sMAPE, the best method on
the benchmark data set and, according to MASE, the second
best method. Moreover, the automated forecasting workflow
Telescope has a comparable small stand deviation in time-
to-result and error and is on average 1,000 times faster than
sARIMA.

E. Focus on Time Series related to Self-Aware Systems

While considering the reference scenarios for self-aware
systems (see Section II-C), we can identify 95 time series
in the collected data set mentioned above that are related to
the reference scenarios (see Section II-C). More particular, the
time series are related to smart homes or smart micro-grid (gas,
oil, and electricity prices, weather data, and electricity produc-

O
nl

y 
fo

r p
er

so
na

l u
se

!



THIS ARTICLE HAS BEEN ACCEPTED FOR INCLUSION IN A FUTURE ISSUE OF THIS JOURNAL. 20

0.1 100 100000

Time [s]

Time Distribution

 Telescope 

ANN

ETS

Random Forest 

sARIMA  

sNaive

SVM

tBATS

Theta   

XGBoost

Telescope  

ANN

ETS

Random Forest 

sARIMA  

sNaive

SVM

tBATS

Theta   

XGBoost

1 100 10000

sMAPE [%]

Error Distribution

Fig. 9. Error (sMAPE) and time-to-result distribution of all forecasting methods on the benchmark competition data set.

tion & consumption), self-aware data center (web traces and
workloads), and systems of autonomous shuttles (passenger
and tourism data). Similar to Section VI-D, we compare and
summarize the performance of the forecasting methods on this
filtered data set containing only time series directly related to
the reference scenarios for self-aware systems.

Table III shows the performance of the forecasting methods
on the filtered data set over ten runs. The ranking for this
reduced data set is almost the same as for the entire data set.
That is, for instance, Telescope exhibits the best sMAPE on
both the complete and reduced data set, closely followed by
sARIMA. Also, on the reduced data set, sARIMA shows an
unpredictable time-to-result despite its good accuracy.

VII. CASE STUDY: SELF-AWARE DATA CENTER

In this section, we wrap up the knowledge and the findings
presented in Sections II-VI. Moreover, we illustrate benefits
of time series forecasting for self-aware systems. More pre-
cisely, we investigate how predictive reasoning can improve
the performance of a self-aware computing system. To this
end, we select one of the reference scenarios for self-aware
computing (see Section II-C)—the self-aware data center—
and present a case study where a self-aware data center has
to handle contradictory requirements for an application: (i)
the application owner wants to minimize the resource usage
and thus reduce the operating costs, and (ii) the users of the
application expect certain performance criteria, for instance,
response time and availability should not fall below a given
threshold, referred to as Service Level Objectives (SLOs).

A. Self-Aware Resource Management

To provide a representative case study, an authentic work-
load was chosen stressing an exemplary cloud application.
More precisely, we use an IBM customer information control
system (CICS) transactions trace capturing four weeks of
recorded transactions on an IBM z10 mainframe CICS instal-
lation. The incoming requests were sampled every 15 minutes,
that is, one day consists of 96 data points. In this scenario, the
self-aware data center had already observed and managed the
application for three weeks. That is, the data center has been
able to build a conceptual model, containing information on
how many requests a single resource can handle to maintain
the SLOs as well as how the scaling actions affect the
different requirements for the application. Also, the workload
has been recorded as historical time series data. To ensure
a feasible experiment run duration, we accelerate the replay
time by a factor of 15 during the experiments. As a result,
the request rate now changes every minute. Consequently, the
self-aware data center also adapts the amount of resources
every minute. The timing of the adaptation and the amount of
required resources are planned during the reasoning process
of the self-aware data center. For estimating the amount of
resources needed, the scaling logic of a representative auto-
scaling mechanism is used.

We consider React [78] as representative example, since it
is a simple and straight-forward approach. React provisions
resources based on a threshold or a certain scaling indicator
of an application. The considered indicators include, inter
alia, the number of active connections and the number of
requests per second. React gathers these indicators for each
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TABLE III
PERFORMANCE COMPARISON OF THE FORECASTING METHODS BASED ON TIME SERIES RELATED TO POSSIBLE FUTURE SELF-AWARE SYSTEMS.

Measure Telescope ANN ETS Random Forest sARIMA sNaı̈ve SVM tBATS Theta XGBoost

avg. sMAPE [%] 19.17 24.92 41.80 27.01 20.37 20.44 31.73 32.69 20.88 24.50
std. sMAPE [%] 15.46 17.74 45.38 20.00 17.53 15.15 35.92 110.29 23.74 22.50
avg. time [s] 0.52 3.58 1.31 11.56 3.81 ·103 6.67 ·10−3 5.00 52.67 0.05 0.02
std. time [s] 0.82 4.76 2.52 30.63 1.96 ·104 0.03 13.31 69.69 0.08 0.04

resource and calculates the moving average. Afterwards, the
current resources with active sessions that are above or below
the given threshold are determined. Then, if all resources
have active sessions above the threshold, new resources are
provisioned. If there are resources with active sessions below
the threshold and with at least one resource that has no active
session, idle resources are removed.

In this work, we use the React implementation by Pa-
padopoulos et al. [79] that is available online13. React neither
monitors nor adapts the application itself, but only estimates
the amount of required resources upon receiving an input. In
the first experiment, React gets the measured values such as the
current request rate. That is, after React estimates the required
amount of resources, the self-aware data center immediately
adapts itself. However, it takes an inherent delay to provide
the required amount of resources (e.g., provisioning time). To
this end, in the second and third experiment, React receives
the forecast request rate from either sARIMA or Telescope as
arrival rate forecasts. We consider both forecasting methods
due to their good performance shown in Section VI-D. The
expected benefit of using these forecasts is that the reasoning
can plan the adaptation in time so that the resources are
available when they are needed.

B. Quantifying the Reasoning Strategies

To compare and quantify the performance of the different
reasoning strategies (i.e., here the auto-scaling quality), we
use user-, system-oriented, and time-based metrics. For the
user-oriented metrics, we consider SLO violations. In the
literature, there are different approaches on how to measure
the auto-scaling quality at the system level. As we aim
for intuitive metrics that can be precisely described using
mathematical formulas, we consider metrics quantifing the
system elasticity14, which is commonly considered to be a
central characteristic of the cloud paradigm [81]. To measure
how timely the reasoning takes place, we record the proportion
of learning and reasoning activities that exceed the specified
time interval for each adaptation (i.e., auto-scaling) period.

To quantify the elasticity of the self-aware data center,
we leverage the metrics introduced by Herbst et al. [80],
which are also endorsed by the Research Group of SPEC15.
More precisely, we use the wrong provisioning time share

13React Auto-Scaler Implementation: https://github.com/ahmedaley/
Autoscalers

14Elasticity is the degree to which a system is able to adapt to workload
changes by provisioning and de-provisioning resources in an autonomic
manner, such that at each point in time the available resources match the
current demand as closely as possible [80]

15Standard Performance Evaluation Corporation (SPEC)

and the provisioning accuracy metrics. As we only aim to
quantify how accurate the reasoning of the self-aware data
center performs, we do not distinguish whether the system
is in an over- or under-provisioned state as done by Herbst
et al [80]. Therefore, we have to redefine both metrics: The
wrong provisioning time share metric τ captures the share
of time in which the system is under-provisioned or over-
provisioned during the measurement interval. The provisioning
accuracy metric θ reflects the relative amount of resources
that are under-provisioned or over-provisioned during the
measurement interval. Mathematically, both metrics can be
described as:

τ [%] :=
100

T
·
∫ T

t=0

sgn|dt − st| dt, (36)

θ[%] :=
100

T
·
∫ T

t=0

|dt − st|
dt

dt, (37)

where T is the experiment duration and t ∈ [0, T ] the current
time, st the resource supply at time t, and dt the demanded
resource units at time t. The resource demand dt is the
minimum amount of resources required to meet the SLOs
under the load at time t. The values of both metrics lie in
the interval [0,∞) where 0 is the best value, indicating that
there is no under-provisioning or over-provisioning during the
entire measurement interval.

C. Discussion of the different Reasoning Strategies

For good visibility and comprehensibility, only the auto-
scaling behavior for Thursday and Friday is shown in Fig-
ure 10 for each of the three experiments. The first sub-figure
shows the load profile and the requests per second over the
experiment duration. The remaining three sub-figures each
show the self-aware reasoning, that is, the resource adaptation
based on React. For each scaling, the horizontal axis shows
the time of the measurement in minutes; the vertical axis
shows the number of running/required resources. The solid red
curve represents the provisioned resources; the black dashed
curve represents the required amount of resources. While using
React only with the current request rate, the self-aware data
center can only react to workload changes. Thus, the scaling
shows an inherent delay: During the increasing load, the
system has insufficient resources. In contrast, while the load
decreases, the system has excessive resources. The proactive
scaling based on sARIMA is able to closely follow the trend
of the workload. However, as the time-to-result of sARIMA
is highly unpredictable, some adaptations (e.g., the spike at
Minute 250) are delayed. The proactive scaling based on
Telescope manages to closely follow the demand. Indeed, there
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Fig. 10. Self-aware auto-scaling with different reasoning strategies.

are some outliers, such as the spike at Minute 250, that are
under- or overestimated; however, the proactive scaling with
Telescope is the most accurate one compared to the other
reasoning strategies. To provide a quantitative comparison,

TABLE IV
COMPARISON OF DIFFERENT REASONING STRATEGIES FOR

AUTO-SCALING

Reasoning Wrong Prov. Provisioning SLO Delayed
Strategy Time Share τ Accuracy θ Violations Reasoning

reactive 86.11% 76.70% 7.35% 0%
sARIMA 41.07% 35.18% 6.73% 20.04%
Telescope 38.33% 23.15% 4.15% 0%

the wrong provisioning time share metric τ , the provisioning
accuracy metric θ, the SLO violations, and the share of delayed
reasonings are listed in Table IV. Note that the lower the
values, the better. While reactive reasoning exhibits the worst
values for the elasticity metrics and SLO violations, proactive
reasoning based on Telescope exhibits the best values. That
is, the reasoning based on Telescope leads in 38.33% of
the experiment duration the system in an over- or under-
provisioned state. Further, there are either 23.15% too many
or few resources allocated. Due to its highly unpredictable
time-to-result, sARIMA takes longer than the specified time
interval for each adaptation period in 20.04% of the reasoning

activities. Thus, this strategy exhibits only the second-best
scaling quality and SLO violations.

VIII. CONCLUSION

As time series forecasting is an essential pillar in autonomic
decision making of self-aware systems, we examine and
review the state of research in time series forecasting. That
is, on the one hand, we present and discuss the basics of
time series analysis, state-of-the-art forecasting methods, and
techniques from feature engineering. To become applicable
for self-aware systems, we formulate explicit challenges and
present, on the other hand, a step-by-step walk-through for
fully automated feature engineering and forecasting. Following
principles from benchmarking, we design a level-playing field
for assessing and comparing the accuracy and time-to-result of
automated forecasting methods for a broad set of time series
data. Finally, we include the benchmark results of a forecasting
method competition to guide in selecting and appropriately
using existing forecasting methods and illustrate the benefits
of time series forecasting in the reference scenario of a self-
aware data center.
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