
André Bauer

Automated Hybrid
Time Series Forecasting:
Design, Benchmarking, andUseCases

Dissertation, Julius-Maximilians-Universität Würzburg
Fakultät für Mathematik und Informatik, 2020

Gutachter: Prof. Dr. Samuel Kounev, Julius-Maximilians-Universität Würzburg, Germany
Prof. Dr. Erik Elmroth, Umeå University, Sweden
Prof. Dr. John Murphy, University College Dublin, Ireland

Datum der mündlichen Prüfung: 22. Dezember 2020

This document is licensed under the
Creative Commons Attribution-ShareAlike 4.0 DE License (CC BY-SA 4.0 DE):
http://creativecommons.org/licenses/by-sa/4.0/deed.de

ii

http://creativecommons.org/licenses/by-sa/4.0/deed.de

Abstract

These days, we are living in a digitalized world. Both our professional and
private lives are pervaded by various IT services, which are typically operated
using distributed computing systems (e.g., cloud environments). Due to the
high level of digitalization, the operators of such systems are confronted with
fast-paced and changing requirements. In particular, cloud environments have
to cope with load fluctuations and respective rapid and unexpected changes in
the computing resource demands. To face this challenge, so-called auto-scalers,
such as the threshold-based mechanism in Amazon Web Services EC2, can
be employed to enable elastic scaling of the computing resources. However,
despite this opportunity, business-critical applications are still run with highly
overprovisioned resources to guarantee a stable and reliable service operation.
This strategy is pursued due to the lack of trust in auto-scalers and the concern
that inaccurate or delayed adaptations may result in financial losses.
To adapt the resource capacity in time, the future resource demands must

be “foreseen”, as reacting to changes once they are observed introduces an
inherent delay. In other words, accurate forecasting methods are required
to adapt systems proactively. A powerful approach in this context is time
series forecasting, which is also applied in many other domains. The core idea
is to examine past values and predict how these values will evolve as time
progresses. According to the “No-Free-Lunch Theorem”, there is no algorithm
that performs best for all scenarios. Therefore, selecting a suitable forecasting
method for a given use case is a crucial task. Simply put, each method has
its benefits and drawbacks, depending on the specific use case. The choice of
the forecasting method is usually based on expert knowledge, which cannot
be fully automated, or on trial-and-error. In both cases, this is expensive and
prone to error.

Although auto-scaling and time series forecasting are established research
fields, existing approaches cannot fully address thementioned challenges: (i) In
our survey on time series forecasting, we found that publications on time series
forecasting typically consider only a small set of (mostly related) methods and
evaluate their performance on a small number of time series with only a few
error measures while providing no information on the execution time of the
studied methods. Therefore, such articles cannot be used to guide the choice

iii

of an appropriate method for a particular use case; (ii) Existing open-source
hybrid forecasting methods that take advantage of at least two methods to
tackle the “No-Free-Lunch Theorem” are computationally intensive, poorly
automated, designed for a particular data set, or they lack a predictable time-
to-result. Methods exhibiting a high variance in the time-to-result cannot be
applied for time-critical scenarios (e.g., auto-scaling), while methods tailored
to a specific data set introduce restrictions on the possible use cases (e.g., fore-
casting only annual time series); (iii) Auto-scalers typically scale an application
either proactively or reactively. Even though some hybrid auto-scalers exist,
they lack sophisticated solutions to combine reactive and proactive scaling. For
instance, resources are only released proactively while resource allocation is
entirely done in a reactive manner (inherently delayed); (iv) The majority of
existing mechanisms do not take the provider’s pricing scheme into account
while scaling an application in a public cloud environment, which often results
in excessive charged costs. Even though some cost-aware auto-scalers have
been proposed, they only consider the current resource demands, neglecting
their development over time. For example, resources are often shut down
prematurely, even though they might be required again soon.

To address the mentioned challenges and the shortcomings of existing work,
this thesis presents three contributions: (i) The first contribution—a forecasting
benchmark—addresses the problem of limited comparability between existing
forecasting methods; (ii) The second contribution—Telescope—provides an au-
tomated hybrid time series forecasting method addressing the challenge posed
by the “No-Free-Lunch Theorem”; (iii) The third contribution—Chamulteon—
provides a novel hybrid auto-scaler for coordinated scaling of applications
comprising multiple services, leveraging Telescope to forecast the workload
intensity as a basis for proactive resource provisioning. In the following, the
three contributions of the thesis are summarized:

Contribution I – Forecasting Benchmark
To establish a level playing field for evaluating the performance of forecasting
methods in a broad setting, we propose a novel benchmark that automati-
cally evaluates and ranks forecasting methods based on their performance in a
diverse set of evaluation scenarios. The benchmark comprises four different
use cases, each covering 100 heterogeneous time series taken from different
domains. The data set was assembled from publicly available time series and
was designed to exhibit much higher diversity than existing forecasting compe-
titions. Besides proposing a new data set, we introduce two new measures that
describe different aspects of a forecast. We applied the developed benchmark
to evaluate Telescope.

iv

Contribution II – Telescope
Toprovide a generic forecastingmethod, we introduce a novelmachine learning-
based forecasting approach that automatically retrieves relevant information
from a given time series. More precisely, Telescope automatically extracts
intrinsic time series features and then decomposes the time series into com-
ponents, building a forecasting model for each of them. Each component is
forecast by applying a different method and then the final forecast is assem-
bled from the forecast components by employing a regression-based machine
learning algorithm. In more than 1300 hours of experiments benchmarking 15
competing methods (including approaches from Uber and Facebook) on 400
time series, Telescope outperformed all methods, exhibiting the best forecast
accuracy coupled with a low and reliable time-to-result. Compared to the
competing methods that exhibited, on average, a forecast error (more precisely,
the symmetric mean absolute forecast error) of 29%, Telescope exhibited an
error of 20% while being 2556 times faster. In particular, the methods from
Uber and Facebook exhibited an error of 48% and 36%, and were 7334 and 19
times slower than Telescope, respectively.

Contribution III – Chamulteon
To enable reliable auto-scaling, we present a hybrid auto-scaler that combines
proactive and reactive techniques to scale distributed cloud applications com-
prising multiple services in a coordinated and cost-effective manner. More
precisely, proactive adaptations are planned based on forecasts of Telescope,
while reactive adaptations are triggered based on actual observations of the
monitored load intensity. To solve occurring conflicts between reactive and
proactive adaptations, a complex conflict resolution algorithm is implemented.
Moreover, when deployed in public cloud environments, Chamulteon reviews
adaptations with respect to the cloud provider’s pricing scheme in order to
minimize the charged costs. In more than 400 hours of experiments evaluating
five competing auto-scaling mechanisms in scenarios covering five different
workloads, four different applications, and three different cloud environments,
Chamulteon exhibited the best auto-scaling performance and reliability while
at the same time reducing the charged costs. The competing methods provided
insufficient resources for (on average) 31% of the experimental time; in contrast,
Chamulteon cut this time to 8% and the SLO (service level objective) violations
from 18% to 6% while using up to 15% less resources and reducing the charged
costs by up to 45%.

The contributions of this thesis can be seen as major milestones in the domain
of time series forecasting and cloud resource management. (i) This thesis is
the first to present a forecasting benchmark that covers a variety of different

v

domains with a high diversity between the analyzed time series. Based on
the provided data set and the automatic evaluation procedure, the proposed
benchmark contributes to enhance the comparability of forecasting methods.
The benchmarking results for different forecasting methods enable the selection
of the most appropriate forecasting method for a given use case. (ii) Telescope
provides the first generic and fully automated time series forecasting approach
that delivers both accurate and reliable forecasts while making no assumptions
about the analyzed time series. Hence, it eliminates the need for expensive,
time-consuming, and error-prone procedures, such as trial-and-error searches
or consulting an expert. This opens up new possibilities especially in time-
critical scenarios, where Telescope can provide accurate forecasts with a short
and reliable time-to-result.

AlthoughTelescopewas applied for this thesis in the field of cloud computing,
there is absolutely no limitation regarding the applicability of Telescope in other
domains, as demonstrated in the evaluation. Moreover, Telescope, which was
made available on GitHub, is already used in a number of interdisciplinary data
science projects, for instance, predictive maintenance in an Industry 4.0 context,
heart failure prediction in medicine, or as a component of predictive models
of beehive development. (iii) In the context of cloud resource management,
Chamulteon is a major milestone for increasing the trust in cloud auto-scalers.
The complex resolution algorithm enables reliable and accurate scaling behavior
that reduces losses caused by excessive resource allocation or SLO violations.
In other words, Chamulteon provides reliable online adaptations minimizing
charged costs while at the same time maximizing user experience.

vi

Zusammenfassung

Heutzutage leben wir in einer digitalisierten Welt. Sowohl unser berufliches als
auch unser privates Leben ist von verschiedenen IT-Diensten durchzogen, wel-
che typischerweise in verteilten Computersystemen (z.B. Cloud-Umgebungen)
betrieben werden. Die Betreiber solcher Systeme sind aufgrund des hohen
Digitalisierungsgrades mit schnellen und wechselnden Anforderungen kon-
frontiert. Insbesondere Cloud-Umgebungen unterliegen starken Lastschwan-
kungen und entsprechenden schnellen und unerwarteten Änderungen des
Bedarfs an Rechenressourcen. Um dieser Herausforderung zu begegnen, kön-
nen so genannte Auto-Scaler, wie z.B. der schwellenwertbasierte Mechanismus
von Amazon Web Services EC2, eingesetzt werden, um eine elastische Ska-
lierung der Rechenressourcen zu ermöglichen. Doch trotz dieser Gelegenheit
werden geschäftskritische Anwendungen nach wie vor mit deutlich überdimen-
sionierten Rechenkapazitäten betrieben, um einen stabilen und zuverlässigen
Dienstbetrieb zu gewährleisten. Diese Strategie wird aufgrund des mangeln-
den Vertrauens in Auto-Scaler und der Sorge verfolgt, dass ungenaue oder
verzögerte Anpassungen zu finanziellen Verlusten führen könnten.

Um die Ressourcenkapazität rechtzeitig anpassen zu können, müssen die
zukünftigen Ressourcenanforderungen “vorhergesehen” werden. Denn die
Reaktion auf Veränderungen, sobald diese beobachtet werden, führt zu einer
inhärenten Verzögerung. Mit anderen Worten, es sind genaue Prognosemetho-
den erforderlich, um Systeme proaktiv anzupassen. Ein wirksamer Ansatz in
diesem Zusammenhang ist die Zeitreihenprognose, welche auch in vielen ande-
ren Bereichen angewandt wird. Die Kernidee besteht darin, vergangene Werte
zu untersuchen und vorherzusagen, wie sich diese Werte im Laufe der Zeit
entwickeln werden. Nach dem “No-Free-Lunch Theorem” gibt es keinen Algo-
rithmus, der für alle Szenarien am besten funktioniert. Daher ist die Auswahl
einer geeigneten Prognosemethode für einen gegebenen Anwendungsfall eine
wesentliche Herausforderung. Denn jede Methode hat - abhängig vom spezifi-
schen Anwendungsfall - ihre Vor- und Nachteile. Deshalb basiert üblicherweise
die Wahl der Prognosemethode auf Trial-and-Error oder auf Expertenwissen,
welches nicht vollständig automatisiert werden kann. Beide Ansätze sind teuer
und fehleranfällig.

vii

Obwohl Auto-Skalierung und Zeitreihenprognose etablierte Forschungsge-
biete sind, können die bestehenden Ansätze die genannten Herausforderungen
nicht vollständig bewältigen: (i) Bei unserer Untersuchung zur Zeitreihenvor-
hersage stellten wir fest, dass die meisten der überprüften Artikel nur eine
geringe Anzahl von (meist verwandten) Methoden berücksichtigen und ih-
re Performanz auf einem kleinen Datensatz von Zeitreihen mit nur wenigen
Fehlermaßen bewerten, während sie keine Informationen über die Ausfüh-
rungszeit der untersuchten Methoden liefern. Daher können solche Artikel
nicht als Hilfe für die Wahl einer geeigneten Methode für einen bestimmten
Anwendungsfall herangezogen werden; (ii) Bestehende hybride open-source
Prognosemethoden, die sich mindestens zwei Methoden zunutze machen,
um das “No-Free-Lunch Theorem” anzugehen, sind rechenintensiv, schlecht
automatisiert, für einen bestimmtenDatensatz ausgelegt oder haben eine unvor-
hersehbare Laufzeit. Methoden, die eine hohe Varianz in der Ausführungszeit
aufweisen, können nicht für zeitkritische Szenarien angewendet werden (z.B.
Autoskalierung), während Methoden, die auf einen bestimmten Datensatz
zugeschnitten sind, Einschränkungen für mögliche Anwendungsfälle mit sich
bringen (z.B. nur jährliche Zeitreihen vorhersagen); (iii) Auto-Scaler skalieren
typischerweise eine Anwendung entweder proaktiv oder reaktiv. Obwohl es
einige hybride Auto-Scaler gibt, fehlt es ihnen an ausgeklügelten Lösungen zur
Kombination von reaktiver und proaktiver Skalierung. Beispielsweise werden
Ressourcen nur proaktiv freigesetzt, während die Ressourcenzuweisung voll-
ständig reaktiv (inhärent verzögert) erfolgt; (iv) DieMehrheit der vorhandenen
Mechanismen berücksichtigt bei der Skalierung einer Anwendung in einer öf-
fentlichen Cloud-Umgebung nicht das Preismodell des Anbieters, was häufig
zu überhöhten Kosten führt. Auch wenn einige kosteneffiziente Auto-Scaler
vorgeschlagen wurden, berücksichtigen sie nur den aktuellen Ressourcenbe-
darf und vernachlässigen ihre Entwicklung im Laufe der Zeit. Beispielsweise
werden Ressourcen oft vorzeitig abgeschaltet, obwohl sie vielleicht bald wieder
benötigt werden.

Um den genannten Herausforderungen und den Defiziten der bisherigen
Arbeiten zu begegnen, werden in dieser Arbeit drei Beiträge vorgestellt: (i) Der
erste Beitrag - ein Prognosebenchmark - behandelt das Problem der begrenzten
Vergleichbarkeit zwischen bestehenden Prognosemethoden; (ii) Der zweite
Beitrag stellt eine automatisierte hybride Zeitreihen-Prognosemethode namens
Telescope vor, die sich der Herausforderung des “No-Free-Lunch Theorem” stellt;
(iii) Der dritte Beitrag stellt Chamulteon, einen neuartigen hybriden Auto-Scaler
für die koordinierte Skalierung von Anwendungen mit mehreren Diensten,
bereit, der Telescope zur Vorhersage der Lastintensität als Grundlage für ei-

viii

ne proaktive Ressourcenbereitstellung nutzt. Im Folgenden werden die drei
Beiträge der Arbeit zusammengefasst:
Beitrag I – Prognosebenchmark
Um gleiche Ausgangsbedingungen für die Bewertung von Prognosemethoden
anhand eines breiten Spektrums zu schaffen, schlagen wir einen neuartigen
Benchmark vor, der Prognosemethoden auf der Grundlage ihrer Performanz
in einer Vielzahl von Szenarien automatisch bewertet und ein Ranking er-
stellt. Der Benchmark umfasst vier verschiedene Anwendungsfälle, die jeweils
100 heterogene Zeitreihen aus verschiedenen Bereichen abdecken. Der Daten-
satz wurde aus öffentlich zugänglichen Zeitreihen zusammengestellt und so
konzipiert, dass er eine viel höhere Diversität aufweist als bestehende Prognose-
wettbewerbe. Neben dem neuen Datensatz führen wir zwei neue Maße ein, die
verschiedene Aspekte einer Prognose beschreiben. Wir haben den entwickelten
Benchmark zur Bewertung von Telescope angewandt.
Beitrag II – Telescope
Um eine generische Prognosemethode bereitzustellen, stellen wir einen neu-
artigen, auf maschinellem Lernen basierenden Prognoseansatz vor, der au-
tomatisch relevante Informationen aus einer gegebenen Zeitreihe extrahiert.
Genauer gesagt, Telescope extrahiert automatisch intrinsische Zeitreihenmerk-
male und zerlegt die Zeitreihe dann in Komponenten, wobei für jede dieser
Komponenten ein Prognosemodell erstellt wird. Jede Komponente wird mit
einer anderen Methode prognostiziert und dann wird die endgültige Prognose
aus den vorhergesagten Komponenten unter Verwendung eines regressions-
basierten Algorithmus des maschinellen Lernens zusammengestellt. In mehr
als 1300 Experiment-Stunden, in denen 15 konkurrierende Methoden (ein-
schließlich Ansätze von Uber und Facebook) auf 400 Zeitreihen verglichen
wurden, übertraf Telescope alle Methoden und zeigte die beste Prognosegenau-
igkeit in Verbindung mit einer niedrigen und zuverlässigen Ausführungszeit.
Im Vergleich zu den konkurrierenden Methoden, die im Durchschnitt einen
Prognosefehler (genauer gesagt, den symmetric mean absolute forecast error)
von 29% aufwiesen, wies Telescope einen Fehler von 20% auf und war dabei
2556 mal schneller. Insbesondere die Methoden von Uber und Facebook wiesen
einen Fehler von 48% bzw. 36% auf und waren 7334 bzw. 19 mal langsamer als
Telescope.
Beitrag III – Chamulteon
Um eine zuverlässige Auto-Skalierung zu ermöglichen, stellen wir einen hy-
briden Auto-Scaler vor, der proaktive und reaktive Techniken kombiniert, um
verteilte Cloud-Anwendungen, die mehrere Dienste umfassen, koordiniert und
kostengünstig zu skalieren. Genauer gesagt, werden proaktive Anpassungen

ix

auf der Grundlage von Prognosen von Telescope geplant, während reaktive
Anpassungen auf der Grundlage tatsächlicher Beobachtungen der überwachten
Lastintensität ausgelöst werden. Um auftretende Konflikte zwischen reaktiven
und proaktiven Anpassungen zu lösen, wird ein komplexer Konfliktlösungsal-
gorithmus implementiert. Außerdem überprüft Chamulteon Anpassungen im
Hinblick auf das Preismodell des Cloud-Anbieters, um die anfallenden Kosten
in öffentlichen Cloud-Umgebungen zuminimieren. Inmehr als 400 Experiment-
Stunden, in denen fünf konkurrierende Auto-Skalierungsmechanismen unter
fünf verschiedene Arbeitslasten, vier verschiedene Anwendungen und drei ver-
schiedene Cloud-Umgebungen evaluiert wurden, zeigte Chamulteon die beste
Auto-Skalierungsleistung und Zuverlässigkeit bei gleichzeitiger Reduzierung
der berechneten Kosten. Die konkurrierenden Methoden lieferten während
(durchschnittlich) 31% der Versuchszeit zu wenige Ressourcen. Im Gegensatz
dazu reduzierte Chamulteon diese Zeit auf 8% und die SLO-Verletzungen
(Service Level Objectives) von 18% auf 6%, während es bis zu 15% weniger
Ressourcen verwendete und die berechneten Kosten um bis zu 45% senkte.

Die Beiträge dieser Arbeit können als wichtige Meilensteine auf dem Gebiet
der Zeitreihenprognose und der automatischen Skalierung in Cloud Com-
puting angesehen werden. (i) In dieser Arbeit wird zum ersten Mal ein Pro-
gnosebenchmark präsentiert, der eine Vielzahl verschiedener Bereiche mit
einer hohen Diversität zwischen den analysierten Zeitreihen abdeckt. Auf der
Grundlage des zur Verfügung gestellten Datensatzes und des automatischen
Auswertungsverfahrens trägt der vorgeschlagene Benchmark dazu bei, die
Vergleichbarkeit von Prognosemethoden zu verbessern. Die Benchmarking-
Ergebnisse von verschiedenen Prognosemethoden ermöglichen die Auswahl
der am besten geeigneten Prognosemethode für einen gegebenen Anwen-
dungsfall. (ii) Telescope bietet den ersten generischen und vollautomatischen
Zeitreihen-Prognoseansatz, der sowohl genaue als auch zuverlässige Prognosen
liefert, ohne Annahmen über die analysierte Zeitreihe zu treffen. Dementspre-
chendmacht es teure, zeitaufwändige und fehleranfällige Verfahren überflüssig,
wie z.B. Trial-and-Error oder das Hinzuziehen eines Experten. Dies eröffnet
neue Möglichkeiten, insbesondere in zeitkritischen Szenarien, in denen Telesco-
pe genaue Vorhersagen mit einer kurzen und zuverlässigen Antwortzeit liefern
kann.
Obwohl Telescope für diese Arbeit im Bereich des Cloud Computing ein-

gesetzt wurde, gibt es, wie die Auswertung zeigt, keinerlei Einschränkungen
hinsichtlich der Anwendbarkeit von Telescope in anderen Bereichen. Darüber
hinaus wird Telescope, das auf GitHub zur Verfügung gestellt wurde, bereits
in einer Reihe von interdisziplinären datenwissenschaftlichen Projekten ein-

x

gesetzt, z.B. bei der vorausschauenden Wartung im Rahmen von Industry
4.0, bei der Vorhersage von Herzinsuffizienz in der Medizin oder als Bestand-
teil von Vorhersagemodellen für die Entwicklung von Bienenstöcken. (iii) Im
Kontext der elastischen Ressourcenverwaltung ist Chamulteon ein wichtiger
Meilenstein für die Stärkung des Vertrauens in Auto-Scaler. Der komplexe
Konfliktlösungsalgorithmus ermöglicht ein zuverlässiges und genaues Skalie-
rungsverhalten, das Verluste durch übermäßige Ressourcenzuweisung oder
SLO-Verletzungen reduziert. Mit anderen Worten, Chamulteon bietet zuver-
lässige Ressourcenanpassungen, die die berechneten Kosten minimieren und
gleichzeitig die Benutzerzufriedenheit maximieren.

xi

Acknowledgments

This thesis would have been impossible without the aid and support of many
people. First of all, I would like to thank my advisor Prof. Samuel Kounev. I
first met him while working on my master thesis, and since then he always
supported me with advice and encouragement on my journey in the academic
world. He has been a constant source of inspiration for me in the past years and
his strong faith in me supported me to write this thesis and face all research
challenges on the way.

From the Software Engineering Chair at the University of Würzburg, I want
to thank my current and former colleagues with whom I had the pleasure to
work on many projects: Dr. Nikolas Herbst, Dr. Piotr Rygielski, Dr. Simon
Spinner, Dr. Jürgen Walter, Dr. Christian Krupitzer, Lukas Beierlieb, Simon
Eismann, André Greubel, Johannes Grohmann, Stefan Herrnleben, Lukas Ifflän-
der, Dennis Kaiser, Robert Leppich, Veronika Lesch, Thomas Prantl, Norbert
Schmitt, Maximilian Schwinger, Florian Spiess, Martin Sträßer, and Marwin
Züfle. I also want to thank Fritz Kleemann and Susanne Stenglin, who have
always been very supportive in helping me. And some colleagues even became
friends. I would therefore like to thank you for the many hours of laughter and
discussion we spent together.
Further, I would like to thank the SPEC RG Cloud working group for their

support and feedback leading to many joint publications. Here, I want to
thank to Alexandru Iosup, Ahmed Ali-Eldin, Erwin van Eyk, Alexey Ilyushkin,
Alessandro Papadopoulos, and more.

I also want to thank Dr. Valentin Curtef (COSMO CONSULT Data Science
GmbH) for sharing his experience in data analytics. During our discussions,
he always gave insightful comments and feedback.

xiii

Contents

1 Introduction 1

1.1 Problem Statement . 2
1.2 Shortcomings of the State-of-the-Art 3
1.3 Goals and Research Questions of the Thesis 5
1.4 Contributions of this Thesis . 6
1.5 Thesis Outline . 9

I Foundations and State-of-the-Art 11

2 Time Series Analysis 13

2.1 Terms and Definitions . 13
2.1.1 Components of a Time Series 14
2.1.2 Statistical Analysis of Time Series 16
2.1.3 Stationarity . 17
2.1.4 Time Series Forecasting 18

2.2 Spectral Analysis . 19
2.2.1 Fourier Terms . 20
2.2.2 Frequency Detection via Periodograms 20

2.3 Time Series Feature Engineering 21
2.3.1 Time Series Decomposition 22
2.3.2 Time Series Transformation 25
2.3.3 Time Series Differencing 27

2.4 Time Series Characteristics . 27

3 Time Series Forecasting 31

3.1 Classical Forecasting Methods . 31
3.1.1 Naïve and sNaïve . 32
3.1.2 ETS . 32
3.1.3 Theta . 33
3.1.4 ARIMA and sARIMA . 33
3.1.5 TBATS . 34

xv

Contents

3.2 Forecasting Methods based on Machine Learning 35
3.2.1 CART . 35
3.2.2 Evtree . 35
3.2.3 Cubist . 36
3.2.4 Random Forest . 36
3.2.5 XGBoost . 37
3.2.6 SVM and SVR . 37
3.2.7 NNetar . 37

3.3 Assessing Forecasting Quality . 38
3.3.1 Scale-dependent Error Measures 39
3.3.2 Percentage Error Measures 40
3.3.3 Scaled Error Measures . 40
3.3.4 Discussion of the Measures 41

4 Resource Management of Distributed Cloud Services 43

4.1 A Brief Introduction to Basic Queueing Theory 43
4.1.1 Characteristics of a Queue 44
4.1.2 Service Demand Estimation 45

4.2 Assessing the Quality of the Resource Adaptation 47
4.2.1 Definition and Measures of Cloud Elasticity 47
4.2.2 Elasticity Benchmarking Framework 50

5 On the State-of-the-Art in Time Series Forecasting 53

5.1 Ensemble Forecasting . 53
5.2 Forecasting Method Recommendation 56
5.3 Time Series Decomposition . 58
5.4 Benchmarking of Forecasting Methods 61

6 On the State-of-the-Art in Cloud Auto-Scaling 63

6.1 Auto-Scalers based on Control Theory 63
6.2 Auto-Scalers based on Queueing Theory 65
6.3 Auto-Scalers based on Reinforcement Learning 66
6.4 Auto-Scalers based on Threshold-Based Rules 67
6.5 Auto-Scalers based on Time Series Analysis 68
6.6 Cost-Efficient Auto-Scalers . 69

xvi

Contents

II Contributions 71

7 Forecasting Benchmark 73

7.1 Literature Review . 74
7.2 Design Overview and Use Cases 76
7.3 Time Series Data Set . 78
7.4 Evaluation Types and Rolling Origin Evaluation 80
7.5 Proposed Forecast Error Measures 83

7.5.1 Mean Wrong-Estimation Shares 84
7.5.2 Mean Wrong-Accuracy Shares 85

7.6 Comparison with other Forecasting Competitions 86
7.6.1 Time Series Characteristics 86
7.6.2 Distance between Time Series 88

7.7 Concluding Remarks . 90

8 Automated Hybrid Forecasting Approach 91

8.1 Design Overview . 93
8.2 Preprocessing . 94
8.3 Feature Extraction . 97
8.4 Model Building . 98

8.4.1 Time-Critical Scenario . 99
8.4.2 Non-Time-Critical Scenario 99

8.5 Forecasting . 100
8.6 Postprocessing . 102
8.7 Fallback for Non-Seasonal Time Series 103
8.8 Recommendation System for Machine Learning Method 103

8.8.1 Meta-Learning for Method Selection 104
8.8.2 Offline Training . 111
8.8.3 Recommendation . 112
8.8.4 Time Series Generator . 113

8.9 Assumptions and Limitations . 116
8.10 Differentiation from Related Work 118
8.11 Concluding Remarks . 119

9 Forecasting-based Auto-Scaling of Distributed Cloud Applications 121

9.1 Overview of the Chamulteon Approach 123
9.1.1 Forecasting Component 125
9.1.2 Service Demand Estimation Component 125
9.1.3 Cost-Awareness Component 126
9.1.4 Limitations of and Changes to the Chameleon Approach 126

xvii

Contents

9.2 Decision Making Process . 127
9.3 Decision Conflict Resolution . 130

9.3.1 Scope Conflict Resolution 131
9.3.2 Time Conflict Resolution 131
9.3.3 Delay Conflict Resolution 132

9.4 Cost-Aware Resource Management 132
9.4.1 Design Overview of the Fox Approach 133
9.4.2 Analyze . 134
9.4.3 Plan . 135
9.4.4 Execute . 136

9.5 Assessing the Auto-Scaling Quality 137
9.5.1 Instability . 138
9.5.2 Auto-Scaling Deviation 138
9.5.3 Elastic Speedup . 140
9.5.4 Auto-Scaling Worst-Case Deviation 141
9.5.5 Cost-Saving Rate . 142

9.6 Assumptions and Limitations . 143
9.7 Distinctive Features of Chamulteon 144
9.8 Concluding Remarks . 145

III Benchmarking and Evaluation 147

10 Time Series Forecasting Competition 149

10.1 Global Experimental Setup . 149
10.1.1 Methods in Competition 149
10.1.2 Applied Measures . 153

10.2 Benchmarking of Forecasting Methods 153
10.2.1 Experimental Description 154
10.2.2 Economics Use Case . 154
10.2.3 Finance Use Case . 156
10.2.4 Human Access Use Case 157
10.2.5 Nature and Demographics Use Case 159
10.2.6 Overall Evaluation . 160
10.2.7 Summary of the Results and Threats to Validity 161

10.3 Evaluation of the Forecasting Method Recommendation 162
10.3.1 Experimental Description 163
10.3.2 Performance of the Regression-based Machine Learning

Methods . 164
10.3.3 Analysis of the Recommendation Approaches 165

xviii

Contents

10.3.4 Training Set Augmentation 167
10.3.5 Summary of the Results and Threats to Validity 167

10.4 Benchmarking the Telescope Approach 168
10.4.1 Experimental Description 169
10.4.2 Forecasting Method Competition 169
10.4.3 Detailed Examination . 175
10.4.4 Repeatability . 176
10.4.5 Investigation of Alternative Building Blocks 177
10.4.6 Summary of the Results and Threats to Validity 178

10.5 Concluding Remarks . 179

11 Elastic Resource Management 181

11.1 Global Experimental Setup . 181
11.1.1 Workload Description . 181
11.1.2 Deployed Applications . 182
11.1.3 Deployment Description 184
11.1.4 Deployed Auto-Scaling Mechanisms 185
11.1.5 Applied User and System Measures 187

11.2 The Impact of Service Demand Estimation 188
11.2.1 Experimental Description 189
11.2.2 Hardware Contention Scenario 191
11.2.3 Software Contention Scenario 192
11.2.4 Mixed Contention Scenario 194
11.2.5 Summary of the Results and Threats to Validity 196

11.3 Benchmarking of the Chameleon Approach 198
11.3.1 Experimental Description 198
11.3.2 Introduction to the Results 198
11.3.3 Auto-Scaling on Different Platforms 202
11.3.4 Overall Evaluation . 204
11.3.5 Summary of the Results and Threats to Validity 205

11.4 Evaluation of the Fox Approach 206
11.4.1 Experimental Description 206
11.4.2 Introduction to the Results 207
11.4.3 Fox with Hourly Charging Scheme 210
11.4.4 Fox with Two-Phase Charging Scheme 211
11.4.5 Summary of the Results and Threats to Validity 213

11.5 Benchmarking of the Chamulteon Approach 213
11.5.1 Experimental Description 213
11.5.2 Introduction to the Results 214
11.5.3 Docker vs. VM Scaling . 216

xix

Contents

11.5.4 Scalability . 219
11.5.5 Summary of the Results and Threats to Validity 219

11.6 Concluding Remarks . 222

IV Conclusion 223

12 Thesis Summary 225

13 Open Challenges and Outlook 229

Back Matter 233

List of Figures 236

List of Tables 238

Bibliography 239

xx

Publication List

Peer Reviewed Journal and Magazine Articles

A. Bauer, M. Züfle, N. Herbst, A. Zehe, A. Hotho, and S. Kounev (2020c). “Time
Series Forecasting for Self-Aware Systems”. In: Proceedings of the IEEE 108.7,
pp. 1068–1093.

A. Bauer, N. Herbst, S. Spinner, A. Ali-Eldin, and S. Kounev (2018b). “Cham-
eleon: A Hybrid, Proactive Auto-Scaling Mechanism on a Level-Playing Field”.
In: IEEE Transactions on Parallel andDistributed Systems (TPDS) 30.4, pp. 800–813.

N. Herbst, A. Bauer, S. Kounev, G. Oikonomou, E. V. Eyk, G. Kousiouris, A.
Evangelinou, R. Krebs, T. Brecht, C. L. Abad, andA. Iosup (2018). “Quantifying
Cloud Performance and Dependability: Taxonomy, Metric Design, and Emerg-
ing Challenges”. In: ACM Transactions on Modeling and Performance Evaluation
of Computing Systems (TOMPECS) 3.4, p. 19.

F. Metzger, T. Hoßfeld, A. Bauer, S. Kounev, and P. E. Heegaard (2019). “Mod-
eling of Aggregated IoT Traffic and its Application to an IoT Cloud”. In: Pro-
ceedings of the IEEE 107.4, pp. 679–694.

A. V. Papadopoulos, L. Versluis, A. Bauer, N. Herbst, J. von Kistowski, A. Ali-
Eldin, C. Abad, J. N. Amaral, P. Tuma, and A. Iosup (2019b). “Methodological
Principles for Reproducible Performance Evaluation in Cloud Computing”. In:
IEEE Transactions on Software Engineering (TSE).

E. Van Eyk, J. Grohmann, S. Eismann, A. Bauer, L. Versluis, L. Toader, N.
Schmitt, N. Herbst, C. Abad, and A. Iosup (2019). “The SPEC-RG Reference
Architecture for FaaS: From Microservices and Containers to Serverless Plat-
forms”. In: IEEE Internet Computing 23.6, pp. 7–18.

A. Ilyushkin, A. Ali-Eldin, N. Herbst, A. Bauer, A. V. Papadopoulos, D. Epema,
and A. Iosup (2018). “An Experimental Performance Evaluation of Autoscalers
for Complex Workflows”. In: ACM Transactions on Modeling and Performance
Evaluation of Computing Systems (TOMPECS) 3.2, pp. 1–32.

xxi

Contents

Peer Reviewed Conference Papers

A. Bauer, M. Züfle, N. Herbst, S. Kounev, and V. Curtef (2020b). “Telescope:
An Automatic Feature Extraction and Transformation Approach for Time Series
Forecasting on a Level-Playing Field”. In: Proceedings of the 36th IEEE Interna-
tional Conference on Data Engineering (ICDE). IEEE, pp. 1902–1905.

A. Bauer, M. Züfle, J. Grohmann, N. Schmitt, N. Herbst, and S. Kounev (2020a).
“An Automated Forecasting Framework based on Method Recommendation
for Seasonal Time Series”. In: Proceedings of the 11th ACM/SPEC International
Conference on Performance Engineering (ICPE). ACM, pp. 48–55.

A. Bauer, V. Lesch, L. Versluis, A. Ilyushkin, N. Herbst, and S. Kounev (2019b).
“Chamulteon: Coordinated Auto-Scaling of Micro-Services”. In: Proceedings of
the 39th IEEE International Conference on Distributed Computing Systems (ICDCS).
IEEE, pp. 2015–2025.

A. Bauer, J. Grohmann, N. Herbst, and S. Kounev (2018a). “On the Value of
Service Demand Estimation for Auto-Scaling”. In: Proceedings of the 19th Interna-
tional GI/ITG Conference on Measurement, Modelling and Evaluation of Computing
Systems (MMB). Springer, pp. 142–156.

M. Zuefle, A. Bauer, V. Lesch, C. Krupitzer, N. Herbst, S. Kounev, and V. Curtef
(2019). “Autonomic Forecasting Method Selection: Examination and Ways
Ahead”. In: Proceedings of the 16th IEEE International Conference on Autonomic
Computing (ICAC). IEEE, pp. 167–176.

V. Lesch, A. Bauer, N. Herbst, and S. Kounev (2018). “FOX: Cost-Awareness for
Autonomic Resource Management in Public Clouds”. In: Proceedings of the 9th
ACM/SPEC International Conference on Performance Engineering (ICPE). ACM,
pp. 4–15.

N. Schmitt, L. Iffländer, A. Bauer, and S. Kounev (2019). “Online Power Con-
sumption Estimation for Functions in Cloud Applications”. In: Proceedings of
the 16th IEEE International Conference on Autonomic Computing (ICAC). IEEE,
pp. 63–72.

D. Seybold, S. Volpert, S. Wesner, A. Bauer, N. Herbst, and J. Domaschka (2019).
“Kaa: Evaluating Elasticity of Cloud-Hosted DBMS”. in: Proceedings of the 11th
IEEE International Conference on Cloud Computing (CloudCom). IEEE, pp. 54–61.

xxii

Contents

J. von Kistowski, S. Eismann, N. Schmitt, A. Bauer, J. Grohmann, and S. Kounev
(2018). “TeaStore: A Micro-Service Reference Application for Benchmarking,
Modeling and Resource Management Research”. In: Proceedings of the 26th
IEEE International Symposium on Modeling, Analysis, and Simulation of Computer
and Telecommunication Systems (MASCOTS). IEEE, pp. 223–236.

Peer Reviewed Workshops, Tutorial, and Poster Papers

A. Bauer, M. Züfle, N. Herbst, and S. Kounev (2019c). “Best Practices for Time
Series Forecasting (Tutorial)”. In: Proceedings of the 4th IEEE International Work-
shops on Foundations andApplications of Self* Systems (FAS*W). IEEE, pp. 255–256.

A. Bauer, S. Eismann, J. Grohmann, N. Herbst, and S. Kounev (2019a). “System-
atic Search for Optimal Resource Configurations of Distributed Applications”.
In: Proceedings of the 4th IEEE International Workshops on Foundations and Applica-
tions of Self* Systems (FAS*W), pp. 120–125.

A. Bauer, N. Herbst, and S. Kounev (2017). “Design and Evaluation of a Proac-
tive, Application-Aware Auto-Scaler: Tutorial Paper”. In: Proceedings of the 8th
ACM/SPEC on International Conference on Performance Engineering (ICPE). ACM,
pp. 425–428.

J. Grohmann, S. Eismann, A. Bauer, M. Züfle, N. Herbst, and S. Kounev (2019).
“Utilizing Clustering to Optimize Resource Demand Estimation Approaches”.
In: Proceedings of the 4th IEEE International Workshops on Foundations and Applica-
tions of Self* Systems (FAS*W), pp. 134–139.

S. Eismann, J. v. Kistowski, J. Grohmann, A. Bauer, N. Schmitt, N. Herbst, and S.
Kounev (2018a). “TeaStore: A Micro-Service Reference Application for Cloud
Researchers”. (Poster Paper). In: Proceedings of 2018 IEEE/ACM International
Conference on Utility and Cloud Computing Companion (UCC Companion). IEEE,
pp. 11–12.

Book Chapters

A. Bauer (2019). “Challenges and Approaches: Forecasting for Autonomic
Computing”. In: Organic Computing: Doctoral Dissertation Colloquium 2018. Ed.
by S. Tomforde and B. Sick. Vol. 13. kassel university press GmbH, pp. 3–19.

xxiii

Contents

N. Herbst, A. Bauer, and S. Kounev (2020). “Elasticity of Cloud Platforms”.
In: Systems Benchmarking: For Scientists and Engineers. Ed. by S. Kounev, K.-D.
Lange, and J. von Kistowski. Springer, pp. 319–340.

Peer Reviewed Extended Abstracts

M. Züfle, A. Bauer, N. Herbst, V. Curtef, and S. Kounev (2017). “Telescope: A
Hybrid Forecast Method for Univariate Time Series”. In: Proceedings of the 4th
International Work-Conference on Time Series (ITISE).

A. V. Papadopoulos, L. Versluis, A. Bauer, N. Herbst, J. von Kistowski, A. Ali-
Eldin, C. L. Abad, J. N. Amaral, P. Tuma, and A. Iosup (2020). “Methodological
Principles for Reproducible Performance Evaluation in Cloud Computing”.
In: Software Engineering 2020, Fachtagung des GI-Fachbereichs Softwaretechnik.
Ed. by M. Felderer, W. Hasselbring, R. Rabiser, and R. Jung. Vol. P-300. LNI.
Gesellschaft für Informatik e.V., pp. 93–94.

Technical Reports

A. Ilyushkin, A. Bauer, A. V. Papadopoulos, E. Deelman, and A. Iosup (2019).
Performance-Feedback Autoscaling with Budget Constraints for Cloud-Based Work-
loads of Workflows. Tech. rep. arXiv:1905.10270. arXiv.

A. V. Papadopoulos, L. Versluis, A. Bauer, N. Herbst, J. von Kistowski, A. Ali-
Eldin, C. Abad, J. N. Amaral, P. Tuma, and A. Iosup (2019a). Methodological
Principles for Reproducible Performance Evaluation in Cloud Computing - A SPEC
Research Technical Report. Tech. rep. SPEC-RG-2019-04. SPEC Research Group —
Cloud Working Group, Standard Performance Evaluation Corporation (SPEC).

Peer Reviewed Software Artifacts

J. von Kistowski, S. Eismann, N. Schmitt, A. Bauer, J. Grohmann, L. Bui, and
S. Kounev (2019). TeaStore. Standard Performance Evaluation Corporation
(SPEC) Research Group. Accepted tool. url: https://research.spec.org/
tools/overview/teastore.html.

xxiv

https://research.spec.org/tools/overview/teastore.html
https://research.spec.org/tools/overview/teastore.html

Chapter 1

Introduction

Nowadays, our private and professional lives are interwoven with various IT
services and IoT (Internet of Things) applications, which are typically realized
as distributed computing systems deployed on cloud computing infrastructures.
Due to the high level of digitalization, such systems have to copewith fast living
and changing requirements as well as vast amounts of data they have to process.
The consolidation of 80% of corporate data centers into cloud infrastructures
by 2025 (Rosenbush and Loten, 2017), as predicted by Marc Hurd (former
Co-CEO of Oracle Corporation), will push these systems to their limit. The
high load paired with frequently changing requirements necessitates a constant
adaptation of the underlying computing resources. To face this challenge, smart
mechanisms for autonomic cloud resource management can be leveraged to en-
sure a stable and reliable system operation. Suchmechanisms typically monitor
the system and the underlying infrastructure, triggering adaptations to account
for observed or predicted changes in application workloads. As reacting to
changes once they are observed introduces an inherent delay, resource manage-
ment mechanisms need the ability to “foresee” future workloads and respective
resource demands in order to be able to determine necessary adaptations in
advance. In other words, accurate forecasting methods are needed to enable
proactive resource adaptations.

Besides the domain of cloud resource management, accurate and reliable
forecasting methods can be useful in many other domains. Examples comprise
any capacity planning (e.g., the number of airplane passengers), weather fore-
casts, business planning, and many more. By nature, humans have the ability
called intuition to “foresee” upcoming events. Fascinated by this skill, people
have been trying to “foresee” the future for thousands of years. Historical
divination methods were, for instance, hieromancy (investigation of entrails),
ornithomancy (examining the flight of birds), or pyro-osteomancy (interpret-
ing cracks in bones caused by heat). Over the past decades, both intuition as
well as occult rites have increasingly been replaced by statistical analysis. In
other words, predictions are based on the examination and statistical analysis

1

Chapter 1: Introduction

of past observations. Predictions that explicitly include a time component are
known as forecasts. The goal of time series forecasting is to examine past values
of a given quantity and build a model allowing to predict how these values
will evolve as time progresses. In 1927, the first work on the analysis of time
series1 data (Yule, 1927) was published. Forty-three years later, G. Box and
G. Jenkins laid the foundations of time series forecasting by publishing their
book “Time Series Analysis Forecasting and Control” (Box and Jenkins, 1970).
Today, time series forecasting is an established and essential component in
many disciplines, providing means to “foresee” how a time series will evolve
as time progresses.
The remainder of this chapter is organized as follows: We first identify

and discuss open challenges in Section 1.1. As there are different approaches
to tackle the identified problems, we highlight the shortcomings of existing
work in Section 1.2. Based on the described problems and shortcomings, we
present the goals of this thesis and formulate research questions in Section 1.3.
According to the goals, we describe the contributions of this thesis in Section 1.4.
Finally, the structure of this thesis is outlined in Section 1.5.

1.1 Problem Statement

During the last two decades, the cloud computing paradigm has grown consid-
erably in importance as it addresses the manageability and efficiency of modern
distributed computing systems. More precisely, cloud computing enables fast
on-demand access to data center resources and offers a high degree of scal-
ability. Although there are easy-to-deploy autonomic resource management
mechanisms, such as the threshold-basedmechanism available in AmazonWeb
Services EC22, business-critical applications in cloud environments are typically
deployed with excessive amounts of resources to guarantee reliable service
operation. According to a recent survey (RightScale, 2019), 35% of cloud costs
are wasted due to the lack of trust in such mechanisms. The limited adoption
of autonomic resource management mechanisms, so-called auto-scalers, in
cloud environments can be explained by the fact that such mechanisms are
responsible for managing a dynamic trade-off between customer satisfaction
and minimization of resource consumption, and they are consequently subject
to high operational risk. In other words, inaccurate or delayed adaptations may
result in financial losses. To avoid this, auto-scalers require precise time series
1A time series represents a collection of observations (e.g., resource consumption, inventory),
where each measurement is labeled with a time stamp.

2Amazon auto-scaler: https://aws.amazon.com/autoscaling/

2

https://aws.amazon.com/autoscaling/

1.2 Shortcomings of the State-of-the-Art

forecasting techniques so that they can proactively plan and perform necessary
adaptations on time.
There are various forecasting methods available in the literature, which

can be applied in many different scenarios. Depending on the specific use
case, each method has its advantages and disadvantages, which is consistent
with the “No-Free-Lunch Theorem” (Wolpert and Macready, 1997). Although
this theorem was initially formulated for optimization problems, stating that
there is no algorithm best suited for all scenarios, it can also be applied to
the domain of time series forecasting: There is no general forecasting method
that always performs best for all time series. Consequently, the selection and
configuration of the optimal forecasting method for a given time series is a
crucial challenge and thus remains to be a mandatory expert task to avoid trial-
and-error. However, expert knowledge can be expensive and susceptible to
subjective bias. Moreover, it can require a long time before results are available
and cannot be fully automated. To eliminate the human component, the end-
to-end process of forecasting a time series (i.e., from method selection through
data preprocessing to model building and forecasting of future values) needs to
be fully automated. On top of this, many real-world scenarios where forecasting
is useful (e.g., auto-scaling) have strict requirements for a reliable time-to-result
and forecast accuracy.

1.2 Shortcomings of the State-of-the-Art

As forecasting is a powerful tool in many decision-making fields (Hyndman
and Athanasopoulos, 2017), time series forecasting is an established and active
field of research, and various forecasting methods have been proposed in the
literature. To tackle the challenge stated by the “No-Free-Lunch Theorem” and
thus avoid the drawbacks of individual methods, different hybrid forecasting
methods that take advantage of at least two methods have been proposed.
The M4-Competition3 demonstrates the success of these methods, as 12 of
the 17 most accurate methods were hybrid forecasting methods. However,
existing open-source hybrid methods (Bergmeir et al., 2016; Cerqueira et al.,
2017; Talagala et al., 2018; Taylor and Letham, 2018; Montero-Manso et al.,
2020; Smyl, 2020) are computationally intensive, poorly automated, have an
unpredictable time-to-result, or are tailored for a given data set. For instance,
the winner of the M4-Competition, a hybrid forecasting method developed by
Uber (Smyl, 2020), is tuned for the M4-Competition, exhibits a high variance
3The M4-Competition, which took place in 2018, was the fourth Makridakis forecasting compe-
tition comprising 100,000 time series.

3

Chapter 1: Introduction

in the time-to-result, and supports only time series with specific frequencies.
Due to its unreliable time-to-result, this method is not suitable for time-critical
scenarios (e.g., auto-scaling), where the time-to-result for a forecast is subject
to strict constraints. Based on our survey (Bauer et al., 2020c), we identified
another shortcoming of existing work: Publications on time series forecasting
typically consider only a small set of (mostly related) methods and evaluate
their performance on a small number of time series with only a few error
measures while providing no information on the time-to-result of the studied
methods. In other words, the quality of the evaluations suffers due to the
limitations of the applied methodology, and therefore existing work fails to
provide a reliable approach to guide the choice of an appropriate forecasting
method for a particular use case.

Coming back to the challenges of making autonomic cloud resource manage-
ment mechanisms (i.e., auto-scalers) reliable and trustworthy, independent of
the possible use of forecasting methods in this context, auto-scaling itself has
also been a popular research topic in recent years. A number of auto-scaling
mechanisms have been proposed in the literature that scale resources in a
reactive or proactive manner. Both approaches have specific benefits and draw-
backs. Proactive mechanisms can adapt resource allocations in advance, but
this is typically done based on forecasting the workload intensity, and therefore
the quality of such adaptations depends to a large extent on the accuracy of the
employed forecasting method. In contrast, reactive mechanisms may eliminate
such uncertainties as adaptations, in this case, are based on the actual observed
workload intensity, but adaptations may be triggered too late to avoid perfor-
mance degradation and possible violation of service level objectives (SLOs).
Although a recent survey (Qu et al., 2018) emphasizes the importance of com-
bining reactive and proactive scaling, most existing mechanisms are based
either on a proactive or a reactive approach. Existing hybrid auto-scalers (Ur-
gaonkar et al., 2008; Iqbal et al., 2011; Ali-Eldin et al., 2012; Jiang et al., 2013;
Wu et al., 2016) lack sophisticated solutions to combine both approaches. For
instance, resources are only released proactively, while resource allocation
is entirely done in a reactive manner (inherently delayed) (Ali-Eldin et al.,
2012). Another shortcoming arises when auto-scalers are deployed in public
cloud environments. Existing mechanisms typically do not take the provider’s
pricing scheme into account while scaling resources, which often results in
excessive charged costs. Even though some cost-aware auto-scalers have been
proposed (Fernandez et al., 2014; Wu et al., 2016; Naskos et al., 2017), they
only consider the current resource demands, neglecting their development over
time. For example, resources are often shut down prematurely, even though

4

1.3 Goals and Research Questions of the Thesis

they might be required again soon.

1.3 Goals and Research Questions of the Thesis

To sum up, existing work on time-series forecasting and cloud auto-scaling suf-
fers from twomajor problems. First, no fully automated and generic forecasting
approach exists that can effectively combine existing forecasting methods in a
way to leverage their strengths and avoid their weaknesses, providing accurate
forecasts with a reliable time-to-result. Second, existing cloud auto-scalers are
distrusted to provide reliable and cost-effective autonomic resource manage-
ment for modern cloud environments due to the concern that inaccurate or
delayed adaptations may result in financial losses. To tackle both problems, we
formulate three goals that are addressed within this thesis:

Goal I: Provide a forecasting benchmark to establish a level playing field for
evaluating and comparing the performance of forecasting methods in a
broad setting covering a diverse set of evaluation scenarios.

Goal II: Provide a fully automated and generic hybrid forecasting method that
automatically extracts relevant information from a given time series and
uses it to combine existing methods in a way to provide high forecast
accuracy coupled with a low time-to-result variance.

Goal III: Develop a hybrid auto-scaler enabling the coordinated scaling of appli-
cations comprising multiple services by combining proactive scaling
(based on the developed forecasting method) with reactive scaling as a
fallback mechanism in order to provide maximum reliability of resource
adaptations.

To achieve Goal I, we state the following two research questions:
RQ 1: How to automatically compare and rank different forecasting methods on a

level playing field based on their performance in a diverse set of evaluation
scenarios?

RQ 2: What are suitable and reliable measures for quantifying the quality of
forecasts?

Similar to the first goal, we divide Goal II into three research questions:
RQ 3: How to design an automated and generic hybrid forecasting approach that

combines different forecasting methods to compensate for the disadvantages
of each technique?

5

Chapter 1: Introduction

RQ 4: How to automatically extract and transform features of the considered
time series to increase the forecast accuracy?

RQ 5: What are appropriate strategies to dynamically apply the most accurate
method within the hybrid forecasting approach for a given time series?

Lastly, we formulate four research questions to address Goal III:

RQ 6: What is a meaningful combination of proactive and reactive scaling tech-
niques to minimize the risk of auto-scaling in operation?

RQ 7: How can scaling decisions be adjusted so that the charged costs in a public
cloud environment are minimized?

RQ 8: How to enable coordinated scaling of applications comprising multiple
services?

RQ 9: What are meaningful measures for assessing the quality of coordinated
and cost-aware auto-scaling?

1.4 Contributions of this Thesis

Based on the formulated goals and research questions, this thesis presents three
contributions: (i) The first contribution—a forecasting benchmark—addresses
the problem of limited comparability between existing forecasting methods;
(ii) The second contribution—Telescope—provides an automated hybrid time
series forecasting method addressing the challenge posed by the “No-Free-
Lunch Theorem”; (iii) The third contribution—Chamulteon—provides a novel
hybrid auto-scaler for coordinated scaling of applications comprising multiple
services, leveraging Telescope to forecast the workload intensity as a basis for
proactive resource provisioning. In the following, the three contributions of
the thesis are summarized:

Contribution I – Forecasting Benchmark
To address Goal I, we first surveyed existing work on time series forecast-
ing with the goal to assess how forecasting methods are evaluated in the
literature or as part of forecasting competitions. To face the shortcomings
of existing evaluation approaches, we propose a novel benchmark that
automatically evaluates and ranks forecasting methods based on their per-
formance in a diverse set of evaluation scenarios. The benchmark provides
a level playing field for evaluating the performance of forecasting methods
in a broad setting. It comprises four different use cases, each covering 100

6

1.4 Contributions of this Thesis

heterogeneous time series taken from different domains (addressing RQ 1).
The data set was assembled from publicly available time series and was
designed to exhibit much higher diversity than existing forecasting compe-
titions. Besides proposing a new data set, we introduce two new measures
that describe different aspects of a forecast (addressing RQ 2).

The idea of the forecasting benchmark was described as part of our paper
published in the Proceedings of the IEEE (Bauer et al., 2020c). Moreover,
the benchmark was used to evaluate the novel forecasting method Telescope
that was developed as part of this thesis.
Contribution II – Telescope
To address Goal II, we introduce a novel machine learning-based forecasting
approach that automatically retrieves relevant information froma given time
series and splits it into parts, handling each of them separately (addressing
RQ 3). More precisely, Telescope automatically extracts intrinsic time series
features and then decomposes the time series into components, building a
forecasting model for each of them (addressing RQ 4). Each component
is forecast by applying a different method and then the final forecast is
assembled from the forecast components by employing a regression-based
machine learning algorithm. For non-time-critical scenarios, we addition-
ally provide an internal recommendation system that can be employed to
automatically select the most appropriate machine learning algorithm for
assembling the time series from its components (addressing RQ 5).
In more than 1300 hours of experiments benchmarking 15 competing

methods (including approaches from Uber and Facebook) on 400 time
series, Telescope outperformed all methods, exhibiting the best forecast
accuracy coupled with a low and reliable time-to-result. Compared to
the competing methods that exhibited, on average, a forecast error (more
precisely, the symmetric mean absolute forecast error) of 29%, Telescope
exhibited an error of 20% while being 2556 times faster. In particular, the
methods from Uber and Facebook exhibited an error of 48% and 36%, and
were 7334 and 19 times slower than Telescope, respectively. When addition-
ally applying the recommendation system, Telescope was able to reduce
the forecast error even further down to 19%.
Based on this contribution, publications emerged in the Proceedings of

the 4th International Work-Conference on Time Series (Züfle et al., 2017),
the Proceedings of the 11th ACM/SPEC International Conference on Per-
formance Engineering (Bauer et al., 2020a), the Proceedings of the 36th
International Conference on Data Engineering (Bauer et al., 2020b), and
the Proceedings of the IEEE (Bauer et al., 2020c).

7

Chapter 1: Introduction

Contribution III – Chamulteon
To address Goal III, we present a hybrid auto-scaler4 that combines proactive
and reactive techniques to scale distributed cloud applications comprising
multiple services in a coordinated and cost-effective manner. More pre-
cisely, proactive adaptations are planned based on forecasts of Telescope,
while reactive adaptations are triggered based on actual observations of
the monitored load intensity. To solve occurring conflicts between reac-
tive and proactive adaptations, a complex conflict resolution algorithm
is implemented (addressing RQ 6). Moreover, when deployed in public
cloud environments, Chamulteon reviews adaptations with respect to the
cloud provider’s pricing scheme in order to minimize the charged costs
(addressing RQ 7). When scaling an application comprising more than
one service, Chamulteon considers all services and their associated scaling
decisions in conjunction with an application model to scale the application
in a coordinated manner (addressing RQ 8), avoiding unintended effects
during the scaling, such as oscillations or bottleneck shifting (Urgaonkar
et al., 2005). Furthermore, we propose a set of measures to quantify the
quality and cost-efficiency of an auto-scaler (addressing RQ 9).

In more than 400 hours of experiments evaluating five competing auto-
scaling mechanisms in scenarios covering five different workloads, four
different applications, and three different cloud environments, Chamulteon
exhibited the best auto-scaling performance and reliability while at the
same time reducing the charged costs. The competing methods provided
insufficient resources for (on average) 31% of the experimental time; in
contrast, Chamulteon cut this time to 8% and the SLO violations from 18%
to 6% while using up to 15% less resources and reducing the charged costs
by up to 45%.
The different parts of this contribution resulted in publications in the

Proceedings of the 19th International GI/ITG Conference on Measurement,
Modelling and Evaluation of Computing Systems (Bauer et al., 2018a),
the Proceedings of the 9th ACM/SPEC International Conference on Perfor-
mance Engineering (Lesch et al., 2018), the IEEE Transactions on Parallel
and Distributed Systems (Bauer et al., 2018b), the ACM Transactions on
Modeling and Performance Evaluation of Computing Systems (Herbst et al.,
2018), and the Proceedings of the 39th IEEE International Conference on
Distributed Computing Systems (Bauer et al., 2019b).

4Chamulteon is based on the auto-scaler Chameleon, which is preliminarywork in collaboration
with Nikolas Herbst (Herbst, 2018).

8

1.5 Thesis Outline

The contributions of this thesis can be seen as major milestones in the domain
of time series forecasting and cloud resource management. (i) This thesis is
the first to present a forecasting benchmark that covers a variety of different
domains with a high diversity between the analyzed time series. Based on
the provided data set and the automatic evaluation procedure, the proposed
benchmark contributes to enhance the comparability of forecasting methods.
The benchmarking results for different forecasting methods enable the selection
of the most appropriate forecasting method for a given use case. (ii) Telescope
provides the first generic and fully automated time series forecasting approach
that delivers both accurate and reliable forecasts while making no assumptions
about the analyzed time series. Hence, it eliminates the need for expensive,
time-consuming, and error-prone procedures, such as trial-and-error searches
or consulting an expert. This opens up new possibilities especially in time-
critical scenarios, where Telescope can provide accurate forecasts with a short
and reliable time-to-result.

AlthoughTelescopewas applied for this thesis in the field of cloud computing,
there is absolutely no limitation regarding the applicability of Telescope in other
domains, as demonstrated in the evaluation. Moreover, Telescope, which was
made available on GitHub, is already used in a number of interdisciplinary data
science projects, for instance, predictive maintenance in an Industry 4.0 context,
heart failure prediction in medicine, or as a component of predictive models
of beehive development. (iii) In the context of cloud resource management,
Chamulteon is a major milestone for increasing the trust in cloud auto-scalers.
The complex resolution algorithm enables reliable and accurate scaling behavior
that reduces losses caused by excessive resource allocation or SLO violations.
In other words, Chamulteon provides reliable online adaptations minimizing
charged costs while at the same time maximizing user experience.

1.5 Thesis Outline

The remainder of this thesis is split into four parts comprising 12 chapters.
Part I introduces the foundations for the following parts and reviews the state-
of-the-art in Chapter 2–6. Part II addresses the identified problems and short-
comings of existing work by presenting the three contributions of this thesis in
Chapter 7–9. Part III benchmarks and evaluates the contributions of this thesis
in Chapter 10–11. Finally, Part IV summarizes the thesis and discusses open
challenges in Chapter 12–13.
More precisely, in Chapter 2, we focus on time series analysis. We start

with relevant terms and definitions, then briefly introduce spectral analysis,

9

Chapter 1: Introduction

highlight time series feature engineering, and discuss different time series
characteristics. Chapter 3 is about time series forecasting. Consequently, we
introduce different forecasting methods from different fields and discuss how
to assess the forecasting quality. Chapter 4 deals with the resourcemanagement
of distributed cloud services. To this end, we briefly introduce queuing theory
and discuss how to measure the quality of resource adaptations. Chapter 5
surveys related work on time series forecasting, and Chapter 6 reviews the
state-of-the-art in the field of cloud auto-scaling. In Chapter 7, we describe
our first contribution—a forecasting benchmark. We motivate the need for a
forecasting benchmark, give an overview of the proposed design of a bench-
mark and its use cases, introduce the underlying data set, explain different
evaluation options, propose forecast errormeasures, and compare the proposed
benchmark with other forecasting competitions. In Chapter 8, we present our
second contribution, an automated hybrid forecasting approach called Tele-
scope. We start with an overview of Telescope’s design, introduce the different
phases of its forecasting approach, explain the built-in recommendation system,
discuss assumptions as well as limitations, and differentiate the approach from
related work. Chapter 9 introduces our last contribution called Chamulteon, a
forecasting-based auto-scaling mechanism for distributed cloud applications.
We start with an overview of Chamulteon’s design, explain how scaling de-
cisions are made, discuss how conflicts are resolved, present Chamulteon’s
cost-aware component called Fox, introduce new elasticity measures for as-
sessing the quality of the auto-scaling process, discuss assumptions as well as
limitations, and delimit the approach from related work. In Chapter 10, we eval-
uate Telescope using the proposed forecasting benchmark. We start with the
presentation of the experimental setup, benchmark existing forecasting meth-
ods on different use cases of the forecasting benchmark, investigate the quality
of the built-in recommendation system, and compare Telescope against other
forecasting methods. Chapter 11 investigates the auto-scaling performance
of Chamulteon. In this chapter, we introduce the global experimental setup,
analyze the impact of service demand estimation for auto-scaling, benchmark
Chamulteon against competing auto-scalers for monolithic applications, evalu-
ate the cost-aware component, and benchmark Chamulteon against competing
auto-scalers for applications comprising multiple services. In Chapter 12, we
summarize the thesis, and in Chapter 13, we discuss open challenges and give
an outlook on future work.

10

Part I

Foundations and State-of-the-Art

Chapter 2

Time Series Analysis

“Information is the oil of the 21st century, and analytics is the combustion en-
gine”. This statement from Peter Sondergaard (Gartner Research) reflects the
industry’s enthusiasm for data. Primarily, tech companies such as Amazon or
Google use the collected data to offer personalized services. However, as with
oil that cannot be used in its raw form, data must be “refined” to reveal its value.
In other words, the data have to be split up and analyzed. For this purpose, dif-
ferent techniques exist. This thesis considers time series analysis that comprises
methods to extract meaningful statistics and other data characteristics.

In this chapter, we briefly introduce the basics of time series analysis and dif-
ferent techniques to extract relevant time series-related information. Moreover,
we provide the fundamentals for understanding the Chapters 3, 8, 7 and 10.
Note that this chapter is not a prerequisite for understanding the other chapters
of this thesis. For a detailed introduction to time series analysis, we refer to the
books “Forecasting: Principles and Practice” (Hyndman and Athanasopoulos,
2017) or “Time Series Analysis and its Applications” (Shumway and Stoffer,
2000).

The remainder of this chapter is organized as follows: We first introduce the
terms and definitions related to time series analysis in Section 2.1. Then, we
present the term spectral analysis and its applications in the context of time
series in Section 2.2. Afterwards, we outline feature engineering on time series
to leverage additional information in Section 2.3. Finally, we highlight different
time series characteristics in Section 2.4.

2.1 Terms and De�nitions

A univariate time series is an ordered collection of values of a quantity obtained
over a specific period or since a certain point in time. In general, observations
are recorded in successive and equidistant time steps (e.g., hours). Typically,
internal patterns exist, such as autocorrelation, trend, or seasonal variation (see

13

Chapter 2: Time Series Analysis

Section 2.1.1). Mathematically, if yt ∈ R is the observed value at time t and T a
discrete set of equidistant time points, a univariate time series is defined by

Y := {yt : t ∈ T} . (2.1)

Note that sometimes unevenly distributed time series, where observations are
made at irregular intervals, are also called univariate time series. However,
these are beyond the scope of this thesis (see Chapter 13).
Although the use of univariate time series is common in practice, these

time series are subject to the assumption that the future development of this
time series depends only on the historical development of the data and not
on other effects. In fact, there are time series where the observations also
depend on external factors. For example, a household’s electricity demand
also depends on the weather and if the current day is a working day or not.
Consequently, correlated or dependent observations can be stored together
to form a multivariate time series. That is, there are multiple observed values
for each point in time. Indeed, while using a multivariate time series, more
information can be used for the forecasting task. Still, most state-of-the-art
methods can only handle univariate time series. Not to narrow the spectrum of
methods and to cover classical frameworks, we focus in this thesis on univariate
time series. Note that if we use the term time series in this thesis’s remainder,
we always refer to a univariate time series.

2.1.1 Components of a Time Series

A time series can also be seen as a composition of trend, seasonal, cycle, and
irregular components (Hyndman and Athanasopoulos, 2017). The long-term
development in a time series (i.e., upwards, downwards, or stagnate) is called
trend. Usually, the trend is a monotonic function unless external events trigger
a break and cause a change in the direction. The presence of recurring patterns
within a regular period in the time series is called seasonality. These patterns
are typically caused by climate, customs, or traditional habits such as night
and day phases. The length of a seasonal pattern is called frequency1. Rises
and falls within a time series without a fixed frequency are called cycles2. In
contrast to seasonality, the amplitude and duration of the cycles vary over time.
The remaining part of the time series that is not described by trend, seasonality,
or cycles is called the irregular component. It usually follows a certain statistical
1In the context of time series analysis, the term frequency has a different meaning as, for
example, in physics.

2Sometimes the trend and cycle components are combined, and the resulting trend-cycle
component is referred to as trend for simplicity.

14

2.1 Terms and Definitions

noise distribution and is therefore not predictable by most models. Note that
there are time series where some components are absent.
As an illustration of the different presence of time series components, Fig-

ure 2.1 shows four examples of time series. The time series in the top left corner
shows the half-hourly electricity demand in megawatts in England and Wales
from June 5 to 10, 2000. The electricity demand exhibits a strong seasonality
and no trend or cycles. The time series in the top right corner reflects the annual
numbers of lynx trappings from 1821 to 1934 in Canada. Although the lynx
population seems to be seasonal, this time series is cyclic as the width and
the amplitude of the peaks vary over time. The time series in the bottom left
corner represents the monthly atmospheric concentrations of CO2 in parts per
million from 1959 to 1997. The CO2 concentrations show both a strong trend
and seasonality. The time series in the bottom right illustrates the price changes
of GOOG’s closing stock prices from the NASDAQ exchange from February
26 to December 22, 2013. In contrast to the other time series, this time series is
irregular and exhibits no trend, seasonal, nor cyclic component.
In general, the relationship between the components forming a time series

are either additive or multiplicative. In the case there is a additive relationship,
the time series can be written as

Y (t) := T (t) + S(t) + C(t) + I(t) (2.2)
with T (t) being the trend component, S(t) the seasonal component, C(t) the
cycle component, and I(t) the irregular component. Alternatively, the time
series can be written as

Y (t) := T (t) · S(t) · C(t) · I(t). (2.3)
Simply spoken, the type of relationship between the components can be deter-
mined by the seasonal pattern or the variation around the trend. More precisely,
if the amplitude of the seasonal pattern or the variation evolves with the trend,
the relationship between the components is multiplicative. Otherwise, the
relationship is additive.
Figure 2.2 shows an example for both types. The upper time series shows

the monthly number of passengers of international airlines from 1949 to 1960.
In this example, the components have a multiplicative relationship because
the annual pattern’s amplitude increases with the growing trend. The lower
time series reflects the average monthly milk production per cow from 1962 to
1975. In this example, the annual pattern’s amplitude remains the same despite
the rising trend, indicating an additive relationship between the components.
Note that hybrid forms of the relationship between the components are also
possible.

15

Chapter 2: Time Series Analysis

25000

30000

35000

Jun 06 Jun 07 Jun 08 Jun 09 Jun 10
Day

E
le

ct
ric

ity
 D

em
an

d

Season

320

330

340

350

360

1960 1970 1980 1990
Year

C
o2

Trend + Season

0

2000

4000

6000

1820 1840 1860 1880 1900 1920
Year

Ly
nx

 T
ra

pp
in

gs

Cyclic

−25

0

25

50

Apr Jul Okt Jan
Month

P
ric

e
C

ha
ng

es

Irregular

Figure 2.1: Examples of time series with varying components.

2.1.2 Statistical Analysis of Time Series

An important part of time series analysis is to examine the observed data and
capture the characteristics of the process or the phenomenon generating the
time series. In theory, the observations of a phenomenon over time should
result in a deterministic time series (Makridakis, 1976). That is, there should be
no measurement errors/uncertainties, and the generating process should not
be affected by external disturbances. In practice, however, these assumptions
mostly do not apply. The output of the generating process is mixed with white
noise (errors or randomness with zero mean and the values are not correlated
with each other), leading to a stochastic time series (Makridakis, 1976).

Consequently, a time series can be seen as a part of a random process of the
variables y1, . . . , yn sampled at the equidistant time stamps t1, . . . , tn with n
being a positive integer and can be written as

yt := xt + ut, (2.4)

16

2.1 Terms and Definitions

200

400

600

1952 1956 1960
Year

A
irl

in
e

P
as

se
ng

er
s

Multiplicative Relationship

600

700

800

900

1964 1968 1972 1976
Year

M
ilk

 P
ro

du
ct

io
n

Additive Relationship

Figure 2.2: Examples for multiplicative and additive relationship between time
series components.

where xt is generated by the process representing the time series and ut is a
white noise term (Makridakis, 1976). Further, a time series can be described as
a joint cumulative distribution function

Ft1,...,tn(c1, . . . , cn) := P (yt1 ≤ c1, . . . , ytn ≤ cn), (2.5)

where the values of the time series are jointly less than the constants c1, . . . , cn
with n being a positive integer (Shumway and Stoffer, 2000).

2.1.3 Stationarity

One of the most important characteristics of a time series is the stationarity since
most forecasting methods assume that the time series is either stationary or
can be “stationarized”. Loosely speaking, the statistical properties (such as
mean, variance, and auto-covariance) of a stationary time series do not change

17

Chapter 2: Time Series Analysis

over time. More formally, a stationary time series is shift-invariant in terms of
time or mathematically expressed as

P (yt1 ≤ c1, . . . , yts ≤ cs) = P (yt1+τ ≤ c1, . . . , yts+τ ≤ cs) (2.6)

for all s ∈ N, all time stamps t1, . . . , ts, all constants c1, . . . , cs, and all time-
shifts τ ∈ Z (Shumway and Stoffer, 2000). That is, the probabilistic behavior
of every subset of the time series is identical to its “time-shifted” subset. For
testing whether or not a time series is stationary, a unit root test, for instance,
the Phillips–Perron test (Phillips and Perron, 1988), can be applied.
As an illustration of stationary and non-stationary time series, Figure2.3

shows three examples of time series. In each plot, the horizontal axis shows the
index and the vertical axis the respective observation. The time series in the
top plot shows a white noise time series. This time series is stationary since the
observations are not correlated and there is no time dependence of the statistical
properties. The time series in the second plot is based on the first time series,
but additionally exhibits a trend. As the trend introduces a time-dependent
mean, the time series non-stationary. The time series in the last plot is also
based on the first time series, but the variance was modified. Consequently, the
variance is time-dependent, which also leads to a non-stationary time series.

In practice, time series are usually showing a mix of trend and/or seasonal
patterns and are thus non-stationary (Adhikari and Agrawal, 2013). To this
end, time series are transformed (see Section 2.3.2), seasonally adjusted, made
difference-stationary by possibly repeated differencing (see Section 2.3.3), or
made trend-stationary by removing the trend.

2.1.4 Time Series Forecasting

The goal of time series forecasting is to examine a time series and predict how
this time series will evolve as time progresses. In other words, a mathematical
model - dependent on the forecasting method (see Chapter 3) - is build for the
plausible description of the observed data. Then, the future development of
the time series is estimated based on this model. More formally, we define the
forecast for the time n+ k based on the historical observations y1, . . . , yn as

ŷn+k|n := f(yn, . . . , y1, k) (2.7)

with n and k being positive integers and f being the forecasting method cap-
turing the time series model. While performing the forecast, it can be distin-
guished between one-step-ahead and multi-step-ahead forecasting. As the name
indicates, when performing a one-step-ahead forecast, only the next value

18

2.2 Spectral Analysis

−10

0

10

0 100 200 300
Index

O
bs

er
va

tio
n

Stationary Time Series

0

100

200

300

0 100 200 300
Index

O
bs

er
va

tio
n

Non−Stationary Time Series (Time−Dependent Mean)

−2000

−1000

0

1000

2000

0 100 200 300
Index

O
bs

er
va

tio
n

Non−Stationary Time Series (Time−Dependent Variance)

Figure 2.3: Examples for stationary and non-stationary time series.

ŷn+1|n is forecast, that is, k = 1. In terms of a multi-step-ahead forecast, the val-
ues ŷn+1|n, . . . , ŷn+h|n are forecast, where h is the forecast horizon and represents
the number of values that are forecast based on the historical data. In other
words, the h values are forecast at once without updating the model with new
data.

2.2 Spectral Analysis

In many fields, especially for forecasting, it helps discover the underlying pe-
riodicities in the data, that is, knowing the frequencies or the lengths of the
seasonal patterns. For instance, if the most dominant frequency is unknown for
a given time series, the time series cannot be decomposed (see Section 2.3.1).
In this context, the dominant frequency means the most common period, re-
spectively, the seasonal pattern, such as days in a year. Also, if the dominant
frequency is available, the information on the next dominant frequency (e.g.,

19

Chapter 2: Time Series Analysis

the week within the year) is helpful. A standard method for this data analysis
is the spectral analysis, also referred to as analysis in the frequency domain. The
key idea is to transform the time series from the time domain to the frequency
domain as the spectrum reveals the data’s underlying frequencies.

2.2.1 Fourier Terms

Following the discovery of J. Fourier (Fourier, 1822) and the basic principle
in mathematics to break down complex objects into more simpler parts, a
time series can be approximated by a linear combination of sinusoid terms.
More formally, for a time series y1, . . . , yn with uncorrelated zero-mean random
variables aj and bj , the time series can be expressed as

yt := a0 +

n−1
2∑
j=1

(
aj cos

(
2πt

j

n

)
+ bj sin

(
2πt

j

n

))
(2.8)

if n is odd. Otherwise, we can write the time series as

yt := a0 + an
2
(−1)t +

n
2
−1∑
j=1

(
aj cos

(
2πt

j

n

)
+ bj sin

(
2πt

j

n

))
. (2.9)

The resulting representation is referred to as Fourier series and the sinusoids
terms are called Fourier terms. The Fourier terms allow, on the one hand, to
create an artificial time series based on the relevant terms that resembles the
actual time series. On the other hand, the relevant Fourier terms can be used as
additional information to fit a better model describing the time series. The frac-
tion j

n can be interpreted as j repeating patterns over n points or as frequency
of the cosines/sines function. In this context, the frequencies are referred to as
Fourier frequencies. These frequencies allow to characterize a time series while
looking at the their associated magnitudes. The coefficients aj and bj are called
Fourier coefficients.

2.2.2 Frequency Detection via Periodograms

According to the Fourier analysis, any time series can be decomposed into a
number of discrete frequencies, or a spectrum of frequencies over a continuous
range. The resulting spectral density assigns an intensity to each frequency
within the time series. In other words, if a time series is viewed in the form of a
frequency spectrum, information such as intrinsic periodic signals are revealed.

20

2.3 Time Series Feature Engineering

An estimate of the spectral density is the periodogram (Schuster, 1899). That
is, in a time series that is driven by certain seasonal patterns, the periodogram
shows peaks at precisely those frequencies. Moreover, the periodogram is based
on the discrete Fourier transformation. To this end, the first step is to calculate the
discrete Fourier transformation

X(νj) :=
1√
n

n∑
t=1

e−2πitνjyt

=
1√
n

(
n∑
t=1

cos(2πtνj)yt − i
n∑
t=1

sin(2πtνj)yt

)
(2.10)

of the time series y1, . . . , yn, where νj = j
n are the Fourier frequencies. Then,

the periodogram is calculated as squared modulus of the discrete Fourier
transformation as follows

I(νj) := |X(νj)|2

=
1

n

∣∣∣∣∣
n∑
t=1

e−2πitνjyt

∣∣∣∣∣
2

=
1

n

(n∑
t=1

cos(2πtνj)yt

)2

+

(
n∑
t=1

sin(2πtνj)yt

)2
 . (2.11)

Large values of I(νj) reveal predominant frequencies within the time series,
whereas small values may indicate noise.

Two examples of outcomes of the periodogram are depicted in Figure 2.4. In
both plots, the horizontal axis shows the frequencies and the vertical axis the
spectrum. The top periodogram exhibits the spectral density of the airline time
series (see Section 2.1.1). The most dominant frequency in this example is 12
(the highest spectral value), and the multiples of 12 also show high peaks. At
the bottomof the figure, the periodogramof awhite noise time series is depicted.
In theory, the spectral density should be constant across all frequencies, because
a white noise time series is like white light, which is a uniform mixture of all
frequencies in the visible spectrum. In this figure, the periodogram is less
“noisy”. However, it can be seen that many frequencies have almost the same
spectrum.

2.3 Time Series Feature Engineering

“At the end of the day, some machine learning projects succeed and some fail.
What makes the difference? Easily the most important factor is the features

21

Chapter 2: Time Series Analysis

1

10

100

1000

0 12 24 36 48 60 72
Frequency

S
pe

ct
ru

m

Periodogram of Seasonal Time Series

1e−04

1e−03

1e−02

1e−01

0 100 200 300 400 500
Frequency

S
pe

ct
ru

m

Periodogram of White Noise Time Series

Figure 2.4: Examples of periodograms for a time series with dominant fre-
quency of 12 and a white noise time series.

used” (Domingos, 2012, p. 5). This quote’s essence is that the key to success
in forecasting and classification is solid feature engineering. By feature, we
mean an individual measurable property or characteristic of an observed or
extracted phenomenon. Simply spoken, a feature is a piece of information (e.g.,
the seasonal pattern of a time series) that can help model the time series.

2.3.1 Time Series Decomposition

As a time series consists of different components (see Section 2.1.1), a common
approach is to break down the time series into its components. The parts can
either be used to modify the data (e.g., removing the trend or seasonality) or
be used as intrinsic features for augmenting a model capturing the time series.
The “classical” time series decomposition technique uses moving averages

with the window size (i.e., the number of observations for the average) of the

22

2.3 Time Series Feature Engineering

seasonal pattern’s length to smooth the seasonal influences for calculating the
trend. However, while using this approach, the first and last w/2 observations
for the trendwould be unavailablewhen using amoving averagewith awindow
size ofw. Further, classical decomposition approaches assume that the seasonal
component does not change over time. While this assumption is usually true
for short time series, it is less likely in longer time series. An improvement
of the classical decomposition is the X-11 method (Bell and Hillmer, 1984).
This method considers all observations to estimate the trend and can handle
slow changes in the seasonal pattern. Based on this method, X-12 and X-13
were developed (Dagum and Bianconcini, 2016). However, these methods are
designed to handle only time series with monthly or quarterly observations.

A commonmethod that overcomes the limitations of the methods mentioned
above is STL (Seasonal and Trend decomposition using Loess) (Cleveland et
al., 1990). STL can handle any type of seasonality, allows the seasonal pattern
to change over time, and disassembles the given time series Y (t) into the
components trend T (t), season S(t), and irregular I(t). More formally, the
resulting decomposition of STL is

Y (t) := T (t) + S(t) + I(t). (2.12)
Although STL can only handle additive relationships between the components,
it can also be applied to multiplicative time series by using the natural loga-
rithm3 (i.e., logarithm to basis e). More formally, a multiplicative time series

Y (t) = T (t) · S(t) · I(t) (2.13)
is equivalent to (Hyndman and Athanasopoulos, 2017)

lnY (t) = ln (T (t) · S(t) · I(t))

= lnT (t) + lnS(t) + ln I(t). (2.14)
Figure 2.5 depicts exemplarily the decomposition of the milk time series (see

Section 2.1.1) based on STL. In each plot, the horizontal axis shows the time
in years. The vertical axis in the top plot reflects the milk consumption, and
the vertical axis in each of the remaining plots shows the range in which the
component contributes to the original time series. The second plot exhibits the
trend component that reflects the increased milk production over the years.
The third plot shows the seasonal component with an annual pattern covering
every 12 monthly observations. The plot at the bottom of the figure shows the
irregular part. This part is also called the remainder of the time series after the
trend and season components are removed.
3Note that the logarithm can only be applied if the time series has only values greater than 0.

23

Chapter 2: Time Series Analysis

600

700

800

900

1964 1968 1972 1976
Year

Original Time Series

600

700

800

1964 1968 1972 1976
Year

Trend Component

−50

0

50

100

1964 1968 1972 1976
Year

Season Component

−20
−10

0
10
20

1964 1968 1972 1976
Year

Irregular Component

Figure 2.5: Example of STL decomposition.

After applying STL, we can use the components to de-trend or de-seasonalize
a time series by removing the the associated component. That is, the de-trended
time series can be written as

Y T (t) := S(t) + I(t) (2.15)

or in the case of multiplicative relationship as

lnY T (t) := lnS(t) + ln I(t). (2.16)

Analogously, the de-seasonalized time series can be defined as

Y S(t) := T (t) + I(t) (2.17)

24

2.3 Time Series Feature Engineering

or in the case of multiplicative relationship as

lnY S(t) := lnT (t) + ln I(t). (2.18)

Besides the decomposition methods mentioned above (trend, seasonality,
and irregular), there are different decomposition models and methods (such
as the forecasting method from Facebook (Taylor and Letham, 2018), which
decomposes a time series into trend, seasonality, holiday effects, and irregu-
lar) leading to diverse components (e.g., season, trend, cycle, events, linear
part & non-linear part, . . .) and different types of relationship between the
components.

2.3.2 Time Series Transformation

As observed data may be quite complex, for example, having high variance
and/or multiplicative relationship between the components, an adjustment or
simplification of it can improve the forecasting model (Hyndman and Athana-
sopoulos, 2017). To this end, there are different methods that transform time
series. Daily life examples are currency exchange rates (e.g., Euro into US
dollar). However, this example is a linear transformation and does not affect
the data complexity. More precisely, the type of the distribution is not changed.
In practice, non-linear transformations are used. For instance, a common and
useful transformation is to apply the logarithm as it stabilizes the variance
and eliminates (or reduces) multiplicative effects. Although this method may
improve the forecasting model, the transformed data may not be normally
distributed, so the improvement may not reach its full potential. The Box-Cox
transformation (Box and Cox, 1964) tries to transform the data into “normal
shape”4. To this end, this transformation offers the natural logarithm and power
transformations. The Box-Cox transformation is defined as follows

wt :=

{
ln yt if λ = 0,
(yλt − 1)/λ otherwise, (2.19)

where yt is the original time series and λ the transformation parameter that
determines the function.

Figure 2.6 shows the effect of applying the Box-Cox transformation. The top
left corner plot shows the monthly mean relative sunspot numbers from 1749 to
1983, while the bottom left plot depicts the time series after the Box-Cox trans-
formation. The histogram in the top right corner reflects the distribution of the
4The advantage of a normal distribution is that mean, median and mode are identical. Further-
more, the distribution can be described by using only mean and variance.

25

Chapter 2: Time Series Analysis

sunspot numbers, while the thick black curve represents a normal distribution
based on the statistical characteristics of the data. Analogously, the histogram in
the bottom right corner displays the distribution of the transformed time series.
After the transformation, the time series exhibits almost a normal distribution
compared to the original time series.

0

50

100

150

200

250

1750 1800 1850 1900 1950
Year

S
un

sp
ot

 N
um

be
r

Original Time Series

0

10

20

30

1750 1800 1850 1900 1950
Year

S
un

sp
ot

 N
um

be
r

Transformed Time Series

0

200

400

600

800

0 100 200
Sunspot Number

C
ou

nt

Distribution of Original TS

0

100

200

300

0 10 20 30
Sunspot Number

C
ou

nt

Distribution of Transformed TS

Figure 2.6: Example of Box-Cox transformation.

Note that if a forecast was conducted based on this transformation, the
forecast values have to be re-transformed using the same λ to be in the right
scale. Consequently, the re-transformation of the time series is defined as

yt :=

{
ewt λ = 0,

(λwt + 1)1/λ otherwise. (2.20)

As the transformation and therefore the accuracy of the forecasting model
depends on the the transformation parameter λ, V. M. Guerrero (Guerrero,
1993) proposes a method that estimates the best λ by minimizing the coefficient
of variation for the time series.

26

2.4 Time Series Characteristics

2.3.3 Time Series Di�erencing

Besides stabilizing the variance of a time series by applying, for instance, the
logarithm or Box-Cox transformation, differencing a time series can stabilize
the mean by eliminating (or reducing) seasonal or trend effects. Moreover,
the differentiation of a time series provides useful information, just like the
differential calculus in mathematical analysis. A (first-order) differenced time
series is the change between succeeding observations in the original series and
can mathematically be expressed as

y′t := yt − yt−1 (2.21)

for t > 1. This mathematical expression is also called the first lag of the time
series. Analogous to the mathematical analysis, a time series can be differenced
d times, leading to a d-order differencing. For example, if we want to investigate
how observations change compared to observations from a previous season, the
seasonal lag can be investigated. More precisely, the time series is differenced
m times, wherem is the length of the seasonal pattern.
In general, each lag or d-order differencing can be calculated with the back-

shift operator. To this end, we first define the back-shift operator B as

Byt := yt−1 (2.22)

and

Bdyt := yt−d. (2.23)

Then, the d-order differencing of a time series can be expressed as

ydt : = (1−B)dyt

= yt

d∑
j=0

(
d

j

)
1d−j(−B)j . (2.24)

For example, the second-order differenced time series y2t = yt − 2yt−y + yt−2.

2.4 Time Series Characteristics

Besides statistical characteristics (mean, standard deviation, skewness, etc.)
and the length or frequency of the time series, additional characteristics can
be used to describe a time series. Over the last years, numerous time series
characteristics have been proposed (Wang et al., 2009; Lemke and Gabrys,

27

Chapter 2: Time Series Analysis

2010b; Fulcher et al., 2013; Hyndman et al., 2015; Kang et al., 2017; Talagala
et al., 2018). Consequently, we highlight in the following only the time series
characteristics that are used in this thesis:

• Strength of trend component and strength of season component: The character-
istics measure the degree of the trend or seasonality within a time series.
The strength of the trend component is measured by

1− var(I(t))

var(Y S(t))
(2.25)

and strength of the season component is calculated as

1− var(I(t))

var(Y T (t))
, (2.26)

where Y S(t) is the de-seasonalized time series, Y T (t) the de-trended time
series, and I(t) the irregular component of the time series.

• Stability and lumpiness: For calculating these characteristics, the time
series y1, . . . , yn is broken down into non-overlapping sub-time series

(y1, . . . , yl), (yl+1, . . . , y2l), . . . , (y(dn
l
e−1)∗l+1, . . . , yn) (2.27)

with l being a positive integer. For each of these sub-time series, the
means and variances are calculated. Then, the stability is the variance of
the means of the sub-time series and the lumpiness the variance of the
variances of the sub-time series.

• Spectral entropy: This characteristic reflects the “forecastability” of the time
series. For instance, a white-noise time series, which cannot be forecast,
exhibits the highest value due to its flat spectral density (see Section 2.2.2).
Consequently, the lower the value, the better the “forecastability”. The
spectral entropy is computed as

−
∫ π

−π
f̂(λ) log f̂(λ)dλ, (2.28)

where f̂(λ) is an estimate of the spectral density (Nuttall and Carter,
1982) of the time series.

• Spikiness: For calculating this characteristic, only the irregular component
of the time series is considered. While one value is left out at a time,
the variance of the irregular component’s remaining values is calculated.
Then, the spikiness is the variance of all leave-one-out variances.

28

2.4 Time Series Characteristics

• Self-similarity: This characteristic measures how similar the time series
is to a part of itself and is expressed by the Hurst exponent (Rose, 1996;
Willinger et al., 1998). A good estimation for the Hurst exponent fits
an autoregressive fractionally integrated moving average (ARFIMA)5.
More precisely, the Hurst exponent is computed as 0.5 plus the maximum
likelihood estimate of the fractional differencing order of the ARFIMA
model (Haslett and Raftery, 1989).

• Non-linearity: This characteristic measures the degree of the non-linearity
of the time series. To determine the degree, Teräsvirta’s neural network
test for non-linearity is applied (Teräsvirta et al., 1993).

• Stationarity test statistics: For testing the stationarity or trend-stationarity
of a time series, the Phillips–Perron unit root test (Phillips and Perron,
1988) or Kwiatkowski–Phillips–Schmidt–Shin unit root test (Kwiatkowski
et al., 1992) can be conducted, respectively.

• Auto-correlation coefficients: This characteristic measures the linear rela-
tionship between lagged values of a time series. For a lag k, the kth auto-
correlation coefficent rk reflects the relationship between the observations
yt and yt−k or mathematically expressed as

rk :=

n∑
t=k+1

(yt − ȳ)(yt−k − ȳ)

n∑
t=1

(yt − ȳ)2
, (2.29)

where ȳ is the mean of the time series, n the length of the time series, and
k a positive integer (Hyndman and Athanasopoulos, 2017). For instance,
the first auto-correlation coefficient of the time series, the differenced time
series, or the irregular component provide interesting insights.

• Partial auto-correlation coefficients: Similar to the auto-correlation with the
exception that for rk the effects of the lags 1, . . . , k − 1 are removed.

5ARFIMA replaces the parameter of the integrated part of the ARIMAmodel (see Section 3.1.4)
by a non-integer value.

29

Chapter 3

Time Series Forecasting

Time series forecasting aims to examine past values of a given quantity and build
a model allowing to predict how these values will evolve as time progresses.
In other words, a forecasting method is applied to describe the historical devel-
opment of the data and to predict future values. However, selecting a suitable
forecasting method for a given scenario is challenging as the forecast accuracy
heavily depends on the forecasting method. According to the “No-Free-Lunch
Theorem” (Wolpert andMacready, 1997), there is no single forecastingmethod
that works best for all possible time series. Therefore, there are various fore-
casting methods available in the literature. Depending on the specific use case,
each method has its advantages and disadvantages.

In this chapter, we briefly present different state-of-the-art forecasting meth-
ods and how to assess the quality of the forecasts. The content of the following
sections is the basis for understanding the Chapters 8, 7 and 10. Note that
this chapter is not a prerequisite for understanding the other chapters of this
thesis. More details on the different classical forecasting methods and forecast
error measures can be found in the book “Forecasting: Principles and Prac-
tice” (Hyndman andAthanasopoulos, 2017). For further information regarding
the machine learning methods, we refer to the books “An Introduction to Statis-
tical Learning” (James et al., 2013) and “Applied Predictive Modeling” (Kuhn
and Johnson, 2013)
The remainder of this chapter is organized as follows: We first introduce

classical forecasting methods in Section 3.1. Afterwards, we present forecasting
methods based on machine learning (see Section 3.2). Finally, we outline how
to quantify the forecast accuracy in Section 3.3.

3.1 Classical Forecasting Methods

The forecasting methods described in this section are based on statistical tech-
niques. They require only a time series as input for fitting a model describing
the generating process of the time series.

31

Chapter 3: Time Series Forecasting

3.1.1 Naïve and sNaïve

The Naïve forecast is the simplest way of forecasting future values based on
historical data. This method repeats the latest observation for the entire fore-
casting horizon. Mathematically, the forecast for the time n + k is defined
by

ŷn+k|n := yn, (3.1)

where n is the number of historical observations, yn the latest observation, and
with k being a positive integer. sNaïve is an extension of Naïve that integrates a
seasonal pattern. UnlikeNaïve, the forecast of sNaïve does not correspond to the
last value, instead each forecast value is equal to the corresponding observation
from the last period. For instance, the forecast for January is identical to the
observation made in January last year. More formally, the forecast for the time
n+ k is calculated as

ŷn+k|n := yn+k−m·(r+1), (3.2)

wherem is the length of the seasonal pattern (i.e., the number of observations
within the period), and r the integer part of k−1m (Hyndman and Athanasopou-
los, 2017). Due to their simplicity, these methods are typically used as baseline
methods.

3.1.2 ETS

Many successful forecasting methods are based on the idea of exponential
smoothing, that is, using weighted averages of past observations. The simplest
and original version is called Simple Exponential Smoothing (Brown, 1956) and
its one-step-ahead forecast is defined by

ŷn+1|n = αyn + α(1− α)yn−1 + α(1− α)2yn−2 + · · · , (3.3)

where y1, . . . , yn are the historical observations and 0 ≤ α ≤ 1 denotes the
smoothing factor. Since this method does not take the trend or seasonal com-
ponent into account, different extensions (Holt, 1957; Winters, 1960) have been
proposed over the years. These methods use different ways for combining the
components: either additive, multiplicative, or absent. Due to a large number
of possible configurations of the methods, a framework (Hyndman et al., 2002)
for the automatic selection of the most appropriate method for a given time
series was introduced. This framework takes the trend and seasonal component
into account, introduces a new component called error, and is thus labeled as

32

3.1 Classical Forecasting Methods

ETS for Error, Trend, Season. The options for the components are additive or
multiplicative for the error component; additive or absent for the trend compo-
nent; and absent, additive, or multiplicative for the seasonal component. For
example, the simple exponential smoothing has an additive error component,
while the trend and season component are absent.

3.1.3 Theta

The idea of the Theta method (Assimakopoulos and Nikolopoulos, 2000) is to
modify the local curvature of the time series by applying the θ coefficient to
the second-order differenced time series. More precisely, the so-called θ-line
Z(θ) is determined by solving the equation

(1−B)2Zt(θ) = θ(1−B)2yt, (3.4)

where B is the back-shift operator (see Section 2.3.3), θ ∈ R, and yt the obser-
vation at time t. A small value of θ (i.e., θ < 1), which represents the long term
component, flattens the time series and a high value (i.e., θ > 1), which stands
for the short term component, increases the curvature. In the case θ = 0 or
θ = 1, the time series is transformed into a linear regression line or the θ-line
is equal to the original time series, respectively. The forecasting procedure of
the Theta model as suggested by the authors comprises the following steps: (i)
Testing whether the time series is seasonal and if so, de-seasonalize the time
series by assuming a multiplicative relationship; (ii) decomposing the time
series into the θ-lines Z(0) and Z(2); (iii) extrapolating Z(0) and forecasting
Z(2) with simple exponential smoothing; (iv) combining the forecasts of Z(0)
and Z(2) with equal weights; and finally (v) re-seasonalizing the forecast if
the time series is seasonal. Although the proposed model contains only two
θ-lines, more lines can be added to extract more information from the data.

3.1.4 ARIMA and sARIMA

Besides exponential smoothing, ARIMA (Box and Jenkins, 1970) models are
also often used for forecasting. The acronym ARIMA refers to AutoRegressive
Integrated Moving Average. Simply said, an ARIMA model consists of an
autoregressive AR(p) model and a moving averageMA(q) model. As the term
autoregressive indicates, the observed variable is represented as a linear combi-

33

Chapter 3: Time Series Forecasting

nation of its past values. The AR(p) model, where the order p determines the
number of past values, can be written as

yt = c+ εt +

p∑
i=1

ϕi · yt−i, (3.5)

where yt−p, . . . , yt−1 are the values considered in the past,ϕ1, . . . , ϕp theweights
of the combination, εt white noise (i.e., random vector with zero mean, finite
variance, and statistical independence), c a constant term, and p being a positive
integer. In contrast to the autoregressive model, the moving averageMA(q)
model uses the past forecast errors to represent the observed value as a linear
combination. Here, the order q determines the number of past errors. The
MA(q) can be formulated as

yt = c+ εt +

q∑
j=1

Θj · εt−j , (3.6)

where εt−p, . . . εt are the considered forecast (white noise) errors, Θ1, . . . , Θp
the weights of the combination, c a constant term, and q being a positive integer.
The combination of an AR(p) and MA(q) model is called ARMA model. In
contrast to the ARMA (Wold, 1938) model, an ARIMA model relaxes the
requirement for stationary time series through differencing (see Section 2.3.3)
that is represented by the ‘I’ for integrated. To sum up, an ARIMA model can
be described by the order p of the AR model, the order q of the MA model, the
degree d of the differencing and can be written as

(1−
p∑
i=1

ϕiB
i)(1−B)dyt = c+ (1 +

q∑
j=1

ΘjB
j)εt, (3.7)

where B is the back-shift operator (see Section 2.3.3), c a constant term. In this
equation, the first parentheses reflects theAR(p)model, the second parentheses
the d differences, and the last parentheses theMA(q) model. An version of
ARIMA that is capable of modeling seasonal patterns is sARIMA. That is, each
non-seasonal component of the ARIMA model is extended with its seasonal
counterpart. In addition to the parameters of the ARIMA model, the sARIMA
model is specified by the parameters of the seasonal components (P , Q, and
D) and them number of observations per season.

3.1.5 TBATS

Due to its bad performance in detecting complex seasonal patterns, an exten-
sion (Livera et al., 2011) of ETS was introduced. This extension comprises

34

3.2 Forecasting Methods based on Machine Learning

Fourier Terms (see Section 2.2.1), Box-Cox transformations (see Section 2.3.2),
and ARMA error corrections. More precisely, each seasonal patterns within
a time series is captured by a trigonometric representation based on Fourier
Terms, the Box-Cox transformations are used to handle non-linearity, and the
ARMA error captures the autocorrelation within the residuals. This extension
is called TBATS and the acronym stands for the key features: Trigonometric,
Box-Cox transformed, ARMA errors, Trend and Seasonal components.

3.2 Forecasting Methods based on Machine Learning

The methods described in this section are based on regression techniques.
Besides the time series, the methods require additional information/features
(e.g., time stamps, seasonal patterns, or lags of the time series) to capture the
time series’ generating process.

3.2.1 CART

The CART (Breiman et al., 1984) is a binary tree and its acronym stands for
Classification And Regression Trees. For building the tree, the data set is
divided recursively into two subsets until a predefined termination criterion
(e.g., a minimum count of training samples for each leaf node) is met. This
procedure is also called recursive partitioning. Since a regression tree is created
in the case of the time series forecast, the splitting criterion is to find a feature
and an associated split value that minimizes the overall sums of errors of the
two subsets. In other words, for each value of each feature, the (sub-)data set is
divided, and the split with the least error is performed. After the tree is grown,
the tree may be too large and be prone to overfitting. In such a case, the tree is
pruned back to a “smaller” tree.

3.2.2 Evtree

As recursive partitioning trees optimize only per split, the grown trees are
only locally optimal. To approach this issue and grow a globally optimal tree,
evtree (Grubinger et al., 2011) uses an evolutionary algorithm for finding the
best partitioning for each split while considering all splits. A population of trees
is generated in the first step, with each tree consisting of only a random split
(i.e., the feature and the split value are selected randomly). In each iteration,
each tree is altered with one of the following actions: split, prune, major split
rule mutation, minor split rule mutation, and crossover. Split selects a random
leaf node and performs a further random split to create two new leaf nodes as

35

Chapter 3: Time Series Forecasting

successors. Prune performs exactly the opposite and removes two leaf nodes.
The split rule generation either changes the feature (major) or the split value
(minor) of a split randomly. Crossover swaps two randomly selected sub-trees.
For the survivor selection, each tree competes with its most similar offspring to
have a fixed population size.

3.2.3 Cubist

Cubist is a rule-based regression method that builds upon theM5 model tree
(Quinlan et al., 1992; Quinlan, 1993). In contrast to classical decision trees that
have a single value at each leaf node, Cubist has a multivariate linear regression
model at each leaf node. To build a tree structure, rules are defined to partition
the data set and then arranged hierarchically. In other words, each branch in the
tree is a series of “if-then”-rules, and each rule has an associated multivariate
linear model. More formally, each rule has the form if condition then regress
else apply the next rule, where the condition can comprise only one feature or
a number of features. If a number of features satisfy a rule’s condition, the
associated linear model is used to predict the value. Otherwise, the next rule is
checked and so on.

3.2.4 Random Forest

Random forest (Ho, 1995; Breiman, 2001) is an ensemblemethod for classification
or regression that consists of multiple decision trees. In terms of time series
forecasting, random forest consists of an ensemble of regression trees, and the
prediction is the average of each tree’s output. The advantage of an ensemble
of decision trees is the correction of a single tree’s proneness to overfit to its
training set. However, if the data set has one dominant feature and the other
features are less important, most or all trees within the ensemble use this
dominant feature in their top split. Consequently, all trees are quite similar and
thus highly correlated. To counter this similarity within the ensemble, random
forests de-correlates the trees. More precisely, the method trains - as done by an
ordinary ensemble - a number of decision trees on the bootstrapped1 training
samples, but for each split, in each tree, only a random sample of the features
is considered. In other words, the decision trees within the ensemble focus not
only on dominant features but also on features that would not be selected for
the top split.
1A bootstrapped training sample is a random sample with replacement from the original
set (Efron, 1992).

36

3.2 Forecasting Methods based on Machine Learning

3.2.5 XGBoost

XGBoost (eXtreme Gradient Boosting) (Chen and Guestrin, 2016) is an ensem-
ble of decision trees based on gradient boosting. In contrast to baggingmethods
like random forest, the trees are grown sequentially in the boosting approach.
Each tree is grown on a modified version of the original data set while using
the previously grown trees’ information. More precisely, each tree learns from
its predecessors and updates the residual errors. That is, each subsequent
tree is fit to the current residuals instead of the target. The newly grown tree
is then added to the fitted function to update the residuals. This procedure
is repeated until the accuracy is no longer improved. Each tree is kept to a
minimum to approach the dependence on past trees. Also, the contribution
of each tree to the final model is unequally weighted. To reduce overfitting,
XGBoost penalizes complex models through regularization objects and applies
shrinkage, which reduces each tree’s influence to leave space for future trees,
and feature subsampling.

3.2.6 SVM and SVR

SVMs (Support Vector Machines) (Vapnik, 1995) are typically used for clas-
sification and pattern recognition. For example, in binary classification, the
basic idea of SVM is to find a linear separator that partitions the data into two
classes. More precisely, the separation line is fit so that the margin between
the line and the borderline cases is maximized. In other words, the training
samples are represented by their feature vectors in high-dimensional space; and
the SVM is trained to find a line where all samples from one class are on one
side and all other samples are on the other side. Since it is not always possible
to separate the two classes linearly, the kernel trick (Boser et al., 1992) can be
used to transform the feature vector into a higher-dimensional space where the
data is linearly separable. To apply the principle of SVM to the prediction of
numerical values, SVR (Support Vector Regression) (Drucker et al., 1997) was
proposed. SVR modifies SVM by introducing a threshold that defines a margin
of acceptable errors for numerical predictions.

3.2.7 NNetar

NNetar is a feed-forward neural network and the acronym stands for Neural
NETwork AutoRegression. The model is trained with lagged values (i.e., back-
shifted values) of a time series. The network consists of one hidden layer and
the number of lags l as well as the number of nodes in the hidden layer n are

37

Chapter 3: Time Series Forecasting

automatically selected leading to l–n–1 network (Hyndman et al., 2018). More
formally, the model of the time series can be written as

yt = f(Φl(yt−1)) + εt, (3.8)

where εt is the error at time t, f is the neural network with one hidden layer,
and Φl(yt−1) = (yt−1, . . . , yt−l) is a vector containing l lagged values.

3.3 Assessing Forecasting Quality

In principle, a forecast can either be evaluated a-priori or a-posteriori. In the case
of an a-posteriori evaluation, the forecast’s accuracy can only be quantified once
the future values are available because the data is usually absent at the time of
the forecast. In contrast, in an a-priori evaluation, the forecasting method is
assessed before the actual forecast is carried out. For this reason, an estimator
is required for the forecast accuracy. The straightforward solution is to use the
error of the model fitting as an indicator for the forecast accuracy. However,
this approach is unreliable, for example, due to overfitting. In other words, a
method could perfectly match historical data, but as a result, the method loses
its predictability and is not able to capture future values. To tackle such issues,
V. Vapnik (Vapnik, 1995) introduces a complex theory that allows setting an
upper bound for the forecast error. Expressed in a very simplified manner, this
theory implies that

forecast error < model error + structural risk. (3.9)

In other words, the forecast error is limited by the model error of the fitted
model and the theoretical risk that considers the model complexity due to the
accompanying overfitting threat. In fact, it is difficult to assess the risk because
the methods are quite sophisticated or work like black boxes. Consequently, a
more common practice is to split the time series into a training set and test set as
illustrated in Figure 3.1. The training set (blue dashed curve) is used to estimate
the parameters of a forecasting method to fit the model to the data. Based on
this model, a forecast (red curve) is performed and then compared against
the test set (green dashed curve). Since the test data are not used for model
fitting, this practice should provide a reliable indicator. Typically, the first 80%
of a time series is used as the training set, and the remaining 20% is used for
evaluation, that is, as the test set. Note that we use both forecast accuracy and
forecast error as terms for quantifying forecasts: the lower the error or the
higher the accuracy, the better the forecast. According to R. Hyndman and

38

3.3 Assessing Forecasting Quality

G. Athanasopoulos (Hyndman and Athanasopoulos, 2017), there are three
types of error measures: (i) Scale-dependent error measures, (ii) percentage error
measures, and (iii) scaled error measures.

200

400

600

1952 1956 1960
Year

A
irl

in
e

P
as

se
ng

er
s

Forecast
Test Set
Training Set

Time Series Split

Figure 3.1: Example of a 80%–20% split of a time series.

3.3.1 Scale-dependent Error Measures

The advantage of scale-dependent error measures is that the calculated error
has the same scale as the data. In other words, the interpretation of the results
is intuitive when comparing different methods on time series with the same
scale. However, these measures cannot be used to compare forecastingmethods
across time series that have different scales. Examples are the mean forecast error
(MFE), mean absolute error (MAE), or root mean squared error (RMSE). Formally,
these measure are defined as follows

MFE :=
1

k

k∑
t=1

yt − ŷt, (3.10)

MAE :=
1

k

k∑
t=1

|yt − ŷt|, (3.11)

RMSE :=

√√√√1

k

k∑
t=1

(yt − ŷt)2, (3.12)

where k is the forecast horizon (i.e., the length of the forecast), yt the actual
value at time t, and ŷt the forecast value at time t.

39

Chapter 3: Time Series Forecasting

3.3.2 Percentage Error Measures

On the one hand, percentage error measures are scale-independent and thus
can be used to compare forecasting methods across different time series. On
the other hand, the forecast error is infinite or undefined if the actual value is
zero. Outliers also have a significant influence on the forecast error. Prominent
examples are the mean absolute percentage error (MAPE), symmetric mean absolute
percentage error (sMAPE), and the root mean square percentage error, which are
calculated as follows

MAPE :=
100%

k

k∑
t=1

|yt − ŷt|
|yt|

, (3.13)

sMAPE :=
200%

k

k∑
t=1

|yt − ŷt|
|yt + ŷt|

, (3.14)

RMSPE :=

√√√√1

k

k∑
t=1

(
100% · |yt − ŷt|

|yt|

)2

, (3.15)

where k is the forecast horizon, yt the actual value at time t, and ŷt the forecast
value at time t.

3.3.3 Scaled Error Measures

To approach the problem of dividing by the actual value, as occurs with
percentage-based error measures, the scaled error measures normalize the
forecast error by a baseline. As a result of the normalization, the measure
becomes scale-independent. In other words, these measures can be used to
compare forecasts across time series that have different scales. However, if the
baseline has values that are equal to each other, the forecast error is not defined
as a division by zero has to be performed. Examples are the mean absolute scaled
error (MASE) or root mean square scaled error (RMSSE). Mathematically, both
measures are defined as follows

MASE :=
1
k

∑k
t=1|yt − ŷt|

1
n−m

∑n
i=m+1|hi − hi−m|

, (3.16)

RMSSE :=

√√√√1

k

k∑
t=1

(
|yt − ŷt|

1
n−m

∑n
i=m+1|hi − hi−m|

)2

, (3.17)

40

3.3 Assessing Forecasting Quality

where k is the forecast horizon, yt the actual value at time t, ŷt the forecast value
at time t, m the length of the period (m = 1 for non-seasonal time series), n
the length of the history, and hi the historical values at time i.

3.3.4 Discussion of the Measures

There exist different error measures for evaluating forecasting methods. Each
measure has its use cases, benefits, and drawbacks. For instance, the MFE
shows the error direction while the RMSE does not, or the MAPE and sMAPE
do not penalize extreme values, but are scale-independent. A more detailed
distinction between different error measures and corresponding discussions
can be found in the works of M. Shcherbakov et al. (Shcherbakov et al., 2013),
R. Adhikari and R. Agrawal (Adhikari and Agrawal, 2013), or R. Hyndman and
A. Koehler (Hyndman and Koehler, 2006). In general, it is impossible to prove
the correctness of a measure; instead, it is a joint agreement on how to quantify
the given property. To counter the weaknesses of a specific error measure, it
is advantageous to take more than one of these measures into account when
evaluating forecasts. Since different measures allow different insights and thus,
a better understanding of the forecast can be obtained.

41

Chapter 4

Resource Management of Distributed Cloud

Services

Nowadays, various IT services are typically realized as distributed computing
systems deployed on cloud computing infrastructures. As a result of this pop-
ularity, cloud environments have to cope with load fluctuations and respective
rapid and unexpected changes in the computing resource demands. To guar-
antee a reliably operating service, the computing resource capacity must be
adapted according to the time-varying load.
In this chapter, we briefly present the basics of queueing theory, which is a

useful technique for capacity planning, and discuss how to assess the quality
of resource adaptations in cloud environments. Moreover, we provide the
fundamentals for understanding the Chapter 9 and 11. Note that this chapter
is not a prerequisite for understanding the other chapters of this thesis. An
in-depth treatment of queueing theory can be found in the book “Queueing
Networks and Markov Chains: Modeling and Performance Evaluation with
Computer Science Applications” (Bolch et al., 2006). For further information
on cloud elasticity, we refer to the book ”Systems Benchmarking: For Scientists
and Engineers“ (Kounev et al., 2020).

The remainder of this chapter is organized as follows: We start with queueing
theory. More precisely, we briefly introduce the characteristics of a queue in
Section 4.1.1 and service demand estimation in Section 4.1.2. Then, we outline
how the quality of resource adaptations can be quantified. In this context, we
present cloud elasticity and its measures in Section 4.2.1 and highlight a cloud
elasticity benchmark in Section 4.2.2.

4.1 A Brief Introduction to Basic Queueing Theory

Queueing theory is an essential analytic modeling technique for studying the per-
formance of different systems (e.g., manufacturing lines, telephone networks,
traffic systems, or computing systems). The basic idea is to model the system

43

Chapter 4: Resource Management of Distributed Cloud Services

of interest either as a single queue or as a network of queues. For instance, any
resource assigned to an application can be modeled as a queue. Since each
queue represents a mathematical model, different analyses can be performed.
In the case of the application, the resource demand (Kounev et al., 2020), which is
the minimum amount of resources required to fulfill a predefined SLO (Service
LevelObjective) under a given load, can be estimated. In other words, the num-
ber of resources that are needed to handle the current load adequately can be
determined with queueing theory. Note that there are numerous approaches in
the literature for estimating the required number of resources, but the queuing
theory is often used in conjunction with these approaches.

4.1.1 Characteristics of a Queue

In general, a queue (illustrated in Figure 4.1), which is also referred to as service
station, consists of a waiting line with finite or infinite size and one or more
identical servers. A server can only process one request (customer, transaction,
or any other unit of work) at a time. Consequently, a server is either in a busy
or an idle state. Requests arriving at the queue are processed directly if at least
one server is idle. Otherwise, the requests wait in the waiting line - if possible -
until a server has finished its current job. After a request has been completely
served, it leaves the queue and the next request to be served is selected from
the waiting line according to the scheduling strategy.

Arriving
Requests

Queue

Waiting Line Servers

1

m

... Departing
Requests

Figure 4.1: Queue with m servers.

Whilemodeling a system as a queue or queueing network, its time-dependent
behavior has to be described. Important key figures that describe a queue are
the inter-arrival rate (i.e., the time between consecutive request arrivals) as

44

4.1 A Brief Introduction to Basic Queueing Theory

well as the service time between successive requests. A sequence of random
variables can characterize both key figures. Based on the inter-arrival time, the
arrival rate (i.e., the average number of requests per time unit) can be calculated.
Mathematically, the arrival rate is defined by

λ =
1

E[A]
, (4.1)

where E[A] is the mean inter-arrival time. Analogously, the service rate (i.e.,
the average number of requests that can be processed per time unit) can be
expressed as

µ =
1

E[B]
, (4.2)

where E[B] is the mean service time. Based on the arrival rate and the service
rate, different performance measures can be calculated1. These measures com-
prise the probability of the number of jobs in the system, system utilization,
throughput, response time, waiting time, and the length of the waiting line.
For instance, the system utilization can be computed as

ρ =
λ

µ
. (4.3)

Formally, a queue can be characterised by Kendall’s notation (Kendall, 1953).
This standard notation originally comprised three descriptive factors and was
then extended by three additional factors. Consequently, a queue can be de-
scribed by the six-tuple A/S/m/K/N/D: A represents the arrival process (i.e.,
the distribution of the inter-arrival time), S encodes the service process (i.e., the
distribution of the service times),m is the number of servers, K is the size of the
waiting line, N is the population size, and D reflects the scheduling discipline.
The distributions A and S use codes for describing the distribution. Common
used codes are M (exponential/Markovian distribution), D (deterministic dis-
tribution), or GI (general independent distribution). K, N, D are optional and
if missing, their default values are used. For K as well as for N the default size
is infinite and for D the default scheduling discipline is first-come-first-served.

4.1.2 Service Demand Estimation

For some systems, it is sufficient to be modeled as a single queue. However,
there are systems with a large number of resources where a network of queues
1The system has to be in a steady state before performance measures can be assessed.

45

Chapter 4: Resource Management of Distributed Cloud Services

is better suited to represent the structure. For instance, a computer may be
modeled with a network consisting of three queues: A multi-server queue
reflecting the multi-core CPU, a queue representing the disk drive, and another
queue modeling the network. More formally, a queueing network consists of
at least two queues connected with each other. Each queue in the network
represents a resource of the system. The incoming requests are grouped into
workload classes. In each class, the requests have both similar arrival behavior
and processing requirements. The requests can be transferred between any
two queues of the network. Moreover, a request can be fed back directly to
the queue it currently left. Therefore, the total time a request spends across all
visits in a queue is a key parameter for performance modeling. This total time
is called service demand and is the average time a unit of work spends obtaining
service from a resource in a system, over all visits at the resource, excluding any
waiting times (Lazowska et al., 1984; Menascé et al., 2004). In general, service
demands are considered on a per workload class basis. Mathematically, the
service demand of a request at queue i can be calculated based on the service
demand law as

Di = vi · E[Bi], (4.4)

where vi is the average number of visits per request to queue i and E[Bi] the
mean service time at queue i.
In most realistic computing systems, the direct measurement of service de-

mands is not feasible during operation (Spinner et al., 2015) due to instru-
mentation overheads and possible measurement interference. Nevertheless, it
is possible by using statistical estimation approaches to achieve an accuracy
comparable to a direct measurement (Willnecker et al., 2015). The advantage of
statistical estimation approaches compared to direct measurement techniques
is their general applicability and low overheads. Estimation approaches typi-
cally rely only on coarse-grained measurements from the system (e.g., CPU
utilization and end-to-end average response times) that can be obtained easily
with monitoring tools without the need for fine-grained code instrumentation.
Several approaches to service demand estimation have been proposed based on
different statistical estimation techniques and combined with laws from queue-
ing theory. We refer to Spinner et al. (Spinner et al., 2015) for an overview as
well as a classification and experimental evaluation of the different approaches
for service demand estimation.

46

4.2 Assessing the Quality of the Resource Adaptation

4.2 Assessing the Quality of the Resource Adaptation

Nowadays, cloud services have to cope with the fast-paced changes and re-
quirements of their users. Consequently, resource management systems (e.g.,
auto-scalers) have to adjust the number of provided resources as close as possi-
ble to the changing load of the service: On the one hand, the customers pay
for the resources; on the other hand, if an application runs on fewer resources
than needed, the performance sharply drops below usability thresholds.
The ability of a system to adjust its resources to time-varying load is called

scalability. In general, scaling is done either vertically or horizontally. Verti-
cal scaling, also called scale up/down, is a method that allows the system to
add or remove “computing hardware” (e.g., CPUs or memory) to a single
resource. Horizontal scaling, also called scale out/in, means to add more or
remove unnecessary resources.
However, the scalability does not consider aspects such as how fast or how

often the system is adjusted. To this end, there exist many approaches in the
literature on how to measure the adaptation quality of a system. In this thesis,
we focus on the elasticity of a cloud system. We choose this measure as, on
the one hand, it can be precisely described with mathematical formulas and,
on the other hand, it is commonly considered as a central characteristic of the
cloud paradigm (Plummer et al., 2009). Note that the scalability of a system is
a prerequisite of elasticity.

4.2.1 De�nition and Measures of Cloud Elasticity

The term elasticity can be found in various academic fields, such as physics
or economics, and has a different meaning in each context. Even in cloud
computing, there are different definitions, such as fromNIST (Mell and Grance,
2011) or IBM (Schouten, 2012). In this thesis, we use the following definition:
Elasticity (in cloud computing) “is the degree to which a system is able to
adapt to workload changes by provisioning and de-provisioning resources in
an autonomic manner, such that at each point in time the available resources
match the current demand as closely as possible“ (Herbst et al., 2013, p. 2).
The core idea of quantifying the elastic resource management of an auto-

scaler is to compare the resource supply and resource demand curves, as illustrated
in Figure 4.2. The resource supply curve st (orange line) represents the moni-
tored number of running resources at time t. The resource demand curve dt
(red line) shows the minimum amount of resources required to meet a prede-
fined SLO under the workload (black dashed line) at time t. As an optimal
auto-scaler knows when and the resource curve changes, both curves would be

47

Chapter 4: Resource Management of Distributed Cloud Services
R

es
o

u
rc

e
s

Time

U

Resource demand
Resource supply
Workload

O

O

U

Figure 4.2: Example of supply and demand curves illustrating the idea of
elasticity.

identical. In contrast, when using a standard auto-scaler, there are areas where
(i) the demand curve is above the supply curve and (ii) the supply curve is
above the demand curve. The system is in the first case in an underprovisioned
(U) state and in the second case in an overprovisioned (O) state. Based on
the wrong-provisioned areas, we can quantify the accuracy and timing of the
auto-scaler.

The timing aspect captures the time shares (width of the U/O areas) in which
the system is in an underprovisioned, overprovisioned, or optimal state. In
contrast, the accuracy aspect reflects the average deviation (U/O areas) of the
amount of supplied resources in relation to the resource demand. To measure
these both aspects, we use the provisioning accuracy (see Section 4.2.1.1) and
the wrong provisioning time share (see Section 4.2.1.2) that are also endorsed
by the Research Group of the Standard Performance Evaluation Corporation
(SPEC) (Herbst et al., 2016). Each of these measures quantifies how the re-
source supply differs from the resource demand. Consequently, the optimal
value is zero, and the higher the value, the worse is the covered elasticity aspect.

4.2.1.1 Provisioning Accuracy

The provisioning accuracy measure θU and θO capture the relative amount of
supplied resources that deviate from the demanded resources during the mea-

48

4.2 Assessing the Quality of the Resource Adaptation

surement interval. Figure 4.2 illustrates the core idea behind the two measures:
θU or θO is based on the sum of the areas U (i.e., the resource demand exceeds
the resource supply) or areas O (i.e., the resource demand curve is below the
resource supply curve), respectively. More precisely, the underprovisioning
accuracy θU is the amount of missing resources necessary to fulfill the SLOs in
relation to the current demand, normalized by the length of the experiment.
Analogously, the overprovisioning accuracy θO is the amount of resources allo-
cated in excess in relation to the current demand, normalized by the length of
the experiment. More formally, the two measures θU and θO can be defined as

θU [%] :=
100

T
·
∫ T

t=0

max(dt − st, 0)

max(dt, ε)
dt, (4.5)

θO[%] :=
100

T
·
∫ T

t=0

max(st − dt, 0)

max(dt, ε)
dt, (4.6)

where st and dt are the resource supply and resource demand at time t, re-
spectively, T the experiment duration, and ε > 0 for avoiding the division by
zero if the demand at time t is zero. In this thesis, we set ε = 1. The values
of both measures lie in the interval [0;∞) with 0 indicating that there is no
underprovisioning or overprovisioning during the length of the experiment,
respectively.

4.2.1.2 Wrong Provisioning Time Share

The wrong provisioning time share measure τU and τO capture the time in which
the system is in an underprovisioned or overprovisioned state. As illustrated
in Figure 4.2, the core idea of τU or τO is to sum up the widths of the areas U
or areas O, respectively. More precisely, the underprovisioning time share τU is
the time in which resources are missing to meet the SLOs, normalized by the
length of the experiment. Analogously, the overprovisioning time share τO is the
time in which more resources than necessary are provisioned, normalized by
the length of the experiment. More formally, the two measures τU and τO can
be defined as

τU [%] :=
100

T
·
∫ T

t=0
max(sgn(dt − st), 0)dt, (4.7)

τO[%] :=
100

T
·
∫ T

t=0
max(sgn(st − dt), 0)dt. (4.8)

where st and dt are the resource supply and resource demand at time t, re-
spectively, and T the experiment duration. The values of both measures lie

49

Chapter 4: Resource Management of Distributed Cloud Services

in the interval [0; 1] with 0 indicating that there is no underprovisioning or
overprovisioning during length of the experiment, respectively.

4.2.2 Elasticity Benchmarking Framework

Comparing the elasticity of different cloud platforms is challenging as the
underlying hardware and other influencing factors (e.g., the configuration
of the management software) vary across the different platforms. All these
(partly unknown) factors have to be considered when measuring the elasticity
of a system. To this end, the elasticity benchmarking framework (Herbst et al.,
2015), called BUNGEE2, is applied in this thesis. The benefit of using BUNGEE
in Chapter 11 is that the framework implements generic and cloud-specific
benchmark requirements (Huppler, 2009, 2011; Folkerts et al., 2012) and takes
the (partly unknown) factors into account.

System
Under
Test

Cloud System

Elasticity Mechanism

manage
observe

BUNGEE
Experiment Controller

sends
requests

monitors resource
supply

1. System Analysis

2. Benchmark Calibration

3. Measurement

Load
Generator

Workload
Profile

4. Elasticity
Evaluation

Figure 4.3: Overview of the BUNGEEworkflowand experimental environment.

The BUNGEE cloud elasticity benchmark consists of four phases: (i) Sys-
tem Analysis, (ii) Benchmark Calibration, (iii) Measurement, and (iv) Elasticity
Evaluation. Figure 4.3 illustrates the workflow and the experimental environ-
ment of BUNGEE. The experiment environment comprises the system under
test (SUT) and the BUNGEE Experiment Controller. The SUT contains the cloud
platform and an adaptation mechanism (e.g., an auto-scaler) that observes the
application under stress and elastically manages the number of resources. The
2BUNGEE Cloud Elasticity Benchmark: http://descartes.tools/bungee

50

http://descartes.tools/bungee

4.2 Assessing the Quality of the Resource Adaptation

controller automatically executes the four phases and includes a load generator
and a predefined workload profile.

0

30

60

90

0 10 20 30 40
Time [min]

A
rr

iv
al

 R
at

e
[1

/s
]

Workload Profile

0

2

4

6

0 10 20 30 40
Time [min]

R
es

ou
rc

es

Resource Demand

0

2

4

6

0 25 50 75 100 125
Arrival Rate [1/s]

R
es

ou
rc

es

Resource Mapping (Sys. A)

0

2

4

6

0 50 100
Arrival Rate [1/s]

R
es

ou
rc

es

Resource Mapping (Sys. B)

0

50

100

0 10 20 30 40
Time [min]

A
rr

iv
al

 R
at

e
[1

/s
]

Adjusted Workload (Sys. A)

0

50

100

0 10 20 30 40
Time [min]

A
rr

iv
al

 R
at

e
[1

/s
]

Adjusted Workload (Sys. B)

Figure 4.4: Example of workload profile calibration of BUNGEE.

Since the resource demand (i.e., the minimum resources necessary to han-
dle the load without violating the SLOs) of a cloud platform depends on
many factors, including the underlying hardware, BUNGEE stresses the cloud
platforms, which have to be compared, with different workloads, so that the
same variations in resource demand are induced on each platform. Conse-
quently, the first phase analyzes the performance of the used resources and the
adaptation/scaling behavior. More specifically, a discrete mapping function is
generated that assigns to each load level the minimum amount of resources
required to meet the SLOs. For this purpose, a binary search is carried out for
all resource amounts, starting with one resource and increasing the number
of resources until the maximum load no longer increases or the maximum
number of resources is reached. Each binary search is performed by evaluating

51

Chapter 4: Resource Management of Distributed Cloud Services

whether the SLOs for a starting load level are violated and, depending on this,
the load level is iteratively doubled or halved.
In the second phase, Benchmarking Calibration, the mapping from the first

phase is used to adjust the workload profile on each cloud platform to induce
an identical resource demand curve. Figure 4.4 illustrates an example of the
calibration of two systems. In the first step, a reference system is selected
as a baseline for the comparisons (System A). Starting from this system, the
targeted resource demand curve (top right) is derived while taking the scaling
behavior of this system into account. Then, the workload profile (top left),
which is described by a Descartes Load Intensity Model (DLIM) (Kistowski
et al., 2014), is tailored to each cloud platform based on its specific mapping
function (second row of the figure) and the demand curve of the baseline
system. The resulting calibration of the workload profile (last row of the figure)
allows a direct comparison of the elasticity of different cloud platforms.

In the third phase, BUNGEE stresses the cloud platform with a time-varying
load according to the tailored workload profile. During the measurement,
the amount of supplied resources and the system’s performance expressed in
SLOs are monitored. Based on the resulting resource supply curve and the
resource demand curve obtained in the calibration phase, the elasticity of a
cloud platform is quantified in the final phase based on the elasticity measures.

52

Chapter 5

On the State-of-the-Art in Time Series

Forecasting

In 1997, the “No-Free-Lunch Theorem” (Wolpert and Macready, 1997) was
postulated. It states that there is not a single optimization algorithm that
performs best for all scenarios since improving the performance of one aspect
leads typically to a degradation in performance for another aspect. In fact, the
theorem also holds for time series forecasting due to the diversity of time series.
Considering the inherent drawbacks and limitations of forecasting methods,
it can be concluded that there is no single forecasting method that performs
best for all kinds of time series. To face the challenge posed by the “No-Free-
Lunch Theorem”, many hybrid forecasting methods have been proposed in
the literature. The underlying idea of such hybrid approaches is to use at least
two forecasting techniques to compensate for the limitations of the individual
forecasting approaches. The success of this concept can be demonstrated, for
example, by investigating the recentM4-Competition (Makridakis et al., 2018b):
12 of the 17 most accurate methods were hybrid forecasting methods.

The proposed hybrid methods can be categorized into three groups, each
sharing the same basic concept: (i) ensemble forecasting, (ii) forecasting method rec-
ommendation, and (iii) time series decomposition. Consequently, Sections 5.1–5.3
present top cited and recent hybrid approaches. Then, forecasting competi-
tions, in which time series forecasting methods are compared, are introduced
in Section 5.4. The delimitation of this thesis from the following approaches is
discussed in Section 8.10.

5.1 Ensemble Forecasting

The core idea of the first and historically oldest group called ensemble forecast-
ing is to compute the forecast as a weighted sum of the values derived from
applying multiple forecasting methods. The impetus for this idea was provided
by an article (Bates and Granger, 1969) published by J. Bates and C. Granger

53

Chapter 5: On the State-of-the-Art in Time Series Forecasting

in 1969. In this work, the authors use a linear combination of two forecasting
methods for assembling the final forecast. More precisely, they introduced five
different approaches for determining the weight of the ensemble forecast by
taking the training error of each method into account. Four approaches rely
solely on the error, and one approach also takes the covariance of the training
errors of both methods into account. In the evaluation, forecast ensembles
consisting of each two forecasting methods (exponentially smoothed forecast
and four methods taking serial correlation into account) were compared on
two time series against the individual methods.

R. Adhikari et al. also introduced a weighted ensemble (Adhikari et al., 2015)
of eight forecasting methods. The underlying idea is to consider the training
mean squared error of each method to rank the methods accordingly. More
precisely, each method receives a score that is the inverse of its error. Then,
the best n methods are selected. The resulting forecast is then the weighted
average of the remaining methods where the weights are the normalized scores.
The ensemble set contains random walk, SVR, ARIMA, feed-forward neural
network, Elman neural network, and generalized regression neural network.
To evaluate their approach, the ensemble competed on four time series against
each of the used methods and eight state-of-the-art ensemble techniques.
M. Sommer et al. introduced another approach. In their work (Sommer

et al., 2016), the authors adapted the extended classifier system for function ap-
proximation to enable ensemble forecasting. That is, the approach dynamically
learns the optimal weights for each forecasting method based on a combination
of gradient-based local learning and a steady-state niche genetic algorithm.
To enable good forecasts at the beginning, the forecast is the average of the
deployed forecasting methods. At runtime, a recursive least squares absolute
algorithm updates the weights according to the previous forecasts’ absolute
error. The used methods consist of ARIMA, Cubic spline’s smoothing, moving
average, ETS, and random walk with drift. This approach was compared on
ten times series against each of the deployed methods and three state-of-the-art
ensemble methods in the evaluation.
In their work (Cerqueira et al., 2017), V. Cerqueira et al. proposed an arbi-

trated dynamic ensemble approach. That is, the forecast consists of a weighted
average of forecasting methods where a meta-learner determines the weights.
More precisely, a random forest predicts each method’s forecast error based
on the training set, chooses the best 50% percent, and uses a softmax function
to calculate the weights regarding the predicted error. The set of forecasting
methods comprises SVRs, feed-forward neural networks, Gaussian processes,
generalized linear models, random forests, generalized boosted regression,

54

5.1 Ensemble Forecasting

MARS, rule-based regression, and projection pursuit regression, adding up to
40 models. In the evaluation, the authors compared their approach with eight
state-of-the-art ensemble methods on 14 time series.

Z. Wang et al. (Wang et al., 2018) introduced three ensemble methods and
four weighting approaches. Each ensemble consists of 30 feed-forward neural
networks and handles the time series differently. In the first ensemble, each
neural network gets a random subset of days as training. In contrast, each day is
used in the second ensemble, whereas each neural network gets only a random
subset of the day. The last ensemble combines the approaches of both ensembles.
The weight is recalculated for each day based on a linear transformation or a
soft-max transformation. Moreover, either all or only the n best neural networks
are considered. In the evaluation, the different ensembles were evaluated on a
single time series and were compared to a feed-forward neural network, SVR,
k-nearest-neighbor, bagging forest, boosting forest, random forest, and one
naïve approach.

D. Boulegane et al. (Boulegane et al., 2019) extended the approach proposed
by V. Cerqueira et al. (Cerqueira et al., 2017). The major changes are two
dynamic selection methods and a diversity criteria. The first selection approach
considers only methods with a lower predicted error than a threshold that
adapts according to the forecast error. The second selection approach uses
Bernoulli trial that takes the predicted error and the meta-learner’s confidence
for each method into account. After the selection of the methods, the pairwise
diversities between the methods are determined. If the diversity exceeds a
threshold, the method with a higher inter-dependence is removed. The set
of methods comprises a normal Hoeffding tree, an adaptive Hoeffding tree, a
k-nearest-neighbor, and a weighted k-nearest-neighbor. In the evaluation, the
approach competed on 55 time series against the original approach (Cerqueira
et al., 2017) and two state-of-the-art ensemble methods.

Building upon the FFORMS approach (see Section 5.2), P. Montero-Manso
et al. use time series characteristics to determine the weights for an ensemble
forecast (Montero-Manso et al., 2020). More precisely, for each time series from
a training set, the characteristics are calculated and each method forecasts this
time series. Then XGBoost is used to learn the weights of the ensemble fore-
cast based on time series characteristics and the forecast error of each method.
The approach considers 42 characteristics and the following forecasting meth-
ods: Naïve, random walk, sNaïve, ARIMA, ETS, TBATS, AR on seasonally
adjusted data, and NNetar. The approach took place in the M4-Competition
and achieved the second-best point forecast accuracy.

55

Chapter 5: On the State-of-the-Art in Time Series Forecasting

5.2 Forecasting Method Recommendation

The second group forecasting method recommendation builds a rule set for
estimating the assumed best forecasting method based on analyzing specific
characteristics of the considered time series characteristics. F. Collopy and
J. Armstrong introduced the first rule set for weighting forecasting methods
based on the characteristics of the given time series in 1992. In their work (Col-
lopy and Armstrong, 1992), the authors manually created an expert system
after having interviewed five experts in the field of forecasting from industry
and academia. Based on their opinions and knowledge, 99 rules were retrieved
based on 18 time series features. The available methods comprise random
walk, regression, Brown’s linear exponential smoothing, and Holt’s exponen-
tial smoothing. To evaluate the rule set, the expert system competed on 36
time series with random walk, two methods randomly choosing a forecasting
method, and an equally weighted forecasting ensemble. In 2001, M. Adya
et al. (Adya et al., 2001) revised this expert system to reduce human interven-
tion, but were not able to completely abandon the experts.
A few years later, X. Wang et al. introduced two approaches to select the

best forecasting method based on time series characteristics (Wang et al., 2009).
The first approach uses hierarchical clustering and self-organizing maps to
group similar time series. The second approach uses a decision tree, namely
C4.5, to automatically derive rules. More precisely, for each time series, 13 time
series characteristics normalized between 0 and 1 are calculated and forecasts
of each method are performed. The set of methods consists of ARIMA, ETS,
feed-forward neural network, and random walk. After the forecast of each
time series, the forecast accuracy of each method is labeled. The best method is
labeled as 1 and the other methods as 0. This classification of the methods and
characteristics for each of the 315 time series are used to train the C4.5. Based on
this model, static rules were reported. However, the rules must be interpreted
with caution as there is no validation of these rules. In our work (Zuefle et al.,
2019), we showed that this recommendation is worse than randomly guessing
a method.

C. Lemke and B. Gabrys introduced another approach. In their work (Lemke
and Gabrys, 2010b), the authors proposed a recommendation technique for
ensemble forecasting. More precisely, the recommendation is based on zoomed
ranking. The underlying idea is first to calculate the time series characteris-
tics of the training set and determine the methods’ performance in question.
Then, the distance of the training set and a new time series is computed based
on the characteristics. Afterward, the time series are clustered with k-means,
and only the time series within the same cluster as the new time series are

56

5.2 Forecasting Method Recommendation

considered for the recommendation. On this subset, a ranking of the meth-
ods is performed and a convex linear ensemble of the best three methods is
then conducted. The authors consider 20 time series characteristics and the
following methods: moving average, exponential smoothing, Taylor’s expo-
nential smoothing, polynomial regression, Theta, two different ARMA models,
random walk, feed-forward neural network, recurrent neural network, and
eight ensemble methods. In the evaluation, the recommendation system was
compared on 66 time series (NN GC1 competition) against all used methods
and ensembles.
A. Widodo and I. Budi (Widodo and Budi, 2013) extended the work of

X. Wang et al. (Wang et al., 2009). Their approach uses the same time series
characteristics and the four used methods plus three new methods (multiple
kernel learning, S-curve, and interpolation based on decomposition). Moreover,
a k-nearest-neighbor algorithm is trained on time series characteristics to classify
the best method for each time series. To avoid using characteristics that may
not be useful for the classification, a principal component analysis is performed.
To evaluate the approach, the recommendation system was tested on 111 time
series from the M1-Competition and compared to each of its used methods.

In contrast to the approaches introduced in this section, M. Kück et al.(Kück
et al., 2016) considered for selecting the best forecasting method for a given
time series, a set of error measures in addition to time series characteristics.
The set of error measures consists of training and forecast errors in the training
set as well as the ranking of the methods leading to 40 error-based information.
For the classification, a feed-forward neural network is used to select one of
four different exponential smoothing models. In the evaluation, the authors
compared their approach on 111 time series (NN3 competition) with different
sets of time series characteristics (e.g., the one from X. Wang et al. (Wang et al.,
2009)) and their error-based measures against each considered method, two
naïve selection methods, and random walk.
In a techpaper (Talagala et al., 2018), T. Talagala et al. introduced the

FFORMS (feature-based forecast-model selection) approach. This approach
maps the best forecasting method to a given time series based on its character-
istics. To this end, a random forest is applied as a classifier on 25 to 30 time
series characteristics (depending on if the time series is seasonal). To increase
the training set and, consequently, the training performance, new time series
are simulated by fitting ETS and ARIMA models to the original training set.
The methods available for the selection are white noise, five different ARIMA
models, random walk, Theta, six different ETS models, AR on seasonally ad-
justed data, and sNaïve. While using the M1- and M3-Competition, FFORMS

57

Chapter 5: On the State-of-the-Art in Time Series Forecasting

competed against each of the used methods on 4004 time series.
D. Zhang et al. proposed a recommendation system based on time series

characteristics and the forecast horizon (Zhang et al., 2020). More precisely, a
random forest is used as a classifier to map the best forecasting method to the
forecast horizon and the characteristics. To improve the classification accuracy,
the minimum redundancy and maximum relevance method combined with a
back-search algorithm is applied to omit redundant time series characteristics.
The methods in question are a feed-forward neural network, SVR, and extreme
learning machine. Moreover, there are 29 time series characteristics and four
supported forecast horizons. To evaluate their approach, the authors compared
the recommendation system on 522 time series against versions of itself (SVM
instead of random forest, using all characteristics, omitting the horizon infor-
mation), each used forecasting method, and the average of these forecasting
methods.

5.3 Time Series Decomposition

The last group time series decomposition either decomposes a time series
into components and forecasting methods are applied to each component
separately or a time series is forecast with an individual method, and afterward,
a second individual method is applied on the residuals. The authors G. Zhang
et al. (Zhang, 2003) introduced a hybrid forecasting method based on ARIMA
and a feed-forward neural network. The core idea is that a time series can be
decomposed into a linear and non-linear part. To this end, the approach first
uses an ARIMA model to capture the linear part of the time series. Then, the
resulting residuals of the fitting are used to train a neural network to handle the
non-linear part of the time series. In the evaluation, the authors compare their
method against the individual methods on three time series. Following this
idea, P. Pain and C. Lin (Pai and Lin, 2005) use the same approach except that
they use SVM to capture the non-linear part. In their evaluation, the authors
compared their approach against the individual methods on ten time series.
In their work (Liu et al., 2014), N. Liu et al. introduced an approach based

on empirical mode decomposition. More precisely, their approach first uses the
empirical mode decomposition to split the time series into a number of intrinsic
mode functions. Then, the functions are split into two sets. Each function from
the first or the second set is forecast separately by an extended Kalman filter or
an extreme learning machine with kernel, respectively. Finally, the forecasts
of the functions are assembled to return the forecast of the time series. The
parameters (e.g., the size of the first set) of this approach are determined by

58

5.3 Time Series Decomposition

particle swarm optimization. The authors tested their approach on four time
series against the extreme learning machine with kernel.

The authors I. Khandelwal et al. (Khandelwal et al., 2015) also followed the
idea of decomposing a time series into a linear and non-linear part. To this
end, the time series is decomposed through a discrete wavelet transformation.
More precisely, the time series is decomposed into higher and lower frequency
components. Then, these components are reconstructed via the inverse discrete
wavelet transformation. Afterward, ARIMA is applied to the reconstructed
detailed part. The resulting fitting errors and the reconstructed approximation
part are used to train a feed-forward neural network. Finally, both forecasts are
added up. In the evaluation, the approach competed on four time series against
the approach proposed by G. Zhang et al.(Zhang, 2003) and the individual
methods.
C. Bergmeir et al. used in their work (Bergmeir et al., 2016) the idea of

bootstrap aggregating. More precisely, a time series is decomposed into its
component trend, seasonality (if present), and irregular. For the decomposi-
tion, STL or loess is used depending on if the time series is seasonal. Then, 100
different versions of the irregular part are created with moving block bootstrap-
ping. Afterward, the irregular variations are assembled with the remaining
components resulting in 100 time series. For each time series, an ETS forecast
is performed, and the final forecast consists of the median of the forecasts. To
evaluate the approach, 2829 time series from the M3-Competition were used
and four variations of the approach were compared with ETS and the results
of the competition. In the following, we refer to this approach as BETS.
Another approach (Panigrahi and Behera, 2017) using the underlying idea

that a time series can be decomposed in a linear and non-linear part was
introduced by S. Panigrahi and H. Behera. To this end, the approach first fits an
ETS model on the time series and on the resulting fitting errors a feed-forward
neural network. In contrast to the work of G. Zhang et al.(Zhang, 2003), the
authors split the time series into training and validation data. Moreover, the
time series and the errors are both normalized with min-max scaling. Then, the
validation data is used to optimize both the ETS and neural network parameters.
Finally, both forecasts are de-normalized and assembled. In the evaluation,
the authors compared their approach on 16 time series against ARIMA, ETS, a
feed-forward neural network, the approach proposed byG. Zhang et al. (Zhang,
2003) and another ARIMA-ANN approach.

The basic idea (Zhang et al., 2017) of the work of J. Zhang et al. is to decom-
pose a time series into a non-linear and periodic part. To this end, the ensemble
empirical mode decomposition is applied. The resulting intrinsic mode func-

59

Chapter 5: On the State-of-the-Art in Time Series Forecasting

tions are then forecast by sARIMA or ANFIS (feed-forward neural network
with fuzzy inference) depending on if the function is periodic or non-linear.
Finally, the functions are assembled to return the future time series. To evaluate
their approach, the approach competed against the individual methods on two
time series.
In contrast to the methods presented in this section, Prophet (Taylor and

Letham, 2018), which was introduced by S. Taylor and B. Letham (Facebook),
fits an additive regressionmodelwith trend, season, and holiday as components.
The trend component can either be piece-wise linear or following a logistic
growth curve. Both variants support and automatically detect changes in the
trend. The seasonal part is represented by a Fourier series. The holiday compo-
nent can be specified by the user or uses calendar information. For finding all
parameters for fitting the model components, the Broyden–Fletcher–Gold-
farb–Shanno algorithm is applied. The authors compared their approach
against ARIMA, ETS, sNaïve, and TBATS.

In the work of F. Saâdaoui and H. Rabbouch (Saâdaoui and Rabbouch, 2019),
the time series is split into trend, seasonal, and irregular parts based on the
maximal overlap discrete wavelet transformation. The trend is fitted by a
polynomial regression and the periodic part with a sum of sines. Both fitting
residuals and the irregular part are added and modeled with an autoregressive
fractionally integrated moving average. The resulting errors are then used to
train a feed-forward neural network. Finally, all forecasts are summed up. In a
case study, the proposed approach was compared on one time series against
the stand-alone neural network, a seasonal non-linear autoregressive model,
and a multivariate sARIMA.

F. Saâdaoui et al. proposed another approach (Saâdaoui et al., 2019) combing
neural networks and decomposition. First, the trend is fitted by polynomial
regression. Then, the periodic part is approximated with a sum of sines. Both
components are removed from the time series resulting in a de-trended, de-
seasonalized, and de-trended-de-seasonalized time series. Afterward, two
feed-forward neural networks are trained: one network on the de-trended-de-
seasonalized time series and the other network on the de-seasonalized time
series. After the forecast of each component, two forecasts are assembled:
The first by adding up the forecast of the trend, season, and de-trended-de-
seasonalized part; the second by adding up the forecast of the trend and the de-
seasonalized part. Finally, the best accurate forecast is chosen. In the evaluation,
three variations of the approach were compared on three time series against the
stand-alone neural network, one neural network coupled with empirical mode
decomposition, and another neural network with wavelet decomposition.

60

5.4 Benchmarking of Forecasting Methods

The method (Smyl, 2020) introduced by S. Syml (Uber) deploys exponential
smoothing formulas in combination with a recurrent neural network. More
precisely, the exponential smoothing formulas are used for on-the-fly deseason-
alizing and normalizing the series and the neural network is used for extrapo-
lating the time series. In contrast to the other methods described in this chapter,
this method requires a set of time series. The set is used to train the neural
network, but the exponential smoothing is trained per time series. Moreover,
this approach subsets a time series and trains different models and return the
ensemble forecast (either of all or the best n models depending on the time
series). This approach was the winner of the M4-Competition. In the following,
we refer to this approach as ES-RNN.

5.4 Benchmarking of Forecasting Methods

In the last decades, several papers have been published in which forecasting
methods have been evaluated either on a small or large scale. However, based
on our review (see Section 7.1), we found that the degree of quality of the
evaluations suffers on the one hand from the data sets selected and, on the other
hand, from the methodology applied. To this end, we focus in this section on
benchmarking forecasting methods on a large scale. More precisely, we review
forecasting competitions. Moreover, we restrict the scope on competitions
involving multiple participants.

One of the best-known forecasting competition series is the Makridakis com-
petitions or also known as M-Competitions. Before the first M-Competition
was launched in 1982, S. Makridakis and M. Hibon (Makridakis and Hibon,
1979) assembled 111 time series and compared different methods based on
the error metrics MAPE, percentage better, Theil’s U-Statistic. Then, in the
first M-Competition (Makridakis et al., 1982), S. Makridakis et al. compared
forecasting methods on 1001 time series while considering the MAPE, MSE,
average ranking, medians of absolute percentage errors, and percentage bet-
ter. Moreover, the average percentage errors and mean absolute deviations
were calculated but not reported. In contrast to its predecessor, the second
M-Competition (Makridakis et al., 1993) considered only 26 time series and
the measures MAPE, average ranking, percentage better, and mean percentage
error. However, this competition lasted almost four years, as participants, start-
ing in 1987, received real-time data and feedback on their submitted forecasts
as new data became available. The final forecast was then submitted in the
last year. In 1991, the Santa Fe Institute also held a competition comprising six
time series and considered the mean squared error and used forecast errors to

61

Chapter 5: On the State-of-the-Art in Time Series Forecasting

compute the likelihood of the data (Gershenfeld andWeigend, 1993). To extend
and replicate the formerM-Competitions, S. Makridakis andM. Hibon ran their
third competition in 1998. The M3-Competition (Makridakis and Hibon, 2000)
contained 3003 time series and evaluated the methods based on sMAPE, aver-
age ranking, median symmetric absolute percentage error, percentage better,
and median relative absolute error. To show the potential of neural networks
in terms of forecasting, S. Crone et al. (Crone et al., 2011) used 111 time series
from the M3-Competition and evaluated the neural networks’ forecasts with
the sMAPE, average ranking, median relative absolute error, and MASE. A few
years later, the Tourism competition was held in 2010 (Athanasopoulos et al.,
2011). The data set contained 1311 time series, and the submitted forecasts were
compared regarding the percentage better, MAPE, MASE, median absolute
scaled error, and average ranking. To raise the importance of energy forecast-
ing and have a sound benchmark, the Global Energy Forecasting Competition
comprising 28 time series was first held in 2012 (Hong et al., 2014). For the
evaluation, the RMSE was used. Two years later, the second Global Energy
Forecasting Competition was held (Hong et al., 2016). In contrast to the first
edition, this competition used for the evaluation the pinball loss function and
continuous rank probability score and comprised 15 time series while the data
was updated monthly in a rolling manner. The last published competition is
the M4-Competition (Makridakis et al., 2018b). S. Makridakis et al. provided
100,000 time series while considering the sMAPE, percentage better, and overall
weighted average as evaluation measures.

62

Chapter 6

On the State-of-the-Art in Cloud Auto-Scaling

With the emergence of cloud computing, both academia and industry have
started adopting this paradigm for deploying their applications. One central
characteristic of this cloud paradigm is elasticity that allows adapting to work-
load changes by provisioning and de-provisioning resources automatically. To
this end, auto-scaling mechanisms have been a popular research topic over
the past decade. There have been multiple recent efforts to survey the state-
of-the-art in auto-scaling, for example (i) G. Galante and L. de Bona (Galante
and Bona, 2012), (ii) T. Lorido-Botran et al. (Lorido-Botran et al., 2014), (iii)
B. Jennings and R. Stadler (Jennings and Stadler, 2015), (iv) C. Qu et al. (Qu
et al., 2018), and (v) recently P. Singh et al. (Singh et al., 2019). In each survey,
different taxonomy or classification approaches for grouping the mechanisms
are proposed.

Based on the mentioned survey articles, this section gives an overview of re-
cent and top-cited auto-scalers for both monolithic applications and distributed
applications composed of multiple services or tiers1. To group the reviewed
mechanisms, we apply the established classification scheme by T. Lorido-Botran
et al. (Lorido-Botran et al., 2014). In their survey, the authors proposes a classi-
fication of auto-scalers into five groups based on their underlying technique:
(i) control theory, (ii) queueing theory, (iii) reinforcement learning, (iv) threshold-
based rules, and (v) time series analysis. To this end, the Sections 6.1–6.5 present
the reviewed auto-scalers. After this classification, we discuss the selected
approaches based on their cost-efficiency policy. Moreover, we delimit this
thesis from the selected techniques in Section 9.7.

6.1 Auto-Scalers based on Control Theory

Auto-scalers from the field of control theory consist of two parts: (i) Amodel of
the application and (ii) the controller. Consequently, the performance of such
1In the following, the terms tier and service are used interchangeable.

63

Chapter 6: On the State-of-the-Art in Cloud Auto-Scaling

an auto-scaler depends on both the model and the controller. E. Kalyvianaki
et al. (Kalyvianaki et al., 2009) introduced a vertical, proactive mechanism
based on control theory. More precisely, three different approaches are pro-
posed: a controller for monolithic applications, a controller for applications
consisting of multiple services taking the correlations between the services
into account, and an extension of the second controller that self-configures its
parameter according to the workload. Each controller uses a simple application
performance model that is realized by a one-dimensional random walk. To
reduce noise that is caused by workload fluctuations, this model is enhanced
with a Kalman filter.

AutoControl (Padala et al., 2009), a vertical, proactive auto-scaler for applica-
tions consisting of multiple services, is another representative of this group.
The underlying idea is to deploy a two-layer architecture: a controller for each
service and one for each virtual node. The controller responsible for a service
first models the time-varying relationship between the resource allocation and
its normalized performance. Then, the controller predicts the resource alloca-
tions regardless of the other services. To allocate the resource requests from
the first layer, the controller responsible for a virtual node assigns all requests
if possible. Otherwise, the resources are distributed regarding the priority of
each service.
Q. Zhu and G. Agrawal introduced another approach. In their work (Zhu

and Agrawal, 2012), the authors designed a reactive mechanism for scaling
applications comprising multiple services vertically. The aim is to take a fixed
time-limit and a resource budget into account to maximize the application
performance. Thus, the authors deploy a resource model for each service com-
ponent that maps the adaptive parameters to system input while considering
the resource budget. The proposed controller uses this model to scale the ap-
plication subjected to time and budget constraints. To reduce the instability of
the controller, the controller is combined with a reinforcement learning agent.

In theirwork (Ali-Eldin et al., 2012), A.Ali-Eldin et al. proposed amechanism
that scales monolithic applications horizontally. The core idea is to model the
application as a G/G/n queue and have two adaptive proactive controllers
for scaling down and a reactive approach for scaling up. Both controllers are
independent of parameters, and thus, any performance metric can be used.
The first controller considers the periodical rate of change of the workload.
In contrast, the second controller takes the ratio between the change in the
workload and the average system service rate over time into account. In the
following, we refer to this approach as Adapt.

Another auto-scaler of this group, which vertically scales applications consist-

64

6.2 Auto-Scalers based on Queueing Theory

ing of multiple services, was introduced by E. Lakew et al.(Lakew et al., 2017).
This mechanism uses a predictive MIMO (Multiple Input Multiple Output)
controller to compute CPU and memory usage for future time intervals. More
specifically, during an offline phase, a linear MIMO model is created based
on how the application reacts to changes in resource allocation. Based on the
model, future resource allocations are planned to ensure that the application
meets predefined performance. However, only the next planned allocation is
performed to respond to unexpected behavior not captured by the model.

6.2 Auto-Scalers based on Queueing Theory

Usually, queueing theory is widely applied to model the relationship between
incoming and outgoing jobs in a system. That is, auto-scalers from this field
depend on the model of the system for determining the resource demands.
A representative of this group, an auto-scaler (Urgaonkar et al., 2008) that
scales applications consisting of multiple services horizontally, was proposed
by B. Urgaonkar et al. The underlying idea is to model the application as
a chain of queues where each service reflects a G/G/1 queue. To estimate
the number of required resources, the approach forecasts the workload for
the long term based on histograms. In a short-term interval, the auto-scaler
checks for unpredictable events or deviations from the forecast load to scale
the application reactively. In the following, we refer to this approach as Hist.
Another approach (Xiong et al., 2011) was proposed by P. Xiong et al. that

scales applications comprising of multiple services vertically and reactively. To
estimate the application’s performance, the application is modeled as a chain
of queues where each service is estimated by an M/G/1 queue. Moreover, the
scaling logic consists of two layers. The first layer requests the required amount
of resources to guarantee the performance on an overall basis. The second level
partitions the total resource budget among the services that can minimize the
response time.
A reactive approach (Sharma et al., 2012) introduced by U. Sharma et al.

scales applications consisting of multiple services horizontally. The target
application is modeled as a chain of queues where each service reflects an
M/G/1 queue. The resource provisioning is subjected to the high percentile of
response time while minimizing the application’s cost. This is done by greedily
searching for a resource configuration that has a high utilization but low cost.
In their work (Jiang et al., 2013), J. Jiang et al. proposed another elasticity

mechanism for scaling monolithic applications horizontally. To allocate re-
sources proactively, the approach forecasts the workload with linear regression

65

Chapter 6: On the State-of-the-Art in Cloud Auto-Scaling

while having a reactive fallback if the length of the queue of waiting requests
exceeds a predefined threshold. Based on the forecast, the number of resources
is calculated while modeling each resource as an M/M/n queue. After this
estimation, an optimization objective function is used to exploit the cost-latency
trade-off based on budget constraints.
A further example is AutoMAP (Beltrán, 2015), a reactive auto-scaler for

applications comprising several services. To maintain the performance re-
quirements of the application and to minimize the number of resources, the
approach supports both vertical and horizontal scaling. The underlying idea
is to predict the application’s response time while each resource is modeled
as a -/G/1 queue and then, to scale according to predefined thresholds. After
determining the required resources, a resource configuration is searched that
meets the response time but has a lower cost.

6.3 Auto-Scalers based on Reinforcement Learning

In contrast to the first both fields, methods from reinforcement learning do not
have explicit knowledge or a model of the application. The goal is to find the
best action for each state with a trial-and-error approach. However, the time
for convergence on the best actions can take a long time. In their work (Tesauro
et al., 2006), G. Tesauro et al. presented a proactive mechanism based on
reinforcement learning that scales applications comprising multiple services in
a horizontal manner. For learning the best scaling policy, a feed-forward neural
network is used. To avoid poor performance during the training phase, an initial
policy based on queueing theory is applied. More precisely, the application is
modeled as an M/M/1 queue. Instead of learning once, the learning is done
iteratively. During the executing of a policy, a new data set is gathered that can
be used to train an improved policy.

Another representative of this group is VConf (Rao et al., 2009), an elasticity
mechanism for scaling applications consisting of several services vertically and
proactively. The goal of this approach is to optimize the summarized perfor-
mance of each instance while reconfiguring them periodically. For learning
the best configurations, a feed-forward neural network is applied. To avoid a
long exploration phase at the start and reduce the tested actions during run-
time, a model trained from previous information using supervised learning is
employed to simulate the application behavior.
N. Dezhabad and S. Sharifian (Dezhabad and Sharifian, 2018) presented

another proactive elasticity mechanism for scaling monolithic applications hori-
zontally. The underlying idea is to provide the right number of instances based

66

6.4 Auto-Scalers based on Threshold-Based Rules

on the workload and the proportion of requests each instance can handle. For
finding the right scaling action without a complete model of the application, Q-
Learning is used. The reward function penalizes high- or low-utilization states
and service level agreement violations. To handle heterogeneous workload
mixes, a genetic algorithm balances the load to the instances while modeling
each instance as an M/G/1 queue.

Another example of this group is RLPAS (Benifa and Dejey, 2019), a proactive
mechanism for scaling applications consisting of multiple services in a horizon-
tal manner. This approach aims to maximize both the application performance
and the instance utilization. To this end, each instance is profiled and perfor-
mance metrics are gathered. This information is used for learning a model-free
State-Action-Reward-State-Action approach that is also capable of forecasting
the future demand. To reduce the convergence time of this approach, multiple
agents are used for learning the environment in a parallel manner.

6.4 Auto-Scalers based on Threshold-Based Rules

Auto-scalers from this category react to changes in theworkloadusing threshold-
based rules. The actions are triggered by performance metrics and associated
predefined thresholds. Due to their simplicity and easy setup, commercial
cloud providers offer such mechanisms for their clients. One representative
of this group was proposed by T. Chieu et al. (Chieu et al., 2009)that scales
monolithic applications horizontally and reactively. This algorithm provisions
instances based on thresholds or a specific scaling indicator of the application.
To this end, the application is continuously monitored, and a moving average
is computed for each information. If all instances are above the threshold, a
new instance is provisioned. If there are instances below the threshold and at
least one instance is idle, the idle instances are removed. In the following, we
refer to this approach as React.
A reactive mechanism for vertical scaling of a monolithic application was

presented by M. Maurer et al. (Maurer et al., 2011). The key idea of this
approach is to calculate utilization that is the ratio between the used and
provided the number of resources. To scale the application, a lower and upper
threshold is defined. If the utilization exhibits the upper bound, new resources
are added. Otherwise, resources are removed. To avoid scaling oscillations, a
wide span between both thresholds is applied.

In their work (Han et al., 2012), R. Han et al. introduced a reactive auto-
scaler for applications comprising multiple services. The goal of the scaling is
to find the cheapest configuration that can handle the current workload. To this

67

Chapter 6: On the State-of-the-Art in Cloud Auto-Scaling

end, the approach supports vertical scaling and horizontal scaling based on
predefined thresholds. If the vertical up-scaling is not possible, a new instance is
added, and then again, vertical scaling is performed. During the down-scaling,
the instances or resources that cause the most cost are released horizontally or
vertically.

A further example of this group was proposed by A. Naskos et al. (Naskos
et al., 2017) and scales monolithic applications horizontally and reactively. To
capture the uncertain behavior of the application, the authors apply Markov
decision process models. For the scaling, five different policies are conducted.
The best action is selected on the policy that has estimated the best application
performance. In the case there is more than one option, the policy with the
lowest cost is chosen. During a scaling-down, the approach takes pricing
schemes into account and releases the instance closest to the charging unit.

6.5 Auto-Scalers based on Time Series Analysis

The key idea in this group is to detect patterns and forecast the future load.
As the choice of the most suitable method is crucial, the performance of an
auto-scaler using time series analysis depends on the chosen method. W. Iqbal
et al. (Iqbal et al., 2011) presented an elasticity mechanism based on time series
analysis for scaling applications comprising multiple services horizontally. For
ensuring a reliable application performance, resources are added reactively
and released proactively. To scale up the application, heuristics and profiling
are used. The scale-down is realized proactively to avoid the premature release
of required resources. To this end, a polynomial regression with the order two
is used. In the following, we refer to this approach as Reg.

A further example isAGILE (Nguyen et al., 2013), a proactivemechanism that
scales applications consisting of multiple services horizontally. The underlying
idea is to use a wavelet-based decomposition. Then, each part is forecast
separately with a simple Markov model to reduce the error. Finally, the parts
are summed up to synthesize the forecast. To reflect the relationship between
theworkload and the application’s performance, online profiling of each service
and polynomial curve fitting is used to estimate a black-box performancemodel.
H. Fernandez et al. (Fernandez et al., 2014) presented another proactive

elasticity mechanism that scales monolithic applications in a horizontal manner.
To have reliable forecasts, different forecasting methods are used, such as
linear regression or Holt’s exponential smoothing. Based on the forecasts
from the last interval, the method with the best accuracy is chosen for the
current forecast. Based on this forecast and themeasured computing capacity of

68

6.6 Cost-Efficient Auto-Scalers

different resource configurations, this method provides the required resources
under consideration of their costs and in accordance with an hourly billing
interval. In the following, we refer to this approach as ConPaaS.

Another approach is HybridScaler (Wu et al., 2016), an auto-scaling method
for applications consisting of multiple services. This approach uses both hori-
zontal and vertical scaling. That is, mid- to long-term workload changes are
forecast with sparse periodic auto-regression to adapt the application proac-
tively and horizontally. To react to unpredictable changes in the workload, the
application is scaled vertically. The long-term forecast is also used to allocate
resources in accordance with an hourly billing interval.
A further example of this group is a proactive mechanism for scaling appli-

cations comprising several services horizontally introduced by R. Khorsand
et al. (Khorsand et al., 2018). This approach is alignedwith theMAPE-K control
loop. In the analysis phase, support vector regression is used for forecasting
the future workload. In the plan phase, a fuzzy analytically hierarchy process is
deployed for scaling the application based on the forecast. The authors rely on
this fuzzy approach as it allows to make decisions in uncertain circumstances.

6.6 Cost-E�cient Auto-Scalers

Although only a few of the reviewed approaches scale an application consid-
ering cost, we can classify them into three groups: The first group consists of
approaches that take advantage of a heterogeneous resource pool where the
resource configurations vary in performance and cost. The idea is to select a
resource configuration with the lowest cost while meeting the specified SLAs
or application performance. Examples of this group are AutoMAP (see Sec-
tion 6.2), the approach from R. Han et al. (see Section 6.4), and the method
introduced by U. Sharma et al. (see Section 6.2). The auto-scalers of the sec-
ond group have to handle a trade-off between application performance and
predefined budget or runtime constraints. Representatives of this group are
the methods introduced by J. Jiang et al. (see Section 6.2), P. Xiong et al. (see
Section 6.2), and Q. Zhu and G. Agrawal (see Section 6.1). In the last group,
the approaches have knowledge about the charging models of the public cloud,
where the application is deployed. Based on these models, the rented instances
are used as cost-efficient as possible. Examples of this group are ConPaaS (see
Section 6.5), HybridScaler (see Section 6.5), and the approach from A. Naskos
et al. (see Section 6.4).

69

Part II

Contributions

Chapter 7

Forecasting Benchmark

In many domains, the selection of the most appropriate approach is guided by
reviewing experimental results performed in either established benchmarks or
scientific papers. By benchmark, we refer to an instrument used to evaluate
and/or compare systems or methods based on certain properties (Kistowski
et al., 2015). Moreover, we consider benchmarks as a key instrument for im-
provement and competition. In the context of time series forecasting, the key
concerns are the forecast accuracy and the time-to-result.
To investigate how both key concerns are assessed in the literature, we re-

viewed scientific work published during the last decades (see Section 7.1).
Although there are forecasting competitions that can be considered as bench-
marks, like the well-known M-Competitions1, these are barely applied in sci-
entific works. More precisely, most of the reviewed papers consider only a
small set of (mostly related) methods and evaluate their performance on a
small number of time series with only a few error measures while providing no
information on the time-to-result of the studied methods. Consequently, such
articles fail to provide a reliable approach to guide the choice of an appropriate
forecasting method for a particular use case.

To approach the problem of limited comparability between existing forecast-
ing methods, we pose ourselves the following research questions:

RQ 1: How to automatically compare and rank different forecasting methods on a
level playing field based on their performance in a diverse set of evaluation
scenarios?

RQ 2: What are suitable and reliable measures for quantifying the quality of
forecasts?

Towards addressing the research questions, our contribution is to provide a
forecasting benchmark to establish a level playing field for evaluating and
comparing the performance of forecasting methods in a broad setting covering
1M-Competitions: https://mofc.unic.ac.cy/history-of-competitions/

73

https://mofc.unic.ac.cy/history-of-competitions/

Chapter 7: Forecasting Benchmark

a diverse set of evaluation scenarios. This benchmark automatically evaluates
a forecasting method based on the choices of the user. More precisely, the user
uploads a code artifact of the forecasting method to be benchmarked. The user
then specifies the use case and selects the evaluation type for the benchmarking
process. Based on this user input, the method is evaluated and compared to
state-of-the-art methods. Besides the design, we propose novel forecast error
measures and consider established measures for the evaluation. To provide
a diverse set of time series, we assemble a data set comprising 400 publicly
available time series taken fromdifferent domains. The data set exhibits a higher
heterogeneity compared to established forecasting competitions. Moreover, the
proposed forecasting benchmark is used to compare Telescope (see Chapter 8)
with state-of-the-art forecasting methods in Chapter 10.

The remainder of this chapter2 is organized as follows: We first perform a
literature review in Section 7.1. Then, we introduce the design and the use cases
of the forecasting benchmark in Section 7.2. In Section 7.3, we present proposed
data set used for the benchmarking. Afterwards, we explain the different
evaluation types implemented in the benchmark in Section 7.4. Moreover, we
propose new forecast accuracy measures in Section 7.5. Then, we compare
our data set with existing forecasting competitions in Section 7.6. Finally, we
conclude the chapter in Section 7.7.

7.1 Literature Review

Since time series forecasting is of major importance in many decision-making
fields (Hyndman and Athanasopoulos, 2017), there is a broad range of aca-
demic work on this topic. To decide which forecasting method is best suited
for a particular application, it is typically necessary to rely on the assessments
made in scientific papers. We review scientific papers in the field of time series
forecasting to investigate how trustworthy andmeaningful these state-of-the-art
assessments are. More precisely, we collected papers matching the terms time se-
ries forecasting, time series analysis, or time series prediction on the academic search
engines Google Scholar3, Mendeley4, IEEE Xplore5, and Semantic Scholar6. We
filtered this initial set of scientific papers by considering only those papers that
have been published during the last 40 years and contain an evaluation section.
2This chapter is based on our previous work (Bauer et al., 2020c) where we sketch the idea of
the benchmark.

3Google Scholar: https://scholar.google.de/
4Mendeley: https://www.mendeley.com/
5IEEE Xplore: https://ieeexplore.ieee.org/Xplore/home.jsp
6Semnatic Scholar: https://www.semanticscholar.org/

74

https://scholar.google.de/
https://www.mendeley.com/
https://ieeexplore.ieee.org/Xplore/home.jsp
https://www.semanticscholar.org/

7.1 Literature Review

From these papers, we pick out those that have received an average of at least
8.5 citations per year (Google Scholar) to restrict the data set7 to 100 scientific
papers. The data set contains scientific work published between 1982–2019 and
cited between 29–2440 times. Moreover, the selected papers cover different
topics, such as supply chain management, river flow, tourism, traffic, stock
prices, electric/power demand, and many more.

1

10

100

1000

Measures Methods Time Series

N
um

be
r

Literature Review

Figure 7.1: Distribution of the used measures, methods, and time series in the
evaluation sections from the reviewed 100 scientific papers.

After collecting the data set, we investigated the following questions: (i) How
manymeasures were considered for the evaluation?; (ii) Howmany forecasting
methods were evaluated?; (iii) How many time series were used in the evalua-
tion? To answer these questions, we present in Figure 7.1 the distributions of
how many measures, forecasting methods, and time series were used in the
reviewed papers as box plots. Note that the vertical axis is depicted in log-scale.
The median, that is, 50% of the scientific papers reviewed used at most two
7The list of reviewed articles is available at https://doi.org/10.5281/zenodo.3716035

75

https://doi.org/10.5281/zenodo.3716035

Chapter 7: Forecasting Benchmark

measures, considered a maximum of four methods, and used a maximum of
three time series to formulate scientific results. Even 75% of the studies exam-
ined used a maximum of four measures, at most eight forecasting methods,
and a maximum of nine time series. Some papers are outliers and depicted as
points in the figure, which used more than 1000 time series. These articles used
the M-Competitions8 or the Watson macroeconomic database. However, those
time series have a high degree of similarity (see Section 7.6). For the ranking
of the methods, almost all papers consider the MAPE, RMSE, or related error
measures, but neglect statistical properties of the error measures such as the
standard deviation. On top of this, none of the scientific papers reviewed takes
the time-to-result into account as part of their evaluation. In other words, there
is a lack of information about the runtimes of the forecasting methods. In fact,
the runtime of a forecasting method is irrelevant in non-time-critical scenarios.
Still, there are also scenarios (e.g., auto-scaling) with strict deadlines to enable
timely and reliable planning.

7.2 Design Overview and Use Cases

Based on our review, we found that the quality of the evaluations suffers, on
the one hand, due to the lack of commonly used and representative data sets,
and, on the other hand, due to the limitations of the applied methodology, for
example, the usage of only a few competing methods or only a few measures.
To this end, we design a forecasting benchmark that automatically evaluates
and ranks forecasting methods based on their performance in a diverse set
of evaluation scenarios. In other words, the benchmark allows comparing
a particular forecasting method to state-of-the-art forecasting methods. In
more detail, the benchmark offers a broad data set exhibiting a high degree of
diversity (see Section 7.6), different measures, and three types of evaluation
approaches.

Figure 7.2 illustrates the workflow of the proposed benchmark. First, the user
uploads the code artifact (i.e., Docker9 container) of the forecasting method to
the benchmark. Then, the forecasting method is deployed within the bench-
mark and can only communicate with the benchmark. Afterward, the user
specifies for which use case the deployed forecasting method should be eval-
uated. More precisely, the data set is split into four domains from which the
user can choose (see Section 7.3), each covering 100 heterogeneous time series
taken from different fields. Moreover, the user has to select the evaluation type
8M-Competitions: https://mofc.unic.ac.cy/history-of-competitions/
9Docker: https://www.docker.com/

76

https://mofc.unic.ac.cy/history-of-competitions/
https://www.docker.com/

7.2 Design Overview and Use Cases

Send benchmarking report

Select use case
and evaluation type

Upload code artifact of
forecasting method

Forecast time series

Deploy forecasting method

Send time series

Send time series

Calculate measures

Prepare report

Forecasting
method

Forecasting
benchmark

for each time series

Figure 7.2: Sequence diagram for the usage of the forecasting benchmark.

(see Section 7.4). After the user has selected the settings for the benchmark
process, the benchmark shuffles the set of time series within the domain. That
is, the deployed forecasting method receives the time series in a random order
one after another to mitigate fraud (e.g., optimizing the forecast error based on
the order of the time series).

For each time series within the domain, the benchmark splits the time series
into a training and test time series. The split depends on the evaluation type
(e.g., 80% and 20% in the case of multi-step-ahead forecasts). Then, the training
time series and the forecast horizon are passed to the forecastingmethod. Based
on this input, the forecasting method performs a forecast and submits it to
the benchmark. Based on the forecast and the test time series, the benchmark
calculates the sMAPE (see Section 3.3.2), the MASE (see Section 3.3.3) , and
the proposed measures (see Section 7.5). Also, the benchmark records the

77

Chapter 7: Forecasting Benchmark

time-to-result of the forecasting method. To have comparable time-to-result
measures (i.e., being independent of the hardware on which the benchmark
runs), the benchmark also performs a forecast with sNaïve (see Section 3.1.1)
for normalizing the measured time-to-result. After each time series is forecast,
the benchmark creates a report that contains a detailed overview and ranking
compared to the state-of-the-art methods. The overview shows the average and
the standard deviation of the collected measures. The state-of-the-art methods
in competition comprise ETS, NNetar, random forest, sARIMA, sNaïve, SVR,
TBATS, Theta, and XGBoost. For details on the methods see Section 3.1 and
3.2. Note that the results (i.e., forecast error measures and normalized time-
to-result) of these methods were conducted beforehand and saved within the
benchmark.

7.3 Time Series Data Set

Our goal is to establish a level playing field for evaluating the performance of
forecastingmethods in a broad setting. To this end, a highly heterogeneous data
set of time series that covers different aspects is required. In fact, numerous
data sets are available online: The M-Competitions (such as M310 or M411),
the website Kaggle12, R packages, and many more. Usually, the data sets are
designed for a specific use case, are very homogeneous, or are based on certain
assumptions. For instance, the M3-Competition contains 3003 time series from
different domains. However, most time series have a high degree of similarity
and a length of less than 100 data points. Although, for instance, the M4-
Competition comprises 100,000 time series, these time series are also quite
similar and have short frequencies. Consequently, both competitions cannot be
usedwhen evaluating forecastingmethods for time serieswith high frequencies.
A detailed analysis of the M-Competitions and other forecasting competitions
can be found in Section 7.6.

To enable a comprehensive evaluation, we assembled a data set comprising
400 time series13. The time series are publicly available and originate from
50 different sources, including also time series from M3 and M4. Figure 7.3
shows the distribution of origins of the time series, which we combined into
different groups for the sake of clarity. The groups are authorities from different
10M3-Competition: https://forecasters.org/resources/time-series-data/

m3-competition/
11M4-Competition: https://www.mcompetitions.unic.ac.cy/the-dataset/
12Kaggle: https://www.kaggle.com/
13The time series are available at Zenodo.org: https://go.uniwue.de/timeseries.

78

https://forecasters.org/resources/time-series-data/m3-competition/
https://forecasters.org/resources/time-series-data/m3-competition/
https://www.mcompetitions.unic.ac.cy/the-dataset/
https://www.kaggle.com/
https://go.uniwue.de/timeseries

7.3 Time Series Data Set

7%
12%

45%

10%

9%

9%
8%

M3-Competition
Publicly avail. data sets

M4-Competition
R packages

Authorities
Other competitions
Universities

Origin of Time Series

Figure 7.3: Distribution of the time series origins used in the data set.

countries, the M3-Competition, the M4-Competition, other competitions (e.g.,
Kaggle), various universities, R packages, and other publicly available data sets
(not assignable to the other groups).

As the time series are available online and therefore the forecast of each time
series is already known, we use a linear transformation to alter each time series.
More formally, the transformed time series is

Y ′(t) = u · Y (t) + v, (7.1)

where Y (t) is the original time series, u a normally distributed random variable,
and v a uniformly distributed variable. The exact description of the distributions
is kept secret for the sake of benchmarking.

During the configuration of the benchmarking process, the user has to specify
the use case and the evaluation type (see Section 7.2). More precisely, the user
can choose between four different use cases, namely

1. Economics (gas, electricity, sales, unemployment, . . .),
2. Finance (stocks, sales prices, gold, exchange rate, . . .),
3. Human access (calls, SMS, Internet, requests, . . .), and
4. Nature and demographics (rain, temperature, birth, death, . . .),

79

Chapter 7: Forecasting Benchmark

each covering 100 heterogeneous time series taken from different fields. The
length and frequency distributions of the use cases are shown as cumulative
distribution functions in Figure 7.4 and Figure 7.5. Note that the horizontal
axes in the figures are depicted in log-scale.

0.00

0.25

0.50

0.75

1.00

30 100 300 1000
Length

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

Economics

0.00

0.25

0.50

0.75

1.00

100 1000 10000
Length

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

Finance

0.00

0.25

0.50

0.75

1.00

300 1000 3000 10000 30000
Length

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

Human Access

0.00

0.25

0.50

0.75

1.00

100 1000 10000 100000
Length

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

Nature and Demographics

Figure 7.4: Distribution of the time series lengths in each use case.

7.4 Evaluation Types and Rolling Origin Evaluation

To quantify the forecast accuracy of a forecasting method, three different evalu-
ation types are implemented in the forecasting benchmark: (i) One-step-ahead
forecasts, (ii) multi-step-ahead forecasts, and (iii) rolling origin forecasts. For the
first type, the forecasting method receives all values of the time series except
the last one, which must be forecast. In some scenarios (e.g., auto-scaling),
where a fine granularity leads to several data points in a short time, planning
requires several values in advance. To reflect this need, the second type splits
the time series in 80% training and 20% test (see Section 3.3). In other words,

80

7.4 Evaluation Types and Rolling Origin Evaluation

0.00

0.25

0.50

0.75

1.00

1 10 100
Frequency

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

Economics

0.00

0.25

0.50

0.75

1.00

1 10 100 1000
Frequency

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

Finance

0.00

0.25

0.50

0.75

1.00

1 10 100 1000
Frequency

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

Human Access

0.00

0.25

0.50

0.75

1.00

1 10 100
Frequency

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

Nature and Demographics

Figure 7.5: Distribution of the time series frequencies in each use case.

the forecast method has to forecast 20% of the time series at once. However, the
first two evaluation types perform an “arbitrary” split, resulting in forecasts
that are sensitive to occurrences that may only occur in that particular split. To
stabilize the assessment of forecasting methods, the third evaluation type is
based on rolling origin (Hyndman and Athanasopoulos, 2017). The evaluation
based on rolling origin is the time series equivalent of cross-validation from
the field of machine learning. The term origin refers in this context to the train-
ing set of the time series, which is successively enlarged. In other words, this
technique allows obtaining multiple forecasts, each on the increasing training
set of a single time series. Typically, the origin is increased by 1, leading to
many forecasts for long time series. Consequently, the proposed forecasting
benchmark offers a modified version of this rolling origin approach.
The core idea of the modified rolling origin is illustrated in Figure 7.6. The

blue squares represent observations from the training set, the green squares
observations from the test set, and thewhite squares the remaining observations

81

Chapter 7: Forecasting Benchmark

time

Figure 7.6: Concept of rolling origin forecast implemented in the benchmark.

from the time series. With every iteration except the last one, the training set is
increased by a fixed number of observations. In the last iteration, the training
set is enlarged so that both sets together cover the entire time series. The
detailed rolling origin forecast procedure for a single time series is presented
in Algorithm 7.1. As input, the procedure gets the time series ts, the horizon h
(i.e., the number of values that should be forecast at once), and the forecasting
method f. In the beginning, the rolling origin’s start and end are set (Line 1–2).
More precisely, the starting point is either at 40% of the time series or at two
times the frequency of the time series plus 1, depending on which is greater.
We choose these numbers to ensure that a seasonal pattern, if present, can be
recognized. As the horizon is 20% of the time series length, the endpoint is set
to 80% of the time series. If the numbers of observations between the starting
and endpoint are less than or equal to 100 (Line 3–5), the end indices of the
origin begin with the starting point and are successively extended by 1 to the
endpoint. That is, the end indices contain r + 1 but a maximum of 101 points,
where r = end− start. More formally, the end indices comprise the following
points ⋃

i=0,...,r

{ystart+i} , (7.2)

where yt is the observation of the time series at time t. If the range defined by
the starting and endpoint is greater than 100 points (Line 5–10), the range is
divided into 100 parts of equal size. As the length of each split may not be an
integer, the length is rounded up, and the resulting integer is referred to as step.
Similar to the first case, the end indices of the origin begin with the starting
point and are successively increased by the step to the endpoint. Therefore, the
end indices contain q + 1 but a maximum of 101 points, where step = dr/100e

82

7.5 Proposed Forecast Error Measures

and q = dr/stepe. Mathematically, the end indices include the following points

{yend} ∪
⋃

i=0,...,q

{ystart+i·step} . (7.3)

After the indices are determined, the algorithm iterates over each index and
performs a forecast based on the rolling origin evaluation type (Line 13–21).
More precisely, in each iteration, the training set is created, starting with the
first observation of the time series and ends with the current index (Line 14).
At the same time, the test set (Line 15) comprises the following h observations
of the time series (see Figure 7.6). The deployed forecasting method then
performs an h-step-ahead forecast based on the training set (Line 17). After
the forecast, the time-to-result is determined (Line 18), and the measures (i.e.,
forecast error measures and normalized time-to-result) are calculated (Line 19).
Finally, the measures for each forecast performed are returned. Based on the
measures, different statistics such as the average or the standard deviation of
each measure can be calculated.

7.5 Proposed Forecast Error Measures

For the assessment of the forecasting method, our benchmark uses the estab-
lished forecast error measures sMAPE and MASE (see Section 3.3) due to
their scale independence. Moreover, we choose these measures, as each can be
expressed with a deterministic mathematical expression and are in the interval
[0;∞), where 0 is the optimal value. For the benchmarking report, the average,
standard deviation, and the distribution of each measure is output. In addition
to these error measures, the benchmark also records the time-to-result for each
forecast. Since the time depends on the underlying operating system and hard-
ware, each time series is forecast by the deployed forecasting method and also
by sNaïve. Then, the time-to-result of the deployed method is normalized by
the reference time of the sNaïve forecast. Besides the sMAPE and MASE, the
benchmark also implements two novel forecast error measures to give useful
insights into the benchmarked forecasting method. More precisely, we propose
the mean wrong-estimation shares and the mean wrong-accuracy shares that are
easy to interpret and scale-independent. The first measure indicates whether
the forecasting method under- or over-estimates the future values, while the
second measure indicates the extent of the wrong-estimation. Based on these
measures, the forecasts could be adjusted to approximate the actual values.
For example, if the forecasting method tends, on average, to under-estimate

83

Chapter 7: Forecasting Benchmark

Algorithm 7.1: Rolling origin forecast.
Input: Time series ts, horizon h, forecasting method f
Result: Measures of f on ts

1 start = max(floor(0.4 · length(ts)), 2 · frequency(ts) + 1) // minimal

length of the rolling origin

2 end = floor(0.8 · length(ts))
3 if end - start ≤ 100 then // ts[start to end] is too short

4 indices = start to end
5 else // indices are [start, start + step, ..., end]

6 step = ceil((end - start)/100) // Creating equidistant steps

7 indices = start to end by step
8 if end not in indices then
9 indices.append(end)

10 end
11 end
12 measures = []
13 foreach i in indices do
14 hist = ts[1 to i] // i is the end index of the rolling origin

15 test = ts[i + 1 to i + h]
16 time = getSystemTime()
17 forecast = f.forecast(hist, h)
18 time = getSystemTime() - time
19 m = calcMeasures(forecast, test, time) // calculating the forecast

error measures and normlazied time-to-result

20 measures.appendRow(m)
21 end
22 return measures

the actual value by 10%, the forecast values can be increased by about 12% to
create a safety buffer.

7.5.1 Mean Wrong-Estimation Shares

The core idea of the meanwrong-estimation shares is to capture the tendency of
the forecasting method to under- or over-estimate actual values. More precisely,
themean under-estimation share ρU is the number of forecast values relative to the
whole forecast where the forecast value is below the actual value. Analogously,
the mean over-estimation share ρO is the relative number of values where the

84

7.5 Proposed Forecast Error Measures

forecast value lies over the actual value. Both measures lie in the interval [0, 1].
The best value 0 is achieved when the forecasting method does neither under-
estimate nor over-estimate the actual values. More formally, the two metrics
ρU and ρO can defined as

ρU :=
1

k
·
k∑
t=1

max(sgn(yt − ŷt), 0), (7.4)

ρO :=
1

k
·
k∑
t=1

max(sgn(ŷt − yt), 0), (7.5)

where k is the forecast horizon (i.e., the length of the forecast), yt the actual
value at time t, and ŷt the forecast value at time t.

7.5.2 Mean Wrong-Accuracy Shares

In contrast to the mean wrong-estimation shares, the mean wrong-accuracy
shares describe how much the forecasting method under- or over-estimate the
actual values on average. In other words, the mean under-accuracy share δU is the
mean percentage error between the forecast values and the actual values where
the forecasting method under-estimates the actual values. Analogously, the
mean over-accuracy share δO is the mean percentage error where the forecasting
method over-estimates the actual values. Values of both measures lie in the
interval [0,∞), where 0 is the best value and indicates that there is no under-
or over-estimation. Both measures can be defined14 as

δU :=

{
1

k·ρU ·
∑k

t=1
max(yt−ŷt,0)

|yt| , ∃t : ŷt < yt,

0, ∀t : ŷt ≥ yt,
(7.6)

δO :=

{
1

k·ρO ·
∑k

t=1
max(ŷt−yt,0)

|yt| , ∃t : yt < ŷt,

0, ∀t : yt ≥ ŷt,
(7.7)

where k is the forecast horizon (i.e., the length of the forecast), yt the actual
value at time t, and ŷt the forecast value at time t. Note that the conditions
∀t : ŷt ≥ yt and ∀t : yt ≥ ŷt are equal to ρU = 0 and ρO = 0, respectively.
Analogously, the condition ∃t : ŷt < yt and ∃t : yt < ŷt are equal to ρU > 0 and
ρO > 0, respectively.
14Note that, like all percentage error measures, neither measure is undefined if yt = 0.

85

Chapter 7: Forecasting Benchmark

7.6 Comparison with other Forecasting Competitions

During the last decades, several forecasting methods have been proposed and
evaluated (see Section 7.1). Although some forecasting competitions have been
established, for instance, the M-Competitions initiated by S. Makridakis (see
Section 5.4), most of these papers applied their own evaluation methodology.
As shown by our review, the level of these evaluations is of poor quality (e.g.,
only a few competing methods and/or time series). To avoid the weakness
of the reviewed scientific papers that we have criticized, we compare the fore-
casting benchmark in this section with prominent forecasting competitions.
More precisely, we compare our assembled data set with publicly available
competitions, namely M1 (Makridakis et al., 1982), M3 (Makridakis and Hi-
bon, 2000), M4 (Makridakis et al., 2018b), NN3 (Crone et al., 2011), NN515,
NNGC116, and Tourism (Athanasopoulos et al., 2011). To this end, we first
compare the different data sets regarding their time series characteristics. Then,
we investigate how similar the data sets are.

7.6.1 Time Series Characteristics

To investigate a time series, we can either examine the observations or the time
series characteristics describing the time series. This section investigates the
latter to compare our data set to the data sets from the forecasting competitions.
More precisely, we examine the distribution of the frequencies, the lengths, and
25 time series characteristics17. To be unbiased (i.e., not taking our proposed
time series characteristics in Section 8.8.1.1) into account), we consider time
series characteristics proposed by R. Hyndman et al. (Hyndman et al., 2015),
Y. Kang et al. (Kang et al., 2017), and B. Fulcher et al. (Fulcher et al., 2013).

Table 7.1 shows the frequency distribution of the individual data sets. The
competitions M1, M3, M4, NN3, and Tourism comprise only time series with a
low frequency. That is, the frequencies range between 1 to 24. More precisely,
the M1, M3, and Tourism competitions support only the frequencies 1, 4, and
12, while the M4-Competition additionally supports the frequency of 24. The
NN3 and NN5 competitions both support only a single frequency, while the
NNGC1 competition supports only the frequencies 365 and 7305. In contrast,
our data set supports 37 different frequencies starting from 1 to 4368.
15NN5 competition: http://www.neural-forecasting-competition.com/NN5/
16NNGC1 competition: http://www.neural-forecasting-competition.com/
17The calculated time series characteristics of the data sets as well as the description of the

characteristics are publicly available at Zenodo: https://zenodo.org/record/4115345

86

http://www.neural-forecasting-competition.com/NN5/
http://www.neural-forecasting-competition.com/
https://zenodo.org/record/4115345

7.6 Comparison with other Forecasting Competitions

Table 7.1: Frequency distribution within each data set.
Frequency Our M1 M3 M4 NN3 NN5 NNGC1 Tourism

Min. 1 1 1 1 12 365 365 1
1st Qu. 7 4 1 1 12 365 365 1
Median 12 12 4 4 12 365 7305 4
3rd Qu. 168 12 12 12 12 365 7305 12
Max. 4368 12 12 24 12 365 7305 12

Next, we investigate the length distribution as shown in Table 7.2. For in-
stance, the time series from the NN5 competition all have the same length,
with 791 observations. The median length of the time series within the M1,
M3, NN3, and Tourism competitions is less than or equal to 134. In contrast,
the median length of our time series is 570. While examining the interquartile
range, our data set has a range of about 3000 observations, while the other data
sets have less than 300 observations. Furthermore, our data set also contains
the longest time series with 372,864 observations. In comparison, the longest
time series from theM4-Competition – which has the longest time series among
the other competitions – comprises only 9993 observations. To sum up, our
data set shows the highest diversity in terms of the time series’ lengths.

Table 7.2: Length distribution within each data set.
Length Our M1 M3 M4 NN3 NN5 NNGC1 Tourism

Min. 20 15 20 19 68 791 502 11
1st Qu. 169 44 44 56 69 791 747 27
Median 570 68 69 106 134 791 902 110
3rd Qu. 2074 85 133 252 144 791 1026 199
Max. 372,864 150 144 9933 144 791 1742 333

Besides the lengths and frequencies distribution, we investigate time series
characteristics proposed by different scientific works (Fulcher et al., 2013; Hynd-
man et al., 2015; Kang et al., 2017). The details of the considered characteristics
are given in Section 2.4. Since some characteristics such as auto-correlation
coefficients are applied to the time series and the first-order and second-order
differenced time series, the comparison of the data sets comprises 25 time series
characteristics. For the investigation, we apply min-max scaling to all time se-
ries characteristics, taking all time series of all considered data sets into account.

87

Chapter 7: Forecasting Benchmark

C1 C2 C3
C4

C5

C6

C7

C8

C9
C10

C11C12C13C14
C15

C16

C17

C18

C19

C20

C21

C22

C23
C24

C25

C1 C2 C3
C4

C5

C6

C7

C8

C9
C10

C11C12C13C14
C15

C16

C17

C18

C19

C20

C21

C22

C23
C24

C25

C1 C2 C3
C4

C5

C6

C7

C8

C9
C10

C11C12C13C14
C15

C16

C17

C18

C19

C20

C21

C22

C23
C24

C25

C1 C2 C3
C4

C5

C6

C7

C8

C9
C10

C11C12C13C14
C15

C16

C17

C18

C19

C20

C21

C22

C23
C24

C25

C1 C2 C3
C4

C5

C6

C7

C8

C9
C10

C11C12C13C14
C15

C16

C17

C18

C19

C20

C21

C22

C23
C24

C25

C1 C2 C3
C4

C5

C6

C7

C8

C9
C10

C11C12C13C14
C15

C16

C17

C18

C19

C20

C21

C22

C23
C24

C25

C1 C2 C3
C4

C5

C6

C7

C8

C9
C10

C11C12C13C14
C15

C16

C17

C18

C19

C20

C21

C22

C23
C24

C25

NN5 NNGC1 Tourism

Our M3 M4 NN3

Statistics
Max
Mean
Min

Figure 7.7: Distribution of time series characteristics per investigated data set.

This means that for each time series characteristic, the minimum (0) and the
maximum (1) can be located in different data sets. The resulting distribution
of each data set is illustrated as a spider-chart in Figure 7.7. Each chart contains
25 edges, each representing a time series characteristic. For each time series
characteristic, the red dot represents the largest value in the data set, the green
dot the average value, and the blue dot the smallest value. Based on these
charts, our data set exhibits a higher diversity of time series characteristics
than all other competitions except the M4-Competition. Our data set has the
minimum value for 9 out of 25 time series characteristics and the maximum
value for 10 out of 25 time series characteristics. The M4-Competition covers
the remaining minima and maxima. However, the M4-Competition comprises
100,000 time series. Therefore the likelihood of having a time series with a
minimum/maximum for a time series characteristic is higher than in our data
set.

7.6.2 Distance between Time Series

To determine how similar time series are to each other in the individual data
sets, we calculate the distance between them. If we think of the geometric
representation of a time series, we could, for example, consider the Euclidean
distance or dynamic time warping. However, the first metric can only be

88

7.6 Comparison with other Forecasting Competitions

calculated if the time series are of equal length and the latter is difficult to
interpret. To this end, we adopt the idea of the zoomed ranking (Dos Santos
et al., 2004) approach applied to time series. More precisely, the distance
between two time series is equal to the L1-norm of their describing time series
characteristics. Mathematically, the distance between two time series Yi and Yj
is defined as (Dos Santos et al., 2004)

d(Yi, Yj) :=

q∑
m=1

|cYi,m − cYj ,m|
max

k={1,...,s}/{i}
(cYk,m)− min

k={1,...,s}/{i}
(cYk,m)

, (7.8)

where Y1, . . . , Ys are all time series from all considered data sets with s being a
positive integer, Yi and Yj origin from the same data set, and cYi,1, . . . , cYi,q are
the describing time series characteristics of time series Yi with q being a positive
integer. The time series characteristics are the same as used in Section 7.6.1,
i.e, q = 25. The distance between two time series lies in the interval [0,∞),
where 0 indicates that the time series are equal in terms of their describing
characteristics. Consequently, the higher the distance, the more heterogeneous
are both time series.
To analyze the different data sets, we calculate the distance between each

pair of time series within the data set and report the average distance as well as
the respective distribution in Table 7.3. The time series in our data set have an
average distance of 4.104, while the time series in the other data have an average
distance between 1.087 and 3.304. Moreover, the M-Competitions and the NN5
competitions have time series that are identical regarding their describing time
series characteristics. Except for the minimal value, our data set exhibits the
highest average time series distance for all other quartiles. As for the maximum
value, our data set’s average distance is at least twice as far as in all other
competitions. In summary, our data set exhibits the higher average distance
and thus the greater heterogeneity between time series.

Table 7.3: Distance between time series within each data set.
Distance Our M1 M3 M4 NN3 NN5 NNGC1 Tourism

Min. 0.003 0.000 0.000 0.000 0.237 0.000 0.018 0.033
1st Qu. 2.697 2.125 2.001 1.669 1.632 0.681 2.077 2.072
Median 3.866 2.950 2.968 2.473 2.797 0.992 2.867 2.899
Mean 4.104 3.186 3.304 2.808 3.112 1.087 2.900 3.024
3rd Qu. 5.296 4.027 4.331 3.594 4.291 1.405 3.660 3.846
Max. 27.898 10.785 10.876 13.583 8.758 3.235 8.395 9.092

89

Chapter 7: Forecasting Benchmark

7.7 Concluding Remarks

In this chapter, we first surveyed existing work on time series forecasting with
the goal of assessing how forecasting methods are evaluated in the literature.
Considering the shortcomings of the reviewed articles and the research question
RQ 1 “How to automatically compare and rank different forecasting methods on a level
playing field based on their performance in a diverse set of evaluation scenarios?”, we
propose a novel benchmark that automatically evaluates and ranks forecasting
methods based on their performance in a diverse set of evaluation scenarios.
More precisely, the benchmark provides a level playing field for evaluating the
performance of forecasting methods in a broad setting by selecting a specific
use case and evaluation type. Moreover, we showed that the assembled data
set has a higher diversity than established forecasting competitions such as the
well known M-Competitions. To address the research question RQ 2 “What are
suitable and reliable measures for quantifying the quality of forecasts?”, the benchmark
implements well-established forecast error measures and introduces further
two novel measures that give more insights into the benchmarked forecasting
method.

90

Chapter 8

Automated Hybrid Forecasting Approach

Time series forecasting is an essential pillar in many decision-making disci-
plines (Hyndman and Athanasopoulos, 2017). Accordingly, time series fore-
casting is an established and active field of research, and thus various methods
have been proposed. Due to the variety of approaches, the choice and con-
figuration of the best performing method for a given time series remain a
mandatory expert task to avoid trial-and-error. However, expert knowledge
can be expensive, may have a subjected bias, and it can take a long time to
deliver results.

Thus, the question arises if there is a single forecasting method that performs
best for all time series. However, the “No-Free-Lunch Theorem” (Wolpert
and Macready, 1997), initially formulated for optimization problems, denies
the possibility of such a method. It states that improving one aspect typically
leads to a degradation in performance for another aspect. An analogy can be
drawn to the domain of forecasting: No forecasting method performs best for
all time series. In other words, forecasting methods have their advantages and
drawbacks depending on the considered time series.

In fact, different types of hybrid forecasting methods have been proposed in
the last years (Fontes andCastro Silva, 2020) to tackle the challenge stated by the
“No-Free-Lunch Theorem”. The core idea is the usage of at least two methods
to minimize the disadvantages of individual methods. For instance, while sta-
tistical models have their difficulties with complex patterns, regression-based
machine learning methods struggle with non-stationary data (see Section 2.1.3)
to extrapolate for a forecast (Sugiyama and Kawanabe, 2012). From our expe-
rience, recently presented open-source hybrid methods are computationally
intensive, poorly automated, tailored to a particular data set, or they lack a pre-
dictable time-to-result. However, many real-world scenarios where forecasting
is useful (e.g., auto-scaling) have strict requirements for a reliable time-to-result
and forecast accuracy. To achieve a low variance in forecast accuracy, the pre-
processing of historical data and the feature handling (extraction, engineering,
and selection) must be done in a sophisticated way. On the one hand, the choice

91

Chapter 8: Automated Hybrid Forecasting Approach

of the essential features is a decisive part. On the other hand, transforming
historical data may lead to simpler patterns that usually allows more accurate
forecasts (Hyndman and Athanasopoulos, 2017).

To tackle the mentioned challenges, we pose ourselves the following research
questions:

RQ 3: How to design an automated and generic hybrid forecasting approach that
combines different forecasting methods to compensate for the disadvantages
of each technique?

RQ 4: How to automatically extract and transform features of the considered
time series to increase the forecast accuracy?

RQ 5: What are appropriate strategies to dynamically apply the most accurate
method within the hybrid forecasting approach for a given time series?

Towards addressing the research questions, our contribution is the design of
a novel, generic, hybrid forecasting method called Telescope1. Telescope is a ma-
chine learning-based forecasting method that automatically retrieves relevant
information from a given time series. More precisely, Telescope automatically
extracts intrinsic time series features and then decomposes the time series into
components, building a forecasting model for each of them. Each component is
forecast by a different method and then the final forecast is assembled from the
forecast components by employing a regression-based machine learning algo-
rithm. In other words, we integrate different methods to handle non-stationary
data introduced by trend and multiplicative effects.

While Telescope is applied in a non-time-critical scenario and under consid-
eration of the “No-Free-Lunch Theorem”, Telescope also extracts time series
characteristics and employs the best-suited regression-based machine learning
algorithm based on dynamically learned rules. For building the recommen-
dation rules dynamically, a knowledge base is built upon a set of time series.
To augment the knowledge base, a time series generator is employed to create
numerous new time series with different characteristics out of a small set. More-
over, the Telescope approach and its components are evaluated in Chapter 10.
The remainder of this chapter2 is organized as follows: We start with the

design overview of Telescope in Section 8.1. As the workflow of Telescope can
be divided into different phases, Section 8.2–8.6 explain each of the phases. In
Section 8.7, the fallback for non-seasonal time series is introduced. To tackle
1Telescope at GitHub: https://github.com/DescartesResearch/telescope
2This chapter is based on our previous works (Züfle et al., 2017; Bauer et al., 2020a,b,c).

92

8.1 Design Overview

challenge posed by the “No-Free-Lunch Theorem”, Telescope has a recommen-
dation system deployed, and Section 8.8 focuses on the meta-learning approach
and its components. In Section 8.9, the assumptions and limitations of Telescope
are highlighted. We delimit our approach from the reviewed techniques (see
Chapter 5) in Section 8.10. Finally, the chapter is summarized in Section 8.11.

8.1 Design Overview

The assumption of data stationarity is an inherent limitation for time series
forecasting. Any time series property that eludes stationarity, such as non-
constant mean (i.e., trend), seasonality, non-constant variance, or multiplicative
effect, poses a challenge for the proper model building (Makridakis et al.,
2018a). Consequently, we take all the techniques discussed in Chapter 2 into
account to design an automated forecasting workflow called Telescope that
automatically transforms the given time series, derives intrinsic features from
the time series, selects a suitable set of features, and handles each feature
separately. The choice and combinations of different methods and techniques
are discussed and evaluated in Chapter 10. Hence, the selection of the deployed
methods, as discussed in the following sections, reflects the best configuration.
Also, if Telescope is applied in a non-time-critical scenario, the recommendation
system dynamically selects the regression-based machine learning method
integrated into Telescope for the given time series.

Algorithm 8.1: Telescope forecasting workflow.
Input: Time series ts, horizon h
Result: Forecast of ts

1 [ts, freqs] = Preprocessing(ts) // see Section 8.2

2 if freqs[1] > 1 then // ts is seasonal

3 features = FeatureExtraction(ts) // see Section 8.3

4 model =ModelBuilding(ts, features) // see Section 8.4

5 forecast = Forecasting(model, h) // see Section 8.5

6 else
7 forecast = ARIMA(ts, h) // see Section 8.7

8 end
9 forecast = Postprocessing(forecast) // see Section 8.6

10 return forecast

The workflow of Telescope is briefly illustrated in Algorithm 8.1 and gets
as input a univariate time series ts and the horizon h. The horizon specifies

93

Chapter 8: Automated Hybrid Forecasting Approach

how many values have to be forecast at once. In the first phase (Line 1), the
time series is preprocessed and the frequencies of the underlying patterns are
extracted. Telescope is intended to handle seasonal time series as many time
series are observed or produced by systems subjected to human habits and
are thus seasonal. In other words, if a seasonal time series has to be forecast,
the second and third phases of Telescope comprise the extracting of relevant
intrinsic time series features (Line 3) and building a model that describes the
time series based on these features (Line 4). Afterward, the model is used to
forecast the behavior of the future time series (Line 5). In the unlikely case
where no seasonality exists within a time series(Line 7), the time series is
modeled and forecast with ARIMA (see Section 3.1.4). Finally, the forecast
is postprocessed according to the preprocessing phase and returned. In the
following, each phase is explained in detail.

8.2 Preprocessing

The first phase of Telescope is called Preprocessing and the workflow is depicted
in Figure 8.1. Orange, rounded boxes represent actions, green hexagons the
input of a phase, and blue trapezoids the output of a phase. This phase gets as
input the Time Series, which is prepared for the following phases. As forecasting
methods, especially machine learning methods, struggle with changing vari-
ance and multiplicative effects within a time series (Sugiyama and Kawanabe,
2012), the time series is transformed. More precisely, Telescope applies the
Box-Cox Transformation (see Section 2.3.2) to the Time Series. We integrated this
transformation step as it reduces both variance and multiplicative effects of the
time series, leading to an improved forecast model (Hyndman and Athana-
sopoulos, 2017; Makridakis et al., 2018a). For estimating the Transformation
Parameter of the Box-Cox transformation, we apply the method proposed by
Guerrero (Guerrero, 1993) and restrict the parameter to values greater than or
equal to zero. As the Box-Cox transformation can result in a logarithmic trans-
formation, the time series has to be “real” positive (∀t : yt > 0). Consequently,
the time series is shifted along the ordinate before the transformation if there is
at least one value less than or equal to zero. More formally, the shift of the time
series Y (t) is defined as

γ(Y (t)) :=

{
Y (t) + |min

t
(Y (t))|+ 1, ∃t : yt ≤ 0,

Y (t), otherwise.
(8.1)

In parallel to the transformation, Telescope performs the Frequencies Esti-
mation. In short, the main idea of this step is to retrieve the most dominant

94

8.2 Preprocessing

Preprocessing

Action Input OutputLegend

Time Series Box-Cox
Transformation

Transformed
Time Series

Frequencies
Estimation

Dominant
Frequencies

Transformation
Parameter

Feature Extraction

Transformed
Time Series

Dominant
Frequencies

STL
Decomposition Trend

Season
IrregularFourier Series

Extraction
Fourier
Terms

Action ArtifactInput OutputLegend

Model Building

Trend
Removal

De-trended
Time Series

Transformed
Time Series Fourier Terms

Trend XGBoost
TrainingTarget

Feature

Model

Feature

Season

Action ArtifactInput OutputLegend

Forecasting

Trend

Fourier Terms

Season

Pattern
Forecast Future

Fourier Terms

Future Season

Model

ARIMA
Forecast

Future
Trend

Prediction

Features

Future
De-trended TS

Trend
Addition

Future Transf.
Time Series

Action ArtifactInput OutputLegend

Postprocessing

Action Input OutputLegend

Future Transf.
Time Series

Inv. Box-Cox
Transformation

Future
Time Series

Transformation
Parameter

Model Building

Trend
Removal

De-trended
Time Series

Transformed
Time Series Fourier Terms

Trend ML Method
TrainingTarget

Feature

Model

Feature

Season

Action ArtifactInput OutputLegend

Recommend
ML Method

Machine Learning
Method

Recommendation

TS Characteristics
Extraction

Time Series
Characteristics

De-trended
Time Series

Machine
Learning Method

Action ArtifactInput OutputLegend

Selection
Rules Recommendation

Features

Offline Training

Time Series
Generation

Set of De-trended
Time Series

Set of
Time Series

Selection
Rules

Action ArtifactInput OutputLegend

 Basel-Level Methods
Evaluation

Time Series
Processing

Forecasting
Results

Time Series
Characteristics

Meta-Level Attributes
Extraction

Extended Set of
Time Series

Rule Generation

Build Meta-Level
Data Set

Meta-Level
Data Set

Set of Time Series
Features

Figure 8.1: Preprocessing phase of Telescope.

frequencies from the input time series by applying a periodogram (see Sec-
tion 2.2.2). The detailed procedure is depicted in the Algorithm 8.2. As input,
the algorithm receives the time series ts, an estimation tolerance value tol, and
a threshold for dominant3 frequencies spec_th. First, the frequencies within
the time series and their associated spectrum are estimated. The function ap-
plyPeriodogram, as the name suggests, applies a periodogram to the time series
and sorts the estimated frequencies in descending order according to their
spectrum. Accordingly, the most dominant frequency is the first frequency.
In general, the i-th most dominant frequency has the i-th highest spectrum.
However, finding the highest spectrum does not necessarily indicate the most
dominant frequency. If the spectrum is only slightly higher than at the remain-
ing frequencies, the time series is probably random. To this end, a second
periodogram is applied on the n-order differenced time series (see Section 2.3.3,
where n is equal to the most dominant frequency). Then, the highest spectrum
of the original and the differenced time series are compared: If the highest
spectrum of the differenced time series is smaller than a fraction of the highest
spectrum of the original time, the time series is considered as seasonal and all
found frequencies are returned. Otherwise, the time series is handled as non-
seasonal and both the function as well as the algorithm return the frequency of
1 (Line 2–4). As the periodogram is only an estimation of the spectral density
of a time series, the algorithm tries to match each estimated frequency with
reasonable frequencies (e.g., daily, hourly, or yearly). That is, Telescope as-
sumes that reasonable frequencies match with multiples of natural time units.
To this end, common minute-based, hour-based, and day-based time units and
their combinations are considered (Line 6). Examples for the common time
units are a year (365 daily observations), a week (7 daily observations), or
3By dominant, we mean the most common period such as days in a year.

95

Chapter 8: Automated Hybrid Forecasting Approach

Algorithm 8.2: Frequencies Estimation.
Input: Time series ts, estimation tolerance tol, threshold spec_th
Result: Dominant frequencies within ts

1 [freqs_est, spec] = applyPeriodogram(ts) // frequencies are sorted in

descending order according to their spectrum

2 if length(freqs_est) == 1 and freqs_est[1] == 1 then // ts is non-seasonal

3 return 1
4 end
5 freqs = []
6 freqs_nat = getNaturalFrequencies() // for example, 24 for hourly

observations or 365 for daily observations

7 for i = 1 to length(freqs_est) do
8 if spec[i] < spec_th * max(spec) then // frequency is too less dominant

9 break
10 end
11 bounds = [freqs_est[i]*(1-tol), freqs_est[i]*(1+tol)]
12 freq = 1
13 min =∞
14 foreach natural in freqs_nat do
15 if natural in bounds then
16 delta = abs(natural - freqs_est[i])
17 if delta < min then // choosing the natural frequency that is

closest to the estimated frequency

18 min = delta
19 freq = natural
20 end
21 end
22 end
23 freqs.append(freq)
24 end
25 return unique(freqs)

an hour (3600 secondly observations). For instance, the value of 96 = 24 · 4
represents a seasonal pattern of one day (24 hours) while the observations were
recorded every 15 minutes (i.e., quarter-hourly). Another example is the value
of 336 = 7 · 24 · 2 that reflects a weekly pattern (7 days) while the observations
are taken each 30 minutes (48 half hours a day). In the next step, the algorithm
iterates over all estimated frequencies (Line 7–23). In accordance with RQ 4,

96

8.3 Feature Extraction

Telescope considers only the most dominant frequencies within the time series.
If the i-th spectrum is less than the maximal spectrum times the threshold, the
loop is terminated (Line 8–10). As the frequencies are ordered according to
their spectrum, only frequencies with a low spectrum are omitted. To take the
periodogram’s inaccuracy into account, a tolerance interval is placed around
the currently estimated frequency (Line 11). To match the current frequency
with a reasonable frequency, the algorithm iterates over each created natural
frequency and checks which natural frequency lies within the tolerance interval
(Line 13–21). If a natural frequency lies in the interval, the absolute distance to
the estimated frequency is calculated (Line 15). Then, the natural frequency
with the lowest distance is determined (Line 16–19) and appended to the list
of dominant and reasonable frequencies (Line 22). Finally, the unique set of
dominant and reasonable frequencies is returned.
The resulting Transformed Time Series from the transformation is then for-

warded as input for the phases Feature Extraction andModel Building, and the
Transformation Parameter determined during the transformation is passed to the
Postprocessing phase. The Dominant Frequencies are forwarded as input for the
Feature Extraction phase. In the case that the set of dominant frequencies con-
tains only the frequency of 1 (i.e., the time series is non-seasonal), the Feature
Extraction, Model Building, and Forecasting steps are omitted and the Fallback
phase (see Section 8.7) is performed with the Transformed Time Series as input.

8.3 Feature Extraction

The second phase, Feature Extraction, is depicted in Figure 8.2, which has the
same structure as Figure 8.1. As input, this phase gets the Transformed Time
Series and the Dominant Frequencies from the Preprocessing phase. Based on
the input, Telescope retrieves intrinsic time series features for tackling typical
problems or difficulties that may occur during the modeling of a time series.
The first difficulty is that time series may havemultiple underlying seasonal pat-
terns (Hyndman andAthanasopoulos, 2017). To this end, Telescope determines
for each dominant frequency the associated Fourier Terms (see Section 2.2.1) of
the Transformed Time Series for modelling the different patterns. More precisely,
for each dominant frequency, a sine as well as a cosine with the period length
of the corresponding frequency are retrieved from the time series.
Another problem are time series violating the stationary property (see Sec-

tion 2.1.3). Although most forecasting methods assume stationary time se-
ries (Brockwell and Davis, 2016), many time series exhibit trend and/or sea-
sonal patterns. That is, in practice, time series are usually non-stationary (Ad-

97

Chapter 8: Automated Hybrid Forecasting Approach
Preprocessing

Action Input OutputLegend

Time Series Box-Cox
Transformation

Transformed
Time Series

Frequencies
Estimation

Dominant
Frequencies

Transformation
Parameter

Feature Extraction

Transformed
Time Series

Dominant
Frequencies

STL
Decomposition Trend

Season
IrregularFourier Series

Extraction
Fourier
Terms

Action ArtifactInput OutputLegend

Model Building

Trend
Removal

De-trended
Time Series

Transformed
Time Series Fourier Terms

Trend XGBoost
TrainingTarget

Feature

Model

Feature

Season

Action ArtifactInput OutputLegend

Forecasting

Trend

Fourier Terms

Season

Pattern
Forecast Future

Fourier Terms

Future Season

Model

ARIMA
Forecast

Future
Trend

Prediction

Features

Future
De-trended TS

Trend
Addition

Future Transf.
Time Series

Action ArtifactInput OutputLegend

Postprocessing

Action Input OutputLegend

Future Transf.
Time Series

Inv. Box-Cox
Transformation

Future
Time Series

Transformation
Parameter

Model Building

Trend
Removal

De-trended
Time Series

Transformed
Time Series Fourier Terms

Trend ML Method
TrainingTarget

Feature

Model

Feature

Season

Action ArtifactInput OutputLegend

Recommend
ML Method

Machine Learning
Method

Recommendation

TS Characteristics
Extraction

Time Series
Characteristics

De-trended
Time Series

Machine
Learning Method

Action ArtifactInput OutputLegend

Selection
Rules Recommendation

Features

Offline Training

Time Series
Generation

Set of De-trended
Time Series

Set of
Time Series

Selection
Rules

Action ArtifactInput OutputLegend

 Basel-Level Methods
Evaluation

Time Series
Processing

Forecasting
Results

Time Series
Characteristics

Meta-Level Attributes
Extraction

Extended Set of
Time Series

Rule Generation

Build Meta-Level
Data Set

Meta-Level
Data Set

Set of Time Series
Features

Figure 8.2: Feature extraction phase of Telescope.

hikari and Agrawal, 2013). To handle the non-stationarity, the core idea of
Telescope is to decompose the time series and then deal with each part sep-
arately. To this end, the Transformed Time Series is split into its components
Trend, Season, and Irregular with STL (see Section 2.3.1). For the decomposition
task, the most dominant frequency is used to specify the length of the seasonal
pattern and the extraction of the pattern is set to periodic, that is, we assume
that the seasonal pattern does not evolve over time. Although STL can only
deal with an additive relationship between the components of a time series, it
is not examined whether the time series follows an additive or multiplicative
decomposition. More precisely, we assume that the Box-Cox transformation in
the Preprocessing phase has minimized or removed the multiplicative effects.
The extracted features of this phase that are forwarded to both the Model

Building and the Forecasting phase comprise the Fourier Terms, Trend, and Season.
Note that the irregular part of the time series is not considered as a feature
since each feature has to be forecast; however, the irregular part is inherently
impossible to forecast.

8.4 Model Building

In the third phase called Model Building, the model that reflects the time series
is build on the inputs Transformed Time Series, Trend, Fourier Terms, and Season.
To build a suitable model describing the time series, we apply machine learning
for finding the relationship between the time series and the intrinsic features.
In a time-critical scenario, that is, the forecast is required with a reliable time-to-
result, Telescope implements XGBoost (see Section 3.2.5) as regression-based
machine learning method. We choose XGBoost since boosting tree algorithms
are time-efficient, accurate, and easy to interpret (Ke et al., 2017). Moreover, we

98

8.4 Model Building

excluded other methods like SVM, Random Forest, or artificial neural networks
due to their unfeasible run-time (Makridakis et al., 2018a). In a scenario where
the time-to-result is negligible, Telescope uses its recommendation system
according to RQ 5 for selecting the most appropriate regression-based machine
learning method for the given time series.

8.4.1 Time-Critical Scenario

Figure 8.3, which has the same structure as Figure 8.1, shows theModel Building
phase in a time-critical scenario. As a strong trend both increases the variance
and violates stationarity, the trend introduces challenges for themodel building.
To this end, the first step is the removal of the trend from the time series. The
resulting De-trended Time Series is now trend-stationary. Although seasonality
can also violate stationarity, machine learning methods are suitable for pattern
recognition (Dietterich, 2002). Consequently, XGBoost learns during its train-
ing procedure how the De-trended Time Series can be described by the intrinsic
features Fourier Terms and Season. More formally, the XGBoost model can be
mathematically written as

f(Y T (t), S(t), {sin (2πνit)}mi=1, {cos (2πνit)}mi=1) := Ŷ T (t) + εt, (8.2)

where Y T (t) is the de-trended time series, Ŷ T (t) the estimation of Y T (t), S(t)
the seasonal component, εt the estimation error term, and the sinusoids terms
represent the Fourier terms of the m most dominant frequencies νi. Note
that the irregular part of the time series is not explicitly considered a feature
to reduce the model error and later the forecast error. That is, the machine
learning method learns the irregular part as the difference that is missing to
fully recreate the de-trended time series. Finally, the Model describing the time
series is forwarded to the Forecasting phase.

8.4.2 Non-Time-Critical Scenario

TheModel Building phase in a non-time-critical scenario, which is depicted in
Figure 8.4, is identical to the phase in a time-critical scenario, with the exception
that no fixed machine learning method is used. In other words, the machine
learning method is selected based on the time series. To this end, theDe-trended
Time Series is passed to the recommendation system that extracts characteristics
of the time series. Based on these characteristics, the most suitable machine
learning method is selected and used to learn how the intrinsic features can de-
scribe the time series. The details of the recommendation system are described
in Section 8.8.

99

Chapter 8: Automated Hybrid Forecasting Approach

Preprocessing

Action Input OutputLegend

Time Series Box-Cox
Transformation

Transformed
Time Series

Frequencies
Estimation

Dominant
Frequencies

Transformation
Parameter

Feature Extraction

Transformed
Time Series

Dominant
Frequencies

STL
Decomposition Trend

Season
IrregularFourier Series

Extraction
Fourier
Terms

Action ArtifactInput OutputLegend

Model Building

Trend
Removal

De-trended
Time Series

Transformed
Time Series Fourier Terms

Trend XGBoost
TrainingTarget

Feature

Model

Feature

Season

Action ArtifactInput OutputLegend

Forecasting

Trend

Fourier Terms

Season

Pattern
Forecast Future

Fourier Terms

Future Season

Model

ARIMA
Forecast

Future
Trend

Prediction

Features

Future
De-trended TS

Trend
Addition

Future Transf.
Time Series

Action ArtifactInput OutputLegend

Postprocessing

Action Input OutputLegend

Future Transf.
Time Series

Inv. Box-Cox
Transformation

Future
Time Series

Transformation
Parameter

Model Building

Trend
Removal

De-trended
Time Series

Transformed
Time Series Fourier Terms

Trend ML Method
TrainingTarget

Feature

Model

Feature

Season

Action ArtifactInput OutputLegend

Recommend
ML Method

Machine Learning
Method

Recommendation

TS Characteristics
Extraction

Time Series
Characteristics

De-trended
Time Series

Machine
Learning Method

Action ArtifactInput OutputLegend

Selection
Rules Recommendation

Features

Offline Training

Time Series
Generation

Set of De-trended
Time Series

Set of
Time Series

Selection
Rules

Action ArtifactInput OutputLegend

 Basel-Level Methods
Evaluation

Time Series
Processing

Forecasting
Results

Time Series
Characteristics

Meta-Level Attributes
Extraction

Extended Set of
Time Series

Rule Generation

Build Meta-Level
Data Set

Meta-Level
Data Set

Set of Time Series
Features

Figure 8.3: Model building phase of Telescope in a time-critical scenario.

Preprocessing

Action Input OutputLegend

Time Series Box-Cox
Transformation

Transformed
Time Series

Frequencies
Estimation

Dominant
Frequencies

Transformation
Parameter

Feature Extraction

Transformed
Time Series

Dominant
Frequencies

STL
Decomposition Trend

Season
IrregularFourier Series

Extraction
Fourier
Terms

Action ArtifactInput OutputLegend

Model Building

Trend
Removal

De-trended
Time Series

Transformed
Time Series Fourier Terms

Trend XGBoost
TrainingTarget

Feature

Model

Feature

Season

Action ArtifactInput OutputLegend

Forecasting

Trend

Fourier Terms

Season

Pattern
Forecast Future

Fourier Terms

Future Season

Model

ARIMA
Forecast

Future
Trend

Prediction

Features

Future
De-trended TS

Trend
Addition

Future Transf.
Time Series

Action ArtifactInput OutputLegend

Postprocessing

Action Input OutputLegend

Future Transf.
Time Series

Inv. Box-Cox
Transformation

Future
Time Series

Transformation
Parameter

Model Building

Trend
Removal

De-trended
Time Series

Transformed
Time Series Fourier Terms

Trend ML Method
TrainingTarget

Feature

Model

Feature

Season

Action ArtifactInput OutputLegend

Recommend
ML Method

Machine Learning
Method

Recommendation

TS Characteristics
Extraction

Time Series
Characteristics

De-trended
Time Series

Machine
Learning Method

Action ArtifactInput OutputLegend

Selection
Rules Recommendation

Features

Offline Training

Time Series
Generation

Set of De-trended
Time Series

Set of
Time Series

Selection
Rules

Action ArtifactInput OutputLegend

 Basel-Level Methods
Evaluation

Time Series
Processing

Forecasting
Results

Time Series
Characteristics

Meta-Level Attributes
Extraction

Extended Set of
Time Series

Rule Generation

Build Meta-Level
Data Set

Meta-Level
Data Set

Set of Time Series
Features

Figure 8.4: Model building phase of Telescope in a non-time-critical scenario.

8.5 Forecasting

In the Forecasting phase, which is illustrated in Figure 8.5 (same structure as
Figure 8.1), the different components are forecast separately and then, the
future time series is assembled. To this end, this phase gets as input the Trend,
Fourier Terms, Season as well as theModel. As the Season and the Fourier Terms
are recurring patterns per definition, they can be merely continued. More
precisely, the seasonal pattern and each Fourier terms is forecast for the time
n+ k as follows

ŷn+k|n := yn+k−m·(b k−1
m
c+1), (8.3)

where yt is the observations at time t, n the number of historical observations,m
the length of the associated period, and the forecast horizon k being a positive
integer. The resulting Future Season and Future Fourier Terms are used as features

100

8.5 Forecasting

Preprocessing

Action Input OutputLegend

Time Series Box-Cox
Transformation

Transformed
Time Series

Frequencies
Estimation

Dominant
Frequencies

Transformation
Parameter

Feature Extraction

Transformed
Time Series

Dominant
Frequencies

STL
Decomposition Trend

Season
IrregularFourier Series

Extraction
Fourier
Terms

Action ArtifactInput OutputLegend

Model Building

Trend
Removal

De-trended
Time Series

Transformed
Time Series Fourier Terms

Trend XGBoost
TrainingTarget

Feature

Model

Feature

Season

Action ArtifactInput OutputLegend

Forecasting

Trend

Fourier Terms

Season

Pattern
Forecast Future

Fourier Terms

Future Season

Model

ARIMA
Forecast

Future
Trend

Prediction

Features

Future
De-trended TS

Trend
Addition

Future Transf.
Time Series

Action ArtifactInput OutputLegend

Postprocessing

Action Input OutputLegend

Future Transf.
Time Series

Inv. Box-Cox
Transformation

Future
Time Series

Transformation
Parameter

Model Building

Trend
Removal

De-trended
Time Series

Transformed
Time Series Fourier Terms

Trend ML Method
TrainingTarget

Feature

Model

Feature

Season

Action ArtifactInput OutputLegend

Recommend
ML Method

Machine Learning
Method

Recommendation

TS Characteristics
Extraction

Time Series
Characteristics

De-trended
Time Series

Machine
Learning Method

Action ArtifactInput OutputLegend

Selection
Rules Recommendation

Features

Offline Training

Time Series
Generation

Set of De-trended
Time Series

Set of
Time Series

Selection
Rules

Action ArtifactInput OutputLegend

 Basel-Level Methods
Evaluation

Time Series
Processing

Forecasting
Results

Time Series
Characteristics

Meta-Level Attributes
Extraction

Extended Set of
Time Series

Rule Generation

Build Meta-Level
Data Set

Meta-Level
Data Set

Set of Time Series
Features

Figure 8.5: Forecasting phase of Telescope.

in conjunctionwith theModel for predicting the future de-detrended time series.
More precisely, themachine learningmethod regresses a newvalue of the Future
De-trended TS for each point in time of the forecast based on the corresponding
values of the features.

In parallel to the forecast of the recurring patterns, the trend is also forecast.
Since the Trend contains no recurring patterns, an advanced forecasting method
is required to forecast the Future Trend. To this end, we apply ARIMA (see
Section 3.1.4) as it is able to estimate the trend even from a few points. More
precisely, we apply auto.arima4 (Hyndman and Khandakar, 2008) that auto-
matically finds the most suitable model parameters for a time series. However,
before the trend can be forecast, the trend type has to be determined. We
assume either a linear or exponential trend. The detailed procedure is depicted
in Algorithm 8.3 and gets the trend t and the forecast horizon h as input. As the
trend is logarithmized (Line 2), the trendmust only contain values greater than
zero. To this end, the trend is shifted along the vertical axis (see Equation 8.1)
if there is at least one value less than or equal to zero. Then, a linear model is
fitted to the positive trend as well as to the logarithmized5 trend (Line 3–5).
Afterwards, the RMSE (see Section 3.3.1) is calculated for both the linear and
exponential trend model. If the RSME of the linear model is less than the
RSME of the exponential model, Telescope assumes that the trend is linear, and
the trend is forecast while applying ARIMA to the original trend (Line 8–9).
4Auto.arima conducts a search over possible sARIMA and ARIMA models.
5If the trend is exponential, the logarithmized trend results in a linear trend.

101

Chapter 8: Automated Hybrid Forecasting Approach

Otherwise, the trend is assumed to be exponential. The logarithmized trend is
forecast, and the exponential function is applied to re-transform the forecast
trend. Moreover, if the original trend was shifted to be positive, the forecast
trend is shifted back (Line 10–13). Finally, the Future Trend is returned.

After the trend is forecast, the last step of this phase is assembling the forecast
of the time series. To this end, the Future De-trended TS and the Future Trend are
summed up. The resulting Future Transf. Time Series is then forwarded to the
Postprocessing phase.

Algorithm 8.3: ARIMA Forecast.
Input: Trend t, horizon h
Result: Forecast of t

1 t_pos = shiftTrend(t) // see Equation 8.1

2 t_log = log(t_pos) // logarithmize the trend

3 x = 1 to length(t)
4 fit_lin = fitLinearModel(t_pos, x)
5 fit_exp = fitLinearModel(t_log, x)
6 rsme_lin = RMSE(t_pos, fit_lin.fitted()) // see Section 3.3.1

7 rsme_exp = RMSE(t_pos, exp(fit_exp.fitted())) // exp(log(a)) = a

8 if rsme_lin < rsme_exp then // RSME indicates a linear trend

9 forecast = ARIMA(t, h)
10 else // RSME indicates an exponential trend

11 forecast = exp(ARIMA(t_log, h))
12 forecast = deShiftTrend(forecast, t)
13 end
14 return forecast

8.6 Postprocessing

The last phase of Telescope is called Postprocessing and its workflow is depicted
in Figure 8.6, which has the same structure as Figure 8.1. As the name sug-
gests, this phase is the counterpart of the Preprocessing step. More precisely, it
gets as input the Future Transf. Time Series from the Forecasting phase and the
Transformation Parameter from the Preprocessing phase. As the time series was
adjusted with the Box-Cox transformation, the Future Transformed Time Series
has to be re-transformed with the identical transformation parameter from the
Preprocessing phase. To this end, the inverse Box-Cox transformation with the
Transformation Parameter is applied to the Future Transformed Time Series. If the

102

8.7 Fallback for Non-Seasonal Time Series

time series was shifted along the vertical axis in the first phase, the time series
also has to be moved back. Finally, the forecast of the original time series is
returned.

Preprocessing

Action Input OutputLegend

Time Series Box-Cox
Transformation

Transformed
Time Series

Frequencies
Estimation

Dominant
Frequencies

Transformation
Parameter

Feature Extraction

Transformed
Time Series

Dominant
Frequencies

STL
Decomposition Trend

Season
IrregularFourier Series

Extraction
Fourier
Terms

Action ArtifactInput OutputLegend

Model Building

Trend
Removal

De-trended
Time Series

Transformed
Time Series Fourier Terms

Trend XGBoost
TrainingTarget

Feature

Model

Feature

Season

Action ArtifactInput OutputLegend

Forecasting

Trend

Fourier Terms

Season

Pattern
Forecast Future

Fourier Terms

Future Season

Model

ARIMA
Forecast

Future
Trend

Prediction

Features

Future
De-trended TS

Trend
Addition

Future Transf.
Time Series

Action ArtifactInput OutputLegend

Postprocessing

Action Input OutputLegend

Future Transf.
Time Series

Inv. Box-Cox
Transformation

Future
Time Series

Transformation
Parameter

Model Building

Trend
Removal

De-trended
Time Series

Transformed
Time Series Fourier Terms

Trend ML Method
TrainingTarget

Feature

Model

Feature

Season

Action ArtifactInput OutputLegend

Recommend
ML Method

Machine Learning
Method

Recommendation

TS Characteristics
Extraction

Time Series
Characteristics

De-trended
Time Series

Machine
Learning Method

Action ArtifactInput OutputLegend

Selection
Rules Recommendation

Features

Offline Training

Time Series
Generation

Set of De-trended
Time Series

Set of
Time Series

Selection
Rules

Action ArtifactInput OutputLegend

 Basel-Level Methods
Evaluation

Time Series
Processing

Forecasting
Results

Time Series
Characteristics

Meta-Level Attributes
Extraction

Extended Set of
Time Series

Rule Generation

Build Meta-Level
Data Set

Meta-Level
Data Set

Set of Time Series
Features

Figure 8.6: Postprocessing phase of Telescope.

8.7 Fallback for Non-Seasonal Time Series

Telescope’s core idea is to detect recurring patterns within a time series and
use this information to retrieve intrinsic features. However, if Telescope has
to forecast a non-seasonal time series, the normal workflow cannot be used
as the time series lacks recurring patterns. Moreover, the integrated STL also
requires a seasonal pattern to decompose the time series into the components:
Trend, Season, and Irregular. Consequently, Telescope requires a fallback for
non-seasonal time series. That is, if the Preprocessing phase returns only the
frequency of 1 as dominant frequency, the Feature Extraction,Model Building, and
Forecasting phase are omitted and the fallback is executed instead. The fallback
receives as input the transformed time series from the Preprocessing phase on
which a non-seasonal ARIMA model is trained. More precisely, auto.arima,
which automatically finds the most suitable model for the time series, is used
for the training. Then, the forecast is performed and the future transformed
time series is forwarded to the Postprocessing phase, in which the time series is
treated as described in Section 8.6.

8.8 Recommendation System for Machine Learning Method

According to the “No-Free-Lunch Theorem”, which – simply spoken – states
that each method has its advantages and weaknesses depending on the specific
use case, it is inadvisable to rely only on one particular method. Typically,
the choice of the optimal forecasting method is based on expert knowledge,

103

Chapter 8: Automated Hybrid Forecasting Approach

which can be expensive, may have a subjective bias, and may take a long time
to deliver results. Consequently, we tackle RQ 5 and automate the selection
of the best regression-based machine learning method for a given time series.
More specifically, we employ a recommendation system based on meta-learning
to select the most appropriate method based on time series characteristics. In
the meta-learning context, the methods, which are available for selection, are
referred to as base-level methods and characteristics on which the selection is
based are called meta-level attributes. The underlying selection problem, the
methods, attributes, and the recommendation approaches are presented in
Section 8.8.1. The employed recommendation system is split in an offline
training phase, which is introduced in Section 8.8.2, and the recommendation
phase (see Section 8.8.3). Moreover, the recommendation system also uses a
time series generator, which is presented in Section 8.8.4, for augmenting the
training set.

8.8.1 Meta-Learning for Method Selection

Before the term meta-learning arose, J. Rice was concerned with the problem
“Which algorithm is likely to be best suited for my problem?” and therefore,
formulated the algorithm selection problem (Rice, 1976). Besides the problem
formulation, an abstract model for dealing with the selection problem was
proposed that comprises four components: (i) the problem space, (ii) the feature
space, (iii) the algorithm space, and the (iv) performance space. Considering this
abstraction (Rice, 1976) and its formal description (Smith-Miles, 2009), we
can coin the problem onto the selection problem of this thesis. The first step
is the framing of the four components of the abstract model to our specific
problem: The problem space Y represents a set of time series; the feature
space F contains measurable time series characteristics of each instance of
Y , calculated by a deterministic extraction procedure; the algorithm space A
is the set of all considered regression-based machine learning methods; the
performance spaceM represents the mapping of each algorithm to the forecast
error measure.

Then, the regression-based machine learning method selection problem that arises
in this thesis can be formally defined as: For a given time series y ∈ Y , with
characteristics f(y) ∈ F , find the selection mapping S(f(y)) into the algorithm
space A, such that the selected algorithm a ∈ Aminimizes the forecast error
measurem(a(y)) ∈M .

104

8.8 Recommendation System for Machine Learning Method

8.8.1.1 Meta-Level Attributes

To have an accurate recommendation system for choosing the most appropriate
regression-based machine learning method for a given time series, a sound
set of characteristics, which describe the time series, is required. To this end,
the considered time series characteristics originate from different sources and
contain own proposed measures. More precisely, the time series characteristics
comprise own proposed measures (O1–O4), statistical information of a time
series (S1–S6), characteristics proposed by Lemke and Gabrys (Lemke and
Gabrys, 2010a) (L1–L4), and characteristics proposed by Wang et al. (Wang
et al., 2009) (W1–W6). In contrast to the work of Wang et al.(Wang et al., 2009),
we use the raw values of the characteristics to avoid arbitrary normalization
factors. The time series characteristics applied to the meta-learning approach
are listed below. Note that these characteristics are only a subset of the original
set, selected by, for example, correlation analysis.

O1 The mean period entropy quantifies the regularity and unpredictability of
fluctuations of the de-trended time series. For this purpose, the approxi-
mate entropy of each full period is calculated and then averaged. More
formally, the mean period entropy is computed as

1

bn/mc

bn/mc∑
i=1

AE(pi), (8.4)

where AE(x) is the approximated entropy (Pincus et al., 1991, p.3), pi
the i-th period, n is the length of the de-trended time series, andm the
length of each period, that is, the frequency of the de-trended time series.

O2 The coefficient of entropy variation describes the standardized entropy dis-
tribution over all periods. To this end, the coefficient of variance of the
approximate entropy of each full period is determined.

O3 The mean cosine similarity states how similar all periods are to each other.
The similarity is expressed with the average cosine similarity of each full
pair of periods. More formally, the mean cosine similarity is calculated as

1∑bn/mc−1
k=1 k

·
bn/mc−1∑
i=1

bn/mc∑
j=i+1

pi · pj
||pi|| · ||pj ||

, (8.5)

where pi is the i-th period, n is the length of the de-trended time series,
andm the frequency of the de-trended time series.

105

Chapter 8: Automated Hybrid Forecasting Approach

O4 The sinus approximation quantifies how well the seasonal pattern of the
time series can be approximated by a sinus wave. To this end, the Durbin-
Watson statistic (Durbin and Watson, 1950) is used to measures the auto-
correlation of the resulting fitted errors. More formally, the sinus approx-
imation is expressed as ∑n

t=2(et − et−1)2∑n
t=1 e

2
t

, (8.6)

where et is the fitted error at time t and n the length of the de-trended
time series.

S1 The frequency specifies the length of the most dominant recurring pattern
(e.g., 365 daily observations in a yearly pattern) within the de-trended
time series. The frequency is estimated while applying a periodogram
(see Section 2.2.2).

S2 The length counts the total number of observations included in the de-
trended time series.

S3 The standard deviationmeasures the amount of variations within the de-
trended time series.

S4 The skewness reflects the symmetry of the value distribution of the de-
trended time series. More formally, the skewness is computed as

1

n · σ3
n∑
t=1

(yst − µ)3, (8.7)

where yst is the de-trended time series at time t, µ the mean of the de-
trended time series, σ the standard deviation of the de-trended time series,
and n the length of the de-trended time series.

S5 The irregular skewness quantifies the skewness of the irregular part of the
time series.

S6 The irregular kurtosis reflects the tailedness of the value distribution of the
irregular part of the de-trended time series. More formally, the irregular
kurtosis can be determined as

1

n · σ4
n∑
t=1

(it − µ)4, (8.8)

106

8.8 Recommendation System for Machine Learning Method

where it is the irregular part of time series at time t, µ the mean of the
irregular part of the time series, σ the standard deviation of the irregular
part of the time series, and n the length of the irregular part.

L1 The 2nd frequency states the second most dominant frequency of the de-
trended time series.

L2 The 3rd frequency refers to the third most dominant frequency of the
de-trended time series.

L3 The maximum spectral value specifies the maximum spectral value of the
periodogram applied to the de-trended time series.

L4 The number of peaks reflects how many strong recurring patterns the de-
trended time series has. More precisely, the number of peaks in the
periodogram that are at least 60% of the maximum value is counted.

W1 The strength of seasonal component measures the degree of the seasonality
within the de-trended time series (see Section 2.4).

W2 The serial correlation describes the correlation of the de-trended time series
with itself to an earlier time. The serial correlation is computed as

n ·
m∑
k=1

rk(Y
s)2, (8.9)

where rk is the auto-correlation coefficient with lag k (see Section 2.4), n
the length of the de-trended time series,m the frequency of the de-trended
time series, and Y s the de-trended time series.

W3 The irregular serial correlation states the serial correlation of the irregular
part of the time series.

W4 The non-linearity quantifies the degree of the non-linearity of the de-
trended time series (see Section 2.4).

W5 The irregular non-linearity reflects the degree of the non-linearity of the
irregular part of the time series.

W6 The self-similarity measures how similar the de-trended time series is to a
part of itself (see Section 2.4).

107

Chapter 8: Automated Hybrid Forecasting Approach

8.8.1.2 Base-Level Methods

We only consider machine learning methods to learn how the de-trended time
series can be described with intrinsic time series features. On the one hand,
classical forecasting methods such as ARIMA can typically only process a
time series without additional information. That is, the extracted features (see
Section 8.3) cannot be used by such methods. On the other hand, machine
learning methods can handle any number of features. Consequently, for a
possible extension of our approach with external information, these features
can easily be added. The implemented regression-based machine learning
methods in the meta-learning approach, that is, the base-level methods, are
introduced in Section 3.2 and are briefly described below:

• CART is a regression tree that recursively partitions the data set. To
prevent the tree from becoming too large, the tree is automatically pruned.

• Cubist is a rule-based regression method. More precisely, the rules are
arranged hierarchically, resulting in a treewhere each leaf node represents
a multivariate linear regression model.

• Evtree implements an evolutionary algorithm for constructing a regres-
sion tree that splits the data so that each partition decision is globally
optimal.

• NNetar is a feed-forward neural network consisting of one hidden layer
and is trained with lagged values of the time series. The number of nodes
in the hidden layer and the lags are automatically determined.

• Random forest is an ensemble method comprising multiple regression
trees. Each tree is built independently of the others, and for each split,
only a random subset of the features is considered.

• SVR uses the same principles as SVM.More precisely, a set of hyperplanes
is constructed for separating the data. If the data is not linear in its input
space, the values are mapped into a higher dimensional feature space.

• XGBoost is an ensemble method consisting of multiple regression trees
and uses gradient tree boosting. That is, each tree is grown with knowl-
edge from the last trained tree.

The selection contains the seven best-performing methods during preliminary
experiments. The methods consist of five tree-based machine learning algo-
rithms, a neural network, and a support vector regression method. The focus

108

8.8 Recommendation System for Machine Learning Method

of the tree-based methods can be explained by the fact that classification and
regression trees are broadly used machine learning methods due to their bene-
fits: (i) white-box modeling, (ii) extraction of interpretable results, (iii) simple
decisions, and (iv) fast time-to-result. More precisely, we choose these methods
as they are generic and can be applied out-of-the-box.

8.8.1.3 Rule Generation Approaches

To recommend themost appropriate regression-basedmachine learningmethod
for a given time series, we propose two different methods: (i) a classification-
based rule generation approachAC , and (ii) a regression-based rule generation
approach AR. Both approaches have in common that a random forest6 (see
Section 3.2.4) is used for learning how meta-level attributes (i.e., time series
characteristics) can be mapped to the performance of the base-level methods
(i.e., regression-based machine learning methods).

Matrix of meta-
level attributes

Forecast results of
base-level methods

1

n

...

Best
methods

Determine

best accuracy

Classification

Random forest
model

Random forest
model

Matrix of meta-
level attributes

Prediction

Best
methods

T

V

Offline Training

Online Prediction

Figure 8.7: Schematic process of the rule generation (classification).

6The choice of random forest for the recommendation is based on the extensive experiments in
which these combinations yielded the best results.

109

Chapter 8: Automated Hybrid Forecasting Approach

The idea of the first approach AC is to map the time series characteristics
of a given time series to the regression-based machine learning method with
the best accuracy. The schematic workflow of this approach is illustrated in
Figure 8.7. In the first step, the forecast results of the base-level methods (see
Section 8.8.2) are investigated. Then, a vector is formed containing the most
accurate base-level method for each time series. A random forest model is
trained based on this vector and the meta-level attributes of each time series.
More specifically, a random forest performs a multinomial classification, where
themeta-level attributes are the features and the best base-level methods are the
target. That is, the resulting model reflects the rules for selecting a base-level
method for a specific time series. After the rule generation, the meta-level
attributes of new time series can be injected into the model to return the most
appropriate base-level methods for each time series.

Matrix of meta-
level attributes

Forecast results of
base-level methods

1

n

...

Determine

best accuracy

Regression

Random forest
models

Random forest
models

Matrix of meta-
level attributes

Prediction

Best
methods

T

V

1 n

...

1

n

...

Estimated
accuracies

1 n

...

Offline Training

Online Prediction

Figure 8.8: Schematic process of the rule generation (regression).

In contrast to the classification-based rule generation, the second approach
AR, as illustrated in Figure 8.8, is based on more than just one method. That is,
the idea of this approach is to train a random forest for each base-level method.
Each model estimates the forecast accuracy for a given time series. Then, the
method that has the best accuracy based on the estimations is selected. More

110

8.8 Recommendation System for Machine Learning Method

precisely, the approach calculates for each base-level method and each time
series how worse it is compared to the method with the best forecast accuracy.
We reflect this deterioration with the forecast accuracy degradation that can be
calculated as

ϑi :=
εi

min(ε1, . . . , εn)
, (8.10)

where εi is the forecast accuracy of the i-th method and n is the number of
considered methods. The values of ϑi lie in the interval [1,∞), where 1 in-
dicates that this method has the best forecast accuracy. After the calculation
of the degradation, a random forest is used as regressor for each base-level
method, where the meta-level attributes are the features and the forecast accu-
racy degradation vector of the respective method is the target. In other words,
the regression task leads to n random forest models, each reflecting the estimate
of the forecast accuracy degradation compared to the best method for a given
time series. After the training, the meta-level attributes of new time series can
be fed to each of the random forest models. Based on these attributes, each
model estimates the forecast accuracy degradation vector. Then, the base-level
methods with the lowest estimated forecast accuracy degradation are returned
for each time series.

8.8.2 O�ine Training

In the Offline Training phase, which is depicted in Figure 8.9 (orange, rounded
boxes represent actions, white boxes artifacts, green hexagons the input of a
phase, and blue trapezoids the output of a phase), the rules for recommending
a specific method based on time series characteristics are learned or updated
either when Telescope is started or when no forecast is currently being con-
ducted. To this end, this phase gets a Set of Time Series as input. To retrieve
precise rules for the recommendation of the most appropriate regression-based
machine learning method for a given time series, a set of time series which
may be similar to this time series is required. Therefore, Telescope generates n
new time series based on the initial set of time series in this phase. The time
series generation is explained in Section 8.8.4 and the parameter n is set in
our experiments (see Chapter 10) to 10,000. As the machine learning method
has to learn how the de-trended time series can be described by the intrinsic
features (see Section 8.4), each time series in the Extended Set of Time Series,
which comprises the initial time series and the newly generate time series, has
to be de-trended. For this purpose, each time series is processed as described
in the Sections 8.2, 8.3, and 8.4. That is, each time series is transformed with the
Box-Cox transformation, de-trended, and the intrinsic features are extracted.

111

Chapter 8: Automated Hybrid Forecasting Approach

Preprocessing

Action Input OutputLegend

Time Series Box-Cox
Transformation

Transformed
Time Series

Frequencies
Estimation

Dominant
Frequencies

Transformation
Parameter

Feature Extraction

Transformed
Time Series

Dominant
Frequencies

STL
Decomposition Trend

Season
IrregularFourier Series

Extraction
Fourier
Terms

Action ArtifactInput OutputLegend

Model Building

Trend
Removal

De-trended
Time Series

Transformed
Time Series Fourier Terms

Trend XGBoost
TrainingTarget

Feature

Model

Feature

Season

Action ArtifactInput OutputLegend

Forecasting

Trend

Fourier Terms

Season

Pattern
Forecast Future

Fourier Terms

Future Season

Model

ARIMA
Forecast

Future
Trend

Prediction

Features

Future
De-trended TS

Trend
Addition

Future Transf.
Time Series

Action ArtifactInput OutputLegend

Postprocessing

Action Input OutputLegend

Future Transf.
Time Series

Inv. Box-Cox
Transformation

Future
Time Series

Transformation
Parameter

Model Building

Trend
Removal

De-trended
Time Series

Transformed
Time Series Fourier Terms

Trend ML Method
TrainingTarget

Feature

Model

Feature

Season

Action ArtifactInput OutputLegend

Recommend
ML Method

Machine Learning
Method

Recommendation

TS Characteristics
Extraction

Time Series
Characteristics

De-trended
Time Series

Machine
Learning Method

Action ArtifactInput OutputLegend

Selection
Rules Recommendation

Features

Offline Training

Time Series
Generation

Set of De-trended
Time Series

Set of
Time Series

Selection
Rules

Action ArtifactInput OutputLegend

Basel-Level Methods
Evaluation

Time Series
Processing

Forecasting
Results

Time Series
Characteristics

Meta-Level Attributes
Extraction

Extended Set of
Time Series

Rule Generation

Build Meta-Level
Data Set

Meta-Level
Data Set

Set of Time Series
Features

Figure 8.9: Offline training phase of Telescope.

In the Base-Level Methods Evaluation step, each base-level method (see Sec-
tion 8.8.1.2) is trained and evaluated on every de-trended time series and its
associated intrinsic features (Fourier terms and seasonal pattern). To this end,
the time series is split into history (the first 80% of the time series) and in
future/test (the remaining 20%). In parallel, the time series characteristics (see
Section 8.8.1.1) of each de-trended time series are extracted. The Forecasting
results from the Base-Level Methods Evaluation, in this case the sMAPE (see Sec-
tion 3.3.2), and the Time Series Characteristics are used to form the Meta-Level
Data Set. This data set is used in the Rule Generation (see Section 8.8.1.3) step
to retrieve the rules for the recommendation of the best suited method. The
Selection Rules are returned and stored so that the Recommendation phase can
access them when executed.

8.8.3 Recommendation

In the case that Telescope forecasts a time series in a non-time-critical scenario
(see Section 8.4), the regression-based machine learning method is selected
based on the characteristics of the given time series. The selection process takes
place in the Recommendation phase, which is illustrated in Figure 8.10 (same
structure as Figure 8.9). This phase gets the De-Trended Time Series from the
Model Building phase as input and loads the Selection Rules. In the first step, the
characteristics (see Section 8.8.1.1) of the de-trended time series are extracted.
Then, the selection rules are applied on the Time Series Characteristics and the

112

8.8 Recommendation System for Machine Learning Method

Preprocessing

Action Input OutputLegend

Time Series Box-Cox
Transformation

Transformed
Time Series

Frequencies
Estimation

Dominant
Frequencies

Transformation
Parameter

Feature Extraction

Transformed
Time Series

Dominant
Frequencies

STL
Decomposition Trend

Season
IrregularFourier Series

Extraction
Fourier
Terms

Action ArtifactInput OutputLegend

Model Building

Trend
Removal

De-trended
Time Series

Transformed
Time Series Fourier Terms

Trend XGBoost
TrainingTarget

Feature

Model

Feature

Season

Action ArtifactInput OutputLegend

Forecasting

Trend

Fourier Terms

Season

Pattern
Forecast Future

Fourier Terms

Future Season

Model

ARIMA
Forecast

Future
Trend

Prediction

Features

Future
De-trended TS

Trend
Addition

Future Transf.
Time Series

Action ArtifactInput OutputLegend

Postprocessing

Action Input OutputLegend

Future Transf.
Time Series

Inv. Box-Cox
Transformation

Future
Time Series

Transformation
Parameter

Model Building

Trend
Removal

De-trended
Time Series

Transformed
Time Series Fourier Terms

Trend ML Method
TrainingTarget

Feature

Model

Feature

Season

Action ArtifactInput OutputLegend

Recommend
ML Method

Machine Learning
Method

Recommendation

TS Characteristics
Extraction

Time Series
Characteristics

De-trended
Time Series

Machine
Learning Method

Action ArtifactInput OutputLegend

Selection
Rules Recommendation

Features

Offline Training

Time Series
Generation

Set of De-trended
Time Series

Set of
Time Series

Selection
Rules

Action ArtifactInput OutputLegend

Basel-Level Methods
Evaluation

Time Series
Processing

Forecasting
Results

Time Series
Characteristics

Meta-Level Attributes
Extraction

Extended Set of
Time Series

Rule Generation

Build Meta-Level
Data Set

Meta-Level
Data Set

Set of Time Series
Features

Figure 8.10: Recommendation phase of Telescope.

resulting regression-based machine learning method is returned to theModel
Building phase.

8.8.4 Time Series Generator

In general, machine learning only works well if the training and test sets exhibit
the same characteristics. In other words, the training set should be as represen-
tative as possible of the process that created both the training set and the test
set. In the context of recommending the most appropriate machine learning
method for a given time series, we assume an infinite time series population,
from which both the original set of time series and the time series to be forecast
originate. Following the premise of machine learning and to be independent of
the initial set of time series, Telescope generates based on the initial set a large
number of new time series. On the one hand, the generation is done to increase
the size of the training set and, on the other hand, to ensure that the time series
characteristics are distributed as widely as possible to be as representative as
possible of the assumed population. An example output of the time series
generation is illustrated in Figure 8.11. The first row shows the initial set of
time series (see Section 2.1.1 and 2.3.2 for the descriptions of these time series)
while the remaining rows show the time series that were randomly generated
based on the initial time series. It can be seen that all newly created time series
exhibit a different length, seasonal pattern, and/or trend behavior.
The procedure of the time series generation is presented in Algorithm 8.4

and gets the initial list of time series list and the number of time series to be
generated n. The algorithm is probabilistic and, unless otherwise specified,
each random draw is carried out according to a discrete uniform distribution.
The time series generation takes place in a loop (Line 2–28), which is repeated
until n valid time series are generated. In the first step, three time series are
drawn from the initial set of time series (Line 3). As the drawing of a time

113

Chapter 8: Automated Hybrid Forecasting Approach

200

400

600

0 50 100 150

Input Time Series 1

0

50

100

150

200

250

0 1000 2000

Input Time Series 2

320

330

340

350

360

0 100 200 300 400

Input Time Series 3

0

50

100

150

200

250

0 1000 2000

Output Time Series 1

−40

−35

−30

−25

−20

0 100 200 300 400

Output Time Series 2

49

51

53

0 50 100

Output Time Series 3

−50

0

50

100

0 20 40 60 80

Output Time Series 4

−50

0

50

0 100 200 300 400

Output Time Series 5

100

150

200

250

0 10 20 30 40 50

Output Time Series 6

Figure 8.11: Example of six generated time series.

series follows a discrete uniform distribution, it is possible to select the same
time series three times. Then, each drawn time series is decomposed with STL
(see Section 2.3.1) and the seasonal component of the first time series, the trend
component of the second time series, and the irregular part of the last time se-
ries are extracted (Line 4–6). During the STL decomposition, the window size
of the trend extraction is set randomly, leading to a (slightly) different decom-
position in each case. Depending on a random Boolean ∼ B(13) (i.e., Bernoulli
distribution with a one-third probability of success), the trend is reduced to a
random segment (Line 7–10). The start and end of the segment are randomly
drawn from the indices of the trend component. Similar to the trend compo-
nent, the irregular part can also be reduced to a random segment (Line 11–14),
depending on a random Boolean∼ B(12). In contrast to the trend and irregular
component, the random segment selection is omitted for the season component
as it is per definition a reoccurring pattern. However, the seasonal pattern is
compressed with a probability of 50% (Line 15–19). In the case of compression,

114

8.8 Recommendation System for Machine Learning Method

Algorithm 8.4: Time Series Generation.
Input: List of time series list, number of new time series n
Result: List with n new time series

1 new_list = []
2 while length(new_list) < n do
3 [ts1, ts2, ts3] = drawRandomTS(list) // ∼ U(0, |list| − 1)

4 season = stlGetSeason(ts1) // decomposes the time series and gets the

corresponding component

5 trend = stlGetTrend(ts2)
6 irreg = stlGetIrregular(ts3)
7 if getRandomBoolean() then // ∼ B(1

3
)

8 indices = getRandomInt(length(trend), 2) // ∼ U(0, |trend| − 1)

9 trend = trend[min(indizies) to max(indizies)]
10 end
11 if getRandomBoolean() then // ∼ B(1

3
)

12 indices = getRandomInt(length(irreg), 2) // ∼ U(0, |irreg| − 1)

13 irreg = irreg[min(indizies) to max(indizies)]
14 end
15 if getRandomBoolean() then // ∼ B(1

2
)

16 freqs = getDivisors(frequency(season))
17 freq = getRandomInt(freqs, 1) // ∼ U(0, |freqs| − 1)

18 season = compressPattern(season, freq)
19 end
20 if getRandomBoolean() then // ∼ B(1

2
)

21 trend = adjustTrend(trend) // increases, decreases, inverts, or

removes slope of the trend

22 end
23 irreg =MBB(irreg) // moving block bootstrapping

24 ts = assembleTS(season, trend, irreg)
25 if isValid(ts) then
26 new_list.append(ts)
27 end
28 end
29 return new_list

the divisors (except 1) of the frequency of the time series are calculated and
one divisor is randomly drawn (Line 16–17). Based on this drawn frequency,
the seasonal pattern is squeezed. More precisely, the original seasonal pattern

115

Chapter 8: Automated Hybrid Forecasting Approach

is aggregated so that the length of the seasonal pattern corresponds to the
new frequency. Again, depending on a random Boolean ∼ B(12), the trend
component is adjusted (Line 20–22). More precisely, the trend is approximated
with a linear function. The resulting slope is then multiplied with a random
value drawn from [−2; 1) ∪ (1; 2]. That is, the slope is either made steeper,
flattened, inverted, or set to zero. Afterward, the residuals of the fit and the
adjusted slope are summed up to form the new trend (Line 21). In the last step
before assembling the new time series, a new irregular component is created
based on the original irregular part (Line 23). More precisely, the irregular part
is bootstrapped with a moving block bootstrapping (Bergmeir et al., 2016). In
short, random segments with a fixed length (in our case, the minimum of 25%
of the length of the irregular part and the frequency of seasonal component)
are drawn and attached to each other, forming a new irregular part (illustrated
in Figure 8.12). An example of the moving block bootstrapping is illustrated
in Figure 8.12. In the last step, the three components are assembled to a new
time series (Line 24), and if the generated time series is valid (Line 25–27),
it is added to the list of new time series. As the three components may have
different lengths, the resulting time series’ length is equal to either the length
of the trend or the irregular component, depending on which component is
shorter. That is, either the irregular part or the trend part is shortened. The
seasonal component is either also shortened or simply continued for the length
of the new time series. The generated time series is considered valid if the
length is greater than two times the frequency plus one and is unique in the set
of time series. STL introduces the restriction regarding the length as it requires
at least two full seasonal patterns. Time series classified as invalid are discarded.
After n new time series are generated, the list of new time series is returned.

8.9 Assumptions and Limitations

In the development of Telescope, we limit ourselves to univariate time series.
In fact, correlated/external data can be used for each time series to improve
forecast accuracy. However, the selection and preprocessing of such addi-
tional information require domain knowledge. In other words, this knowledge
about domain-specific feature engineering cannot yet be fully automated. Con-
sequently, our method would have to be tailored to a specific domain and,
therefore, contradict the goal of a generic forecasting approach. Besides this
limitation, Telescope has the following assumptions that are either based on
the integrated tools or design decisions: (i) The time series must not contain
missing values, and each value must be numeric. Indeed, missing values can

116

8.9 Assumptions and Limitations

−60

−40

−20

0

20

40

0 25 50 75 100 125
Index

Seg. 1
Seg. 10

Seg. 11
Seg. 2

Seg. 3
Seg. 4

Seg. 5
Seg. 6

Seg. 7
Seg. 8

Seg. 9
Irregular Part

Irregular Part with drawn Segments

−60

−40

−20

0

20

40

0 25 50 75 100 125
Index

New assembled Irregular Part

Figure 8.12: Example moving block bootstrapping of an irregular part of a time
series.

be interpolated. However, if the gaps are large or frequent, the values must be
treated with caution, as they can affect the model’s accuracy. (ii) To use the
whole Telescope approach and not only the fallback, the time series must be
able to be decomposed. That is, the time series have to meet the requirements of
the STL decomposition. (iii) For the recommendation of the most appropriate
regression-based machine learning method, Telescope assumes that the time
series to be forecast and the time series that are used for the training (i.e., the
initial time series set plus the generated time series) originate from the same
population and therefore, have a similar distribution of time series characteris-
tics. In other words, Telescope assumes the rules that are retrieved based on the
training set can also be applied to new time series. (iv) Usually, many systems
are driven by human interactions. In other words, the time series produced or
observed by these systems are subject to human habits (e.g., day/night phases)
and, therefore, seasonal. Consequently, Telescope assumes that the found fre-
quencies within time series are multiples of natural frequencies. (v) We expect
that the seasonal pattern does not evolve over time.

117

Chapter 8: Automated Hybrid Forecasting Approach

8.10 Di�erentiation from Related Work

To delimit Telescope from the related work, we summarize the reviewed hybrid
approaches (see Chapter 5) by listing them in Table 8.1. In this overview,
we distinguish (i) whether the approach can only perform one-step-ahead
forecasts or can forecast several points at once, (ii) if the approach is generic
or is tailored to a special use case, (iii) how many time series were used in the
evaluation, (iv) against how many methods the approach competed, and (v) if
the approach is open-source.

Table 8.1: Overview of related work on hybrid forecasting methods.
Forecasting Method Forecasting Evaluation Open-

Type Generic #Time Series #Competing Methods Source

Telescope multi-step X 400 13 X

(Bates and Granger, 1969) multi-step X 2 5 7

(Adhikari et al., 2015) multi-step X 4 14 7

(Sommer et al., 2016) one-step X 10 8 7

(Cerqueira et al., 2017) multi-step X 14 8 X
(Wang et al., 2018) multi-step 7 1 7 7

(Boulegane et al., 2019) one-step X 55 3 7

(Montero-Manso et al., 2020) multi-step X 100,000 Took place in M4 X
(Collopy and Armstrong, 1992) multi-step 7 126 4 7

(Wang et al., 2009) one-step X 315 No evaluation 7

(Lemke and Gabrys, 2010b) multi-step X 288 18 7

(Widodo and Budi, 2013) multi-step X 3104 5 7

(Kück et al., 2016) multi-step X 111 7 7

(Talagala et al., 2018) multi-step X 4004 16 X
(Zhang et al., 2020) multi-step 7 522 4 7

(Zhang, 2003) multi-step X 3 2 7

(Pai and Lin, 2005) multi-step X 10 2 7

(Liu et al., 2014) multi-step 7 4 1 7

(Khandelwal et al., 2015) multi-step X 4 3 7

(Bergmeir et al., 2016) multi-step 7 2829 1 X
(Zhang et al., 2017) multi-step X 2 3 7

(Panigrahi and Behera, 2017) multi-step X 16 5 7

(Taylor and Letham, 2018) multi-step 7 unkown 4 X
(Saâdaoui and Rabbouch, 2019) multi-step 7 1 3 7

(Saâdaoui et al., 2019) multi-step X 3 3 7

(Smyl, 2020) multi-step 7 100,000 Took place in M4 X

As Telescope is based on time series decomposition and its recommendation
part is only used in non-time-critical scenarios, our approach differs consider-
ably from methods from the field of ensemble forecasting. In contrast to the
methods originating from time series decomposition that use different decom-
position and forecasting techniques, Telescope explicitly decomposes the time
series into trend, season, and irregular part. Also, each part is forecast separately
using different forecasting methods. Furthermore, our method is designed

118

8.11 Concluding Remarks

for long and seasonal time series. In contrast to the recommendation-based
methods that use mainly classical methods, Telescope selects regression-based
machine learning methods based on time series characteristics. Furthermore,
our approach augments the original time series set by generating new time
series from it to increase the data set’s diversity.
In terms of evaluation, the reviewed approach use either subsets of the M-

Competitions (Lemke and Gabrys, 2010b; Widodo and Budi, 2013; Bergmeir
et al., 2016; Kück et al., 2016; Talagala et al., 2018) or a small set of time se-
ries. In contrast, our evaluation data set contains 400 time series showing
different characteristics and originates from various sources (see Section 7.3).
Moreover, most approaches competed with few forecasting methods while
we compare our approach with seven (the best of originally 15) forecasting
methods covering recent hybrid, as well as established machine learning, and
classical forecasting approaches (see Chapter 10). For the ranking of the meth-
ods, usually, only the forecast accuracy is considered. In this work, we consider
both accuracy and time-to-result measures.

8.11 Concluding Remarks

In this chapter, our contribution addresses the research question RQ 3 “How
to design an automated and generic hybrid forecasting approach that combines differ-
ent forecasting methods to compensate for the disadvantages of each technique?” by
considering only the given time series and decomposing the time series into
components, building a forecasting model for each of them. Moreover, Tele-
scope automatically transforms the time series and retrieves features of time
series to increase the accuracy and the information quantity for the model learn-
ing and therefore faces the research question RQ 4 “How to automatically extract
and transform features of the considered time series to increase the forecast accuracy?”.
In a non-time-critical scenario, Telescope tackles the challenge posed by the
“No-Free-Lunch Theorem” by not relying on a single regression-based machine
learning method with its possibly inaccurate forecasts. More precisely, for a
given time series, a recommendation system employs the best suited regression-
based machine learning method for assembling the final forecast. Considering
the research question RQ 5 “What are appropriate strategies to dynamically apply the
most accurate method within the hybrid forecasting approach for a given time series?”,
Telescope implements two different recommendation approaches. To increase
the accuracy of the recommendation and to be independent of the initial set of
time series, Telescope also has a time series generator deployed for generating
numerous new time series with different characteristics based on the initial set.

119

Chapter 9

Forecasting-based Auto-Scaling of Distributed

Cloud Applications

To face the dynamic behavior and requirements of modern applications, cloud
computing emerged as a computing model with a high scalability level. Al-
though there are threshold-based scaling mechanisms such as the auto-scaler
available in Amazon Web Services EC21, business-critical applications in cloud
environments are typically deployed with highly overprovisioned resources to
guarantee reliable service operation. This strategy is pursued to avoid negative
effects of auto-scalingmechanismswith their possibly wrong or delayed scaling
decisions. According to a recent survey (RightScale, 2019), 35% of the cloud
costs are wasted partly because of this strategy.

To increase the industry’s trust in auto-scaling, current research in the scien-
tific community is focused on novel approaches for reliable techniques. The
proposed methods can scale an application reactively or proactively. Both ap-
proaches have specific advantages and disadvantages. Proactive mechanisms
can scale at an early stage of a load spike, but this is typically done based on fore-
casting of the workload intensity, and therefore the quality of such adaptations
depends to a large extent on the accuracy of the employed forecasting method.
This uncertainty may be eliminated with reactive scaling as all adaptations
are made based on actual measurements, but such mechanisms can only react
after a change in the workload occurs. In fact, an auto-scaler can implement
both proactive and reactive mechanisms, but there can be conflicts between
the mechanisms. Consequently, the process that decides which mechanism
should be applied for scaling the application poses a crucial challenge. Another
challenge arises when applications are deployed in a public cloud environment.
Namely, the desired effect of adapting an application in response to workload
changes can lead to high costs. The reason is that the accounted costs and the
charged costs can deviate depending on the cloud provider’s pricing scheme.
To this end, a trade-off has to be considered as an optimal scaling often increases
1Amazon auto-scaler: https://aws.amazon.com/autoscaling/

121

https://aws.amazon.com/autoscaling/

Chapter 9: Forecasting-based Auto-Scaling of Distributed Cloud Applications

the operational costs while cost-optimal decisions may decrease the scaling
performance.

Modern applications are often designed based on a micro-service architec-
ture, and thus they consist of multiple services. To the best of our knowledge,
there is no open-source auto-scaler for applications comprising multiple ser-
vices. Even popular auto-scaling mechanisms such as such as AutoMap (Bel-
trán, 2015), AGILE (Nguyen et al., 2013), and CloudScale (Shen et al., 2011),
are closed-source. To this end, the straightforward implementation of an auto-
scaling mechanism for such applications is to instantiate an open-source in-
dividual single-service auto-scaler for every service. That is, each service is
observed and scaled independently by an auto-scaler. However, this approach
can lead to problems like oscillations and bottleneck shifting. B. Urgaonkar et
al. provide a detailed example of these problems (Urgaonkar et al., 2005).

To tackle the mentioned challenges, we pose ourselves the following research
questions:

RQ 6: What is a meaningful combination of proactive and reactive scaling tech-
niques to minimize the risk of auto-scaling in operation?

RQ 7: How can scaling decisions be adjusted so that the charged costs in a public
cloud environment are minimized?

RQ 8: How to enable coordinated scaling of applications comprising multiple
services?

RQ 9: What are meaningful measures for assessing the quality of coordinated
and cost-aware auto-scaling?

Towards addressing the research questions, our contribution is the design
of Chamulteon. This novel hybrid auto-scaler combines proactive and reactive
techniques to scale distributed cloud applications comprising multiple services
in a coordinated and cost-effectivemanner. Chamulteon is based on our original
auto-scaler Chameleon, which can only scale monolithic applications. More
precisely, the Chameleon approach is preliminary work in collaboration with
Nikolas Herbst and is used as a basis for this contribution. More details on
Chameleon can be found in our previous works (Bauer, 2016; Bauer et al.,
2018b) or in the thesis of N. Herbst (Herbst, 2018).
Chamulteon consists of two independent cycles: (i) The reactive cycle that

monitors the application and scales reactively in short intervals and (ii) the
proactive cycle that predicts the demand at longer intervals for a set of fu-
ture scaling intervals. More precisely, Chamulteon maintains a performance
model of the application, observes and forecasts the request arrival rates with

122

9.1 Overview of the Chamulteon Approach

Telescope (see Chapter 8), and estimates the service time of each service. Fur-
thermore, we propose Fox, a cost-aware computing resource management
approach. Fox serves as a mediator between an application deployed in a pub-
lic cloud and an auto-scaler. The main idea is to proactively plan the resource
allocation and release according to a predefined charging model. To enable
cost-efficient scaling for Chamulteon in public cloud environments, Fox is mod-
ified and integrated into Chamulteon. All proposed approaches are evaluated
in Chapter 11.

The remainder of this chapter2 is organized as follows: Section 9.1 introduces
the overview of Chamulteon, a brief description of the deployed components,
and the changes to the Chameleon3 approach. Section 9.2 explains the decision
making logic of Chamulteon. As Chamulteon leverages both reactive and
proactive scaling decisions, conflicts between the decisions may occur. To
this end, Section 9.3 focuses on the resolution of the possible conflicts. The
cost-aware resource management Fox is introduced in Section 9.4. To evaluate
Chamulteon inChapter 11, Section 9.5 proposes a set ofmeasures to quantify the
quality and cost efficiency of an auto-scaler. The assumptions and limitations of
the contributions of this chapter are summarized in Section 9.6. In Section 9.7,
we differentiate the approach from related work (see Chapter 6). Finally, the
chapter is concluded in Section 9.8.

9.1 Overview of the Chamulteon Approach

Chamulteon is a hybrid auto-scaling mechanism for applications comprising
different services and is based on a redesign and extension of the underlying
architecture and workflow of Chameleon. Chameleon is also an elastic mech-
anism but can only scale monolithic applications. The Chameleon approach
is preliminary work for this thesis and details can be found in our previous
works (Bauer, 2016; Bauer et al., 2018b) or in the thesis of N. Herbst (Herbst,
2018).

The Chamulteon approach consists of five basic components: (i) the controller,
(ii) a performance data repository, (iii) the forecasting component, (iv) the service
demand estimation component, and finally (v) the cost-awareness component. The
central part of Chamulteon is the controller. It communicates with each compo-
nent and is responsible for scaling each service of the application. Moreover, the
2This chapter is based on our previous works (Bauer et al., 2018b; Herbst et al., 2018; Lesch
et al., 2018; Bauer et al., 2019b).

3Note that as Chameleon is a side-contribution and Chamulteon extends this approach, there
is no separate section on Chameleon.

123

Chapter 9: Forecasting-based Auto-Scaling of Distributed Cloud Applications

functionality of the controller is split into two parallel sequences: a reactive cycle
and a proactive cycle. The performance data repository contains a time series
storage, knowledge about the charging model of the cloud platform provider,
and an instance of a descriptive performance model of the dynamically scaled
application based on the Descartes Modeling Language (DML) (Kounev et al.,
2016; Huber et al., 2017). The remaining three components contain external
tools and are described in detail in the following sections. Unlike all other com-
ponents, the cost-awareness component is not mandatory and can be switched
on or off accordingly. The functionality of Chamulteon is depicted in Figure 9.1.
The red lines show the reactive cycle, and the blue dashed lines represent the
proactive cycle. The newly introduced and the changed components – in com-
parison to the original Chameleon approach – are highlighted with a green
dotted line.

has models

R1: monitors
cloud

R3: scales
the applicationP6: scales

application
cost-efficiently

R2: saves
observed data

P1: retrieves
historical data

P2: sends data

Performance Data Repository

Descriptive
Software

Performance
Model

Time Series
Storage

Charging
Model

LibReDE

Service Demand
Estimation
Component

Cloud

</>

Fox

Cost-Awareness
Component

Legend
Proactive Cycle
Reactive Cycle

P5: sends
scaling decisions

P3: sends
forecasts

Controller

Service Management

Service

Service

Service

</>

Telescope

Forecasting
Component

P4: sends
service demands

Figure 9.1: Design overview of Chamulteon.

The reactive cycle comprises three tasks: (R1) The controller communicates
with the cloud management and periodically retrieves data about the current
state of the application and performance measures of the underlying (vir-
tual) hardware at short intervals. To extract the required data, a monitoring
agent (Spinner et al., 2016) is deployed within the application’s runtime en-
vironment. (R2) The gathered information is stored in the performance data

124

9.1 Overview of the Chamulteon Approach

repository for the current time window. (R3) Based on the observed arrival rate
and the service demand (which is estimated in (P4) of the proactive cycle), the
average system utilization for each service is computed according to queueing
theory (see Section 4.1). If the utilization exceeds or falls below a predefined
threshold, the controller decides in accordance with the proactive cycle if the
respective service needs to be scaled.

In contrast to the reactive cycle, the proactive cycle is executed less frequently
as it plans for a set of future scaling intervals. The proactive cycle invokes six ac-
tions: (P1) The controller retrieves the historical information and (P2) forwards
the data to the forecasting component and the service estimation component.
(P3) The arrival rates for the set of future scaling intervals are forecast and
sent to the controller. (P4) The service demand for each service is estimated
and sent to the controller. (P5) The future system utilization for each service
is computed based on the future arrival rates and the service demand. If the
utilization exceeds or falls below a predefined threshold, the controller decides
if the respective service needs to be scaled. (P6) If activated, the cost-awareness
component reviews all planned decisions proposed by the controller and eval-
uates whether they are cost-efficient or not. That is, scaling decisions may be
delayed or omitted to scale the application as cost-efficient as possible.

9.1.1 Forecasting Component

To enable proactive scaling, Chamulteon requires the arrival rates for the next
reconfiguration intervals. To this end, Telescope (see Section 8) is deployed
in this component. More precisely, Telescope forecasts the arrival rates for a
configurable number of future reconfiguration intervals based on the historical
arrival rates observed. To minimize the forecasting overhead, only the arrival
rates for the entry service are forecast. Moreover, this component is only exe-
cuted if an earlier forecast has no more predicted values for future arrival rates
or a configurable drift between the forecast and the recent monitoring data is
detected. To detect the drift between the monitored and forecast values, we
compute the forecast accuracy using the MASE measure (see Section 3.3.3).

9.1.2 Service Demand Estimation Component

Due to instrumentation overheads and possibly measurement interferences,
the measurement of service demands is not feasible during operation (Spinner
et al., 2015). To this end, this component deploys the Library for Resource
Demand Estimation (LibReDE) (Spinner et al., 2014, 2015) for estimating the
service demand. The LibReDE library offers eight different estimation ap-

125

Chapter 9: Forecasting-based Auto-Scaling of Distributed Cloud Applications

proaches for service demands on a per request type basis (Spinner et al., 2014).
We use the estimator based on the service demand law (Menascé et al., 2004) to
minimize the estimation overhead. As input, the average CPU utilization and
the throughput of each workload class per service instance are provided. More-
over, LibReDE requires structural knowledge about the application deployment
provided by the DML performance model instance.

9.1.3 Cost-Awareness Component

While using auto-scaling in public clouds, the “optimal” adaptation process
can lead to high costs as the accounted costs and the charged costs can deviate
depending on the cloud provider. For example, if the cloud provider charges
service instances hourly, the hour must be paid, although the accounted time is
less than one hour. To this end, a cost-aware mechanism called Fox is deployed.
More precisely, this component implements only the Plan and Execute phase of
Fox. The details of Fox are described in the Section 9.4. Fox serves as a mediator
between an application deployed in a public cloud and Chamulteon. That is,
the cost-awareness component leverages knowledge of the charging model
of the public cloud and reviews the proactive scaling decisions proposed by
Chamulteon to reduce the charged costs to a minimum. In other words, Fox
delays or omits the release of service instances to avoid additional charging
costs if the service instance will be required again within the charging interval.
Using this review logic, the charging interval of each service instance is utilized
as efficiently as possible.

9.1.4 Limitations of and Changes to the Chameleon Approach

The original Chameleon is designed only to scale monolithic applications. If
this approach should manage an application consisting of several services, a
Chameleon instance must be deployed for each service. The application would
be scaled in an uncoordinated way, which might lead to bottleneck-shifting
and oscillations due to the lack of knowledge over all services. To this end,
the first and major change from the original Chameleon is the addition of a
service management component. This component allows making decisions for
each service while considering the other services and their related decisions.
For instance, the bottleneck-shifting can be minimized because scaling one
service can trigger scaling of succeeding services. Another weakness of the
Chameleon approach is the forecasting component: Two forecasting methods,
namely sARIMAand TBATS, are deployed. Instead of running the twomethods
in parallel, the method that is most likely to give the most accurate result

126

9.2 Decision Making Process

is automatically chosen. This selection is based on the forecasting method
recommendation proposed by X. Wang et al. (see Section 5.2). However, both
methods have a high variance in their time-to-result (see Chapter 10) and
thus, are prone to belated forecasts. To this end, Chamulteon implements the
forecasting method Telescope (see Chapter 8) in its forecasting component due
to its low and stable time-to-result (see Chapter 10). The last change compared
to the original version is the integration of the cost-awareness component.
When running an application in the cloud, this component, if enabled, reviews
all decisions proposed by the controller and revises them if they are not cost-
efficient.

9.2 Decision Making Process

The decision-making process consists of two phases, invoked from correspond-
ing proactive or reactive monitoring cycles for predefined auto-scaling intervals.
Both cycles make decisions for each service based on the queueing theory-based
utilization. Therefore, Chamulteon transforms the instance of the DML per-
formance model into a product-form queueing network4 (Huber et al., 2017;
Eismann et al., 2018b), whereby each service ismodeled as anM/M/n/∞ queue.
As each service instance is mapped to exactly one resource instance (e.g., con-
tainer), the terms resource instance and service instance are interchangeable
in the modeling perspective. If the utilization exceeds/undershoots the prede-
fined service thresholds, the required number of service instances is calculated.
After all decisions are made, they can further be adjusted for cost-efficiency if
the associated component is activated.
Algorithm 9.1 depicts the proactive decision making for a specific time t in

the future and service s. The decisions are made based on the forecast arrival
rate λ, the estimated service demand µ, and the number of running service
instances n (Lines 1–3). The arrival rate for each service is estimated according
to the forecast. If the service is the user-facing service, the arrival rate is equal
to the forecast value. Otherwise, the forecast arrival rate is estimated based
on an invocation graph. This graph is extracted from the DML model that
also captures the request types and their control flows. More precisely, the
algorithm checks whether there are enough service instances to process the
incoming arrival rate for each service. If there are too few service instances,
the arrival rate λ is set to the maximum arrival rate that can be served by the
4Depending on the application, complex queueing networks may result. In other words,
complex control flows can exist where the probability and frequency of visiting each service
vary depending on the type of request.

127

Chapter 9: Forecasting-based Auto-Scaling of Distributed Cloud Applications

bottleneck service. Otherwise, the arrival rate λ is equal to the forecast arrival
rate (Line 4).

Algorithm 9.1: Proactive decision logic.
Input: Service s, time t
Result: Decision for service s at time t in the future

1 λ = getForecast(t)
2 µ = getAvgServiceDemand(s)
3 n = getNumInstances(s)
4 λ = estimateArrivals(λ, s) // estimates future arrival rates based on

invocation graph

5 ρ = λ
µ·n // calculate the future average utilization

6 if ρ ≥ ρ_upper then
7 while ρ ≥ ρ_upper and n <maxInstances(s) do
8 ρ = λ

µ·(++n) // calculate new average utilization

9 end
10 end
11 else if ρ < ρ_lower then
12 while ρ < ρ_lower and n >minInstances(s) do
13 ρ = λ

µ·(−−n) // calculate new average utilization

14 end
15 end
16 return decision(n, s, t)

Based on this information, the average service utilization ρ is calculated
(Line 5). If the calculated utilization exceeds the upper threshold ρ_upper, the
number of service instances is theoretically increased and the new average
system utilization is computed. This is done iteratively until the number of
service instances is equal to the pre-set maximum allowed number of instances
for this service or the average system utilization is below the upper threshold
(Lines 6–10). Analogously, if the calculated utilization falls below the lower
threshold ρ_lower, the number of required service instances is calculated based
on the minimum allowed number of instances for this service (Lines 11–15).
Finally, a decision with the number of required instances for the specific service
at time t in the future is returned. The decision logic for the reactive decisions
works analogously, except that reactive decisions only consider the current
observed arrival rate.
In contrast to reactive events that are scheduled immediately, proactive de-

128

9.2 Decision Making Process

cisions are improved before the scheduling. More precisely, the proactive
decisions are optimized pairwise per service to reduce oscillations. Basically,
there are three possibilities when improving two decisions: (i) Both decisions
want to release service instances, (ii) want to add more service instances, (iii)
or they have contrary scaling decisions. If one decision intends to keep the
current amount of service instances (is interpreted as NOP in the following),
no optimization takes place. The resulting six cases are depicted in Figure 9.2,
where the solid black line represents the current number of resources, the black
dashed line the planned amount, and the grey arrows the scaling decisions.

d1 d2 d1 d2 d1 d2d1 d2

d1 d2 d1 d2d1 d2

d1 d2 d1 d2 d1 d2d1 d2

d1

Legend
Current amount Planned amount Scaling decision

d2

Both down scaling

Both up scaling

Contrary scaling

Figure 9.2: Optimization of proactive decisions.

The first possibility (both decisions plan to release service instances; upper
rectangle in Figure 9.2) has two cases. Firstly, the first decision wants to release

129

Chapter 9: Forecasting-based Auto-Scaling of Distributed Cloud Applications

n service instances and the second one wants to release m service instances,
where n ≥ m. As the down-scaling policy of Chamulteon is conservative, the
first decision scalesm service instances down and the second one triggers the
releasing of 0 service instances (6= NOP). In the second case (i.e., m > n),
the first decision scales n service instances down and the second one releases
m− n service instances. The second option (both decisions want to add more
service instances; middle rectangle in Figure 9.2) has two cases. Firstly, the first
decision wants to scale up n service instances and the second one wants to add
mmore service instances, where n ≥ m. The resulting first decision allocates n
extra service instances. The second decision triggers the allocation of 0 new
service instances (6= NOP). In the second case (i.e.,m > n), the first decision
adds n new service instances and second one allocates (m − n) additional
service instances. In the last scenario, the decisions request opposite scaling
actions (lower rectangle in Figure 9.2). There are also two cases. Firstly, the
first decision wants to release n service instances and the second one wants to
allocatemmore service instances with n ≥ m orm > n. To handle the contrary
decisions, Chamulteon uses a shock absorption factor 0 < ξ ≤ 1. Thus, the
first decisions releases b(ξ · d1)c service instances and the second one scales
d(ξ · (d1 + d2))e service instances up. The second case is complementary to the
first case. The first event allocates d(ξ · d1)e service instances and the second
one releases b(ξ · (d1 + d2))c VMs. If ξ = 1, the contrary actions are executed
without modifications. With decreasing ξ the distance between the opposite
actions decreases. In other words, ξ influences the degree of oscillation.

9.3 Decision Con�ict Resolution

As Chamulteon consists of a proactive and reactive cycle, the controller deter-
mines both reactive and proactive decisions, resolves conflicts between deci-
sions, and schedules them accordingly. A decision has information about its
type, either proactive or reactive, the number of required service instances, its
trustworthiness, and its planned execution time. A reactive decision should
be executed immediately and is always considered as trustworthy. In contrast,
proactive decisions have an execution time in the future and are only trust-
worthy when the model accuracy of the underlying forecast has a MASE (see
Section 3.3.3) below a certain threshold. The resolution strategies of possible
conflicts are described in the following, and Figure 9.3 shows an example of this
process. Note that the resolution takes part per service. That is, the decision of
a service has no conflicts with a decision from another service.

130

9.3 Decision Conflict Resolution

r2 r3 r4r1

f1

p1,0 p2,0 p3,0 p1,1p0,1p0,0

p1,2p0,2

p3,1p2,1

scaling
time

reactive
cycle

proactive
cycle

r0 r1 r2 r3 r4 r5 r6 r7 r8

proactive
interval

reactive
interval

f0

f2

r9 r10 r11 r12 r13 r14 r15 r16

scope

Legend

ri i-th reactive event

forecast horizon
forecasting duration

pi,j
i-th proactive decision based on
forecast j (NOP or not trust-able)

pi,j
i-th proactive decision based on
forecast j (!=NOP and trust-able)

proactive
interval bound

reactive
interval bound

skipped decisions

r0 p2,0 p3,0

optimization

p2,1 p1,2

Time in order of minutes

r10 r11 r12r9

Figure 9.3: Example of Chamulteon’s conflict resolution.

9.3.1 Scope Con�ict Resolution

Each proactive decision has a scope in which no other decision should be
executed. In other words, there is an associated time interval before a decision
in which no other decision should occur. Due to the different reconfiguration
intervals of reactive and proactive cycles, there may be reactive decisions in
the scope of a proactive decision. To resolve this scope conflict, Chamulteon
checks whether the proactive decision is trustworthy and wants to scale up or
down (6= NOP). If these conditions are true, the reactive decisions are omitted.
Otherwise, the proactive decision is skipped. For instance in Figure 9.3, the
reactive decisions r0, r1, r5, and r6 are triggered in the scope of the proactive
decisions p0,0 and p2,0. As p0,0 is a NOP, the reactive decisions r0 and r1 are
executed while p0,0 is skipped. As p2,0 is trustworthy and no NOP, r5 and r6
are omitted while p2,0 is executed.

9.3.2 Time Con�ict Resolution

As Chamulteon executes a new forecast as soon as a drift between the last
forecast and themonitored arrival rates occurs, theremay be proactive decisions
based on the previous forecast and decisions based on the newly conducted
forecast for the same period. Assuming that decisions based on the newest
forecast contain more up-to-date information, the proactive decisions based

131

Chapter 9: Forecasting-based Auto-Scaling of Distributed Cloud Applications

on the previous forecast are simply skipped. An example of this resolution is
shown in Figure 9.3: The values of the forecast f1 deviates from the observed
arrival rates by more than the tolerance value. To this end, a new forecast f2 is
conducted, although forecast values are left from f1. Consequently, there is a
conflict as the proactive decisions p1,2 and p3,1 are scheduled at the same time.
As p1,2 has more recent information (e.g., the current service demand), p1,2 is
executed and p3,1 is skipped accordingly.

9.3.3 Delay Con�ict Resolution

This conflict resolution is a legacy of the Chameleon approach: The forecasting
component of Chameleon, which has sARIMA and TBATS deployed, exhibits
a high variance in time-to-result. Consequently, proactive decisions can be
belated. In such a case, the proactive decision for this time generated by the
previous forecast is executed. Figure 9.3 shows an example of this resolution:
While the forecast f2 takes too long (the blue box indicates the time-to-result),
the proactive decision is belated. To this end, the proactive p2,1 generated with
forecast f1 is executed and the currently generated decision p0,2 is ignored. In
contrast to the Chameleon design, Chamulteon has Telescope deployed within
the forecasting component. Although this conflict should not occur while using
Telescope, which has a low variance in terms of time-to-result, this resolution
is still used for reliability purposes.

9.4 Cost-Aware Resource Management

In public cloud environments, the time a service instance is used and charged
may differ depending on the provider’s pricing scheme. More precisely, we
have to distinguish between two different service instance times: (i) Accounted
instance time and (ii) charged instance time. The accounted instance time is the
total runtime of all service instances. The charged instance time is the runtime
the public cloud provider charges. Figure 9.4 shows an example of both instance
times for an hourly pricing model, which is, for instance, deployed by Amazon
Web Services EC2. The red blocks represent the charged instance time and the
green blocks the accounted instance time. Service instance 1 (e.g., a VM) has
an accounted instance time a0,0 of 1.25 on the left and is charged c0,0 for two
hours as all started hours are charged in full no matter if the resource is stopped
earlier. On the right, the accounted instance time a0,1 matches the charged
instance time c0,1 of one hour. The second service instance is started three times
and runs only for a few minutes each time. However, it is charged for three full

132

9.4 Cost-Aware Resource Management

hours, even if the previous charging interval is still running. The third service
instance runs for a bit more than two hours but is charged for three hours. So,
all started hours are rounded to a full hour charged instance time. Also, each
start of the same service instance is considered to be a completely new service
instance without recognition of previous and still running charging intervals.

a1,2a1,0 a1,1
c1,0

0.5 1 1.5 2 2.5 3 3.5 40 4.5 5

...

a2,0
c2,0

am,0
cm,0

a0,0 a0,1
c0,0 c0,10

1
2

...
m

R
es

ou
rc

e
in

st
an

ce

Charged time steps

c1,2c1,1

ci,j
ai,j

Charged instance time

Accounted instance time

Figure 9.4: Example of instance times that are accounted and charged differ-
ently.

To avoid wasting costs introduced by adapting an application in response to
changes in the workload, the proposed Fox approach revises the scaling deci-
sions of an elasticity mechanism in accordance with the public cloud provider’s
pricing scheme.

9.4.1 Design Overview of the Fox Approach

Fox’s underlying idea is to operate as a mediator between an auto-scaling mech-
anism and the application for adapting the associated scaling decisions based
on a predefined charging model. More precisely, Fox reviews the auto-scaler’s
scaling decisions based on future decisions and revises them according to the
charging model. For instance, some scaling down decisions are delayed or
canceled according to the charging interval. To enable cost-aware scaling, Fox
contains a knowledge base, a forecasting component, and an auto-scaler inter-
face. To support as many auto-scalers as possible, Fox assumes homogeneous
requests, that is, single class case, and homogeneous resource types in each
service. The application, however, can consist of different resources. The knowl-
edge base stores the auto-scaler’s future scaling decisions and the charging
model of the cloud platform provider. At this moment, two different charging

133

Chapter 9: Forecasting-based Auto-Scaling of Distributed Cloud Applications

models are supported: (i) hourly charging and (ii) two-phase charging. As
the name suggests, the first scheme charges every started hour for a service
instance, regardless of whether or not it was released within the hour. Popular
cloud platform providers using the hourly charging are Amazon EC25, Ora-
cle Cloud6, and IBM Cloud7. For the two-phase charging model, the pricing
scheme that the Google Cloud Platform used in 2017 is implemented: In the
first phase, a service instance is charged for each started ten minutes, regardless
of whether or not the service instance was released within this interval. If
a service instance runs longer than 10 minutes, the second phase is applied,
where the service instance is charged every minute.

The working-principle of Fox is based on theMAPE-K control loop (Kephart
and Chess, 2003) and is depicted in Figure 9.5. In the first phase, Fox monitors
the application and gathers information such as arrival rates and saves them
into the knowledge base. The monitoring interval is set to two minutes. Then,
during the Analyze phase, Fox fetches forecast values for the next 30 minutes
from the forecast component. The forecast arrival rates are forwarded to the
interface for the auto-scaling mechanism. For each forecast, the auto-scaler
makes scaling decisions for all services and saves them in the knowledge base.
In the Plan phase, Fox reviews the scaling decisions based on the decisions
found for the future forecasts and changes them according to the charging
model. Finally, in the Execute phase, Fox scales the application based on the
revised scaling decisions. The Analyze, Plan and Execute phases are described
in more detail in the following sections.

9.4.2 Analyze

In theAnalyze phase, Fox sends the observed arrival rate history to the forecaster
component and receives the forecast values for the next 30 minutes, that is, 15
forecast values. The forecasting is done every 15 minutes so that an overlap
in forecasts exists. This overlap is required since Fox evaluates future events
to adapt the scaling decisions. For each forecast value and each service, the
auto-scaler is polled for making scaling decisions. The auto-scaler receives
the forecast value via the interface, the amount of running service instances
and the request rate that a single service instance can handle at the specific
service. The amount of running service instances for the first forecast value
is the amount of current running service instances. For the following forecast
values, the planned amount from previous decisions is used. Based on this
5EC2: https://aws.amazon.com/ec2/pricing/on-demand/?nc1=h_ls
6Oracle: https://www.oracle.com/cloud/compute/pricing.html
7IBM: https://cloud.ibm.com/gen1/infrastructure/provision/vs

134

https://aws.amazon.com/ec2/pricing/on-demand/?nc1=h_ls
https://www.oracle.com/cloud/compute/pricing.html
https://cloud.ibm.com/gen1/infrastructure/provision/vs

9.4 Cost-Aware Resource Management

Monitor

Scales application based on revised scaling decisions

 Execute

Monitors
Application

Analyze Plan

Cloud

 Application

Forecasts future
arrival rates

Forecasting
Component Auto-Scaler

Reviews scaling
decisions based
on forecast and
charging model

Makes scaling decisions

Knowledge

Decision
Storage

Charging
Model

Time Series
Storage

Figure 9.5: MAPE-K cycle of Fox.

information, scaling decisions for each forecast value are made per service and
added to the knowledge base. From the second forecaster call on, the overlap
of the decisions appears. As the new decisions have more recent information,
the old decisions are omitted and replaced by the new ones.

9.4.3 Plan

The idea of Fox is to modify the current scaling decisions based on planned
decisions for the future. For example, a down-scaling should be avoided if a
service instance is required again soon. In case that an up-scaling should be pro-
cessed, the decision will not be modified. The decision logic how Fox changes
the decisions is depicted in Figure 9.6 and summarized in Algorithm 9.2. First,
Fox checks whether the current decision triggers a down-scaling (Line 1). If
this holds (both cases in the upper rectangle and the first case in the lower rect-
angle), all future decisions planned during the next charging interval (Line 2),
for instance, one hour, are fetched. Then, Fox iterates over all future decisions
(Line 3) and checks whether the number of required resources of the future
decision is higher than the number of required resources of the current deci-
sion (Line 4). In other words, Fox checks whether the service instances to be
released are still required in their charging interval. If this is true, the amount
of the current decision is changed to the number of running service instances
(left case in the lower rectangle) or the amount of the future decision (first case
in the upper rectangle), depending on which one is smaller (Line 5). In case
the amount of the future decision is smaller than the amount of the current
decision, that is, the service instances to be released are not required again in

135

Chapter 9: Forecasting-based Auto-Scaling of Distributed Cloud Applications

Legend Current amount

Planned amount

Current decision

Future decision

Both down scaling

Both up scaling

Contrary scaling

Figure 9.6: Decision logic for comparison to future decisions.

their charging interval, the current decision is not modified. Finally, the revised
decision is returned.

9.4.4 Execute

The Execute phase is responsible for scaling the application according to the
scaling decisions reviewed by Fox. The main task is to decide which service
instances should be stopped in case of down-scaling to minimize financial
loss. The procedure of this phase works as follows. First, the decisions for
the current time are retrieved from the knowledge base. In case of an up-
scaling decision, the required service instances are provisioned. In case of a
down-scaling decision, service instances that introduce minimum financial

136

9.5 Assessing the Auto-Scaling Quality

Algorithm 9.2: Revising auto-scaler decisions
Input: Decision current, runningInstances run, chargingInterval ci
Result: Revised decision

1 if run > current.amount then // current wants to scale down

2 futures = getFutureDecisionsInInterval(ci)
3 foreach next in futures do
4 if next.amount > current.amount then // see left in the upper &

lower rectangle in Figure. 9.6

5 current.amount = min(run, next.amount)
6 end
7 end
8 end
9 return current

loss if stopped are selected. To determine the service instances that should be
stopped, the charging model is taken into account. For the hourly charging
model, the runtimes of all service instances are gathered. Then, the service
instances closest to the next charging interval, that is, one hour, are selected
for down-scaling. For the two-phase charging model, the service instances are
sorted descending by their overall runtime so that the service instance which
ran longest is at the beginning of the list. Then, the down-scaling amount
of service instances is selected from the beginning of the list. So, the service
instances with the longest overall runtime are chosen.

9.5 Assessing the Auto-Scaling Quality

Besides the elasticity measures presented in Section 4.2.1, we introduce further
measures for capturing the quality of the auto-scaling behavior8. Firstly, neither
the provisioning accuracy nor the wrong provisioning time share considers
oscillations in the adaptation process. To this end, we propose the instability
measure reflecting unstable behavior. Further, if only individual measures are
considered to quantify the quality of auto-scaling behavior, the results may be
conflicting. To this end, we define the auto-scaling deviation and elastic speedup
as aggregated elasticity measures for consistent methods. These three elasticity
measures were developed in collaboration with Nikolas Herbst (Herbst, 2018).
Moreover, these measures are only intended for monolithic applications. There-
8We apply the established and the proposed measures in Chapter 11.

137

Chapter 9: Forecasting-based Auto-Scaling of Distributed Cloud Applications

fore, we also present the auto-scaling worst-case deviation. Lastly, we provide the
cost-saving rate reflecting the cost-efficiency of an auto-scaler.

9.5.1 Instability

Although the provisioning accuracy (see Section 4.2.1.1) and wrong provision-
ing timeshare (see Section 4.2.1.2) capture important aspects of the elasticity,
cloud platforms can achieve the same value for both measures while their
scaling behaviour is different. An example is illustrated in Figure 9.7, where
both platforms have the same accuracy and the time in which the platforms
are underprovisioned or overprovisioned is exactly the same. However, the
difference between the two platforms is the time in which they are stable. To
capture this behavior, we define a further elasticity measure called instability.
The instability υ measures the proportion of time in which the change in re-
source demand and the change in resource supply have different signs. In other
words, the instability describes the time in percentage in which the supply and
the demand curves are not changing in the same direction. More formally, the
instability

υ[%] =
100

T
·
∫ T

t=0
min

(∣∣∣sgn(d
dt
st

)
− sgn

(d
dt
dt

)∣∣∣, 1)dt, (9.1)

where st is the resource supply at time t, dt the resource demand at time t,
and T the experiment duration. This measure’s values lie in the interval [0; 1]
with 0, indicating that the changes in demand and supply run parallel during
the measurement. In contrast to the accuracy and time share metrics, a value
of zero is a necessary but not sufficient requirement for a perfectly elastic
behavior. However, the instability is a valuable indicator of the cost incurred
by oscillations in the adaptation process.

9.5.2 Auto-Scaling Deviation

The idea of this aggregated measure is to calculate the deviation of the auto-
scaler’s scaling behavior from the theoretically optimal adaptation process (i.e.,
the resource demand and resource supply curves are identical at any point in
time). The scaling behavior can be described by a vector comprising elasticity
measures and system-oriented measures. More precisely, the provisioning
accuracy, the wrong provisioning time share, the instability, and the SLO viola-
tions are taken into account. Each measure is expressed as a percentage, and
the closer the value is to zero, the better the auto-scaler performs in terms of
the elasticity aspect described by the measure. To give equal weight to each

138

9.5 Assessing the Auto-Scaling Quality

Re
so

u
rc

es

Time

Resource demand
Resource supply

Provisioning time Deprovisioning time

Re
so

u
rc

es

Time

Resource demand
Resource supply

Figure 9.7: Example of two systems with the same elasticity accuracy and time
share.

measure considered, the provisioning accuracy and the wrong provisioning
time share are mapped to one measure each. For this purpose, a weighted
sum for each elasticity aspect is used for both of its associated measures. More
formally, the overall provisioning accuracy is expressed as

θ[%] := γ · θU + (1− γ) · θO, (9.2)
where θU is the underprovisioning accuracy, θO is the overprovisioning accu-
racy, and 0 < γ < 1. Analogously, the overall wrong provisioning time share is
computed as

τ [%] := γ · τU + (1− γ) · τO, (9.3)

139

Chapter 9: Forecasting-based Auto-Scaling of Distributed Cloud Applications

where τU is the underprovisioning time share and τO is the overprovisioning
time share, and 0 < γ < 1. In both equations, γ represents a penalty factor,
that is, a factor reflecting custom requirements. In other words, γ can be set
individually to penalize underprovisioning (γ > 0.5) or overprovisioning
(γ < 0.5). If γ is set to 0.5 (which is also the case in Chapter 11), both the
underprovisioning and the overprovisioning are considered equally bad.

For calculation the deviation between an auto-scaler and the theoretically op-
timal auto-scaler, the Minkowski distance is applied. Assuming that the theoreti-
cally optimal auto-scaler knows when and how the resource demand changes,
the values for the overall provisioning accuracy θ, the overall wrong provision-
ing time share τ , the instability υ, and the SLO violations ψ are zero. Conse-
quently, if an auto-scaler is compared to the theoretically optimal auto-scaler,
the Minkowski distance9 dp can be reduced to the p-norm as ‖x− 0‖p = ‖x‖p
with x = (θ, τ, υ, ψ). More formally, the auto-scaling deviation is defined as

σ[%] := ‖x‖4 =
(
θ4 + τ4 + υ4 + ψ4

) 1
4 . (9.4)

The values of this measure lie in the intervals [0;∞), that is, the closer the
auto-scaling deviation is to zero, the closer the behavior of the auto-scaler is to
the theoretically optimal auto-scaler.

9.5.3 Elastic Speedup

Besides the auto-scaling deviation, we introduce a further measure which re-
flects the added value of a special auto-scaler without comparing each elasticity
metric separately. Loosely speaking, the elastic speedup ε calculates for each
auto-scaler how the elasticity is affected by its scaling behaviour compared to
the case where no auto-scaler is employed To this end, a geometrical mean of
the ratio between each elasticity measure pair is calculated. More formally, the
elastic speedup is defined as

ε :=

(
θ̃U
θU
· θ̃O
θO
· τ̃U
τU
· τ̃O
τO
· υ̃
υ
,

) 1
5

, (9.5)

where θU/ θO (under-/ overprovisioning accuracy), τU/ τO (under-/ overpro-
visioning time share), and υ (instabillity) are the measured elasticity metrics of
the auto-scaler, while θ̃U , θ̃O, τ̃U , τ̃O, and υ̃ are the calculated elasticity metrics
if no auto-scaler is deployed. The values of this measure lie between 0 and∞.
9The parameter p describes the order of the distance and a popular representative is the
Euclidean distance (p = 2).

140

9.5 Assessing the Auto-Scaling Quality

If ε > 1, the observed auto-scaler performs better than if no auto-scaler is used.
Otherwise, the auto-scaler is equal or worse than a fixed amount of supplied
resources. A disadvantage of the elastic speedup is its high sensitivity to values
close to zero and being undefined when one or more of the elasticity measures
are zero.

9.5.4 Auto-Scaling Worst-Case Deviation

While elasticity metrics are straightforward for monolithic applications, their
use becomes more difficult for applications comprising multiple services. In
other words, an application consisting of one service has a limited number of
possible configurations that can be measured and quantified. In contrast, an
application with multiple services has∏ni possible resource configurations,
where ni is the maximum allowed number of resources for service i. More-
over, there may be different resource configurations that are equally optimal
regarding the served requests. So, it is challenging to determine which of these
configurations is the best in terms of elasticity. Conversely, it is just as diffi-
cult to determine which auto-scaler is worse. For example, if one auto-scaler
overprovisions the first and second service with one resource each and another
auto-scaler overprovisions the first service with two resources, but does not
overprovision the second service.

To face the issue of how to compare system elasticity in a settingwithmultiple
different services, we propose the auto-scaling worst-case deviation ς . The core
idea is to compare the auto-scalers in terms of their worst behavior across all
services as the services are interdependent and the system performance is
limited by the performance of the “weakest” service. In other words, the worst
elasticity measures across all services are considered. To this end, the elasticity
measures are calculated for each service. Based on these measures the worst
performance across all services is selected as follows

τ̂U [%] := max
1≤i≤n

(τU,Si), (9.6)

τ̂O[%] := max
1≤i≤n

(τO,Si), (9.7)

θ̂U [%] := max
1≤i≤n

(θU,Si), (9.8)

θ̂O[%] := max
1≤i≤n

(θO,Si), (9.9)

υ̂[%] := max
1≤i≤n

(υSi), (9.10)

where θU,Si/ θO,Si is the under-/ overprovisioning accuracy of the i-th service,
τU,Si/ τO,Si the under-/ overprovisioning time share of the i-th service, υSi the

141

Chapter 9: Forecasting-based Auto-Scaling of Distributed Cloud Applications

instability of the i-th service, and n > 1 is the number of different services.
Similar to the auto-scaling deviation (see Section 9.5.2), we calculate the overall
worst-case provisioning accuracy θ̂ and the overall worst-case wrong provisioning time
share τ̂ as weighted sum to quantify the worst-case deviation. More formally,
both measures can be computed as

θ̂[%] := γ · θ̂U + (1− γ) · θ̂O, (9.11)
τ̂ [%] := γ · τ̂U + (1− γ) · τ̂O, (9.12)

where γ is a weighting factor for penalizing underprovisioning (0.5 < γ < 1)
or overprovisioning (0 < γ < 0.5). If γ is set to 0.5 (which is also the case in
Chapter 11), both underprovisioning and the overprovisioning are considered
equally bad.

For calculating the auto-scaling worst-case deviation of the considered auto-
scaler from the theoretically optimal auto-scaler, we apply the Minkowski
distance. Under the assumption that the theoretically optimal auto-scaler knows
when and how much the resource demand change, the values for worst-case
provisioning accuracy θ̂, worst-case wrong provisioning time share τ̂ , and
worst-case instability υ̂ are equal to zero. Consequently, if an auto-scaler is
compared to the theoretically optimal auto-scaler, the p-norm can be used (see
Section 9.5.2). More formally, the auto-scaling worst-case deviation is defined
as

ς[%] := ‖(θ̂, τ̂ , υ̂)‖3 =
(
θ̂3 + τ̂3 + υ̂3

) 1
3
. (9.13)

The values of this measure lie in the intervals [0;∞), that is, the closer the
auto-scaling deviation is to zero, the closer the auto-scaler behavior is to the
theoretically optimal auto-scaler.

9.5.5 Cost-Saving Rate

Besides the elasticity measures, we also want to quantify the cost savings of an
auto-scaler. The idea of this cost measure is to compare the instance times of
an auto-scaler to the instance times of a naïve approach. The naive approach
provides all available resources at the beginning of the experiment and has no
auto-scaling mechanisms, that is, all provisioned resources run throughout the
experiment. More formally, the cost-saving rate can be expressed as as

Πx[%] = 100 ·
(
πs,x
πn,x

− 1

)
, (9.14)

142

9.6 Assumptions and Limitations

where πs,x and πn,x are the instance times of the auto-scaler and the naïve
approach, respectively. Πx ∈ (−1,∞) where a negative value indicates that
costs are saved in comparison to the naïve approach. Consequently, the lower
the value is in the negative range, the more costs are saved. A value greater or
equals zero indicates that the auto-scaler spends more or the same cost as the
naïve approach. Both types of instance times are considered (see Section 9.4):
Πa and Πc reflect the cost-saving rate for the accounted instance times and the
cost-saving rate for the charged instance times, respectively.

9.6 Assumptions and Limitations

Chamulteon has the following assumptions, which are either based on the
integrated tools, design decisions, or have been inherited from Chameleon:
(i) To capture an accurate seasonal model, the availability of at least two days of
historical data is required. Moreover, a history of at least two years is required
to cover holidays and other specials days. (ii) An external monitoring tool has
to be employed that retrieves the required information (e.g., request rates).
(iii) The application in question has to be request-based due to the service
demand estimation. (iv) The DML model, which captures the control flow
within the application, has to be either created manually or by an external tool.
Moreover, it must be possible to transform the given model into a product-form
queueing network (v) While the application can consist of different resources,
the resource types for each service are assumed to be homogeneous. Moreover,
it is assumed that each instance of a service is hosted solely on a virtual machine
or container. There are no further assumptions regarding the deployment, such
as if each container has a dedicated physical resource assigned. (vi) The scaling
takes place in a horizontal manner. That is, only replicas of the service instances
are added or released. In other words, the number of replicates is adapted
while the resources allocated to a service instance and the physical nodes are
not scaled.

Besides the assumptions, Chamulteon is subject to the following limitations:
(i) The cost-awareness component only supports hourly and the two-phase
charging model. (ii) The forecasting component does not support a calendar
function where special days (e.g., CyberMonday, i.e., theMonday after Thanks-
giving, is a special day for e-commerce in the USA) can be specified. (iii) Due
to the integrated tools, Chamulteon has a lower usability than a simple reactive
auto-scaling mechanism. However, the used tools can be replaced with other
techniques as long as they work compliant with the defined required interfaces.
(iv) The forecasting component does not distinguish between different request

143

Chapter 9: Forecasting-based Auto-Scaling of Distributed Cloud Applications

types. That is, the forecast includes only the total number of requests without
information on the distribution of the different types of requests.

9.7 Distinctive Features of Chamulteon

To delimit Chamulteon from the related work, we summarize the reviewed
auto-scalers (see Chapter 6) and give an overview in Table 9.1. This overview
distinguishes (i) whether the approach can scale a monolithic application or a
distributed application comprising multiple services, (ii) if the scaling is done
in a horizontal or/and vertical manner, (iii) whether the approach is reactive
or/and proactive, (iv) if the approach is cost-efficient andwhat group it belongs
to (see Section 6.6), (v) whether the evaluation was done experimental or/and
simulated, (vi) whether real-world or synthetic workloads were used for the
experiment, and (vii) if the approach is open-source.

Table 9.1: Overview of related work on cloud auto-scalers.
Auto-Scaler Scaling Cost- Evaluation Workload Open-

Application Dimension Type Efficient Source

Chamulteon distributed horizontal hybrid III experimental realistic (X)10
(Kalyvianaki et al., 2009) distributed vertical proactive – experimental synthetic 7

(Padala et al., 2009) distributed vertical proactive – experimental both 7

(Zhu and Agrawal, 2012) distributed vertical reactive II experimental real-world 7

(Ali-Eldin et al., 2012) monolithic horizontal hybrid – simulated realistic X
(Lakew et al., 2017) distributed vertical proactive – experimental both 7

(Urgaonkar et al., 2008) distributed horizontal hybrid – experimental both 7

(Xiong et al., 2011) distributed vertical reactive II experimental real-world 7

(Sharma et al., 2012) distributed horizontal reactive I both real-world 7

(Jiang et al., 2013) monolithic horizontal hybrid II experimental real-world 7

(Beltrán, 2015) distributed both reactive I experimental synthetic 7

(Tesauro et al., 2006) distributed horizontal proactive – experimental synthetic 7

(Rao et al., 2009) distributed vertical proactive – experimental synthetic 7

(Dezhabad and Sharifian, 2018) monolithic horizontal proactive – simulated real-world 7

(Benifa and Dejey, 2019) distributed horizontal proactive – experimental real-world 7

(Chieu et al., 2009) monolithic horizontal reactive – experimental synthetic 7

(Maurer et al., 2011) monolithic vertical reactive – simulated synthetic 7

(Han et al., 2012) distributed both reactive I experimental synthetic 7

(Naskos et al., 2017) monolithic horizontal reactive III experimental real-world 7

(Iqbal et al., 2011) distributed horizontal hybrid – experimental synthetic 7

(Nguyen et al., 2013) distributed horizontal proactive – experimental real-world 7

(Fernandez et al., 2014) monolithic horizontal proactive III experimental real-world X
(Wu et al., 2016) distributed both hybrid III experimental real-world 7

(Khorsand et al., 2018) distributed horizontal proactive – simulated both 7

Although a recent survey (Qu et al., 2018) highlights the importance of
combining reactive and proactive auto-scaling mechanisms, most approaches
can scale applications either proactively or reactively (see Table 9.1). In con-
trast to existing hybrid auto-scalers (Urgaonkar et al., 2008; Iqbal et al., 2011;
10The code is currently being prepared for publication.

144

9.8 Concluding Remarks

Ali-Eldin et al., 2012; Jiang et al., 2013; Wu et al., 2016) that combine reactive
and proactive mechanisms, Chamulteon (i) leverages long-term forecasts from
time series analysis in combination with (ii) predictive models from queueing
theory, and also integrates (iii) a reactive fallback mechanism. Due to these two
integrated mechanisms, Chamulteon has to resolve conflicts introduced by con-
tradicting reactive and proactive scaling decisions. The reviewed approaches
do not explicitly address this issue.
In terms of cost-efficient scaling, Chamulteon belongs to the third group of

the cost-aware auto-scaling classification. It combines and extends the example
auto-scalers’ approaches (Fernandez et al., 2014; Wu et al., 2016; Naskos et al.,
2017) of this category. Chamulteon supports more complex charging models,
such as the two-phase model that was used in the Google Cloud Platform.
Moreover, Chamulteon finds proactive decisions for the future. Based on these
future decisions and the knowledge of the charging model, a decision logic is
presented when a downscaling is meaningful and when the already running
instance should stay running. None of the mentioned auto-scalers support
future decisions and reviews the actual decision using them and the knowledge
of the charging model.

In contrast to the evaluation/simulation of the reviewed approaches, Chamul-
teon is evaluated with different realistic experiment setups, resource demands,
and real-world traces (see Chapter 11). We identify only two cases of the work
comparing multiple and different, proactive auto-scaling policies. The work of
Padadopoulos et al. (Papadopoulos et al., 2016) establishes theoretical bounds
on the worst-case performance using simulation. The related experimental
evaluation in Ilyushkin et al. (Ilyushkin et al., 2018) compares auto-scaler
performance for the different types of workflow applications in one deploy-
ment. In other words, the reviewed articles lack a sound and comparative
evaluation methodology. This observation is also underlined by our former
survey (Papadopoulos et al., 2019b).

9.8 Concluding Remarks

In this chapter, our contribution Chamulteon addresses the research question
RQ 6 “What is a meaningful combination of proactive and reactive scaling techniques
to minimize the risk of auto-scaling in operation?” by implementing a proactive
and reactive cycle and the associated conflict resolution between proactive and
reactive scaling decisions. More precisely, proactive adaptations are planned
based on forecasts of Telescope, while reactive adaptations are triggered based
on actual observations of the monitored load intensity. Considering the re-

145

Chapter 9: Forecasting-based Auto-Scaling of Distributed Cloud Applications

search question RQ 8 “How to enable coordinated scaling of applications comprising
multiple services?”, Chamulteon takes into account all services and their associ-
ated decisions coupled with the DML model, which captures the application’s
internal flow. The contribution Fox tackles the research question RQ 7 “How can
scaling decisions be adjusted so that the charged costs in a public cloud environment
are minimized?” by leveraging the knowledge of the public cloud provider’s
charging model and reviewing scaling decisions found by an auto-scaler to
reduce the charged costs to a minimum. More precisely, Fox delays or omits re-
leases of resources to avoid additional charging costs if the resource is required
soon. Lastly, we propose a novel set of elasticity measures and the cost-saving
rate to quantify the quality as well as the cost-efficiency of an auto-scaler to
answer the research question RQ 9 “What are meaningful measures for assessing
the quality of coordinated and cost-aware auto-scaling?”.

146

Part III

Benchmarking and Evaluation

Chapter 10

Time Series Forecasting Competition

In this chapter1, we evaluate2 and benchmark our contribution Telescope and its
components. First, in Section 10.1, we introduce themethods in competition and
the appliedmeasures. Then, in Section 10.2, we benchmark different forecasting
methods to select the best performing methods as competitors of Telescope.
Afterwards, we evaluate the recommendation system, which is integrated in
Telescope, in Section 10.3. In Section 10.4, we benchmark Telescope against
recent hybrid forecastingmethods and the best performing forecastingmethods
from Section 10.2. Finally, we conclude this chapter in Section 10.5.

10.1 Global Experimental Setup

In this section, we provide information about the experimental setups of the
subsequent experiments. Note that each of the following evaluation sections
still has a separate experimental description for specific information. In Sec-
tion 10.1.1, we outline the competingmethods and their usage. In Section 10.1.2,
we highlight the applied measures for quantifying the experiments.

10.1.1 Methods in Competition

For having a broad and representative forecasting method competition, we
compare different methods from different fields. The competitors can be
grouped into three categories: (i) “classical” time series forecasting methods,
(ii) regression-based machine learning methods, and (iii) hybrid forecasting
methods (i.e., taking advantage of at least two methods). For each category,
we consider a set of representative methods. A detailed overview of the meth-
ods can be found in Section 3 and in Chapter 5. The techniques from the first
category are listed and briefly described below:
1This chapter is based on our previous works (Bauer et al., 2020a,b,c)
2In this chapter, the evaluation is based on the multi-step-ahead forecast.

149

Chapter 10: Time Series Forecasting Competition

• ETS builds on the concept of exponential smoothing and is a framework
that automatically retrieves the components (trend, season, and error) of
a time series and determines the relationships (additive, multiplicative,
or not present) between the components.

• sARIMA3 extends the ARIMA model by adding a seasonal counterpart
to each component (autoregressive model for the past values, moving
average for the past forecast errors, and time series differencing for sta-
tionarity).

• sNaïve repeats past observations for the entire forecast horizon. More
precisely, each forecast value is equal to the corresponding observation
from the last period.

• TBATS extends ETS using a trigonometric representation based on Fourier
series for the seasonal part of the time series and an autoregressive-
moving average model for the error corrections. Further, the time series
is transformed with Box-Cox transformations.

• Theta first checks whether the time series is seasonal, and if so, de-
seasonalizes the time series. The de-seasonalized time series is then
split into a short- and a long-term component. Finally, the forecast is the
weighted forecast of both components.

The competing methods from the field of machine learning are outlined in the
following:

• GPyTorch (Gardner et al., 2018) is a Gaussian process library. The basic
idea for modeling the time series is to apply Gaussian process inference
based on black-box matrix-matrix multiplication.

• NNetar is a feed-forward neural network with one hidden layer. The
model is trained with lagged values of the time series, while the number
of lags and the number of nodes in the hidden layer are automatically
selected.

• Random forest is an ensemble of decision trees based on bagging, that is,
the trees are generated in parallel, fully grown, and independent of each
other. To reduce overfitting, each tree is trained on a random sample of
the features. In the following, we refer to this method as RF.

3In the experiments, we use auto.arima (Hyndman and Athanasopoulos, 2017) to find the
most suitable model for the time series automatically.

150

10.1 Global Experimental Setup

• SVR is based on the same principle as SVM’s, that is, finding separation
lines to group the data into different classes, with the extension to predict
numerical values.

• XGBoost is an ensemble of decision trees based on gradient tree boosting,
that is, the trees are growing sequentially with knowledge from their
preceding tree. To reduce overfitting, XGBoost applies regularization
objects, shrinkage, and feature subsampling.

The representatives of the hybrid forecasting methods are shortly described
below:

• BETS decomposes the time series into the components trend, season,
and irregular. Different versions of the irregular part are then simulated,
resulting in different versions of the original time series. Then, these
versions are forecast separately by ETS, and the final forecast is themedian
of all forecasts.

• ES-RNN is a hybrid forecasting method based on time series decompo-
sition developed by Uber. The basic idea is to de-seasonalize the time
series using exponential smoothing and to use a neural network for ex-
trapolation of the time series.

• FFORMS is based on forecasting method recommendation. More pre-
cisely, a random forest is applied as a classifier to map the most appro-
priate forecasting method (ETS, NNetar, sARIMA, sNaïve, TBATS, and
Theta) to a specific time series described by a set of time series character-
istics.

• Hybrid4 performs an ensemble forecast. The considered methods com-
prise ETS, NNetar, Theta, sARIMA, and TBATS. For the ensemble forecast,
each method performs a forecast, and the final forecast is the average of
these forecasts.

• Prophet is a hybrid forecasting method based on decomposition devel-
oped by Facebook. The idea is to decompose the time series into the
components trend, season, holiday, and error. Each component is forecast
by a different approach. Then, the forecast parts are assembled to form
the final forecast.

4Hybrid forecasting method: https://cran.r-project.org/web/packages/

forecastHybrid/vignettes/forecastHybrid.html

151

https://cran.r-project.org/web/packages/forecastHybrid/vignettes/forecastHybrid.html
https://cran.r-project.org/web/packages/forecastHybrid/vignettes/forecastHybrid.html

Chapter 10: Time Series Forecasting Competition

During the measurements, each method was deployed on a VM (Ubuntu
18.04.3, 2 vcores, and 4 GB RAM) in our private CloudStack cluster. The details
of the cluster are given in Section 11.1.3. Themethodswere executed either with
R (V 3.4.4), C++ (V 11), or Python (V 3.6.7). Further, each method got a single
time series as input if not stated otherwise. Note that using one time series at a
time is a major difference to the M4-Competition5 where it is possible to use
the complete training data set (i.e., all time series) for training the algorithms.
In our experiments, we perform multi-step-ahead forecasts. That is, each time
series was divided into history (first 80% of the time series) and test (remaining
20% of the time series). Based on the history, each method learned a model
that was used for forecasting future values of the time series (i.e., the test part)
at once with a single execution. This forecasting procedure (i.e., receiving the
time series, estimating the parameters, building the model, and forecasting
the time series) was repeated ten times for each time series. Consequently, the
reported measures were determined on the average values of each time series.

As input for the forecasting task, the classical time series forecastingmethods,
BETS, NNetar, andHybrid received the time series and the respective frequency.
Prophet also needs the timestamps of the time series. The regression-based ma-
chine learning methods except NNetar received the time series and a synthetic
seasonal pattern (a vector with the indices modulus the frequency) as input.
To achieve a reliable forecast for GPyTorch, we shifted each time series linearly
to obtain a mean value of zero (Rasmussen and Williams, 2006). FFORMS
was trained on the M4- and M3-Competition and received as input also the
time series and the respective frequency. In contrast to the other methods,
ES-RNN requires, besides the time series and frequency, a set of time series.
To this end, ES-RNN got the same time series several times. Note that we
used all methods "out-of-the-box" since the results of the M3-Competition have
shown that the methods were kept simple and that complex models do not
necessarily perform better (Makridakis and Hibon, 2000). That is, there was
no parameter tuning, and the methods were used with their default settings.
Recall the “No-Free-Lunch Theorem” (Wolpert and Macready, 1997), stating
that improving a method for one aspect leads to deterioration in performance
for another aspect. Moreover, also the techniques deployed in Telescope were
used with their default settings.

5M4-Competition: https://www.mcompetitions.unic.ac.cy/the-dataset/

152

https://www.mcompetitions.unic.ac.cy/the-dataset/

10.2 Benchmarking of Forecasting Methods

10.1.2 Applied Measures

To compare and quantify the performance of the different forecasting methods,
we report forecast error measures (see Section 3.3 and 7.5) and the time-to-
result. The time-to-result for a time series reflects the duration in which the
forecasting method receives the time series, estimates the parameters, creates
the model, and performs the forecast. For the forecast accuracy, we consider
the established forecast accuracy measures (see Section 3.3) MASE as well
as sMAPE and apply measures proposed in this thesis. Table 10.1 lists a brief
description of each measure.

Table 10.1: Overview of the applied measures.
Name Description

esM Forecast accuracy based on the sMAPE. The measures esM,
ẽsM, and σesM reflect the average error, median error, and the
standard deviation of the error.

eMA Forecast accuracy based on the MASE. The measures eMA
and σeMA reflect the average error and the standard deviation
of the error.

ρU , ρO Mean wrong-estimation share as the relative number of fore-
cast values that under- or overestimate the actual values.

δU , δO Mean wrong-accuracy share as the mean percentage error
during under- or overestimating the actual values.

ϑ The forecast accuracy degradation reflects the deterioration
compared to the best method. The measures ϑ, ϑ̃, and σϑ
reflect the average forecast accuracy degradation, themedian
forecast accuracy degradation, and the standard deviation
of the forecast accuracy degradation.

tsN The time-to-result normalized by the time required by
sNaïve. The measures tsN , t̃sN , and σtsN reflect the aver-
age time, median time, and the standard deviation of the
time.

10.2 Benchmarking of Forecasting Methods

In this section, we benchmark a set of classical forecasting methods as well as
regression-based machine learning methods. First, we describe the subsequent

153

Chapter 10: Time Series Forecasting Competition

experiments in Section 10.2.1. Then, we analyze the forecasting performance of
the competing methods on the use cases: (i) economics (see Section 10.2.2),
(ii) finance (see Section 10.2.3), (iii) human access (see Section 10.2.4), and
(iv) nature anddemographics (see Section 10.2.5). Afterwards, in Section 10.2.6,
we consider all use cases for selecting the competitors for the benchmarking of
our Telescope approach. Finally, we sum up the results and discuss threats to
validity in Section 10.2.7.

10.2.1 Experimental Description

To investigate the forecast performance of the state-of-the-art forecasting meth-
ods and selecting the competing methods for our evolution of Telescope, we
use the forecasting benchmark (see Chapter 7). More precisely, we compare
on four use cases the forecasting methods (i) ETS, (ii) GPyTorch, (iii) NNetar,
(iv) sARIMA, (v) sNaïve, (vi) TBATS, (vii) Theta, (viii) RF, (ix) SVR, and
(x) XGBoost. A brief overview of the methods can be found in Section 10.1.1.

10.2.2 Economics Use Case

Table 10.2 and 10.3 show the results of the forecasting competition on the
economic use case for the classical time series forecasting methods and the
regression-based machine learning methods, respectively. Each row shows
a measure (a brief overview of the measures is given in Section 10.1.2). The
columns correspond to the methods in competition. The best values (the lower,
the better) are highlighted in bold. The most accurate forecasting method
based on esM is ETS (13.02%) followed by sNaïve (13.28%). The most accurate
machine learning method is NNetar (16.49%) followed by GPyTorch (17.32%).
Concerning eMA, the most accurate forecasting method is sARIMA (0.53) fol-
lowed by TBATS (0.59) and the most accurate machine learning method is
XGBoost (0.87) followed by GPyTorch (0.91). For both error measures, all
forecasting methods (except sNaïve for eMA) exhibit a higher accuracy than
the most accurate machine learning method.

As there are different superior methods for both error measures, we investi-
gate measures describing the forecast. More precisely, ρO or ρU either reflects
whether the forecasting method over- or underestimates the future vales. The
methods sARIMA, TBATS, and NNetar exhibit almost no tendency (ρO ∼ ρU),
while the remaining methods tend to underestimate (ρU > 50%). Especially,
the methods sNaïve, GPyTorch, RF, SVR, and XGBoost underestimate a time
series on average more than 2/3 of the forecast horizon. However, while under-

154

10.2 Benchmarking of Forecasting Methods

Table 10.2: Comparison of classical time series forecasting methods on the
economics use case.

Measures ETS sARIMA sNaïve TBATS Theta

esM [%] 13.02 14.88 13.28 14.19 13.40
σesM [%] 16.26 25.80 12.12 21.06 21.42
eMA 0.66 0.53 0.90 0.59 0.77
σeMA 1.41 0.97 2.20 0.99 1.85
ρU [%] 55.52 49.33 67.86 49.71 60.07
ρO [%] 44.48 50.67 32.08 50.29 39.93
δU [%] 7.44 7.45 10.18 9.51 9.05
δO [%] 1.58·102 94.40 90.43 1.06·102 2.34·102

tsN 3.40·102 7.29·103 1.00 2.63·103 6.04
σtsN 2.55·102 2.36·104 0.00 1.86·103 18.15

Table 10.3: Comparison of regression-based machine learning methods on the
economics use case.

Measures GPyTorch NNetar RF SVR XGBoost

esM [%] 17.32 16.49 19.80 25.08 17.58
σesM [%] 13.33 16.86 18.27 29.23 19.89
eMA 1.04 0.91 1.69 2.20 0.87
σeMA 2.06 2.0 5.71 8.14 2.16
ρU [%] 71.80 52.92 73.72 72.57 70.85
ρO [%] 28.20 47.08 26.28 27.43 29.15
δU [%] 12.11 7.85 13.52 16.65 26.04
δO [%] 1.05·102 2.84·102 1.51·102 1.39·102 2.01·102

tsN 3.39·103 1.18·102 62.26 13.09 6.41
σtsN 3.00·103 1.19·102 77.32 39.08 16.90

estimating a time series, all methods are more accurate than overestimating a
time series.
In terms of the time-to-result, the forecasting methods sNaïve (1.00) and

Theta (6.04) are by far the fastestmethods. Note that the time-to-result of sNaïve
was used to normalize the recorded times and thus, sNaïve has a value of 1.00.
The remaining forecastingmethods are between 100 and 1000 times slower than
sNaïve. For instance, sARIMA, which is the most accurate method concerning
eMA, is the slowest method and also shows by far the most remarkable variation

155

Chapter 10: Time Series Forecasting Competition

for the time-to-result. The fastest machine learning method is XGBoost (6.41)
followed by SVR (13.09).

10.2.3 Finance Use Case

The results of the forecasting competition on the finance use case are listed
in Table 10.4 showing the classical time series forecasting methods and in
Table 10.5 showing the regression-based machine learning methods. Each row
shows a measure and each column a method. The most accurate values (the
lower, the better) are highlighted in bold. Among the forecasting methods,
ETS (17.59%) is based on esM the most accurate method followed by sARIMA
(17.83%). The most accurate machine learning method is XGBoost (19.25%)
followed by RF (23.39%). In contrast to all other methods, NNetar (1.33·103)
is by far the most inaccurate method and exhibits a standard deviation with
a value of 4.14·104. However, these high values are introduced by a single
time series. According to eMA, sARIMA (1.58) is the most accurate forecasting
method followed by ETS (1.88). Again, XGBoost is the most accurate machine
learning method (2.13) followed by GPyTorch (2.36). Like the economics use
case, all forecasting methods are more accurate than the machine learning
methods.

Table 10.4: Comparison of classical time series forecasting methods on the
finance use case.

Measures ETS sARIMA sNaïve TBATS Theta

esM [%] 17.59 17.83 24.40 17.95 18.00
σesM [%] 17.96 22.04 24.31 17.44 18.14
eMA 1.88 1.58 2.25 1.94 1.96
σeMA 5.32 4.07 5.89 5.29 5.24
ρU [%] 66.75 64.83 69.88 67.96 70.28
ρO [%] 33.25 35.17 30.10 32.04 29.72
δU [%] 12.40 12.24 17.22 12.71 13.07
δO [%] 18.56 25.32 19.79 15.48 20.07
tsN 1.69·102 2.35·106 1.00 5.35·103 8.58
σtsN 2.09·102 1.75·107 0.00 6.50·103 16.72

In contrast to the economics use case, all methods tend heavily to underesti-
mate a time series. More precisely, the forecast of each method is, on average, at
least 64% of the horizon below the actual values. Moreover, all methods are ex-
hibiting almost the same accuracy during under- and overestimating. In terms

156

10.2 Benchmarking of Forecasting Methods

Table 10.5: Comparison of regression-based machine learning methods on the
finance use case.

Measures GPyTorch NNetar RF SVR XGBoost

esM [%] 31.64 1.33·103 24.94 30.44 19.25
σesM [%] 32.65 4.14·104 23.39 30.69 19.46
eMA 2.36 2.39 3.62 4.80 2.13
σeMA 5.80 6.89 11.64 16.59 5.92
ρU [%] 70.48 69.85 70.78 69.99 70.66
ρO [%] 29.01 30.15 29.22 30.01 29.34
δU [%] 20.37 14.97 17.33 20.42 13.99
δO [%] 17.89 29.24 17.21 15.50 22.06
tsN 9.95·103 6.78·102 1.64·103 3.60·102 7.27
σtsN 1.16·104 8.47·102 3.16·103 6.23·102 17.24

of tsN , sNaïve (1.00) and Theta (8.58) are the fastest forecasting methods and
XGBoost (7.27) and SVR (3.60·102) are the fastest machine learning methods.
Also, in this use case, sARIMA, which is the most accurate method according
to eMA, is, on average, more than one million times slower than sNaïve.

10.2.4 Human Access Use Case

The results for the forecasting competition on the human access use case are
shown in Table 10.6 (classical time series forecasting methods) and Table 10.7
(regression-based machine learning methods). Each column shows a method
and each row a measure, where the most accurate values (the lower, the better)
are highlighted in bold. The most accurate forecasting method based on esM
is sNaïve (23.60%) followed by sARIMA (27.95%). XGBoost (28.45%) and
GPyTorch (29.92%) are the most accurate machine learning methods. In terms
of eMA, XGBoost (0.55) and GPyTorch (0.65) are the most accurate machine
learning methods, while sARIMA (0.50) and sNaïve (0.51) swap places. In
contrast to the economic and finance use cases, the forecasting methods do not
outperform the machine learning methods concerning both accuracy measures.
Regarding the under- and overestimating, all methods behave differently

than in the economic and finance use case. More precisely, all methods show al-
most no tendency to under- or overestimating the future values (i.e., ρO ∼ ρU).
However, the methods are, on average, far more accurate during underesti-
mation than overestimation. Regarding tsN , the fastest forecasting method
is sNaïve (1.00) followed by Theta (15.33) and the fastest machine learning

157

Chapter 10: Time Series Forecasting Competition

Table 10.6: Comparison of classical time series forecasting methods on the
human access use case.

Measures ETS sARIMA sNaïve TBATS Theta

esM [%] 46.64 27.95 23.60 42.51 31.20
σesM [%] 65.27 54.99 34.91 1.46·102 89.65
eMA 1.42 0.50 0.51 0.63 0.65
σeMA 2.86 0.54 0.89 1.03 1.58
ρU [%] 45.68 48.73 53.61 49.40 50.03
ρO [%] 54.32 51.27 45.56 50.60 49.97
δU [%] 2.46·102 52.79 17.63 23.55 21.02
δO [%] 7.73·103 2.26·103 2.02·103 1.24·103 6.31·103

tsN 6.90·102 9.05·105 1.00 1.48·104 15.33
σtsN 1.11·103 4.58·106 0.00 1.52·104 25.44

Table 10.7: Comparison of regression-based machine learning methods on the
human access use case.

Measures GPyTorch NNetar RF SVR XGBoost

esM [%] 29.92 33.09 75.60 1.47·102 28.45
σesM [%] 50.22 67.99 6.17·102 1.08·103 42.73
eMA 0.65 0.66 0.82 1.01 0.55
σeMA 1.02 0.91 1.44 1.83 0.87
ρU [%] 52.69 48.58 43.79 47.38 52.35
ρO [%] 47.13 51.42 56.21 52.62 47.65
δU [%] 19.85 24.81 18.32 23.03 68.87
δO [%] 1.95·103 2.59·103 3.82·103 3.59·103 2.58·103

tsN 1.41·104 9.60·102 2.40·103 1.06·103 6.72
σtsN 1.11·104 1.01·103 4.90·103 2.20·103 13.30

method is XGBoost (6.72) followed by NNetar (9.60·102). Also, in this use case,
sARIMA is the most accurate method according eMA, but exhibits the highest
mean value (9.05·105) and the highest standard deviation (4.58·106) for the
time-to-result.

158

10.2 Benchmarking of Forecasting Methods

10.2.5 Nature and Demographics Use Case

The results of the last use case, nature and demographics, are shown in Ta-
ble 10.8 for the classical time series forecasting methods and in Table 10.9 for
the regression-based machine learning methods. Each row reflects a measure
and each column a method. The most accurate values (the lower, the better)
are highlighted in bold. The most accurate forecasting method based on esM is
TBATS (19.85%) followed by Theta (21.79%), while the most accurate machine
learning method is GPyTorch (24.00%) followed by RF (26.53%). Among the
forecasting methods, sARIMA (0.31) and TBATS (0.36) are the most accurate
methods regarding eMA. XGBoost (0.47) and GPyTorch (0.48) are the most
accurate machine learning methods. Similar to the human access use case,
the forecasting methods and machine learning methods exhibit a comparable
accuracy for both measures.

Table 10.8: Comparison of classical time series forecasting methods on the
nature and demographics use case.

Measures ETS sARIMA sNaïve TBATS Theta

esM [%] 38.54 21.87 26.00 19.85 21.79
σesM [%] 1.05·102 28.47 39.54 22.52 24.41
eMA 0.83 0.31 0.42 0.36 0.40
σeMA 2.75 0.28 0.64 0.53 0.58
ρU [%] 44.95 46.18 53.38 51.01 50.39
ρO [%] 55.05 53.82 46.39 48.99 49.61
δU [%] 15.12 14.34 16.51 15.21 14.80
δO [%] 1.60·102 51.15 58.83 33.51 40.68
tsN 5.02·102 1.25·105 1.00 7.61·103 1.04
σtsN 5.17·102 5.11·105 0.00 1.03·104 19.31

As in the human access use case, all methods neither tend to under- nor
overestimate the future vales (i.e., ρU ∼ ρO). However, while underestimating a
time series, all methods are more accurate than overestimating a time series. On
average, the fastest forecasting methods are sNaïve (1.00) and Theta (1.04) and
the fastest machine learning methods are XGBoost (6.54) and SVR (1.04·102).
The remaining methods are at least 100 times slower than sNaïve. For example,
sARIMA is 125,000 times slower than sNaïve.

159

Chapter 10: Time Series Forecasting Competition

Table 10.9: Comparison of regression-based machine learning methods on the
nature and demographics use case.

Measures GPyTorch NNetar RF SVR XGBoost

esM [%] 24.00 28.79 26.53 31.79 30.11
σesM [%] 33.53 45.96 27.13 69.59 45.73
eMA 0.48 0.52 0.57 0.54 0.47
σeMA 0.81 0.75 0.98 1.27 0.74
ρU [%] 51.83 42.75 48.00 50.82 48.79
ρO [%] 48.17 57.25 52.00 49.18 51.21
δU [%] 16.02 15.23 15.04 16.92 17.84
δO [%] 62.92 86.13 78.17 49.07 53.36
tsN 1.01·104 6.11·102 1.58·103 1.04·102 6.54
σtsN 1.02·104 8.39·102 4.72·103 4.50·103 14.60

10.2.6 Overall Evaluation

In this section, we investigate the overall performance of the forecasting meth-
ods for choosing the most accurate methods for the competition with our
contribution Telescope in Section 10.4. To this end, Table 10.10 shows the per-
formance of the classical time series forecasting methods on all use cases and
Table 10.11 the results of the regression-based machine learning methods on all
use cases. Each row shows a measure and each column a method. The best val-
ues (the lower, the better) are highlighted in bold. Considering all use cases, the
most accurate forecasting method based on both accuracy measures is sARIMA
(20.63%; 0.73). For the machine learning methods, XGBoost (23.85%; 1.00) is
the most accurate method regarding both accuracy measures. To this end, we
select sARIMA and XGBoost as representatives of the forecasting methods and
the machine learning methods to compete against Telescope, respectively.

By taking all use cases into account, we can investigate the overall tendency of
the methods. All methods tend to underestimate the future vales (ρO > 50%).
However, methods like ETS, NNetar, sARIMA, and TBATS exhibit only a slight
difference between ρO and ρU . In contrast, the remaining methods underesti-
mate, on average, almost 3/5 of the future values. Also, during the underesti-
mation, the methods are, on average, more accurate than overestimating a time
series. In terms of the time-to-result, XGBoost (6.73) is the fastest method of
the machine learning methods, while sARIMA (8.48·105) is among all methods
the slowest. Moreover, all methods (except XGBoost and Theta) are at least 100
times slower than sNaïve.

160

10.2 Benchmarking of Forecasting Methods

Table 10.10: Comparison of classical time series forecasting methods on all use
cases.

Measures ETS sARIMA sNaïve TBATS Theta

esM [%] 28.95 20.63 21.82 23.62 21.10
σesM [%] 64.57 35.63 30.07 76.00 48.95
eMA 1.20 0.73 1.02 0.88 0.94
σeMA 3.43 2.17 3.27 2.82 2.97
ρU [%] 53.22 52.27 61.18 54.52 57.69
ρO [%] 46.78 47.73 38.53 45.48 42.31
δU [%] 70.44 21.71 15.38 15.25 14.48
δO [%] 2.02·103 6.07·102 5.46·102 3.48·102 1.65·103

tsN 4.25·102 8.48·105 1.00 7.59·103 10.10
σtsN 6.65·102 9.08·106 0.00 1.08·104 20.46

Table 10.11: Comparison of regression-based machine learning methods on all
use cases.

Measures GPyTorch NNetar RF SVR XGBoost

esM [%] 25.72 3.52·102 36.72 58.63 23.85
σesM [%] 35.40 2.07·104 3.10·102 5.41·102 34.67
eMA 1.13 1.12 1.68 2.14 1.00
σeMA 3.23 3.71 6.64 9.45 3.27
ρU [%] 61.70 53.53 59.07 60.19 60.66
ρO [%] 38.13 46.47 40.93 39.81 39.34
δU [%] 17.09 15.71 16.05 19.26 31.69
δO [%] 5.34·102 7.48·102 1.02·103 9.47·102 7.13·102

tsN 9.39·103 5.92·102 1.42·103 6.19·102 6.73
σtsN 1.03·104 8.39·102 3.85·103 2.56·103 15.59

10.2.7 Summary of the Results and Threats to Validity

While comparing the forecast error, the machine learning methods exhibit a
higher forecast error than the classical forecasting methods. This observation
is in line with the high forecast error of pure machine learning methods in the
M4-Competition (Makridakis et al., 2018b). However, the machine learning
methods are faster than the classical forecasting methods. Considering the
individual methods over all four use cases, no method performs best for all use

161

Chapter 10: Time Series Forecasting Competition

cases (recall the “No-Free-Lunch Theorem” (Wolpert and Macready, 1997)).
For the classical forecasting methods, sARIMA is, on average, the most accurate
method, although it is not the best method for any use case. In terms of time-
to-result, however, sARIMA is, on average, almost one million times slower
than sNaïve. In contrast, the most accurate machine learning method XGBoost
is on average 6.73 times slower than sNaïve. Moreover, XGBoost is, for two use
cases, the best machine learning method. The baseline method sNaïve achieves
only good forecasts when a strong seasonality within a time series is present.
Although we compare the methods on a broad competition comprising a

wide range of domains containing 400 different time series, the results may
not be generalizable to all time series from all domains. Moreover, we use
all methods “out-of-the-box” with their respective default setting. Thus, the
individual methods’ performance may be different if parameter tuning would
have been performed before the forecasting task. We also investigate (i)whether
the differences for the observed forecast accuracy are statistically significant
and (ii) whether the differences for the measured time-to-result are statistically
significant. Consequently, we apply the Friedman test (Friedman, 1937) that is
a non-parametric statistical test. More precisely, the test ranks the forecasting
methods for each time series separately and compares the methods’ average
ranks. If there is a tie, average ranks are assigned. Based on this test, we
formulate the following hypotheses:

H0,1 : The methods perform equally regarding the forecast error.
H0,2 : The methods perform equally regarding the time-to-result.

We conduct both hypotheses with a significance level of 1%. The resulting
p-values p1 < 2 · 10−16 and p2 < 2 · 10−16 indicate that both hypotheses can be
rejected. Thus, the differences in the exhibited performance of the forecasting
methods are statistically significant.

10.3 Evaluation of the Forecasting Method Recommendation

In this section, we investigate and assess the recommendation system, which
is integrated in Telescope. First, we describe the subsequent experiments in
Section 10.3.1. Then, in Section 10.3.2, we examine the performance of each
method that is available for the recommendation. The accuracy of the different
recommendation approaches are analyzed in Section 10.3.3. As our recommen-
dation system augments the training set, we investigate the generation of new
time series in Section 10.3.4. Finally, we sum up the results and discuss threats
to validity in Section 10.3.5.

162

10.3 Evaluation of the Forecasting Method Recommendation

10.3.1 Experimental Description

To investigate the accuracy of our recommendation system deployed in Tele-
scope, we compare our recommendation approaches based on different feature
sets and against selection strategies. Further, we assembled a heterogeneous
data set disjointed from the forecasting benchmark data set to have broad and
sound experiments. The data set6 consists of 150 real-world and publicly avail-
able time series. The time series are gathered from various sources (Wikipedia
Project-Counts, Internet Traffic Archive, R packages, Kaggle, Datamarket, etc.)
and covering different use cases (e.g., Internet accesses, sales volume). For the
recommendation, we split the data set into 100 training and 50 test time series.
Moreover, we divide the data set 100 times into unique training and test sets to
avoid arbitrary splits. In other words, the recommendation approaches and
strategies are trained and evaluated on 100 different splits. Also, we ensure
that each time series is at least once in a test split. For the experiments, our
recommendation system further augments the training set as described in Sec-
tion 8.8.4. That is, the time series generator uses the 100 time series in each
training split, so that the augmented training set then comprises 10,000 time
series. However, before assessing the recommendation of the forecasting meth-
ods, we investigate the performance of the regression-based machine learning
methods as a reference for the recommendation process. More precisely, we
analyze how accurate each of the methods performs on the data set. To this
end, we consider the following shares on the 100 splits:

• Best in split: “How often the method is the best method in each split”
In each split, we examined the distribution of the most accurate methods.
Then, the method that was most often the most accurate method in the
split is credited with this split. In other words, a method with x% was
the most accurate method in x% of the splits.

• Lowest in split: “How often themethod has, on average, the lowest forecast
accuracy degradation in each split”
In each split, we calculated the forecast accuracy degradation per time
series for each method based on the most accurate method. Then, the
method with the lowest average forecast degradation within the split
is credited with this split. Consequently, a value of x% means that the
method had in x% of the splits the lowest average forecast degradation.

• Total best: “How often the method is the most accurate method over all
time series”

6Time series data set is available at https://zenodo.org/record/3508552

163

https://zenodo.org/record/3508552

Chapter 10: Time Series Forecasting Competition

For each time series in each split, we determine the most accurate method.
Then, this method is credited with the respective time series. A value of
x% means that the method was the most accurate method on x% of all
time series.

To investigate the accuracy of our recommendation system deployed in Tele-
scope, we compare our recommendation approaches (see Section 8.8.1.3) based
on different feature sets and against selection strategies. Both the approaches
and strategies are briefly described in the following:

• The idea of AC is to use a random forest for mapping the time series
characteristics of a given time series to the most accurate regression-based
machine learning method.

• AR trains a random forest for each regression-based machine learning
method that estimates the forecast accuracy for a given time series. Then
the method with the best-estimated accuracy is selected.

• S∗ selects themost accuratemethod for each time series a-posteriori. Note
that this strategy is a theoretical construct since the most accurate method
is unknown at the time of the forecast.

• The idea of SL is based on Lowest split and selects the method that
exhibited the best average accuracy per training split.

• SB bases on Best in split and selects the method that was most often the
most accurate method per training split.

The approachesA†C andA†Rwork like their counterpartsAC andAR, but instead
of the time series characteristics proposed in this thesis (see Section 8.8.1) the
same characteristics as in Section 7.6.1 are used. The methods for selection
comprise (i) CART, (ii) Cubist, (iii) Evtree, (iv) NNetar, (v) RF, (vi) SVR,
and (vii) XGBoost. A detailed description of each method can be found in
Section 3.2.

10.3.2 Performance of the Regression-based Machine Learning Methods

In this section, we analyze the performance of each regression-based machine
learning method that can be selected during the recommendation process. To
this end, we report the shares (Best in splits, Lowest in splits, and Total best) in
Table 10.12 for the training data set and in Table 10.13 for the test set. While
the distribution of Total best is almost the same (the only exceptions are Evtree

164

10.3 Evaluation of the Forecasting Method Recommendation

and SVR) for both sets, the distribution varies considerably on a per split basis,
that is, Best in split. More precisely, the methods NNetar (43%) and SVR (57%)
dominate the training splits. However, in the test splits, NNetar is on 78% of
the splits the most accurate method, while SVR drops to 7%. The remaining
splits are governed by Cubist (4%) and Evtree (11%). An even more significant
discrepancy between training and test set can be observed for Lowest in splits.
While Cubist exhibits the lowest forecasting degradation in 93% of the training
splits, it has the lowest value in only 8% of the test splits. Another example is
Evtree. This method has the lowest forecasting degradation in no training split,
but in 32% of the test splits (the maximum among all methods). Based on these
results, we can conclude that the dynamic choice of the most accurate method is
a crucial task with considerable potential. Even the choice of a method based on
straightforward decision logic (e.g., selecting the method that was, on average,
the best method in the training data) can lead to poor forecasts.

Table 10.12: Investigation of the machine learning methods on the training
sets.

CART Cubist Evtree NNetar RF SVR XGBoost

Best in split [%] 0 0 0 43 0 57 0
Lowest in split [%] 7 93 0 0 0 0 0
Total best [%] 10 18 8 27 3 27 7

Table 10.13: Investigation of the machine learning methods on the test sets.
CART Cubist Evtree NNetar RF SVR XGBoost

Best in split [%] 0 4 11 78 0 7 0
Lowest in split [%] 19 8 32 0 23 5 13
Total best [%] 7 15 18 26 4 18 12

10.3.3 Analysis of the Recommendation Approaches

The results of the comparison between the different recommendation approaches
and strategies are listed in Table 10.14. Each row shows a measure, and each
column a recommendation approach/strategy. As measures, we consider the
forecast accuracy degradation ϑ over all 100 splits and the distribution of how
often the approach/strategy selects (i) the best method, (ii) the second-best
method, and (iii) the worst method. As S∗ is a theoretical construct and acts as

165

Chapter 10: Time Series Forecasting Competition

a baseline for the recommendation, the best values of the remaining approaches
and strategies are highlighted in bold. More precisely, S∗ has a-posteriori knowl-
edge and exhibits, thus the best values. However, this method is impractical in
practice, as this strategy selects machine learning methods after the forecast
has already been made and can be compared with actual values. That is, the
remaining six methods remain in fair competition. The lowest ϑ is shown byAR
(1.084) followed by A†R (1.106) and AC (1.143). In other words, the methods
chosen by AR are, on average, 8.4% less accurate than always selecting the
most accurate method. The worst methods regarding the ϑ are A†R (1.513) and
SB (1.360). In contrast, A†R has the second-best ϑ̃ (1.0009), while AC (1.0008)
exhibits the best value. In terms of σϑ, AR exhibits also the lowest value, while
SB , A†C , and A†R are showing a high variation.

Table 10.14: Comparison of the recommendation approaches.
S∗ SL SB AC AR A†C A†R

ϑ 1.000 1.173 1.360 1.143 1.084 1.513 1.106
ϑ̃ 1.000 1.005 1.003 1.001 1.004 1.001 1.002
σϑ 0.000 0.806 3.335 0.848 0.533 4.189 1.096
Best method [%] 100.00 14.68 20.64 31.20 15.78 29.84 18.72
2nd best method [%] 0.000 19.28 14.76 17.16 17.02 19.98 17.58
Worst method [%] 0.000 7.08 28.68 24.50 10.96 23.16 9.70

Besides the statistical measures of ϑ, we investigate the accuracy of the se-
lected methods. For instance, AC selects in 31.20% of the time series the most
accurate method and in 48.36% of the time series the most accurate or second
most accurate method, but has at the same time a chance of 24.50% to recom-
mend the worst method. In contrast, SL selects the best method or the worst
method only in 14.68% or 7.08% of the time series, respectively. AR, which
is according the ϑ the most accurate approach and has the lowest variation,
recommends only in 15.78% of the time series the most accurate method, in
32.08% of the time series either the best or second-best method, and in 10.96%
of the time series the worst method. In fact, no strategy or approach is showing
a high chance of selecting the best method and a negligible change for choosing
the worst method.

166

10.3 Evaluation of the Forecasting Method Recommendation

10.3.4 Training Set Augmentation

Typically, machine learning has the inherent limitation of only predicting what
has been learned during the training phase. That is, they only perform well if
the training and test set have the same characteristics. As our recommendation
system is based onmachine learning, this restriction also holds for our approach.
To counter this, Telescope augments the training set to be as representative
as possible. Thus, we investigate in this section the time series generation.
More precisely, we compare the time series characteristic distribution within
the original training set and in the augmented training set.

Table 10.15: Excerpt of the distribution of the time series characteristics of the
original and the augmented training set.

Length Standard deviation Str. of Seasonal Comp. Serial correlation Number of peaks
Original Augmented Original Augmented Original Augmented Original Augmented Original Augmented

Min. 31 28 0 0 0.17 0.01 0.00 0.00 1 1
Median 476 154 5 5 0.60 0.58 0.19 0.08 1 1
Mean 3.71·103 439 2.98·104 5.62·1027 0.59 0.59 0.23 0.16 2 3
Max. 2.92·104 2.92·104 2.23·106 4.49·1033 0.93 1.00 0.96 1.00 12 598

For almost all characteristics, the newly generated time series in the aug-
mented training set extend the spectrum of the data with respect to both the
maximum value (80%) and the minimum value (55%). For the sake of clarity,
Table 10.15 shows only an excerpt of the time series characteristic distribution.
Every two columns show the distribution in the original training set and the
augmented training set. And the rows show the minimum, the median, the
mean, and the maximum value of the respective time series characteristic. For
example, in the original training set, the maximum number of peaks (i.e., the
number of strong recurring patterns within a time series) was 12. After genera-
tion, there is at least one time series with 598 strong recurring patterns. Another
example is the strength of the seasonal component. In the original training
set, the seasonal part dominates between 17% and 93% of a time series. In the
augmented training set, a time series may contain only a very weak seasonal
pattern (1%) or consist entirely of the pattern (100%).

10.3.5 Summary of the Results and Threats to Validity

Comparing the performance of regression-based machine learning methods
on the training and test set, we have shown no method is superior to the other
methods. This result is in accordance with the “No-Free-Lunch Theorem” and
demonstrates that selecting the most suited method for a given method is
a crucial task. In terms of the recommendation accuracy, our proposed rec-

167

Chapter 10: Time Series Forecasting Competition

ommendation approaches outperform the straightforward strategies. More
precisely, the best performance is exhibited by the regression-based recom-
mendation approach. Note that S∗ is a theoretical construct using a-posteriori
knowledge. Therefore, it acted as a baseline and took not part in the competi-
tion. Since every machine learning task depends on its training data, we also
investigated the augmentation of the training set and showed that the genera-
tion of new time series extends the spectrum for all time series characteristics.
In summary, our recommendation approach is able to augment the training set
with time series having diverse characteristics and exhibits a high accuracy in
selecting the most suitable method for a given time series.

To minimize the risk of an arbitrary selection of the data set, we consider time
series that have already been used in textbooks, scientific articles, in competi-
tions, or in R. We also chose regression-based machine learning methods that
are easy to understand, generic, and can be used “out-of-the-box”. Moreover,
we evaluated our recommendation approaches based on our own proposed
time series characteristics and on a set of characteristics that have been used in
scientific articles (Fulcher et al., 2013; Hyndman et al., 2015; Kang et al., 2017).
Additionally, we investigate whether the differences in the observed recom-
mendation performance and the resulting forecast accuracy of the different
methods are statistically significant. For this purpose, we use the Friedman
test (Friedman, 1937). More precisely, we apply a non-parametric statistical
test that ranks (average ranks are assigned for ties) the recommendation ap-
proaches separately for each time series. In other words, the test compares
the average ranks of the recommendation approaches. Subsequently, we can
formulate the null hypothesis for the forecast accuracy as follows:

H0 : The recommendation approaches perform equally.

We conduct the hypothesis with a significance level of 1%. The resulting p-value
p < 2 · 10−16 indicates that the hypothesis can be rejected, that is, the differ-
ences in the performance of the recommendation approaches are statistically
significant.

10.4 Benchmarking the Telescope Approach

In this section, we benchmark our Telescope approach against recent hybrid
forecasting methods. First, we describe the experiments in Section 10.4.1. Then,
we asses the performance of Telescope and the competing methods in Sec-
tion 10.4.2. Amore detailed investigation of the forecastingmethods takes place
in Section 10.4.3. Beside the forecast performance, we analyze the repeatability

168

10.4 Benchmarking the Telescope Approach

of the forecasting methods in Section 10.4.4. Afterwards, we exchange methods
within Telescope to investigate different configurations in Section 10.4.5. Lastly,
we summarize the results and discuss threats to validity in Section 10.4.6.

10.4.1 Experimental Description

To benchmark Telescope with recent hybrid forecasting methods and the best
performing forecasting well-established forecasting methods, we use the fore-
casting benchmark (see Chapter 7) to compare these methods. The compet-
ing methods comprise (i) BETS, (ii) ES-RNN, (iii) FFORMS, (iv) Hybrid,
(v) Prophet, (vi) sARIMA, and (vii) XGBoost. A brief overview of the meth-
ods can be found in Section 10.1.1. In this evaluation, we investigate both the
pure Telescope approach and Telescope using the recommendation system.
For the training of the recommendation system, we use the same data set as
described in Section 10.3.1. Note that the benchmark and this training data set
consist of different time series. Moreover, we use the time series generator (see
Section 8.8.4) to augment the training data set from 150 time series to 10,000.
In the following, we refer to Telescope using the recommendation system as
Telescope∗.

10.4.2 Forecasting Method Competition

In this section, we compare Telescope over all use cases of the benchmark
(i.e., 400 time series) against five recent hybrid forecasting methods and the
best method from the field of “classical” time series forecasting and machine
learning. As an example, Figure 10.1 shows the competing forecasting methods
on the airline passenger time series (see Section 2.1.1). This time series, which
is often used as a baseline, shows that all forecasting methods are correctly
configured and perform reasonable forecasts. Therefore, we investigate the
results (i.e., forecast error and time-to-result) of these methods over all time
series in the following.
Table 10.16 shows the performance for all competing methods in compe-

tition averaged over all time series of all use cases. Each row represents a
measure, each column a method, and the best values (the lower, the better)
are highlighted in bold. The most accurate forecasting method based on esM is
Telescope∗ (19.46%) followed by Telescope (19.95%) and sARIMA (20.63%).
The highest error is shown by ES-RNN (47.87%). The lowest error based on
σeMA is exhibited by sARIMA (0.73) closely followed by Telescope∗ (0.77) and
Telescope (0.77). Again ES-RNN has the highest error (24.78). As the errors
calculated by sMAPE and MASE showing almost the same ranking, we are

169

Chapter 10: Time Series Forecasting Competition

200

400

600

800

1949 1955 1961
Year

Time Series

400

500

600

700

800

1959 1960 1961
Year

Air Passengers
BETS

ES−RNN
FFORMS

Hybrid
Prophet

sARIMA
Telescope

Telescope*
XGBoost

Competing Forecasting Methods

Figure 10.1: Forecasts for all methods in competition on the airline passengers
time series.

Table 10.16: Forecast error and time-to-result comparison on all time series.
Measures BETS ES-RNN FFORMS Hybrid Prophet sARIMA Telescope Telescope∗ XGBoost

esM [%] 25.52 47.87 21.15 27.89 35.56 20.63 19.95 19.46 23.85
σesM [%] 34.25 66.99 36.87 89.76 2.30·102 35.63 31.35 27.96 34.67
eMA 1.16 24.78 0.83 2.83 0.87 0.73 0.77 0.77 1.00
σeMA 6.97 2.17·102 2.35 54.08 2.37 2.17 2.23 2.23 3.27
ρU [%] 52.07 52.37 53.43 53.48 52.11 52.27 48.42 48.40 60.66
ρO [%] 47.93 47.62 46.53 46.52 47.88 47.73 51.57 51.60 39.34
δU [%] 53.56 21.94 13.87 26.54 16.62 21.71 63.73 42.83 31.69
δO [%] 4.97·102 1.50·103 1.67·103 7.49·102 7.62·102 6.07·102 3.35·102 3.00·102 7.13·102

tsN 6.14·104 1.61·106 5.23·105 1.09·106 2.04·103 8.48·105 1.43·102 3.21·103 6.73
σtsN 1.07·106 4.92·106 7.93·106 8.08·106 6.15·103 9.08·106 98.67 1.33·104 15.59

using esM in the following sections as the main error measure due to its more
intuitive interpretation.

Besides the forecast accuracy, we investigate the tendency of the forecasting
method to either under- (ρU) or overestimate (ρO) the actual values. All

170

10.4 Benchmarking the Telescope Approach

methods except XGBoost are showing almost no tendency (ρU ∼ ρO). However,
Telescope and Telescope∗ tend to overestimate (ρO > 50%) while the other
methods tend to underestimate (ρU > 50%). Moreover, all methods are more
accurate while underestimating the actual values than while overestimating the
actual values. Regarding δU , FFORMS (13.87%) is the most accurate method
followed by Prophet (16.62%), while Telescope (63.73%) is the worst method.
In contrast, Telescope∗ (3.00·102) is the most accurate method regarding δO
followed by Telescope (3.35·102) while FFORMS (1.67·103) exhibits the worst
value.

As the time-to-result is a crucial requirement in time-critical scenarios, the
forecasting methods are also compared based on their time-to-result. Note
that the time-to-result per time series was normalized with the time to result
of sNaïve7. By far, the fastest method is XGBoost (6.73). Telescope (1.43·102)
has the second-lowest time-to-result while Telescope∗ is, on average, ten times
slower. The slowest method is ES-RNN (1.61·106). Although sARIMA has
the third-lowest forecast accuracy, it is, on average, almost 6000 times shower
than Telescope and almost 300 times slower than Telescope∗. More precisely,
the maximum actual forecast time of sARIMA for a time series was 465,574
seconds, which corresponds to almost 5.5 days.
According to RQ 3, our contribution Telescope is designed to produced

stable forecasting results. Consequently, we also investigate the variation of the
forecast error and the time-to-result as a crucial property. The lowest standard
deviation regarding esM is shown by Telescope∗ (27.96%) followed by Telescope
(31.35%) and BETS (34.25%). In contrast, the highest variation has Prophet
(2.30·102). In terms of the time-to-result, XGBoost has the lowest variation
(15.59) followed by Telescope (98.67). The highest values for σtsN are exhibited
by sARIMA (9.08·106), Hybrid (8.08·106), and FFORMS (7.93·106).
Although the mean and standard deviation are useful statistical measures,

we also examine the distributions of the forecast errors based on sMAPE and
the time-to-result. Figure 10.2 illustrates the forecast error distribution of all
methods. Each distribution is depicted as a box plot, where the horizontal axis
shows the different methods and the vertical axis the forecast error in log-scale.
Themethods FFORMS, sARIMA, Telescope, and Telescope∗ are showing almost
the same distribution (i.e., quite short and similar interquartile ranges) with
only a few outliers. Although Hybrid shows a similar distribution between
the 25th and 75th quantiles, there are many outliers above the upper whisker.
Another group with similar distribution comprises the methods BETS, Prophet,
and XGBoost. The method with no outliers above the upper whisker but with
7sNaïve needs on average 0.01 seconds per forecast.

171

Chapter 10: Time Series Forecasting Competition

1e−01

1e+00

1e+01

1e+02

1e+03

BETS ES−RNN FFORMS Hybrid Prophet sARIMA TelescopeTelescope* XGBoost
Methods

sM
A

P
E

 [%
] i

n
lo

g−
sc

al
e

Forecast Error Distribution

Figure 10.2: Forecast error (sMAPE) distribution.

the longest interquartile range is ES-RNN. However, the fairly similar error
distributions are consistent with the “No-Free-Lunch Theorem”, which states
that there is no forecasting method that works best for all scenarios. Figure 10.3
depicts the time-to-result distribution of all methods. Again, each distribution
is illustrated as a box plot, and the vertical axis shows the time-to-result in
log-scale. In contrast to the error distribution, the time-to-result distributions
are completely different. XGBoost or Telescope exhibit a low variation in the
time-to-result. In contrast, FFORMS and sARIMA have a wide range of the
time-to-result. Consequently, both methods may be impractical for time-critical
scenarios. Telescope∗ has, in comparison to Telescope, also a huge variation
regarding the time-to-result. Thus, Telescope is used in time-critical scenarios
and Telescope∗ in non-time-critical scenarios.
To investigate the trade-off between forecast error and time-to-result, we

compare the methods in a 2-dimensional space spanned by the forecast error
and time-to-result. We compute the median time-to-result t̃sN and median

172

10.4 Benchmarking the Telescope Approach

1e+01

1e+04

1e+07

BETS ES−RNN FFORMS Hybrid Prophet sARIMA TelescopeTelescope* XGBoost
Methods

T
im

e−
to

−
R

es
ul

t i
n

lo
g−

sc
al

e
Time−to−Result Distribution

Figure 10.3: Time-to-result distribution.

forecast error ẽsM over all methods. Based on these both values, we can sort
the forecasts of each method for each time series (tsN , esM) in one of the four
quadrants: (i) [t̃sN ;∞[× [ẽsM;∞[, (ii) [0; t̃sN [× [ẽsM;∞[, (iii) [0; t̃sN [× [0; ẽsM[,
or (iv) [t̃sN ;∞[× [0; ẽsM[. The best trade-off is achieved in the 3rd quadrant as
both the forecast error and time-to-result are lower than their median values.
A semi-good performance is reflected by the 2nd and 4th quadrant as either
the time-to-result or the forecast error is lower than the associated median
value. The worst performance is achieved by forecasts in the 1st quadrant.
Here, both the forecast error and time-to-result are worse than their median
values. Figure 10.4 depicts each forecast as a point in the 2-dimensional space.
The vertical axis represents the forecast error and the horizontal axis the time-
to-result. Both axes are in log-scale. The vertical dashed line represents t̃sN and
the horizontal axis ẽsM. Each forecasting method is depicted in an individual
color and point shape. The methods XGBoost, Telescope, and Telescope∗ have
compact clusters in the 2nd and 3rd quadrant. In contrast, the methods BETS,

173

Chapter 10: Time Series Forecasting Competition

ES-RNN, and Hybrid have far-reaching clusters in the 1st and 4rd quadrant.
However, almost all methods have time series in each quadrant.

1e−01

1e+00

1e+01

1e+02

1e+03

1e−01 1e+02 1e+05
Time−to−Result in log−scale

sM
A

P
E

 [%
] i

n
lo

g−
sc

al
e

BETS
ES−RNN

FFORMS
Hybrid

Prophet
sARIMA

Telescope
Telescope*

XGBoost

Time vs Accuracy
II I

III IV

Figure 10.4: Forecast error vs. time-to-result for all methods.

Table 10.17 shows the distribution of the time series for each forecasting
method in each quadrant. Each row represents a quadrant and each column
a method. For instance, XGBoost has all forecasts equally distributed in the
2nd and 3rd quadrant. That is, all forecasts have a lower time-to-result than
t̃sN . In contrast, ES-RNN and Hybrid have all of their forecasts in the 1st and
4rd quadrant. Consequently, all forecasts having a longer time-to-result than t̃sN .
Telescope has 98% of its forecast in the 2nd and 3rd quadrant. More precisely,
51% of these forecasts are located in the 3rd quadrant. In other words, Telescope
has the highest number of forecasts exhibiting the best trade-off. The second
most time series in the 3rd quadrant has XGBoost (50%) followed by Telescope∗
(42%). In contrast, ES-RNN has 60% of its forecast in the 1st quadrant. That is,
for these time series ES-RNN exhibits the worst trade-off.

174

10.4 Benchmarking the Telescope Approach

Table 10.17: Distribution of time series in each quadrant for each forecasting
method.

BETS ES-RNN FFORMS Hybrid Prophet sARIMA Telescope Telescope* XGBoost

QI: [t̃sN ;∞[×[ẽsM;∞[46% 60% 21% 45% 22% 30% 1% 15% 0%
QII: [0; t̃sN [×[ẽsM;∞[4% 0% 26% 0% 33% 17% 47% 33% 50%
QIII: [0; t̃sN [×[0; ẽsM[5% 0% 34% 0% 36% 22% 51% 42% 50%
QIV: [t̃sN ;∞[×[0; ẽsM[45% 40% 19% 55% 10% 31% 1% 9% 0%

10.4.3 Detailed Examination

Although our contribution Telescope can handle both seasonal andnon-seasonal
time series, it is intended for long and seasonal time series. To this end, we
analyze the forecasting performance of all methods on seasonal (85% of the
data set) and non-seasonal (15%) time series. Table 10.18 lists the results for
seasonal and non-seasonal time series. Each row shows a measure and each
column a method. The best values (the lower, the better) are highlighted in
bold. The lowest forecast error on average for seasonal time series is exhibited
by Telescope∗ (19.77%) followed by Telescope (20.33%) and sARIMA (21.10%).
However, Telescope is about 6300 and Telescope∗ is about 260 times faster than
sARIMA. In the case of non-seasonal time series, FFORMS (16.47%) has the
lowest forecast error followed by Telescope∗ (17.65%) and Telescope (17.65%).
Note that both Telescope and Telescope∗ are using the same fallback for non-
seasonal time series. Since the fallback, which comprises ARIMA, has a lower
error than the sARIMA (17.85%), we are able see the impact of the Preprocess-
ing (see Section 8.2) and Postprocessing (see Section 8.6) phase of Telescope.
In both cases, XGBoost exhibits the lowest time-to-result followed by Telescope.

Table 10.18: Forecast error and time-to-result comparison on seasonal and
non-seasonal time series.

Measures BETS ES-RNN FFORMS Hybrid Prophet sARIMA Telescope Telescope∗ XGBoost

Seasonal
esM [%] 26.79 52.30 21.94 29.40 38.12 21.10 20.33 19.77 24.74
σesM [%] 33.24 71.18 39.11 92.16 2.49·102 37.65 32.83 28.96 36.73
tsN 7.14·104 1.63·106 6.11·105 1.26·106 2.22·103 9.92·105 1.56·102 3.74·103 6.90
σtsN 1.16·106 4.92·106 8.57·106 8.73·106 6.62·103 9.81·106 93.05 1.44·104 15.71

Non-Seasonal
esM [%] 18.00 21.74 16.47 18.98 20.53 17.85 17.65 17.65 18.59
σesM [%] 20.12 18.73 18.96 19.60 21.47 20.46 21.04 21.04 18.16
tsN 2.53·103 1.54·106 1.74·102 9.55·104 9.26·102 84.73 65.04 65.04 5.75
σtsN 4.42·103 4.90·106 8.20·102 2.07·105 1.07·103 1.25·102 95.05 95.05 14.83

In addition to the performance of the forecasting methods for seasonal and
non-seasonal time series, we examine the strengths and disadvantages of the
forecasting methods more precisely. To this end, we split the time series into
four classes: (i) short time series (< 2000) with a short period (< 96), (ii)

175

Chapter 10: Time Series Forecasting Competition

short time series with a long period (≥ 96), (iii) long time series (≥ 2000)
with a short period, and (iv) long time series with a long period, containing
270, 34, 14 and 82 time series, respectively. Table 10.19 compares the different
forecasting methods based on this classes. Each row shows a measure and
each column a method. The best values (the lower, the better) are highlighted
in bold. For all classes, XGBoost is the fastest method, on average, followed
by Telescope. In 3 of 4 classes, Telescope∗ is the third-fastest method. The
lowest error in the first class exhibits Telescope∗ (16.66%) followed by sARIMA
(16.68%) and Telescope (16.75%). In the second class, Telescope∗ has the lowest
error (19.20%) followed by Telescope (19.72%) and Hybrid (21.59%). In the
third class, Telescope∗ is again the most accurate method (19.41%) followed
by Telescope (19.71%) and FFORMS (21.78%). In the last class, Telescope∗
shows the lowest error (28.82%) followed by Telescope (30.59%) and sARIMA
(31.79%). In summary, our approach provides good forecasts for all classes
while having a low time-to-result compared to the next best method.

Table 10.19: Forecast error and time-to-result comparison on different time
series classes.

BETS ES-RNN FFORMS Hybrid Prophet sARIMA Telescope Telescope∗ XGB

(short ts; short p) σesM [%] 16.92 29.12 17.11 25.73 21.03 16.68 16.75 16.66 19.12
tsN 7.47·104 4.49·105 3.66·103 1.03·105 6.62·102 7.28·103 1.15·102 5.73·102 6.37

(short ts; long p) σesM [%] 32.91 51.06 25.43 21.59 25.71 24.57 19.76 19.20 22.81
tsN 4.83·103 1.84·106 1.24·104 2.63·105 9.40·102 2.34·104 1.37·102 7.18·102 6.48

(long ts; short p) σesM [%] 23.09 66.23 21.78 26.39 36.31 21.84 19.71 19.41 26.35
tsN 2.11·105 1.00·107 6.76·103 7.68·105 7.40·103 5.80·103 1.84·102 2.13·103 6.64

(long ts; long p) σesM [%] 51.20 1.05·102 32.56 37.90 87.42 31.79 30.59 28.82 39.40
tsN 1.57·104 3.91·106 2.53·106 4.76·106 6.10·103 4.10·106 2.28·102 1.31·104 8.07

10.4.4 Repeatability

Besides the accuracy and time-to-result of the forecast, we investigate how stable
forecasts are performed. To this end, we calculate for each method and for
each time series, the standard deviation of the forecast error based on sMAPE
over the ten repetitions. Table 10.20 shows for each method the average values
for the variation of the forecast error. Prophet and XGBoost have an average
standard deviation of 0%, indicating that both methods performed the same
forecasts for each of the ten repetitions. FFORMS, sARIMA, and Telescope
exhibit, on average, a forecast error standard deviation of 0.01%. This negligible
variation is introduced by sARIMA as it is used in Telescope as a building block
and as a possible method in FFORMS. Telescope∗ has a variation of 0.46% that
occurs mainly while NNetar is selected as machine learning method. Similarly,

176

10.4 Benchmarking the Telescope Approach

the high value shown by Hybrid can also be explained by the usage of NNetar
in the ensemble forecast.

Table 10.20: Average standard deviation in % of the sMAPE per time series
within the 10 repetitions.
BETS ES-RNN FFORMS Hybrid Prophet sARIMA Telescope Telescope∗ XGB

1.35 0.92 0.01 14.40 0.00 0.01 0.01 0.46 0.00

10.4.5 Investigation of Alternative Building Blocks

In this section, we investigate the forecast performance of Telescope while
using different building blocks to ensure that our approach reflects the best
possible configuration. More precisely, we changed (i) the forecasting method
for the trend (ARIMA), (ii) we switched the regression-basedmachine learning
method (XGBoost), and (iii) we deactivated the Box-Cox transformation. We
consider ETS and Theta for the trend forecast. For themachine learningmethod,
we take all base-level methods (CART, Cubist, Evtree, NNetar, RF, SVR) into
account. Details of the methods can be found in Section 3. The results of the
different versions of Telescope are listed in Table 10.21. Each row shows a
measure and each column a configuration. The best values (the lower, the
better) are highlighted in bold. The most accurate forecast is exhibited by
Telescope using RF (19.69%) followed by Telescope using ETS (19.83%) and
Telescope (19.95%). However, the version with RF is 6.6 times slower than the
original version. The second most accurate version is almost two times slower
than the original and shows a higher variance in the time-to-result. Moreover,
deactivating the Box-Cox transformation decreases the forecast accuracy by
far and also increases the time-to-result. Considering these results, we can
conclude that the configuration we have chosen shows the best trade-off and
thus overcomes the other methods.

Table 10.21: Testing different building blocks of Telescope.
Measures Telescope w/ ETS w/ Theta w/ CART w/ Cubist w/ Evtree w/ NNetar w/ RF w/ SVR w/o Box-Cox

esM [%] 19.95 19.83 27.81 21.01 20.00 20.31 27.25 19.69 19.99 35.01
σesM [%] 31.35 31.18 1.86·102 40.88 29.96 36.87 1.25·102 28.22 31.97 2.40·102

tsN 1.43·102 2.11·102 1.16·102 1.77·102 1.94·102 3.02·104 1.09·104 9.50·102 2.43·103 8.80·102

σtsN 98.67 1.89·102 1.23·102 1.12·102 1.17·102 2.49·104 5.52·103 6.55·102 1.95·103 2.01·102

177

Chapter 10: Time Series Forecasting Competition

10.4.6 Summary of the Results and Threats to Validity

Benchmarking our Telescope approach against recent hybrid forecasting meth-
ods and the best methods from Section 10.2, we showed that both Telescope
and Telescope∗ outperforms the state-of-the-art. More precisely, Telescope∗
achieves the best forecast accuracy based on the sMAPE followed by Telescope.
Regarding the forecast error based on MASE, both Telescope versions are the
second most accurate method. Although our approach is intended for seasonal
time series, it exhibits the second-best forecast accuracy on non-seasonal time
series. Moreover, Telescope is, on average, up to 6000 times faster than the third
most accurate method. In all experiments, Telescope∗ is more accurate than
Telescope, but has, on average, a higher time-to-result as well as variation in the
time-to-result. Also, we show that the chosen configuration of Telescope has
the best trade-off between forecast accuracy and time-to-result. The third most
accurate method, sARIMA, suffers from a high variation in the time-to-result.
The winner of the M4-Competition, ES-RNN, is tailored for cross-learning to
the M4-Competition data and therefore has the highest average forecast error.
In summary, Telescope exhibits the best forecast accuracy coupled with a low
and reliable time-to-result.
Although our data set comprises a broad spectrum with 400 different time

series, the evaluation results may not be generalized to all time series from all
areas. Besides the data set, we also try to have a sound set of recent hybrid
forecastingmethods based on different techniques. To this end, we also consider
methods developed by Facebook and Uber. However, we use all methods with
their default settings. Consequently, the observed results may differ if the
forecasting methods are tuned to each time series. Moreover, our classification
of the time series into long time series and time series with long periods may
also affect the results. As Telescope achieves on the whole data set the best
performance, the ranking inside the classesmay only change. Lastly, we analyze
whether the observed forecast accuracy as well as the measured time-to-result
are statistically significant. To this end, we apply a non-parametric statistical
test. More formally, we use the Friedman test (Friedman, 1937), which ranks
the forecastingmethods separately for each time series and compare the average
ranks of the methods. In case of a tie, average ranks are assigned. Thus, we
formulate the following hypotheses:

H0,1 : The methods perform equally regarding the forecast error.
H0,2 : The methods perform equally regarding the time-to-result.

We conduct both hypotheses with a significance level of 1%. The resulting
p-values p1 < 2 · 10−16 and p2 < 2 · 10−16 indicate that both hypotheses can be

178

10.5 Concluding Remarks

rejected. Thus, the differences in the exhibited performance of the forecasting
methods are statistically significant.

10.5 Concluding Remarks

In this chapter, we benchmarked our contribution Telescope against state-of-
the-art methods from the fields of (i) “classical” forecasting methods, (ii)
regression-based machine learning methods, and (iii) recent hybrid forecasting
methods. For this benchmarking process, we performed 72,000 forecasts con-
suming 13,560 (instance) hours with 15 state-of-the-art methods. In the first
benchmarking experiments, we observed that the machine learning methods
exhibit a higher forecast error than classical forecasting methods. Moreover,
no forecasting method outperforms the other methods for all use cases. Both
observations are in accordance with previous articles (Wolpert and Macready,
1997; Makridakis et al., 2018b). Then, we evaluated the recommendation sys-
tem integrated into Telescope to investigate RQ 5 “What are appropriate strategies
to dynamically apply the most accurate method within the hybrid forecasting approach
for a given time series?”. Here, the results underline the challenge of selecting
the most appropriate method for a given time series. Nevertheless, the recom-
mendation system outperforms the straightforward selection strategies. In the
last experiments, we benchmarked Telescope against the best methods from
the first benchmarking round and recent hybrid forecasting methods. On aver-
age, our approach achieves a higher forecast accuracy than the state-of-the-art,
has the second-lowest variance in the time-to-result, and is, on average, 6000
times faster than the next most accurate method. Moreover, Telescope∗ is more
accurate in all experiments than Telescope, but is on average slower and has
a higher variation in the time-to-result. These results show that the design
of Telescope (i.e., combining different methods) lead to accurate and reliable
forecasts (RQ 3 “How to design an automated and generic hybrid forecasting approach
that combines different forecasting methods to compensate for the disadvantages of each
technique?”). To investigate RQ 4 “How to automatically extract and transform fea-
tures of the considered time series to increase the forecast accuracy?”, we analyzed the
forecasting methods for different subsets of the time series. For non-seasonal
time series, Telescope’s fallback (i.e., applying Box-Cox transformation and
ARIMA) exhibits the second-best accuracy and is more accurate than sARIMA.
For seasonal time series, Telescope (i.e., extracting features, applying Box-Cox
transformation, and employing XGBoost) has the best accuracy and is more
accurate than XGBoost. When investigating different building blocks of our
contribution, Telescope without using the Box-Cox transformation is less accu-

179

Chapter 10: Time Series Forecasting Competition

rate than the original version. Based on these observations, we can conclude
that the automatic transformation and extraction of intrinsic time series features
enhance the explanation of the time series.

180

Chapter 11

Elastic Resource Management

In this chapter1, we evaluate and benchmark our contribution Chamulteon
and its components. First, we introduce the deployed workloads, applications,
environments, auto-scaler, and applied measures for the following experiments
in Section 11.1. Then, we investigate the benefit of using service demand as
scaling indicator for auto-scaling in Section 11.2. As Chamulteon bases on
the preliminary contribution Chameleon2, we benchmark this mechanism in
Section 11.3. Afterwards, we evaluate the cost-awareness component Fox in
Section 11.4. In Section 11.5, we benchmark our contribution Chamulteon.
Finally, we conclude this chapter in Section 11.6.

11.1 Global Experimental Setup

This section provides the information about the experimental setup, which are
used in the subsequent evaluation sections. Note that each subsequent evalua-
tion section has a separate experimental description for specific information. In
Section 11.1.1, the workloads for stressing the applications are described. Then,
the deployed applications are introduced (see Section 11.1.2) and the deploy-
ment environment (see Section 11.1.3) in which the applications are hosted.
Afterwards, the competing auto-scalers are presented in Section 11.1.4. Finally,
the applied measures for the comparison of the auto-scalers are highlighted in
Section 11.1.5.

11.1.1 Workload Description

To benchmark our contributions in representative experiments, authentic work-
loads with time-varying load intensity profiles are required. For this purpose,
1This chapter is based on our previous works (Bauer et al., 2018a,b; Lesch et al., 2018; Bauer
et al., 2019b).

2Note that the experiments of Chameleon were done in collaboration with Nikolas Herbst.

181

Chapter 11: Elastic Resource Management

we gathered existing traces from real-world systems that show different behav-
ior and can last up to several months. For a practical experiment run duration
of a few hours, we randomly selected subsets (one to three days) from the
real-world traces. Further, we accelerated the playback of these subsets so
that one day corresponds to one to 3.2 hours of experiment time. In other
words, the resource demand changes during the experiments in the order of
minutes. By doing so, we have covered balanced time intervals for a realistic
setup for the auto-scaling mechanisms. In our opinion, a higher time acceler-
ation factor would make the experiments unrealistic since, for example, the
increased changes in the demand could exceed the provision rate of the under-
lying hardware. In the following, the real-world traces applied in the following
experiments are depicted in Figure 11.1 and are listed below:

• The BibSonomy trace contains HTTP requests to servers of the social
bookmarking system BibSonomy (Benz et al., 2010) during April 2017.

• The FIFA3 trace, which is widely known and analyzed (Arlitt and Jin,
2000), contains HTTP requests to the FIFA servers during the FIFAWorld
Cup between April and June 1998.

• The IBM trace contains transactions on a z10 mainframe CICS (Customer
Information Control System) installation during a month.

• The Retailrocket4 trace contains HTTP requests that were sent to servers
of an anonymous real-world e-commerce website in June 2015.

• The Wiki5 trace contains the page requests to all German Wikipedia
projects during December 2013.

11.1.2 Deployed Applications

Besides the authenticworkloads, we benchmarked our contributions to different
applications. More precisely, we designed different services for the experiments,
which are based on existing applications. Each applications is written in Java
and was set up on either a JBoss WidlFly6 or Apache Tomcat7 applications
server. In the following, the deployed services are listed:
3FIFA Source: http://ita.ee.lbl.gov/html/contrib/WorldCup.html
4Retailrocket Source: https://www.kaggle.com/retailrocket/ecommerce-dataset
5Wikipedia Source: https://dumps.wikimedia.org/other/pagecounts-raw/2013/
6Wildfly: https://www.wildfly.org/
7Tomcat: http://tomcat.apache.org/

182

http://ita.ee.lbl.gov/html/contrib/WorldCup.html
https://www.kaggle.com/retailrocket/ecommerce-dataset
https://dumps.wikimedia.org/other/pagecounts-raw/2013/
https://www.wildfly.org/
http://tomcat.apache.org/

11.1 Global Experimental Setup

0
2500
5000
7500

10000

100 200 300
Time [min]

R
eq

ue
st

s
BibSonomy

1000
2000
3000
4000

100 200 300 400 500
Time [min]

R
eq

ue
st

s

FIFA

0

3000

6000

9000

50 100 150
Time [min]

R
eq

ue
st

s

IBM

0

3000

6000

9000

100 200 300
Time [min]

R
eq

ue
st

s

Retailrocket

3000

6000

9000

100 200 300
Time [min]

R
eq

ue
st

s

Wiki

Figure 11.1: Overview of the real-world traces.

• The Content application simulates a content-delivery service provider
with limited capacities. More specifically, an incoming HTTP request
attempts to read a file from a limited pool of randomly generated files.
Each file can only be read by one request at a time and is locked as
soon as it is read. That is, an incoming HTTP request either reads a file
successfully or waits until a file is unlocked.

• The LU application is a re-implementation of the LU worklet from SPEC’s
Server Efficiency Rating Tool SERT™2. The application calculates the
lower-upper matrix decomposition (Bunch and Hopcroft, 1974) of ran-
dom generated n× nmatrix, where the incoming HTTP request defines
n. In the experiments, we used a fixed n.

183

Chapter 11: Elastic Resource Management

• The Mixed application comprises the hardware contention of the LU
application and software contention of the Content application. More
precisely, an incoming HTTP request first calculates the lower-upper
matrix decomposition and then tries to read a file from the limited pool.

• The Verification application represents a lightweight micro-service appli-
cation comprising three different services: (i) UI service, (ii) Validation
service, and (iii) Data service. The UI forwards each request to the vali-
dation service to check its validity. Then, the request is redirected to the
data service. This last service provides the requested data and sends the
response to the UI for rendering the content.

For estimating the service demands8 (see Section 4.1.2) of each of these ap-
plications, we collected the average CPU utilization and the throughput of
each workload class per instance and applied LibReDE (Spinner et al., 2014).
The estimated service demands for the applications and services are listed in
Table 11.1.

Table 11.1: Estimated service demand of each deployed application.
Content Data LU Mixed UI Validation

Service demand [s] 0.15 0.04 0.1 0.25 0.059 0.1

11.1.3 Deployment Description

In addition to the authentic workloads and different applications, we also used
different deployments for the benchmarking of our contributions. More pre-
cisely, the LU application is hosted on three different platforms; the Verification
application is either deployed onVMs orDocker containers; the Verification and
LU applications are run on different instance configurations. The considered
platforms comprise

• A CloudStack-based private cloud (CSPC),

• Amazon Web Services EC2 (AWS EC2), and

• the DAS-4 (Distributed ASCI Supercomputer 4) IaaS cloud of a medium-
scale multi-cluster experimental environment (MMEE) (Bal et al., 2016).

8The service demand captures the average time required from each service for processing a
request, excluding any waiting times.

184

11.1 Global Experimental Setup

We used the CSPC for experiments in a controlled environment. In contrast,
the AWS EC2 and the MMEE environment were considered for scenarios with
background noise. In the CSPC environment, the applications were deployed
in a private Apache CloudStack9 cloud. More precisely, CloudStack manages
eight identical virtualized Xen-Server (v6.5) hosts (HP DL160 Gen9 with eight
physical cores @2.4Ghz (Intel E5-2630v3)). We deactivated hyper-threading
to limit VM overbooking and rely on a constantly stable performance per VM.
Dynamic frequency scaling was enabled as default, and further CPU-oriented
features were not changed. The hosts have each 2× 16GB RAM (DIMM DDR4
RAM operated @ 1866 MHz) deployed. The specifications of the VMs are listed
in Table 11.2.

Table 11.2: Specifications of the VMs.
c.small c.medium c.large m4.large d.small

Platform CSPC CSPC CSPC AWS EC2 MMEE
Operating System Ubuntu 16.06 CentOS 6.5 Debain 4.9 CentOS 6.5 Debian 8
vCPU 1 core 2 cores 2 Cores 2 cores 2 cores
Memory 2GB 4GB 8GB 8GB 2GB
Application Server Tomcat 7 WildFly 10 Tomcat 8.5 WildFly 10 WildFly 10

Note that for all experiments, the load driver, the experiment controller,
and the auto-scaling mechanism were not part of the system-under-test and,
thus, were located outside the three platforms. Moreover, we initialized all
VMs before the experiments to avoid measurement perturbations due to VM
image copying. At the beginning of each experiment, only a certain amount of
instances were running while the remaining instances were shut-down.

11.1.4 Deployed Auto-Scaling Mechanisms

During the experiments, our contributions competed against state-of-the-art
open-source auto-scalers. Each auto-scaler is described in detail in Chapter 6
and briefly below:

• Adapt (Ali-Eldin et al., 2012) is a hybrid auto-scaler based on control
theory. Themain idea is to have two proactive controllers for scaling down
and one reactive scaling approach. The auto-scaler considers mainly the
changes in the workload for scaling decisions.

9Apache CloudStack: https://cloudstack.apache.org/

185

https://cloudstack.apache.org/

Chapter 11: Elastic Resource Management

• ConPaaS (Fernandez et al., 2014) is a proactive auto-scaler based on
time series analysis. To have a reliable forecast, the auto-scaler performs
different forecasting methods and selects the method that exhibited the
best accuracy in the last scaling interval.

• Hist (Urgaonkar et al., 2008) is a hybrid auto-scaler based on queueing
theory. To scale applications proactively, the load is forecast based on
histograms. In contrast, reactive scaling takes place to correct inaccurate
decision based on the forecast.

• React (Chieu et al., 2009) is a reactive auto-scaler based on threshold-
based rules. Up-Scaling takes only place if all service instances exceed
the threshold. In contrast, down-scaling takes place if at least one service
instance is below the threshold.

• Reg (Iqbal et al., 2011) is a hybrid auto-scaler based on time series analysis.
The up-scaling reactively takes place, while the down-scaling is done
reactively. The down-scaling works similarly to React, and the proactive
up-scaling bases on polynomial regression.

Besides the state-of-the-art auto-scalers, we implemented a mechanism based
on the AWS EC2 auto-scaler using CPU utilization as a scaling indicator. As
thresholds, we used 80% CPU utilization for scaling up and 60% for scaling
down while adding/removing the fixed amount of one service instance. We
refer to this mechanism as T-Hold.

Each auto-scaler was called at fixed intervals, received a set of input values,
and then returned the number of service instances that had to be removed
or added. The state-of-the-art auto-scalers got (i) the accumulated number
of requests during the last interval, (ii) the estimated service demand per
request determined by LibReDE as used in Chamulteon, and (iii) the number
of currently running service instances as input. T-Hold got (i) the current
CPU utilization and (ii) the number of currently running service instances as
input. For the auto-scalers Adapt, ConPaaS, Hist, React, and Reg, we used the
implementations10 provided by A. Ali-Eldin with the same configurations as
used in their simulative evaluation (Papadopoulos et al., 2016).
As popular auto-scalers, which can scale applications comprising multiple

services, such as AutoMap, AGILE, and CloudScale (Shen et al., 2011; Nguyen
et al., 2013; Beltrán, 2015), are closed-source, we extended the state-of-the-art
open-source auto-scalers to enable scaling of such applications. To this end,
10Competing auto-scalers: https://github.com/ahmedaley/Autoscalers (Papadopoulos et

al., 2016)

186

https://github.com/ahmedaley/Autoscalers

11.1 Global Experimental Setup

we deployed for each service an instance of the associated auto-scaler. We
also modified the number of arrivals for each service. In other words, the first
service receives the current observed request rate as input. As input for the
following instances, the number of requests is calculated using the following
formula

r(i) :=

{
λ if i = 1,

min(n(i− 1) · s(i− 1), r(i− 1)) if i > 1,
(11.1)

where λ is the measured arrival rate at the entry-service of the application,
r(i) the request rate at the i-th service, n(i) the number of instances of the
i-th service, and s(i) the service rate11 at the i-th service. In other words, the
request rate for the i-th service is set as the minimum of the number of service
instances of the (i-1)-th service multiplied by the service rate per instance and
the request rate for the (i-1)-th service. Simply put, if the (i-1)-th service’s
capacity is exceeded, the maximum request rate that this service can process is
passed on to the i-th service. Otherwise, the incoming request rate is forwarded
to the i-th service.

11.1.5 Applied User and System Measures

To compare and quantify the performance of different auto-scalers, we used
a combination of system- and user-oriented measures. Table 11.3 lists a brief
description of each measure. The system-oriented measures consist of elasticity
measures (see Section 4.2 and 9.5). As user-oriented metrics, we report the
number of average adaptations, the number of average services instances, the
cost-saving rate, percentage of SLO (service level objective) violations, and user
satisfaction. We reflect the user satisfaction with the Application Performance
Index (Apdex), which is an open standard measure developed by a consortium
of companies that measures user satisfaction on a uniform scale from 0% to
100% (Sevcik, 2005). The best score of 100% is achieved when all requests are
served within the agreed response time (SLO). In addition to SLO violations,
which reflect whether a request is servedwithin the predefined time, this metric
can be used to gain additional insight into how bad the violations are from the
users’ perspective. Mathematically, the Apdex can be calculated as

Apdex[%] :=
ν + 0.5 · κ

Ω
, (11.2)

11The service rate is the inverse of the service demand.

187

Chapter 11: Elastic Resource Management

where ν is the number of satisfied requests, that is, requests within the SLO, κ
the number of tolerating requests, that is, requests that exceed the SLO within
a toleration interval, and Ω the number of total sent requests.

Table 11.3: Overview of the applied measures.
Name Description

θU , θO Provisioning accuracy as the relative amount of service in-
stances that are under- or overprovisioned normalized by
time.

τU , τO Wrong provisioning time share as the relative amount of
time in under- or overprovisioned state.

υ Instability as the relative amount of time in which demand
and supply are not parallel.

ε The elastic speedup score compared to when no auto-scaling
takes place.

σ Auto-scaling deviation from the theoretically optimal auto-
scaler.

ς Auto-scaling worst-case deviation from the theoretically op-
timal auto-scaler.

SLOs The relative amount of SLO violations.
Apdex The user satisfaction.
#Adaptations The total number of scaling adaptations.
Avg. #Inst. The average number of concurrently running service in-

stances during the experiment.
Πa Accounted cost-saving rate compared to using all service

instances throughout the experiment.
Πa Charged cost-saving rate compared to using all service in-

stances throughout the experiment.

11.2 The Impact of Service Demand Estimation

In this section, we investigate the benefits of using service demand and CPU uti-
lization as scaling indicator. First, we describe the experiment in Section 11.2.1.
Then, we compare an auto-scaling approach based on service demand and an
approach based on CPU-utilization on a hardware contention scenario (see
Section 11.2.2), on a software contention scenario (see Section 11.2.3), and
on a scenario that exhibits both hardware as well as software contention (see

188

11.2 The Impact of Service Demand Estimation

Section 11.2.4). Finally, we sum up the results and discuss threats to validity in
Section 11.2.5.

11.2.1 Experimental Description

To investigate the value of service demand estimation for auto-scaling, we
compare two approaches with identical underlying decision logic under time-
varying load, namely the Retailrocket (see Section 11.1.2) trace. The scaling
logic is based on simple threshold-based mechanisms, such as implemented on
AWS EC2. The first approach gets the measured average CPU utilization, and
the second approach gets the average system utilization based on queueing
theory (see Section 4.1) as input. The reason for choosing CPU utilization
as scaling indicator are: (i) In many cases, the bottleneck resource may not
be known at configuration time, (ii) using IO metrics requires an in-depth
knowledge of the IO characteristics of the underlying hardware, which does not
seem feasible in cloud deployments, and finally (iii) the CPU utilization is easy
to measure. In contrast, the average system utilization based on the queuing
theory has no limit (CPU utilization is limited to 100%) and thresholds can be
defined independently of the application. However, determining the average
system utilization based on queueing theory requires application-level metrics
such as response times and throughput per class of request.
Algorithm 11.1 illustrates the simplified decision logic underlying both ap-

proaches. As input parameters, the algorithm gets the current average system
utilization ρ and the number of currently running instances run. In contrast to
the CPU utilization-based approach, where ρ is equal to the measured average
CPU utilization, the service demand-based approach uses the average system
utilization based on the queueing theory, which provides a good trade-off
between estimation time and accuracy (Grohmann et al., 2017). The system
utilization ρ is the arrival rate multiplied by the estimated service demand or
the highest service demand if multi-tier systems are scaled (Bolch et al., 2006).
First, the algorithm checks if the average system utilization per instance ρ falls
below the predefined down-scaling threshold (Line 2). If this is true, the new
average system utilization per VM is calculated after decreasing the number
of instances iteratively (Line 3–6). Then, the algorithm checks if ρ exceeds the
predefined up-scaling threshold (Line 8). If it holds, the new average system
utilization per instance is computed after iteratively increasing the number of
instances (Line 9–12). Since the algorithm investigated ρ twice, the algorithm
prevents that too much instances are released, and thus, the ρ exceeds the
up-scaling threshold. Finally, the number of instances that are required (delta
> 0) or that can be released (delta < 0) are returned.

189

Chapter 11: Elastic Resource Management

Algorithm 11.1: Decision logic
Input: Average system utilization ρ, runningInstances run
Result: DeltaInstances delta

1 delta = 0
2 if ρ <= down_threshold then // down_threshold is predefined

3 while ρ <= down_threshold do
4 delta−−
5 ρ = ρ * (run / (run + delta)) // calculates the new average

utilization

6 end
7 end
8 if ρ > up_threshold then // up_threshold is predefined

9 while ρ > up_threshold do
10 delta++
11 ρ = ρ * (run / (run + delta)) // calculates the new average

utilization

12 end
13 end
14 return delta

In the following experiments, the CPU utilization-based approach and the
service demand-based approach scaled three different applications (see Sec-
tion 11.1.2): (i) The LU application with its performance limited by hardware
contention, (ii) the Content application restricted by software contention, and
finally (iii) the Mixed application exhibiting both hardware and software con-
tention. Each application was deployed on c.medium VMs in the CSPC envi-
ronment (see Section11.1.3) and stressed by the Retailrocket trace, which was
sped-up so that each recorded point is equal to one minute leading to 192 min-
utes experiment time. Consequently, every minute, VM specific information
(such as the amount of running VMs and the average CPU utilization) and
application-specific information (such as request arrival rates) were gathered
and passed to the auto-scalers. For the service demand-based approach, the
estimation of service demand was updated online every 10 minutes because
the estimated service demand is not expected to change significantly soon. As
a baseline scenario called No AS, we run 15 VMs throughout the experiment
duration.

190

11.2 The Impact of Service Demand Estimation

11.2.2 Hardware Contention Scenario

The results for the hardware contention scenario are shown in Figure 11.2. This
diagram is divided into three sub-figures: The first plot shows the scaling be-
havior of both approaches, the second plot the input (i.e., the average utilization
per instance) for each approach, and the last plot the estimated service demand.
For each plot, the horizontal axis shows the time of themeasurement inminutes.
In the first plot, the amount of demanded resources (determined by BUNGEE,
see Section 4.2.2) is depicted as black curve, the amount of supplied resources
using the service demand-based approach as blue curve, and the amount of
supplied resources using the CPU utilization-based approach as red curve.
Both methods tend to overprovision the system during the decreasing daily de-
cline. However, the auto-scaler based on CPU utilization overprovisioned more
instances during this period compared to the service demand-based approach.
The service demand-based auto-scaler can also handle the increasing load
during each day more efficiently than the CPU utilization-based auto-scaler.
More precisely, there is almost no underprovisioning, and the approach tends
to overprovision slightly.

The observations during the auto-scaling can be explained by looking at the
plot in the middle of Figure 11.2. Here, the blue curve shows the average system
utilization, the red curve the average CPU utilization, and the black dashed or
dot-dashed line represents the threshold for up-scaling (90%) or down-scaling
(70%), respectively. In contrast to the CPU utilization limited by 100%, the
system utilization is not limited upwards by a fixed value. That is, the system
utilization can have values higher than 100%. For instance, at minute 115,
where the system is in an underprovisioned state for both approaches, the CPU
utilization is 100% and the system utilization is 160%. Consequently, the service
demand-based approach assigns three instances to handle this utilization and
the CPU utilization-based approach only one instance.

To enable a quantitative comparison, we compare both approaches with the
baseline approach No AS (i.e., no scaling takes place) and report the elasticity
as well as user-oriented measures in Table 11.4. Each row shows a measure (a
brief overview of the measures is given in Section 11.1.5), and each column
refers to an auto-scaling approach. The best values are highlighted in bold.
Comparing only the individual measures of elasticity, the service demand-
based approach exhibits the best results for θO, τU , and τO. Consequently,
it also achieves the highest ε (1.41) and the lowest σ (41.83%). As the CPU
utilization-based approach also has an elastic speed-up greater than 1, both
methods are more efficient than the baseline approach. Also, both approaches
use fewer instances and achieve higher SLO conformance. In terms of SLO

191

Chapter 11: Elastic Resource Management

5

10

15

20

0 50 100 150
Time [min]

N
um

be
r

of
 In

st
an

ce
s

Demand
Supply (Ser.D)
Supply (CPU)

Scaling Behavior in the Hardware Contention Scenario

0

100

200

300

0 50 100 150
Time [min]

U
til

iz
at

io
n

[%
]

Avg. System Utilization
Avg. CPU Utilization
Upper Threshold
Lower Threshold

Average Utilization per Instance

0.09

0.10

0.11

0 50 100 150
Time [min]

S
er

vi
ce

 D
em

an
d

[1
/s

]

Estimated Service Demand

Figure 11.2: Scaling behavior in the hardware contention scenario.

violations, the service demand-based auto-scaler has the lowest value for SLOs
(8.40%) and the highest value for Apdex (93.17%).

11.2.3 Software Contention Scenario

Exactly as in Section 11.2.2, the results for the software contention scenario are
illustrated in Figure 11.3. In each plot, the horizontal axis shows the time of the
measurement in minutes. The scaling behavior of both approaches is depicted
in the upper plot. Again, the amount of demanded resources is represented
as black curve, the amount of supplied resources using the service demand-
based approach as blue curve, and the amount of supplied resources using
the CPU utilization-based approach as red curve. As the software contention

192

11.2 The Impact of Service Demand Estimation

Table 11.4: Results for the hardware contention scenario.
Measure CPU Util.-based Ser. Demand-based No AS

θU [%] 7.46 7.54 3.20
θO [%] 23.57 14.60 203.28
τU [%] 22.20 19.10 22.89
τO [%] 62.65 62.56 67.38
υ [%] 21.25 22.63 16.61
ε 1.26 1.41 1.00
σ [%] 43.34 41.83 105.14
SLOs [%] 12.67 8.40 45.72
Apdex [%] 88.58 93.17 58.59
#Adaptations 62 67 0
Avg. #Instances 7.93 8.58 15.00

scenario causes only minimal load on the CPU, we calibrated and adjusted the
thresholds of the CPU utilization-based approach for up-scaling (grey dashed
line in the middle plot) to 30% and down-scaling (grey dot-dashed line in
the middle plot) to 5%. Despite the adaptation, the CPU utilization-based
approach is unable to provide the required amount of resources. As a result,
the system is underprovisioned for almost the entire measurement. In contrast,
the thresholds for the service demand-based approach are unchanged, leading
to a similar scaling behavior as in the hardware contention scenario. Moreover,
the service demand-based approach provides sufficient resources so that the
supply curve closely follows the demand curve.

To assess the scaling behavior of both approaches, we calculated the respec-
tive elasticity and user-oriented measures. The measures of both approaches
and the No scaling scenario are shown in Table 11.5. Each row shows a measure
(the best values are highlighted in bold). The columns represent both auto-
scaling approaches as well as the No scaling scenario. In terms of the single
elasticity measures, the service demand-based approach has for θO the best
value and the second-best values for the remaining measures. Consequently,
this approach exhibits the lowest value for σ (36.81%) and highest value for ε
(1.57). Bothmeasures are also reflected by the lowest SLO value for (6.27%) and
the highest value for Apdex (94.20%). In contrast, the CPU utilization-based
approach provides in 86.23% of the measurement too less resources. Thus, this
approach has the highest SLO value for (97.25%), the lowest value for Apdex
(3.2%), and ε is less than 1 (i.e., the scaling behavior is worse compared to the

193

Chapter 11: Elastic Resource Management

5

10

15

20

0 50 100 150
Time [min]

N
um

be
r

of
 In

st
an

ce
s

Demand
Supply (Ser.D)
Supply (CPU)

Scaling Behavior in the Software Contention Scenario

0

100

200

300

0 50 100 150
Time [min]

U
til

iz
at

io
n

[%
]

Avg. System Utilization
Avg. CPU Utilization
Upper Threshold (Ser.D)
Lower Threshold (Ser.D)
Upper Threshold (CPU)
Lower Threshold (CPU)

Average Utilization per Instance

0.13

0.14

0.15

0.16

0.17

0 50 100 150
Time [min]

S
er

vi
ce

 D
em

an
d

[1
/s

]

Estimated Service Demand

Figure 11.3: Scaling behavior in the software contention scenario.

baseline approach).

11.2.4 Mixed Contention Scenario

Similar to the hardware and software contention scenario, the results of the
mixed contention scenario are depicted in Figure 11.4. In each of the three sub-
plots, the horizontal axis shows the experiment time in minutes. The scaling
behavior of both approaches is shown in the first sub-plot. Again, the amount
of supplied resources using the service demand-based approach is depicted
as blue curve, the amount of supplied resources using the CPU utilization-
based approach as red curve, and the amount of demanded resources as black
curve. In this scenario, we also calibrated and adjusted the thresholds for the

194

11.2 The Impact of Service Demand Estimation

Table 11.5: Results for the software contention scenario.
Measure CPU Util.-based Ser. Demand-based No AS

θU [%] 60.45 7.64 3.20
θO [%] 24.67 8.36 203.28
τU [%] 86.83 27.02 22.89
τO [%] 9.29 43.37 67.38
υ [%] 23.49 22.23 16.61
ε 0.90 1.57 1.00
σ [%] 99.58 36.81 104.16
SLOs [%] 97.25 6.27 8.64
Apdex [%] 3.2 94.20 92.36
#Adaptations 71 75 0
Avg. #Inst. 6.69 8.21 15.00

CPU utilization-based approach for up-scaling (grey dashed line in the middle
plot) to 55% and down-scaling (grey dot-dashed line in the middle plot) to
40%. Based on this adjustment, the CPU utilization-based approach is able to
cover the resource demand closer than in the previous scenarios. However,
during the increasing load of the first day, the approach has problems meeting
the required resources, and thus, the system is in an underprovisioning state.
Like in the previous scenarios, the thresholds for the service demand-based
approach are the same, and again, the approach tends to overprovision slightly
with almost no underprovisioning.

The scaling behavior of both approaches is quantified by the measures listed
in Table 11.6. Again, each row shows a measure (elasticity and user-oriented)
where the best values are depicted in bold. The columns represent the CPU
utilization-based approach, the service demand-based approach, and the No
scaling scenario. In terms of single elasticity measures, the CPU utilization-
based approach exhibits in 2 of 5 the best values. In contrast, the service
demand-based approach only has the best value for τU and has in 3 of 4 remain-
ing measures the second-best values. Consequently, the service demand-based
approach exhibits the value of ε (1.43) and has only slightly worse σ (40.89%)
than the CPU utilization-based approach (39.86%). Moreover, the service
demand-based approach has the lowest SLO violations (4.77%), the highest
Apdex (96.39%), and provisions, on average, the least amount of resources.
Although the CPU utilization based approach has an ε greater than 1 (i.e.,
having a better scaling behavior than the baseline approach), it exhibits higher

195

Chapter 11: Elastic Resource Management

5

10

15

20

0 50 100 150
Time [min]

N
um

be
r

of
 In

st
an

ce
s

Demand
Supply (Ser.D)
Supply (CPU)

Scaling Behavior in the Mixed Contention Scenario

0

100

200

300

400

0 50 100 150
Time [min]

U
til

iz
at

io
n

[%
]

Avg. System Utilization
Avg. CPU Utilization
Upper Threshold (Ser.D)
Lower Threshold (Ser.D)
Upper Threshold (CPU)
Lower Threshold (CPU)

Average Utilization per Instance

0.20

0.22

0.24

0.26

0.28

0 50 100 150
Time [min]

S
er

vi
ce

 D
em

an
d

[1
/s

]

Estimated Service Demand

Figure 11.4: Scaling behavior in the mixed contention scenario.

SLOs (11.96%) and less Apdex (89.02%) than the baseline approach (i.e., no
scaling takes place).

11.2.5 Summary of the Results and Threats to Validity

Comparing the different scenarios, the service demand-based auto-scaler be-
haves similarly in each scenario and per day. Also, this approach exhibits the
best values for elasticity and user-oriented measures. In contrast, the CPU
utilization-based approach behaves differently in each scenario. Although the
CPU usage-based approach has problems in the software conflict scenario, it is
still more efficient than not using auto-scaling in the hardware contention and
mixed contention scenarios. Note that the elasticity metrics for the baseline

196

11.2 The Impact of Service Demand Estimation

Table 11.6: Results for the mixed contention scenario.
Measure CPU Util.-based Ser. Demand-based No AS

θU [%] 14.61 7.13 3.20
θO [%] 7.05 14.12 203.28
τU [%] 42.86 19.28 22.89
τO [%] 35.03 59.90 67.38
υ [%] 20.91 23.92 16.61
ε 1.39 1.43 1.00
σ [%] 39.86 40.89 104.19
SLOs [%] 11.96 4.77 6.40
Apdex [%] 89.02 96.39 94.26
#Adaptations 62 75 0
Avg. #Inst. 9.51 8.96 15.00

scenario are, by definition, identical in all experiments. In terms of applicability,
the CPU utilization-based auto-scaler is easy to setup and needs no further
instrumentation. For determining the service demand, a complex but non-
intrusive instrumentation is required. The service demand must either be
determined in advance, assuming that it is static, or the demand for services
must be estimated on-the-fly. For this purpose, the estimator needs structural
application knowledge and information that may require basic instrumentation
of the application to monitor high-level metrics such as throughput and re-
sponse times. In summary, the service demand is an independent and reliable
input for automatic scaling, but involves a high instrumentation overhead.

Due to overbooking of resources and background traffic, CPU utilization
measurements in public cloud infrastructures are both unstable and unreli-
able (Iosup et al., 2011). To avoid this performance variability, we conducted
the experiments in our private cloud environment under controlled conditions.
Based on our experience with experiments in public clouds (see Section 11.3.3),
auto-scaling based on CPU utilization is supposed to performworse than under
controlled conditions, while it has little impact on the service demand-based
approach. We have also chosen two similar days of the Retailrocket trace and
performed long experiments to validate the measurements internally or have
the second day as a repetition of the first. Since the defined thresholds influence
the scaling behavior, we cannot prove that we have chosen the optimal ones.

197

Chapter 11: Elastic Resource Management

11.3 Benchmarking of the Chameleon Approach

In this section, we benchmark the Chameleon12 approach against different
state-of-the-art auto-scalers. First, we describe the experiments in Section 11.3.1.
Then, we explain how to interpret the experimental results in Section 11.3.2. To
investigate how the auto-scalers behave on different platforms, we investigate
their scaling in Section 11.3.3. Section 11.3.4 lists the results from all experiments
and ranks the auto-scalers. Finally, we summarize the results and discuss
threats to validity in Section 11.3.5.

11.3.1 Experimental Description

To benchmark Chameleon under authentic conditions, we compare Chameleon,
on the one hand, against the autos-scalers (i) Adapt, (ii) ConPaaS, (iii) Hist,
(iv) T-Hold, and (v) Reg; on the other hand, we deployed the LU application
in our controlled CSPC environment (c.medium) and in AWS EC2 (m4.large)
as well as in MMEE (d.small) to have experiments with background noise.
The details of the deployment can be found in Section 11.1.3. For stressing
the LU application, we considered all workloads (see Section 11.1.1) for com-
paring the scaling of the used mechanisms to different demand curves. In
these experiments, each trace was accelerated so that one day in the workload
takes 3.2 hours of experiment time. In other words, every two minutes, VM
specific information (such as the amount of running VMs and the average CPU
utilization) and application-specific information (such as request arrival rates)
were gathered and passed to the auto-scalers. As a baseline scenario called No
AS, we run 9 VMs throughout the experiment duration.

11.3.2 Introduction to the Results

In total, we benchmark Chameleon in seven different settings. For the sake
of clarity, we now present only two settings in more detail so that the results
presented in the following sections are easier to interpret. The settings com-
prise the Wiki and Retrailrocket trace. Both experiments were conducted in
the CSPC environment. The scaling behavior of all auto-scalers for the Wiki
trace is depicted in Figure 11.5. The figure shows the scaling of Chameleon
(top left), Adapt (middle left), Hist (bottom left), ConPaaS (top right), Reg
(middle right), and T-Hold (bottom right). In each subplot, the horizontal
axis shows the experiment time in minutes; the vertical axis shows the number
12As Chameleon is preliminary work for Chamulteon, these experiments were done in collabo-

ration with Nikolas Herbst (Herbst, 2018).

198

11.3 Benchmarking of the Chameleon Approach

of concurrency running instances (i.e., VMs). The black curves represent the
resource demand (determined by BUNGEE, see Section 4.2.2) and the blue
curves the amount of supplied VMs of each auto-scaler. If the supply curve falls
below the demand curve, the system is in an underprovisioned state. In case the
supply curve exceeds the demand curve, the system is in an overprovisioned
state.

5

10

15

0 100 200 300
Time [min]

N
um

be
r

of
 In

st
an

ce
s

Demand
Supply

Chameleon

5

10

15

0 100 200 300
Time [min]

N
um

be
r

of
 In

st
an

ce
s

Adapt

5

10

15

0 100 200 300
Time [min]

N
um

be
r

of
 In

st
an

ce
s

Hist

5

10

15

0 100 200 300
Time [min]

N
um

be
r

of
 In

st
an

ce
s

ConPaaS

5

10

15

0 100 200 300
Time [min]

N
um

be
r

of
 In

st
an

ce
s

Reg

5

10

15

0 100 200 300
Time [min]

N
um

be
r

of
 In

st
an

ce
s

Reactive

Figure 11.5: Comparison of the auto-scalers on the Wiki trace.

Comparing the scaling behavior of the auto-scalers for the Wiki trace, a first
observation is that the auto-scaler can be divided into two groups: (i) tendency
to overprovision the system (Hist, T-Hold, Adapt and Chameleon), (ii) ten-
dency to underprovision the system (ConPaaS and Reg). Chameleon is the first
auto-scaler to meet the increasing demand at the beginning of the experiment

199

Chapter 11: Elastic Resource Management

and then tends to supply slightly more VMs than required until the end of the
experiment. Adapt behaves similarly to Chameleon, but allocates more VMs.
T-Hold’s supply curve closely follows the demand curve during the increasing
load, but the down-scaling is delayed. Hist approximately meets the demand
and keeps the amount of supplied VMs for a longer time (30 to 60 minutes)
until it drops to the current demand. In contrast to the other auto-scalers, Reg
and ConPaaS show a high oscillation rate during the measurement.

To enable a quantitative comparison of the scaling behaviors, we calculated
elasticity as well as user-oriented measures listed in Table 11.7. Each row shows
a measure (a brief overview of the measures is given in Section 11.1.5), and
each column refers to an auto-scaler, with the last one corresponding to the
no auto-scaling scenario. The best values are highlighted in bold. Comparing
individual measures, only the aspect characterized by the respective measure is
considered and can lead to inconsistent rankings. For example, Chameleon has
the best values for θU , τU , SLOs, and Apdex, while Reg has the best values for
θO and τO, but has the most SLOs violations compared to all other auto-scalers.
To this end, we quantify the performance of the auto-scalers based on σ as well
as ε. Here, Chameleon exhibits the best values for both of these aggregated
measures. The good scaling is also supported by the fact that our approach
also shows the best values for SLOs and Apdex. In the case of ε, the scaling
behavior of Chameleon is 2.30 times more efficient compared to the baseline
scenario, while the other auto-scalers reach at most a value of 1.56. ConPaaS
(0.91), for instance, is less efficient than no auto-scaling takes place.

Table 11.7: Results for the Wiki trace.
Measure Chameleon Adapt Hist ConPaas Reg T-Hold No AS

θU [%] 1.57 1.68 2.37 14.69 16.08 2.10 25.93
θO [%] 11.15 17.51 33.55 15.67 4.34 28.94 19.38
τU [%] 5.70 9.16 12.75 47.41 51.04 12.27 70.48
τO [%] 73.25 80.94 71.95 32.07 25.24 80.77 26.28
υ [%] 5.83 7.09 4.75 12.66 12.88 4.97 2.94
ε 2.30 1.78 1.51 0.91 1.19 1.56 1.00
σ [%] 39.49 45.24 42.75 62.54 81.71 46.67 88.13
SLOs [%] 2.95 15.47 11.86 59.73 80.71 7.15 85.95
Apdex [%] 97.22 85.40 88.84 42.89 21.65 93.23 15.21
#Adaptations 61 66 26 112 102 49 0
Avg. #Inst. 10.80 12.34 11.57 11.19 9.38 10.45 9.00

Similar to Figure 11.5, Figure 11.6 shows the scaling behavior of the auto-

200

11.3 Benchmarking of the Chameleon Approach

5

10

15

0 100 200 300
Time [min]

N
um

be
r

of
 In

st
an

ce
s

Demand
Supply

Chameleon

5

10

15

0 100 200 300
Time [min]

N
um

be
r

of
 In

st
an

ce
s

Adapt

5

10

15

0 100 200 300
Time [min]

N
um

be
r

of
 In

st
an

ce
s

Hist

5

10

15

0 100 200 300
Time [min]

N
um

be
r

of
 In

st
an

ce
s

ConPaaS

5

10

15

0 100 200 300
Time [min]

N
um

be
r

of
 In

st
an

ce
s

Reg

5

10

15

0 100 200 300
Time [min]

N
um

be
r

of
 In

st
an

ce
s

Reactive

Figure 11.6: Comparison of the auto-scalers on the Retailrocket trace.

scalers for the Retailrocket trace. Each subplot shows an auto-scaler, where
the black curves represent the resource demand, the blue curve the supplied
VMs, and the horizontal axis the experiment time in minutes. In this scenario,
the auto-scalers behave similarly as observed for the Wiki trace: Chameleon
and Adapt are able to meet the resource demand by slightly overprovision
the system; T-Hold shows a fast up-scaling but a slow down-scaling; Hist can
roughly supply the demand and holds the number of resources for a certain
time; Reg and ConPaaS are subject to strong oscillations during measurement.
The scaling behaviors of each auto-scaler are quantified by the measures listed
in Table 11.8. Again, each row shows ameasure (the best values are highlighted
in bold), and each column represents an auto-scaler. Chameleon has the best

201

Chapter 11: Elastic Resource Management

values for ε, σ, SLOs, and Apdex.

Table 11.8: Results for the Retailrocket trace.
Measure Chameleon Adapt Hist ConPaas Reg T-Hold No AS

θU [%] 6.37 6.55 5.22 21.05 19.37 8.50 17.68
θO [%] 11.71 16.45 76.29 22.41 8.44 44.64 110.38
τU [%] 19.53 31.76 24.59 59.90 44.38 25.02 55.75
τO [%] 51.34 44.60 59.42 20.74 29.21 62.92 38.81
υ [%] 10.98 14.82 9.46 18.24 15.73 9.68 7.22
ε 2.06 1.68 1.41 1.23 1.56 1.39 1.00
σ [%] 35.59 40.49 49.39 63.93 60.51 45.53 90.52
SLOs [%] 8.68 26.56 16.26 60.87 58.20 15.20 82.06
Apdex [%] 91.89 75.38 84.42 41.09 44.19 85.41 19.37
#Adaptations 82 125 36 122 113 69 0
Avg. #Inst. 9.301 11.009 11.013 10.196 9.0686 8.2361 9.00

11.3.3 Auto-Scaling on Di�erent Platforms

To investigate how the auto-scalers behave on different platforms, the auto-
scalers are investigated in the CSPC, AWS EC2, and MMEE environment (see
Section 11.1.3). Moreover, the FIFA trace is used for inducing the same resource
demand in all three scenarios. Note that although the resource demand curves
are identical, the sent request differ due to different resource mappings (see
Section 4.2.2). As an example, the resulting scaling behaviors13 of Chameleon
and T-Hold are illustrated in Figure 11.7. The left column showsChameleon and
the right column T-Hold on all three platforms. In each subplot, the horizontal
axis shows the experiment time in minutes, and the vertical axis shows the
number of concurrently running VMs. The black curves represent the resource
demand and the blue curves the amount of supplied VMs of each auto-scaler.
While Chameleon scales almost identically in the CSPC and MMEE scenarios
and similarly in the AWS EC2 scenario, T-Hold shows a different behavior for
each platform. This can be explained as Chameleon is based on service demand
(see Section 11.2), and T-Hold is based on CPU utilization. If the system is in
an underprovisioned state, the CPU utilization drops significantly for some
time, and thus, T-Hold scales down because the CPU utilization suggests a low
load. Afterward, T-Hold allocates more resources until the CPU utilization
drops again. Since these drops in CPU utilization seem to follow a pattern,
13Note that the behavior of all auto-scalers is quantified in Section 11.3.4.

202

11.3 Benchmarking of the Chameleon Approach

we assume that AWS EC2 performs migrations in the background to move
the VMs from overloaded hosts to hosts with lower load, and therefore, the
CPU utilization drops. In the MMEE scenario, T-Hold has problems to supply
sufficient resources during the increasing load of each day, but shows the same
delayed down-scaling as in the CSPC scenario.

5

10

15

0 100 200 300 400 500
Time [min]

N
um

be
r

of
 In

st
an

ce
s

Demand
Supply

Chameleon (CSPC)

5

10

15

0 100 200 300 400 500
Time [min]

N
um

be
r

of
 In

st
an

ce
s

Chameleon (AWS EC2)

5

10

15

0 100 200 300 400 500
Time [min]

N
um

be
r

of
 In

st
an

ce
s

Chameleon (MMEE)

5

10

15

0 100 200 300 400 500
Time [min]

N
um

be
r

of
 In

st
an

ce
s

Reactive (CSPC)

5

10

15

0 100 200 300 400 500
Time [min]

N
um

be
r

of
 In

st
an

ce
s

Reactive (AWS EC2)

5

10

15

0 100 200 300 400 500
Time [min]

N
um

be
r

of
 In

st
an

ce
s

Reactive (MMEE)

Figure 11.7: Comparison of the Chameleon and T-Hold on different platforms.

The associated measures of the scaling behaviors are listed in Table 11.9.
Each row shows a measure (user-oriented and elasticity), and each column one
of both auto-scalers on a different platform. Chameleon shows on all platforms
a low variation for almost all single elasticity measures, and also the number of
adaptations is nearly the same. In contrast, T-Hold shows a high variation in
all single elasticity measures across all platforms. The results and comparison

203

Chapter 11: Elastic Resource Management

of the other auto-scalers are listed in the next section.

Table 11.9: Comparison of the scaling behavior of Chameleon and T-Hold
across different platforms.

Measure Chameleon T-Hold
CSPC AWS EC2 MMEE CSPC AWS EC2 MMEE

θU [%] 3.23 1.64 1.66 1.56 13.36 11.83
θO [%] 21.95 21.31 28.28 40.20 9.19 16.52
τU [%] 13.09 11.04 6.45 5.20 57.49 46.85
τO [%] 74.05 67.92 84.97 87.14 25.49 38.12
υ [%] 16.36 15.95 16.76 14.68 19.02 13.96
ε 1.58 1.93 1.92 1.93 1.27 1.18
σ [%] 43.88 39.81 46.53 46.76 54.80 50.10
SLOs [%] 8.65 5.04 20.95 2.70 49.30 41.49
Apdex [%] 91.79 95.38 79.34 97.41 51.70 59.26
#Adaptations 122 126 131 81 254 135
Avg. #Inst. 9.53 9.65 9.88 10.49 8.84 10.98

11.3.4 Overall Evaluation

Since we have discussed only selected experiments in the previous sections,
this section focuses on all experiments and presents an overview of all results.
In our experimental setup, each auto-scaler was investigated on five different
traces and three different platforms. In total, the experiments lasted over
400 hours, during which approximately 107 million requests were sent, and
the auto-scalers made 5000 adjustments. Table 11.10 shows ε, σ, SLOs, and
Apdex for all scenarios. Each row corresponds to a measure and each column
to an auto-scaler. The best values are highlighted in bold. In five of seven
scenarios, Chameleon exhibits the best ε, σ, SLOs, and Apdex. In the last
two scenarios, Chameleon has the best σ and the second-best values for the
remaining measures.
To rank the auto-scalers, we determine the average rank regarding the four

listed measures in Table 11.10. In terms of ε, Chameleon is the best auto-
scaler followed by T-Hold, Adapt, Hist, Reg, and ConPaaS. By taking σ into
account, Chameleon is again the best auto-scaler followed by Hist, Adapt,
T-Hold, ConPaaS, and Reg. SLOs and Apdex show both the same ranking:

204

11.3 Benchmarking of the Chameleon Approach

Table 11.10: Comparison of the auto-scalers over all experiments.
Experiment Measure Chameleon Adapt Hist ConPaaS Reg T-Hold

Wikipedia
ε 2.30 1.78 1.51 0.91 1.19 1.56
σ [%] 39.49 45.24 42.75 62.54 81.71 46.67
SLOs [%] 2.95 15.47 11.86 59.73 80.71 7.15
Apdex [%] 97.22 85.40 88.84 42.89 21.65 93.23

IBM
ε 3.10 1.73 1.79 1.79 2.47 1.74
σ [%] 29.05 42.54 43.40 42.14 65.79 44.50
SLOs [%] 9.57 29.92 11.44 37.41 65.32 31.44
Apdex [%] 91.13 71.71 89.25 64.38 37.96 63.32

BibSonomy
ε 1.27 1.12 1.18 0.83 1.13 1.33
σ [%] 43.05 59.39 48.28 48.31 56.17 48.60
SLOs [%] 16.20 54.85 13.99 31.75 50.74 6.47
Apdex [%] 84.73 47.49 87.05 69.42 51.10 93.79

Retailrocket
ε 2.06 1.68 1.41 1.23 1.56 1.39
σ [%] 35.59 40.49 49.39 63.93 60.51 45.53
SLOs [%] 8.68 26.56 16.26 60.87 58.20 15.20
Apdex [%] 91.89 75.38 84.42 41.09 44.19 85.41

FIFA CSPC
ε 1.58 1.33 1.37 0.98 1.04 1.93
σ [%] 43.88 49.68 46.27 59.09 67.30 46.76
SLOs [%] 8.65 43.67 12.01 53.23 64.28 2.70
Apdex [%] 91.79 59.55 88.67 49.08 38.11 97.41

FIFA AWS EC2
ε 1.93 1.21 1.13 0.85 1.35 1.27
σ [%] 39.81 43.31 44.93 47.83 59.22 54.80
SLOs [%] 5.04 21.56 16.60 22.17 54.36 49.30
Apdex [%] 95.38 79.20 83.88 78.54 46.42 51.70

FIFA MMEE
ε 1.92 1.53 1.30 1.00 1.15 1.18
σ [%] 46.53 47.61 50.02 54.38 53.51 50.10
SLOs [%] 20.95 37.31 26.96 43.61 47.51 41.49
Apdex [%] 79.34 63.23 73.34 58.48 53.30 59.26

Chameleon, Hist, T-Hold, Adapt, ConPaaS, andReg. To summarize, Chameleon
exhibits for all traces, platforms, and measures the best average rank.

11.3.5 Summary of the Results and Threats to Validity

Comparing the scaling behavior across the different experiments (i.e., different
platforms and workload traces), our contribution Chameleon performs best
based on the average auto-scaling deviation, elastic speed-up score, SLOs viola-
tions, and user satisfaction. Among the competing state-of-the-art auto-scalers,

205

Chapter 11: Elastic Resource Management

no mechanism outperforms the others in all scenarios. In terms of scaling,
Chameleon scales the system reliably with a slight overprovisioning. Adapt
succeeds in precisely following the demand with a relatively high number of
adjustments. Hist and T-Hold both tend to overprovision the system while
allocating more VMs than the other auto-scalers. T-Hold heavily depends on
accurate measurements of the CPU utilization. Therefore, T-Hold shows a
reduced performance in the AWS EC2 scenario, where overbooking of virtual
resources can lead to significant interference with the background load. In con-
trast to the other auto-scalers, ConPaaS and Reg exhibit unstable/unpredictable
behavior (i.e., oscillations) during large parts of the experiments. In summary,
Chameleon scales an application reliably regardless of the environment and
workload and thus outperforms the competing auto-scalers in all scenarios.

Repeatability of performance-related experiments in public cloud environ-
ments is constrained by the lack of control over placement and the co-location
of VMs with other workloads stressing the cloud. As a result, performance
variability can be significant (Iosup et al., 2011). To mitigate this problem,
we performed most experiments in our private environment under controlled
conditions (CSPC). We also included experiments performed in two different
public cloud deployments (MMEE and AWS EC2) with varying levels of back-
ground load. Furthermore, the results may not be generalizable to other types
of applications (e.g., applications that are not interactive or CPU intensive),
although our experimental analysis covers a wide range of different scenarios.
For the evaluated competing auto-scalers, we observed a similar behavior as in
related studies on auto-scaling evaluation (Papadopoulos et al., 2016; Ilyushkin
et al., 2018). That is, Adapt following closely the resource demand, platoons
for Hist, and unstable behavior of ConPaaS and Reg.

11.4 Evaluation of the Fox Approach

In this section, we evaluate our contribution Fox. First, we describe the setup of
the experiments in Section 11.4.1. Then, we explain how to interpret the results
in Section 11.4.2. In Section 11.4.3 and 11.4.4 we discuss the results based on
a hourly and two-phase pricing scheme, respectively. Finally, we sum up the
results and discuss threats to validity in Section 11.4.5.

11.4.1 Experimental Description

To investigate how Fox revises the scaling decision to be cost-efficient, we com-
pare the auto-scalers (i) Adapt, (ii) Hist, and (iii) React with and without

206

11.4 Evaluation of the Fox Approach

Fox revising their decisions. As use case, we used the Verification application
deployed on c.small VMs in the CSPC environment (see Section 11.1.3). For
stressing the application, we applied the IBM and Wiki trace. Further, we
accelerated the traces so that each day in the workload is equal to 3.2 hours of
experiment time. In other words, every 2 minutes, VM specific information
(such as the amount of running VMs and the average CPU utilization) and
application-specific information (such as request arrival rates) were gathered
by Fox. In terms of cost-aware scaling, we applied an hourly and a two-phase
pricing scheme (see Section 9.4.1). Note that for the following experiments,
Fox was used as a stand-alone tool. That is, Fox was decoupled from Chamul-
teon and acted as a mediator between the three auto-scalers. To this end, we
implemented sNaïve (see Section 3.1.1) as forecasting method for the Analyze
phase of Fox.

11.4.2 Introduction to the Results

Similar to Section 11.3.2, we first introduce how to interpret the experiment
format before discussing the details of the results. Figure 11.8 shows the Bib-
Sonomy trace scaled by React. Each sub-figure shows the scaling for a service,
where the horizontal axis shows the experiment time inminutes and the vertical
axis the number of concurrently running instances. The black curves represent
the resource demand (determined by BUNGEE, see Section 4.2.2) and the blue
curves the amount of supplied VMs by the auto-scaler. If the supply curve falls
below the demand curve, there are too fewVMs provisioned. In case the supply
curve exceeds the demand curve, too many VMs are instantiated. In terms
of scaling, React performs many adjustments to satisfy the current resource
demand. Due to React’s reactive scaling policy, instances are added too late in
some cases, resulting in an underprovisioning of the system. However, most
of the time, React is able to supply enough VMs to match the current resource
demand.
Figure 11.9, which has the same structure as Figure 11.8, illustrates the Bib-

Sonomy trace scaled by React while Fox revised the scaling decisions based
on an hourly pricing scheme. For each of the services, the unstable behavior
of React is smoothed when using Fox. Now, React tends to overprovision the
system. In other words, the supply curve remains above the demand curve
most of the time. However, some scaling actions are performed to reduce the
amount of unused VMs, if this is in accordance with the charging scheme. This
resulting scaling behavior occurs because Fox only performs down-scaling if
the instances that should be released will not be used in the future.

207

Chapter 11: Elastic Resource Management

4

8

12

0 100 200 300
Time [min]

N
um

be
r

of
 In

st
an

ce
s

Demand
Supply

React (Service 1)

0

5

10

15

20

25

0 100 200 300
Time [min]

N
um

be
r

of
 In

st
an

ce
s

React (Service 2)

2.5

5.0

7.5

10.0

0 100 200 300
Time [min]

N
um

be
r

of
 In

st
an

ce
s

React (Service 3)

Figure 11.8: Scaling behavior of React without Fox on the BibSonomy trace.

To assess the influence of Fox on the scaling decisions, we investigate elasticity,
user-oriented, and cost-savingmeasures (see Section 11.1.5) listed in Table 11.11.
The columns show React with and without Fox, and each row corresponds to a
measure, where the best values are highlighted in bold. While using Fox, React
exhibits for each measure concerning underprovisioning a better value. Due to
the smoothing of Fox, also υ is reduced for all services. However, the measures
concerning overprovisioning have deteriorated as down-scaling of an instance
takes only place if this instance will not be used the next time. Moreover, React
with Fox (60.89%) has a worse ς than stand-alone React (55.71%). However,
Fox can reduce the SLO violations from 12.05% to 3.12% and increase Apdex
from 88.56% to 97.46%. Further, React with Fox uses almost a quarter of the

208

11.4 Evaluation of the Fox Approach

4

8

12

0 100 200 300
Time [min]

N
um

be
r

of
 In

st
an

ce
s

Demand
Supply

React (Service 1) with Fox (hourly charging)

0

5

10

15

20

25

0 100 200 300
Time [min]

N
um

be
r

of
 In

st
an

ce
s

React (Service 2) with Fox (hourly charging)

2.5

5.0

7.5

10.0

0 100 200 300
Time [min]

N
um

be
r

of
 In

st
an

ce
s

React (Service 3) with Fox (hourly charging)

Figure 11.9: Scaling behavior of React with Fox on the BibSonomy trace with
hourly charging scheme.

original adjustments. In terms of cost-savings based on hourly charging, React
saves 44.52% of the accounted instance time compared to the naïve approach
(i.e., using all available resources throughout the experiment) while React with
Fox saves only 28.31%. In other words, both approaches use fewer instances
than the naïve approach, but due to the fact that Fox only scales down instances
if it is appropriate, Fox keeps instances longer than React. However, due to this
strategy, Fox saves 26.29% of the charged cost compared to the naïve approach
while React only saves 5.14%. In summary, compared to stand-alone React,
React with Fox is able to reduce SLO violations and save more money while
increasing the auto-scaling worst-case deviation a little.

209

Chapter 11: Elastic Resource Management

Table 11.11: Comparison of React on the BibSonomy trace with and without
Fox based on hourly charging.

Measure React Fox

θU,S1 [%] 2.65 0.45
θO,S1 [%] 33.29 66.08
τU,S1 [%] 16.48 3.04
τO,S1 [%] 68.05 93.57
υS1 [%] 20.35 15.56
θU,S2 [%] 6.10 0.99
θO,S2 [%] 20.80 54.79
τU,S2 [%] 35.34 6.67
τO,S2 [%] 52.18 88.54
υS2 [%] 30.03 25.37
θU,S3 [%] 2.22 0.15
θO,S3 [%] 27.93 82.97
τU,S3 [%] 13.45 1.12
τO,S3 [%] 57.97 96.03
υS3 [%] 11.15 10.07
ς [%] 55.71 60.89
SLOs [%] 12.05 3.12
Apdex 89.56 97.46
#Adaptations 509 136
Avg. #Inst. 28.63 34.08
Πa [%] -44.52 -28.31
Πc [%] -5.14 -26.29

11.4.3 Fox with Hourly Charging Scheme

In this section, we compare the different auto-scalers with and without Fox
based on hourly charging. Table 11.12 shows the elasticity, user-oriented, and
cost-saving (based on hourly charging) measures for the BibSonomy (React,
Adapt, and Reg) and the IBM (React) trace. Each row shows a measure and
every two columns an auto-scaler without and with Fox. For all underpro-
visioning related measures and υ, the respective scaling aspect is improved
for each auto-scaler while Fox is deployed. Moreover, the SLO violations are
significantly reduced, and consequently, the Apdex is increased. In terms of re-
source management, Fox also reduced the number of adaptations. For instance,

210

11.4 Evaluation of the Fox Approach

Adapt induces 745 scaling actions, and while using Fox, only 44 are triggered.
This reduction is also reflected by the cost-saving rate for accounted instance
times. Here, Fox allocates more instances than the stand-alone auto-scaler but
less than the naïve approach. However, in all scenarios, Fox is able to save more
costs than the auto-scalers without Fox. Especially, in the case of Adapt, Fox
can reduce the cost for accounted instance time by 44.85% as Adapt is 39.71%
more expensive than running all instances over the entire measurement due to
the 745 adaptations.

Table 11.12: Comparison of auto-scalers with and without Fox based on hourly
charging.

Measures BibSonomy IBM
React w/ Fox Adapt w/ Fox Reg w/ Fox React w/ Fox

θU,S1 [%] 2.65 0.45 11.50 0.17 9.70 0.49 1.93 1.11
θO,S1 [%] 33.29 66.08 19.38 143.20 13.70 52.01 86.31 90.91
τU,S1 [%] 16.48 3.04 45.69 0.99 36.11 4.29 8.33 5.59
τO,S1 [%] 68.05 93.57 36.71 98.48 40.26 87.85 85.87 90.11
υS1 [%] 20.35 15.56 23.03 14.65 19.32 15.34 17.19 15.89
θU,S2 [%] 6.10 0.99 17.78 0.21 14.00 1.69 4.76 2.07
θO,S2 [%] 20.80 54.79 11.85 133.39 9.44 43.65 66.11 112.59
τU,S2 [%] 35.34 6.67 63.47 1.50 55.57 12.92 16.43 8.29
τO,S2 [%] 52.18 88.54 24.93 95.44 32.09 80.75 78.67 88.62
υS2 [%] 30.03 25.37 30.12 23.68 29.21 24.24 26.71 25.11
θU,S3 [%] 2.22 0.15 25.69 0.02 16.49 1.34 5.82 0.97
θO,S3 [%] 27.93 82.97 8.63 121.90 7.82 41.42 96.04 105.07
τU,S3 [%] 13.45 1.12 64.00 0.11 55.46 9.34 13.61 3.97
τO,S3 [%] 57.97 96.03 17.19 98.00 17.53 75.93 79.49 93.62
υS3 [%] 11.15 10.07 15.34 9.68 11.32 10.07 11.00 10.52
ς [%] 55.71 60.89 55.01 79.73 51.72 54.46 65.81 69.56
SLOs [%] 12.05 3.12 28.39 12.19 21.76 4.07 11.73 3.73
Apdex 89.56 97.46 71.72 87.83 78.58 96.47 88.81 96.69
#Adaptations 509 136 745 44 421 87 253 143
Avg. #Inst. 28.63 34.08 22.57 37.43 22.43 34.27 28.95 28.83
Πa [%] -44.52 -28.31 -57.30 -5.25 -53.87 -35.48 -58.86 -50.75
Πc [%] -5.14 -26.29 39.71 -5.14 -5.14 -35.43 -42.29 -49.71

11.4.4 Fox with Two-Phase Charging Scheme

Analogous to Section 11.4.4, we compare the auto-scalers with and without Fox
based on two-phase charging. Table 11.13 shows the elasticity, user-oriented,
and cost-saving (based on a two-phase charging) measures for the BibSonomy

211

Chapter 11: Elastic Resource Management

(React, Adapt, and Reg) and the IBM (React) trace. Each row shows a measure
and every two columns an auto-scaler without and with Fox. While applying
Fox, all auto-scalers improve measures concerning underprovisioning (except
τU,S1 for React on IBM). As Fox smooths the scaling, also υ for all auto-scalers
has a better value. Like the hourly charging scenario, Fox also reduces the SLO
violations and increases Apdex for all auto-scalers. Moreover, while applying
Fox, the auto-scalers perform fewer adaptations. For both cost-saving rates,
the stand-alone auto-scalers save more costs than applying Fox. This can be
explained by the pricing scheme, as every minute is charged separately and
there is no rounding to the next full hour as done for the hourly charging.

Table 11.13: Comparison of auto-scalers with and without Fox based on two-
phase charging.

Measures BibSonomy IBM
React w/ Fox Adapt w/ Fox Reg w/ Fox React w/ Fox

θU,S1 [%] 2.65 0.62 11.50 0.08 9.70 1.10 1.93 1.10
θO,S1 [%] 33.29 57.91 19.38 144.25 13.70 38.98 86.31 38.98
τU,S1 [%] 16.48 3.92 45.69 0.51 36.11 8.42 8.33 8.42
τO,S1 [%] 68.05 91.01 36.71 98.96 40.26 76.14 85.87 76.14
υS1 [%] 20.35 15.95 23.03 14.74 19.32 15.73 17.19 15.73
θU,S2 [%] 6.10 1.53 17.78 1.97 14.00 2.55 4.76 2.55
θO,S2 [%] 20.80 47.25 11.85 120.05 9.44 36.32 66.11 36.32
τU,S2 [%] 35.34 8.17 63.47 5.62 55.57 19.86 16.43 19.86
τO,S2 [%] 52.18 85.45 24.93 88.85 32.09 71.26 78.67 71.26
υS2 [%] 30.03 25.24 30.12 24.94 29.21 24.81 26.71 24.81
θU,S3 [%] 2.22 0.47 25.69 10.08 16.49 1.67 5.82 1.67
θO,S3 [%] 27.93 62.66 8.63 59.69 7.82 30.97 96.04 30.97
τU,S3 [%] 13.45 2.65 64.00 16.22 55.46 11.02 13.61 11.02
τO,S3 [%] 57.97 91.71 17.19 79.17 17.53 67.23 79.49 67.23
υS3 [%] 11.15 10.85 15.34 10.24 11.32 10.20 11.00 10.20
ς [%] 55.71 55.79 55.01 87.33 51.72 51.27 65.81 51.27
SLOs [%] 12.05 3.33 28.39 20.04 21.76 11.02 11.73 11.02
Apdex 89.56 96.72 71.72 80.71 78.58 89.34 88.81 89.34
#Adaptations 509 183 745 103 421 136 253 136
Avg. #Inst. 28.63 31.60 22.57 36.43 22.43 31.26 28.95 31.26
Πa [%] -44.52 -31.74 -57.30 -11.48 -53.87 -38.91 -58.86 -52.50
Πc [%] -44.06 -31.56 -56.56 -11.25 -52.81 -38.75 -58.75 -52.62

212

11.5 Benchmarking of the Chamulteon Approach

11.4.5 Summary of the Results and Threats to Validity

While evaluating our contribution Fox on different auto-scalers and traces, Fox
is able to improve the elasticity aspects (i) underprovisioning accuracy, (ii)
underprovisioning timeshare, and (iii) instability. This improvement leads
to lower SLO violations and higher user satisfaction. However, the price for
this optimization was an increase in overprovisioning reflected in higher auto-
scaling worst-case deviation. In terms of cost-saving, Fox significantly reduces
the allocated costs and, at the same time, increases the allocated instance time in
the hourly charging scenario. In the two-phase charging, however, Fox increases
both the accounted and charged instance time that can be explained by the
nature of this underlying pricing scheme.
As Fox is a mediator between the auto-scaler and the system, the scaling

behavior is highly dependent on the used mechanism. Therefore, we used
and compared three state-of-the-art auto-scalers. Nevertheless, several other
auto-scaler exists, but the experiments did not focus on optimal auto-scaling
decisions. Moreover, the revision of the scaling decisions depends on the
forecast accuracy of each forecast. As sNaïve (see Section 3.1.1) is a simple
forecasting method, better methods could be used to reduce variations in the
results. To sum up, due to the choice of the auto-scalers, traces, forecasting
method, and application, the results may not be generalized to other auto-
scalers or applications. However, the results have shown that Fox behaves
as desired and can reduce the charged costs while increasing the accounted
instance time and reducing the SLO violation rate.

11.5 Benchmarking of the Chamulteon Approach

In this section, we benchmark Chamulteon against state-of-the-art auto-scalers.
First, we describe the experimental setup in Section 11.5.1. Then, we explain
how to interpret the results of the experiments in Section 11.5.2. To investigate
how the auto-scalers behave on different setups, we compare their scaling on
Docker containers and VMs in Section 11.5.3. Afterwards, the scalability of the
auto-scalers is investigated in Section 11.5.4. Finally, we sum up the results and
discuss threats to validity in Section 11.5.5.

11.5.1 Experimental Description

To benchmark Chamulteon in authentic circumstances, Chamulteon competed
with the auto-scalers (i) Adapt, (ii) Hist, (iii) React, and (iv) Reg. Each auto-
scaler scaled the Verification application, which was either deployed on VMs or

213

Chapter 11: Elastic Resource Management

as Docker containers. We used c.large VMs in the CSCP environment (see Sec-
tion 11.1.3). In the Docker scenario, a Kubernetes (Rancher14 v2.1.0 + kubectl
v1.11.3) cluster was deployed on the VMs. Within the Kubernetes cluster, we
run Docker (v17.03.2-ce) containers. For stressing the application, the Bib-
Sonomy and Wiki traces (see Section 11.1.1) were used. In the VM scenario,
the traces were accelerated so that one day in the workload corresponds to six
hours of experiment time. In the Docker setting, each day was speedup to last
one hour experiment time. The scaling for the VM setting took place every 2
minutes and for the Docker setting every minute due to the faster provision
time of containers. For the scaling, the auto-scaler got VM specific informa-
tion (such as the amount of running VMs and the average CPU utilization)
and application-specific information (such as request arrival rates) as input.
Note that in the following experiments, the cost-awareness component was
deactivated. On the one hand, we want to investigate and compare the scaling
performance of Chamulteon. On the other hand, the component was evaluated
separately in Section 11.4.

11.5.2 Introduction to the Results

Similar to Section 11.3.2, we first introduce the experiment format before dis-
cussing the results. Figure 11.10 shows the Wiki track scaled by Reg. Each
sub-figure shows the scaling behavior for a service. In each graph, the hori-
zontal axis shows the time of measurement in minutes, and the vertical axis
shows the number of concurrently running instances (i.e., VMs or containers).
The black curves represent the resource demand (determined by BUNGEE,
see Section 4.2.2) and the blue curves the amount of supplied VMs by the
auto-scaler. If the supply curve falls below the demand curve, there are too few
instances provisioned. In case the supply curve exceeds the demand curve, too
many instances are supplied.

We show this figure as it is a good example of bottleneck shifting (see Chap-
ter 9). While the first service is scaled after one minute to satisfy the demand,
the second service is scaled one minute later, and the last service is scaled two
minutes afterward. This behavior can be explained as follows: During the first
minute, the first service can handle a lower number of requests, so the following
services also receive fewer requests. After scaling the first service, the second
service cannot process all incoming requests, so the last service receives a lower
number of requests again. This effect can be observed for up to 15 minutes, as
each service’s resource supply increases more slowly than that of the previous
14Rancher: https://rancher.com/

214

https://rancher.com/

11.5 Benchmarking of the Chamulteon Approach

0

10

20

30

40

0 10 20 30 40 50 60
Time [min]

N
um

be
r

of
 In

st
an

ce
s

Demand
Supply

Reg (Service 1)

0

20

40

60

0 10 20 30 40 50 60
Time [min]

N
um

be
r

of
 In

st
an

ce
s

Reg (Service 2)

0

5

10

15

20

25

0 10 20 30 40 50 60
Time [min]

N
um

be
r

of
 In

st
an

ce
s

Reg (Service 3)

Figure 11.10: Scaling behavior of Reg on the Wiki trace.

services. Similar to the observations in the articles (Papadopoulos et al., 2016;
Ilyushkin et al., 2018) and Section 11.3.2, Reg exhibits a high rate of oscillations
(between minute 16 and 27) that cannot be explained. After minute 33, Reg
gets stable and tends to overprovision. Figure 11.11, which is structured exactly
like Figure 11.10, shows the scaling behavior of Chamulteon. In contrast, to
Reg, the scaling behavior of Chamulteon exhibits neither bottleneck shifting
nor oscillations. Due to the configuration of Chamulteon, the system is always
slightly overprovisioned so that almost all requests can be served within the
SLOs.

To assess the scaling behavior of Chamulteon, Reg, and the other auto-scalers,
we investigate the respective elasticity and user-oriented measures shown in

215

Chapter 11: Elastic Resource Management

0

10

20

30

0 10 20 30 40 50 60
Time [min]

N
um

be
r

of
 In

st
an

ce
s

Demand
Supply

Chamulteon (Service 1)

0

20

40

60

0 10 20 30 40 50 60
Time [min]

N
um

be
r

of
 In

st
an

ce
s

Chamulteon (Service 2)

0

5

10

15

20

25

0 10 20 30 40 50 60
Time [min]

N
um

be
r

of
 In

st
an

ce
s

Chamulteon (Service 3)

Figure 11.11: Scaling behavior of Chamulteon on the Wikipedia trace.

Table 11.14. Each row represents a measure and each column an auto-scaler. A
short description of each measure can be found in Section 11.1.5. For instance,
Reg exhibits for all services the worst values for θU and τU . Consequently, Reg
also has the highest SLO violations (37.32%) and the lowest Apdex (63.15%).
In contrast, Chamulteon has for all services the best values for θU and τU , also
leading to the best values for SLOs (6.17%) as well as Apdex (93.05%).

11.5.3 Docker vs. VM Scaling

In this section, we investigate how well Chamulteon scales in different setups
compared to the other auto-scalers. In the first scenario, the application was
deployed on Docker containers. In the second scenario, the application was

216

11.5 Benchmarking of the Chamulteon Approach

Table 11.14: Comparison of the auto-scalers on the Wiki trace (Docker).
Measure Chamulteon Adapt Hist Reg React

θU,S1 [%] 3.83 8.14 4.75 10.84 4.04
θO,S1 [%] 30.00 13.17 36.60 6.94 13.38
τU,S1 [%] 15.43 29.81 21.62 46.34 22.99
τO,S1 [%] 84.38 56.71 75.00 44.62 71.83
υS1 [%] 18.55 25.28 18.89 26.39 23.06
θU,S2 [%] 3.87 12.44 6.96 15.77 6.06
θO,S2 [%] 31.16 9.30 32.70 7.50 10.09
τU,S2 [%] 15.43 37.99 23.48 53.76 26.33
τO,S2 [%] 84.46 58.53 71.79 40.87 65.39
υS2 [%] 20.16 28.61 19.72 29.44 26.94
θU,S3 [%] 3.32 17.33 9.40 19.39 5.77
θO,S3 [%] 26.68 8.06 26.86 11.84 15.69
τU,S3 [%] 13.94 36.33 31.71 56.52 21.54
τO,S3 [%] 84.48 49.55 61.53 38.01 71.85
υS3 [%] 17.20 22.78 15.00 24.44 20.83
ς [%] 51.71 51.85 55.58 54.13 51.82
SLOs [%] 6.17 24.20 12.53 37.32 11.19
Apdex 93.05 76.84 87.56 63.15 88.99
#Adaptations 75 139 55 154 117
Avg. #Inst. 71.06 77.21 94.70 73.54 85.70

hosted on VMs. In both scenarios, the application is stressed with the Wiki
trace and requires a maximum of 20 containers or VMs. The results are listed
in Table 11.14 for the Docker and in Table 11.15 for the VM setup. The rows
show the measures (user-oriented and elasticity) and the columns the auto-
scalers in each table. The best values are highlighted in bold. In the Docker
scenario, Chamulteon has the best values for 7 of 15 (three services with every
five measures) single elasticity measures. As focusing only on the individual
measures may lead to ambiguous results, we take ς into account for ranking
the auto-scalers. The lowest value for ς is achieved by Chamulteon (51.71%)
closely followed by React (51.82%) and Adapt (51.58%). Besides the lowest ς ,
Chamulteon also has the lowest SLO violations (6.17%) and the highest value
for Apdex (93.05%).
In contrast to the Docker scenario, React has the best values for 9 of 15

individual elasticitymeasures (see Table 11.15). However, React overprovisions

217

Chapter 11: Elastic Resource Management

the system almost the whole time, as indicated by the high θO values. To this
end, React exhibits the worst value for ς (52.56). The best value for ς is achieved
by Reg (33.21%) followed by Adapt (33.25%), Hist (34.61%), and Chamulteon
(35.92%). In terms of SLOs and Apdex, React has the best value for both
measures closely followed by Chamulteon, while Reg exhibits the second-worst
values for both measures.

In summary, Chamulteon and React achieved the best user-oriented mea-
sures in both scenarios. In terms of the auto-scaling worst-case deviation,
Chamulteon has the best value in the Docker scenario and shows, in the second
scenario, only a slight deviation from the winner. In contrast, React has by far
the worst value for this measure in the second scenario. Although both mecha-
nisms tend to overprovision, Chamulteon delivers more robust performance in
both scenarios compared with React.

Table 11.15: Comparison of the auto-scalers on the Wiki trace (VM).
Measure Chamulteon Adapt Hist Reg React

θU,S1 [%] 1.11 3.22 2.52 3.47 0.13
θO,S1 [%] 16.25 6.58 21.77 10.04 51.53
τU,S1 [%] 3.82 10.60 10.33 9.33 0.63
τO,S1 [%] 67.51 18.58 35.58 24.07 95.17
υS1 [%] 2.33 4.19 1.99 2.33 1.64
θU,S2 [%] 0.41 9.19 3.34 7.38 0.27
θO,S2 [%] 12.07 3.46 24.86 7.59 28.29
τU,S2 [%] 2.32 35.98 16.61 25.54 1.73
τO,S2 [%] 63.94 19.17 46.70 28.07 91.72
υS2 [%] 3.37 5.88 2.94 4.36 2.46
θU,S3 [%] 1.08 16.58 7.70 11.16 0.05
θO,S3 [%] 18.55 7.83 24.91 12.94 62.53
τU,S3 [%] 2.75 46.30 20.01 37.23 0.09
τO,S3 [%] 50.38 9.47 33.84 19.79 95.30
υS3 [%] 1.64 4.67 1.82 1.51 1.47
ς [%] 35.92 33.35 34.61 33.21 52.56
SLOs [%] 1.98 19.09 5.12 12.55 1.00
Apdex 98.54 81.60 95.64 88.20 99.05
#Adaptations 110 299 102 132 66
Avg. #Inst. 13.98 14.00 15.13 13.47 16.45

218

11.5 Benchmarking of the Chamulteon Approach

11.5.4 Scalability

In this experiment, we investigate the scalability of the auto-scalers. In other
words, we used and scaled the BibSonomy trace to stress the application so that
the first scenario requires a maximum of 60 containers (small) and the second
scenario requires a maximum of 120 containers (large). The results of the small
setup are listed in Table 11.16. Each row shows a measure (user-oriented and
elasticity) and each column an auto-scaler. The best values are highlighted in
bold. In terms of the individual elasticity measures, Reg (6 of 15) has most
of the best values followed by Chamulteon (4 of 15). However, Chamulteon
exhibits the best value for σ (47.54%), SLOs (7.28%), and Apdex (93.84%).
In the large scenario (see Table 11.17), Chamulteon outperforms the other
auto-scalers. More precisely, Chamulteon has the best values for 9 of 15 single
elasticity measures, the best value for ς (50.52%), the lowest SLO violations
(9.58%), and the highest Apdex (91.74%).

To quantify the scalability, we calculated for each single elasticity measure
the relative deviation between the two scenarios. Then, we averaged the devi-
ations and used this value for assessing the scalability. The lowest scalability
has Chamulteon (14.07%) followed by Hist (17.47%), Reg (22.58%), Adapt
(30.04%), and React (51.81%).

11.5.5 Summary of the Results and Threats to Validity

We conducted four different experiments to evaluate Chamulteon. More pre-
cisely, we varied the deployment (Docker vs. VM), the scale (20, 60, and 120
instances), and the workload trace (Wiki vs. BibSonomy). In three of these
four experiments, Chamulteon exhibits the best user-oriented and elasticity
measures. In the remaining scenario, Chamulteon has the second-best user-
oriented measures. In the scalability experiment, Chamulteon also achieves the
lowest deviation of 14.07%. In contrast to the other auto-scalers, the bottleneck
shifting effect was not observed when Chamulteon scaled the application. That
is, the coordinated scaling of Chamulteon is able to counter the bottleneck shift-
ing. Although React is a reactive auto-scaler, it achieves the best user-oriented
measures in one scenario and the second-best user-oriented measures in two
scenarios. However, since React tends to overprovision the system, it also
exhibits the worst auto-scaling worst-case deviation in two scenarios. Also, Re-
act’s scalability differs by 51.81% between the small and large scenarios. In one
experiment, Hist has the second-best user-oriented measure due to its tendency
to overprovision. In terms of scalability, Hist has the second-lowest deviation.
In contrast to the other auto-scalers, Reg and Adapt tend to underprovision the

219

Chapter 11: Elastic Resource Management

Table 11.16: Comparison of the auto-scalers on the BibSonomy trace (small
setup, i.e., 60 containers).

Measure Chamulteon Adapt Hist Reg React

θU,S1 [%] 2.27 7.00 3.43 6.44 2.03
θO,S1 [%] 17.99 13.60 20.43 7.13 16.02
τU,S1 [%] 8.47 30.14 18.20 25.21 5.20
τO,S1 [%] 76.53 48.38 66.77 40.33 70.08
υS1 [%] 19.72 24.44 15.56 21.94 22.78
θU,S2 [%] 2.10 9.79 5.68 13.90 4.86
θO,S2 [%] 21.07 5.96 20.62 3.89 11.15
τU,S2 [%] 8.53 48.43 26.46 54.78 29.95
τO,S2 [%] 83.31 36.85 63.57 31.87 55.47
υS2 [%] 20.83 26.39 17.50 26.11 26.94
θU,S3 [%] 1.75 12.16 7.18 12.74 3.72
θO,S3 [%] 18.18 8.38 15.70 3.76 17.39
τU,S3 [%] 5.12 43.07 26.62 48.23 8.32
τO,S3 [%] 76.63 36.87 53.34 24.78 80.08
υS3 [%] 17.78 21.11 12.78 17.50 14.72
ς [%] 47.54 51.16 47.90 50.20 57.23
SLOs [%] 7.28 17.77 11.87 23.41 10.54
Apdex 93.84 85.26 89.85 79.73 91.35
#Adaptations 77 122 25 99 94
Avg. #Inst. 44.57 39.67 45.13 37.49 43.82

system. Consequently, both mechanisms exhibit the worst user-oriented mea-
sures. In summary, Chamulteon exhibits the best auto-scaling performance and
reliability compared to the competing methods regardless of the deployment
and workload.

Since Chamulteon is designed to focus on user satisfaction, the experiments
show a slight overprovisioning. This behavior seems to contradict the cost-
efficiency concept, but the cost awareness component was deactivated in the
experiments presented in this section. Furthermore, in our view, cost-efficiency
does not imply providing as few instances as possible but trying to use the
accounted instances as efficiently as possible. For example, in the case of
hourly charging, resources would not be released when they are paid and
could be required again in a few minutes to avoid duplicate costs for the same
resources. Although our experimental analysis covered different scenarios and

220

11.5 Benchmarking of the Chamulteon Approach

Table 11.17: Comparison of the auto-scalers on the BibSonomy trace (large
setup, i.e., 120 containers).

Measure Chamulteon Adapt Hist Reg React

θU,S1 [%] 1.91 10.92 3.74 8.81 3.86
θO,S1 [%] 19.34 10.65 26.67 7.31 11.65
τU,S1 [%] 6.91 40.49 23.29 38.14 26.51
τO,S1 [%] 88.14 50.18 73.39 50.29 60.28
υS1 [%] 13.61 30.56 18.89 27.78 28.61
θU,S2 [%] 2.04 19.85 5.71 17.16 6.73
θO,S2 [%] 20.44 6.18 24.97 3.75 7.37
τU,S2 [%] 8.59 56.64 28.44 64.70 44.68
τO,S2 [%] 89.74 36.84 66.92 33.34 48.38
υS2 [%] 13.33 30.56 20.00 29.44 29.44
θU,S3 [%] 3.20 21.70 8.33 20.12 6.16
θO,S3 [%] 18.76 6.37 22.23 2.62 9.04
τU,S3 [%] 5.14 55.19 33.12 63.39 26.69
τO,S3 [%] 91.34 29.72 56.73 24.50 56.54
υS3 [%] 13.42 26.94 16.94 24.72 18.89
ς [%] 50.52 56.99 54.78 60.20 55.49
SLOs [%] 9.58 33.17 12.85 36.27 15.25
Apdex 91.74 67.34 87.48 63.86 85.29
#Adaptations 76 164 48 143 125
Avg. #Inst. 89.07 69.82 91.67 69.90 80.66

we benchmarked different auto-scalers, the results may not be generalizable
to other types of applications or closed-source auto-scalers. However, for the
evaluated competing auto-scalers, a similar behavior was observed in studies
on auto-scaler evaluation (Papadopoulos et al., 2016; Ilyushkin et al., 2018).
Also, we used the same auto-scaler for each service of the application. In fact,
it is possible to use different mechanisms for each service. However, the choice
of auto-scalers and the order in which they are deployed is a crucial challenge.
In theory, it is possible to achieve better results by experimenting with different
combinations of auto-scalers in different orders. In practice, however, it is
challenging to find an optimal configuration. Moreover, there is no guarantee
that this configuration would remain static as the system and workload evolve.

221

Chapter 11: Elastic Resource Management

11.6 Concluding Remarks

In this chapter, we benchmarked Chamulteon and its components in scenarios
covering five differentworkloads, four different applications, and three different
cloud environments. In the first experiments, we investigated the impact of
service demand as scaling indicator. We showed that a service demand-based
auto-scaling approach is not based on knowledge of the bottleneck resource and
can be configured independently of the application. In other words, the service
demand is an independent and reliable input for auto-scalers. Then, in a broad
competition, we benchmarked the Chameleon approach in different scenarios
against state-of-the-art auto-scalers. In these experiments, the competing auto-
scalers behave similarly to former studies (Papadopoulos et al., 2016; Ilyushkin
et al., 2018), and no method outperforms the others. In contrast, Chameleon
exhibits in all experiments the best scaling behavior. Afterward, we evaluated
the cost-awareness component of Chamulteon called Fox to investigate RQ 7
“How can scaling decisions be adjusted so that the charged costs in a public cloud
environment are minimized?”. These experiments show that Fox can significantly
reduce the charged costs while increasing the allocated instance time for an
hourly pricing scheme. This improvement leads to a significant reduction of
the SLO violations in exchange for a slightly worse auto-scaling performance.
Lastly, we benchmark Chamulteon on different setups against state-of-the-art
auto-scalers to investigate RQ 8 “How to enable coordinated scaling of applications
comprising multiple services?”. In three of these four scenarios, Chamulteon
exhibits the best user-oriented and elasticity measures, and in the remaining
scenario, Chamulteon has the second-best user-orientedmeasures. Chamulteon
also has the least variation between the different setup sizes. The experiments
with Chameleon and Chamulteon show that the usage of reactive and proactive
decisions in conjunction with decision resolution management improves the
auto-scaling behavior (RQ 6 “What is a meaningful combination of proactive and
reactive scaling techniques to minimize the risk of auto-scaling in operation?”).

222

Part IV

Conclusion

Chapter 12

Thesis Summary

Nowadays, we are living in a fast-paced world, and thus many domains are sub-
ject to trends and varying requirements. For instance, cloud environments have
to cope with load fluctuations and respective rapid and unexpected changes
in the computing resource demands. Since reacting to changes once they are
observed introduces an inherent delay, the future resource demand must be
“foreseen” to identify necessary steps in advance. A useful and established
technique in this context is time series forecasting, which is also applied in
many other domains. Although time series forecasting enables the proactive
auto-scaling of the required resources in cloud environments, business-critical
applications are still run with highly overprovisioned resources to guarantee a
stable and reliable service operation. This strategy is pursued mainly due to
two major problems of existing work: First, no fully automated and generic
forecasting approach exists that can effectively combine existing forecasting
methods in a way to leverage their strengths and avoid their weaknesses, pro-
viding accurate forecasts with a reliable time-to-result. Second, existing cloud
auto-scalers are distrusted to provide reliable and cost-effective autonomic
resource management for modern cloud environments due to the concern that
inaccurate or delayed adaptations may result in financial losses. To approach
both problems, we defined three goals that were addressed within this thesis:

Goal I: Provide a forecasting benchmark to establish a level playing field
for evaluating and comparing the performance of forecasting
methods in a broad setting covering a diverse set of evaluation
scenarios.

Contribution I: Forecasting Benchmark
In Chapter 7, we propose a novel benchmark that automat-
ically evaluates and ranks forecasting methods based on
their performance in a diverse set of evaluation scenarios.
The benchmark comprises four different use cases, each
covering 100 heterogeneous time series taken from differ-

225

Chapter 12: Thesis Summary

ent domains. The data set was assembled from publicly
available time series and was designed to exhibit much
higher diversity than existing forecasting competitions.
Besides proposing a new data set, we introduce two new
measures that describe different aspects of a forecast. We
applied the developed benchmark to evaluate Telescope.

Goal II: Provide a fully automated and generic hybrid forecasting method
that automatically extracts relevant information from a given
time series and uses it to combine existing methods in a way to
provide high forecast accuracy coupled with a low time-to-result
variance.

Contribution II: Telescope
In Chapter 8, we introduce a novelmachine learning-based
forecasting approach that automatically retrieves relevant
information from a given time series. More precisely, Tele-
scope automatically extracts intrinsic time series features
and then decomposes the time series into components,
building a forecasting model for each of them. Each com-
ponent is forecast by applying a different method and then
the final forecast is assembled from the forecast compo-
nents by employing a regression-based machine learning
algorithm. In more than 1300 hours of experiments bench-
marking 15 competing methods (including approaches
from Uber and Facebook) on 400 time series, Telescope
outperformed all methods, exhibiting the best forecast
accuracy coupled with a low and reliable time-to-result.
Compared to the competing methods that exhibited, on
average, a forecast error (more precisely, the symmetric
mean absolute forecast error) of 29%, Telescope exhibited
an error of 20%while being 2556 times faster. In particular,
the methods from Uber and Facebook exhibited an error
of 48% and 36%, and were 7334 and 19 times slower than
Telescope, respectively.

Goal III: Develop a hybrid auto-scaler enabling the coordinated scaling of
applications comprising multiple services by combining proac-
tive scaling (based on the developed forecasting method) with

226

reactive scaling as a fallback mechanism in order to provide
maximum reliability of resource adaptations.

Contribution III: Chamulteon
InChapter 9, we present a hybrid auto-scaler that combines
proactive and reactive techniques to scale distributed cloud
applications comprisingmultiple services in a coordinated
and cost-effective manner. More precisely, proactive adap-
tations are planned based on forecasts of Telescope, while
reactive adaptations are triggered based on actual obser-
vations of the monitored load intensity. To solve occur-
ring conflicts between reactive and proactive adaptations,
a complex conflict resolution algorithm is implemented.
Moreover, when deployed in public cloud environments,
Chamulteon reviews adaptations with respect to the cloud
provider’s pricing scheme in order tominimize the charged
costs. In more than 400 hours of experiments evaluating
five competing auto-scaling mechanisms in scenarios cov-
ering five different workloads, four different applications,
and three different cloud environments, Chamulteon ex-
hibited the best auto-scaling performance and reliability
while at the same time reducing the charged costs. The
competing methods provided insufficient resources for
(on average) 31% of the experimental time; in contrast,
Chamulteon cut this time to 8% and the SLO (service level
objective) violations from 18% to 6% while using up to
15% less resources and reducing the charged costs by up
to 45%.

The contributions of this thesis can be seen as major milestones in the domain
of time series forecasting and cloud resource management. (i) This thesis is
the first to present a forecasting benchmark that covers a variety of different
domains with a high diversity between the analyzed time series. Based on
the provided data set and the automatic evaluation procedure, the proposed
benchmark contributes to enhance the comparability of forecasting methods.
The benchmarking results for different forecasting methods enable the selection
of the most appropriate forecasting method for a given use case. (ii) Telescope
provides the first generic and fully automated time series forecasting approach
that delivers both accurate and reliable forecasts while making no assumptions
about the analyzed time series. Hence, it eliminates the need for expensive,
time-consuming, and error-prone procedures, such as trial-and-error searches

227

Chapter 12: Thesis Summary

or consulting an expert. This opens up new possibilities especially in time-
critical scenarios, where Telescope can provide accurate forecasts with a short
and reliable time-to-result.

AlthoughTelescopewas applied for this thesis in the field of cloud computing,
there is absolutely no limitation regarding the applicability of Telescope in other
domains, as demonstrated in the evaluation. Moreover, Telescope, which was
made available on GitHub, is already used in a number of interdisciplinary data
science projects, for instance, predictive maintenance in an Industry 4.0 context,
heart failure prediction in medicine, or as a component of predictive models
of beehive development. (iii) In the context of cloud resource management,
Chamulteon is a major milestone for increasing the trust in cloud auto-scalers.
The complex resolution algorithm enables reliable and accurate scaling behavior
that reduces losses caused by excessive resource allocation or SLO violations.
In other words, Chamulteon provides reliable online adaptations minimizing
charged costs while at the same time maximizing user experience.

228

Chapter 13

Open Challenges and Outlook

In this thesis, we addressed the two main problems identified: (i) The “No-
Free-Lunch Theorem” (Wolpert and Macready, 1997) states that there is no
single forecasting method that performs best for all time series, and therefore
the choice of an appropriate forecasting method for a given time series is cru-
cial since expert knowledge cannot be fully automated; and (ii) the distrust
of auto-scalers as proactive and cost-effective resource management for dis-
tributed systems is due to the high operational risk. We are convinced that
our approaches, ideas, and solutions presented in this thesis provide a good
foundation and offer room for further research. In the following, we identify
research topics that may extend our work:
Selecting the best time series transformation automatically
To increase the forecast accuracy, Telescope transforms the time series. More
precisely, Telescope applies the Box-Cox transformation (see Section 2.3.2),
as this transformation tries to shift the distribution of the data to a normal
distribution. However, there are time series where this transformation leads
to a deterioration of the forecast. Consequently, different time series require
different transformations. Based on the idea of automatic forecasting, the choice
of the transformation in Telescope should therefore be performed automatically.
Regardless of Telescope, selecting the best transformation should also be done
automatically to avoid costly trial-and-error.
Forecasting based on artificial neural networks
In its current version, Telescope performs a forecast based on a single time
series. In contrast, the winner (Smyl, 2020) of the M4-Competition trains an
artificial neural network on a set of time series. Following this idea, a long
short-termmemory network can be integrated instead of the current regression-
based machine learning methods. Accordingly, Telescope would also have to
learn on a set of time series to efficiently use the network. In this case, the
time series generator, which is integrated into Telescope, would be beneficial,
as it can increase the amount of training data. Another possibility is to use

229

Chapter 13: Open Challenges and Outlook

bagging (Bergmeir et al., 2016) to create a set of similar time series from a single
time series for training the network.

Estimating the forecast error
In general, when performing a forecast, the future values are not available.
Therefore, the only indicator for the forecast accuracy is the model error. How-
ever, this error is not a good estimator, as, for example, overfitting can occur
during the training. One approach to enable forecasting confidence is to exam-
ine the distribution of the model errors. Based on the distribution, a confidence
interval can be assigned to each forecast value. Again, this procedure is not
a useful guide, as it is also prone to overfitting. Moreover, the forecast error
cannot be inferred from this interval. To sum up, a good estimator for the
forecast error poses an ongoing challenge.

Supporting multivariate time series
In this thesis, we focus on univariate time series. Consequently, Telescope
supports in its current version only univariate time series. The forecasting of
multivariate time series has advantages and disadvantages. On the one hand,
there is additional information that can be used to refine the prediction model.
On the other hand, each extra piece of information has to be predictable to form
the final forecast. For example, theweather helpsmodel the power consumption
of a household better, but for the forecast of the power consumption in a month,
the weather for this period is also needed.
In production scenarios (e.g., auto-scaling) where forecasts are applied,

calendar information is advantageous. As calendar information is available both
long in the past and the future, it would be easy to model and find correlations.
For example, the Cyber Monday (i.e., the Monday after Thanksgiving) is a
special day for e-commerce in the USA. If such information is taken into account,
such events can be addressed accordingly.

Supporting non-equidistant time series
By time series, we refer to an ordered collection of values of a quantity obtained
over a specific time, whereby the observations are recorded in equidistant
time steps. However, in some fields, such as investigating natural disasters,
the observations are taken at irregular time intervals. These collections of
observations are called unevenly spaced time series. To apply the techniques
from time series analysis, these observations are usually converted into a time
series, whereby the transformation (e.g., interpolation) may be subject to errors.
To avoid the risk of an error-prone transformation, Telescope could be extended
to support unevenly distributed time series.

230

Detecting structural changes in time series
In general, Telescope is prone to poor forecasts when structural changes occur
in the time series, as it assumes, for example, that the seasonal pattern does
not change over time. Besides the change in the seasonal pattern, further
structural changes include level shifts or breakpoints in the trend. To mitigate
this problem, structural changes have to be detected automatically. Based on
the found changes, the values before the last change can be discarded if there is
no regularity in the changes to consider only the time series’s current structure
for forecasting the time series.
Combining horizontal and vertical scaling
In its current version, Chamulteon supports only horizontal scaling. That is,
vertical scaling could be combined with the existing horizontal scaling, where
the decision logic must decide which scaling direction is more efficient. For
determining which scaling type should take place, the current decision logic of
Chamulteon has to be significantly adapted. For example, the complex decision
logic could be based on machine learning.
Although there are auto-scalers (see Chapter 6) in the literature that sup-

port both types of scaling, the decision between the two options is a challenge,
especially concerning nested auto-scaling. For instance, when using Docker
container deployed in VMs, the following decision conflicts may occur: Increas-
ing the resources for a VM, increasing the resources of a container running in a
VM, adding a container to an existing VM, or adding a container to a new VM.
Considering energy-efficient scaling
Concerning the increasing energy consumption of data centers, Chamulteon
could be equipped with another component responsible for optimizing energy
consumption. This component should monitor the energy consumption and
perform voltage scaling (e.g., tuning the CPU frequency of instances) or the
placement of instances so that the underlying hardware runs more energy
efficient. The general goal of this component should be the minimization of
the energy consumption of the application.
Moving on to new technologies
During the last few years, new computing trends such as micro-services and
FaaS have emerged. Any new trend behaves differently from established tech-
nologies and generates new requirements. For example, in the case of FaaS
(Function as a Service), an auto-scaler may take the warm-up time into account
to start a function at an early stage to “warm” the function up. As everything
evolves and new technologies will always emerge, auto-scaling should not be
considered as solved, as there will always be new challenges.

231

Chapter 13: Open Challenges and Outlook

Considering more prizing schemes
The cost-aware component (see Section 9.4) of Chamulteon supports an hourly
charging and two-phase charging. In fact, there are numerous other pricing
schemes or other options, such as Amazon’s EC2 spot market1. Especially the
new cloud computing paradigm FaaS offers different options. Here, the price
of a function execution depends on the execution time and the provisioned
memory size. These pricing options introduce a new complexity compared to
the old pricing schemes since the charged costs are no longer dependent on
the number of resources (Eismann et al., 2020). In other words, to keep up
with the evolution of pricing schemes, Chamulteon should be updated with
the latest schemes and should be able to solve the newly emerging conflicts.

1AWS EC2 spot market: https://aws.amazon.com/ec2/spot/

232

https://aws.amazon.com/ec2/spot/

Back Matter

List of Figures

2.1 Examples of time series with varying components. 16
2.2 Examples for multiplicative and additive relationship between

time series components. 17
2.3 Examples for stationary and non-stationary time series. 19
2.4 Examples of periodograms for a time series with dominant fre-

quency of 12 and a white noise time series. 22
2.5 Example of STL decomposition. 24
2.6 Example of Box-Cox transformation. 26

3.1 Example of a 80%–20% split of a time series. 39

4.1 Queue with m servers. 44
4.2 Example of supply and demand curves illustrating the idea of

elasticity. 48
4.3 Overview of the BUNGEE workflow and experimental environ-

ment. 50
4.4 Example of workload profile calibration of BUNGEE. 51

7.1 Distribution of the used measures, methods, and time series in
the evaluation sections from the reviewed 100 scientific papers. 75

7.2 Sequence diagram for the usage of the forecasting benchmark. . 77
7.3 Distribution of the time series origins used in the data set. . . . 79
7.4 Distribution of the time series lengths in each use case. 80
7.5 Distribution of the time series frequencies in each use case. . . . 81
7.6 Concept of rolling origin forecast implemented in the benchmark. 82
7.7 Distribution of time series characteristics per investigated data

set. 88

8.1 Preprocessing phase of Telescope. 95
8.2 Feature extraction phase of Telescope. 98
8.3 Model building phase of Telescope in a time-critical scenario. . . 100
8.4 Model building phase of Telescope in a non-time-critical scenario.100
8.5 Forecasting phase of Telescope. 101
8.6 Postprocessing phase of Telescope. 103

235

List of Figures

8.7 Schematic process of the rule generation (classification). 109
8.8 Schematic process of the rule generation (regression). 110
8.9 Offline training phase of Telescope. 112
8.10 Recommendation phase of Telescope. 113
8.11 Example of six generated time series. 114
8.12 Example moving block bootstrapping of an irregular part of a

time series. 117

9.1 Design overview of Chamulteon. 124
9.2 Optimization of proactive decisions. 129
9.3 Example of Chamulteon’s conflict resolution. 131
9.4 Example of instance times that are accounted and charged dif-

ferently. 133
9.5 MAPE-K cycle of Fox. 135
9.6 Decision logic for comparison to future decisions. 136
9.7 Example of two systems with the same elasticity accuracy and

time share. 139

10.1 Forecasts for all methods in competition on the airline passengers
time series. 170

10.2 Forecast error (sMAPE) distribution. 172
10.3 Time-to-result distribution. 173
10.4 Forecast error vs. time-to-result for all methods. 174

11.1 Overview of the real-world traces. 183
11.2 Scaling behavior in the hardware contention scenario. 192
11.3 Scaling behavior in the software contention scenario. 194
11.4 Scaling behavior in the mixed contention scenario. 196
11.5 Comparison of the auto-scalers on the Wiki trace. 199
11.6 Comparison of the auto-scalers on the Retailrocket trace. 201
11.7 Comparison of the Chameleon and T-Hold on different platforms.203
11.8 Scaling behavior of React without Fox on the BibSonomy trace. . 208
11.9 Scaling behavior of React with Fox on the BibSonomy trace with

hourly charging scheme. 209
11.10Scaling behavior of Reg on the Wiki trace. 215
11.11Scaling behavior of Chamulteon on the Wikipedia trace. 216

236

List of Tables

7.1 Frequency distribution within each data set. 87
7.2 Length distribution within each data set. 87
7.3 Distance between time series within each data set. 89

8.1 Overview of related work on hybrid forecasting methods. 118

9.1 Overview of related work on cloud auto-scalers. 144

10.1 Overview of the applied measures. 153
10.2 Comparison of classical time series forecasting methods on the

economics use case. 155
10.3 Comparison of regression-based machine learning methods on

the economics use case. 155
10.4 Comparison of classical time series forecasting methods on the

finance use case. 156
10.5 Comparison of regression-based machine learning methods on

the finance use case. 157
10.6 Comparison of classical time series forecasting methods on the

human access use case. 158
10.7 Comparison of regression-based machine learning methods on

the human access use case. 158
10.8 Comparison of classical time series forecasting methods on the

nature and demographics use case. 159
10.9 Comparison of regression-based machine learning methods on

the nature and demographics use case. 160
10.10Comparison of classical time series forecasting methods on all

use cases. 161
10.11Comparison of regression-based machine learning methods on

all use cases. 161
10.12Investigation of the machine learning methods on the training sets.165
10.13Investigation of the machine learning methods on the test sets. . 165
10.14Comparison of the recommendation approaches. 166
10.15Excerpt of the distribution of the time series characteristics of

the original and the augmented training set. 167

237

List of Tables

10.16Forecast error and time-to-result comparison on all time series. . 170
10.17Distribution of time series in each quadrant for each forecasting

method. 175
10.18Forecast error and time-to-result comparison on seasonal and

non-seasonal time series. 175
10.19Forecast error and time-to-result comparison on different time

series classes. 176
10.20Average standard deviation in % of the sMAPE per time series

within the 10 repetitions. 177
10.21Testing different building blocks of Telescope. 177

11.1 Estimated service demand of each deployed application. 184
11.2 Specifications of the VMs. 185
11.3 Overview of the applied measures. 188
11.4 Results for the hardware contention scenario. 193
11.5 Results for the software contention scenario. 195
11.6 Results for the mixed contention scenario. 197
11.7 Results for the Wiki trace. 200
11.8 Results for the Retailrocket trace. 202
11.9 Comparison of the scaling behavior of Chameleon and T-Hold

across different platforms. 204
11.10Comparison of the auto-scalers over all experiments. 205
11.11Comparison of React on the BibSonomy trace with and without

Fox based on hourly charging. 210
11.12Comparison of auto-scalers with and without Fox based on

hourly charging. 211
11.13Comparison of auto-scalers with and without Fox based on two-

phase charging. 212
11.14Comparison of the auto-scalers on the Wiki trace (Docker). . . . 217
11.15Comparison of the auto-scalers on the Wiki trace (VM). 218
11.16Comparison of the auto-scalers on the BibSonomy trace (small

setup, i.e., 60 containers). 220
11.17Comparison of the auto-scalers on the BibSonomy trace (large

setup, i.e., 120 containers). 221

238

Bibliography

Adhikari, R. and Agrawal, R. K. (2013). “An Introductory Study on Time Series
Modeling and Forecasting”. In: CoRR abs/1302.6613 (see pages 18, 41, 97).

Adhikari, R., Verma, G., and Khandelwal, I. (2015). “A Model Ranking Based
Selective Ensemble Approach for Time Series Forecasting”. In: Procedia Com-
puter Science 48, pp. 14–21 (see pages 54, 118).

Adya, M., Collopy, F., Armstrong, J. S., and Kennedy, M. (2001). “Automatic
Identification of Time Series Features for Rule-Based Forecasting”. In: Inter-
national Journal of Forecasting 17.2, pp. 143–157 (see page 56).

Ali-Eldin, A., Tordsson, J., and Elmroth, E. (2012). “An Adaptive Hybrid Elastic-
ity Controller for Cloud Infrastructures”. In: IEEE NOMS 2012. IEEE, pp. 204–
212 (see pages 4, 64, 144, 185).

Arlitt, M. and Jin, T. (2000). “A Workload Characterization Study of the 1998
World Cup Web Site”. In: IEEE Network 14.3, pp. 30–37 (see page 182).

Assimakopoulos, V. and Nikolopoulos, K. (2000). “The Theta Model: A De-
composition Approach to Forecasting”. In: International journal of forecasting
16.4, pp. 521–530 (see page 33).

Athanasopoulos, G., Hyndman, R. J., Song, H., and Wu, D. C. (2011). “The
Tourism Forecasting Competition”. In: International Journal of Forecasting 27.3,
pp. 822–844 (see pages 62, 86).

Bal, H., Epema, D., Laat, C. de, Nieuwpoort, R. van, Romein, J., Seinstra, F.,
Snoek, C., and Wijshoff, H. (2016). “A Medium-Scale Distributed System
for Computer Science Research: Infrastructure for the Long Term”. In: IEEE
Computer 49.5, pp. 54–63 (see page 184).

Bates, J. M. and Granger, C. W. (1969). “The Combination of Forecasts”. In:
Journal of the Operational Research Society 20.4, pp. 451–468 (see pages 53, 118).

Bauer, A. (2016). “Design and Evaluation of a Proactive, Application-Aware
Elasticity Mechanism”. Master Thesis. Am Hubland, Informatikgebäude,
97074 Würzburg, Germany: University of Würzburg (see pages 122, 123).

Bauer, A., Grohmann, J., Herbst, N., and Kounev, S. (2018a). “On the Value
of Service Demand Estimation for Auto-Scaling”. In: Proceedings of the 19th
International GI/ITG Conference on Measurement, Modelling and Evaluation of
Computing Systems (MMB). Springer, pp. 142–156 (see pages 8, 181).

239

Bibliography

Bauer, A., Herbst, N., Spinner, S., Ali-Eldin, A., and Kounev, S. (2018b). “Cham-
eleon: A Hybrid, Proactive Auto-Scaling Mechanism on a Level-Playing
Field”. In: IEEE Transactions on Parallel and Distributed Systems (TPDS) 30.4,
pp. 800–813 (see pages 8, 122, 123, 181).

Bauer, A., Lesch, V., Versluis, L., Ilyushkin, A., Herbst, N., and Kounev, S.
(2019b). “Chamulteon: Coordinated Auto-Scaling of Micro-Services”. In:
Proceedings of the 39th IEEE International Conference on Distributed Computing
Systems (ICDCS). IEEE, pp. 2015–2025 (see pages 8, 123, 181).

Bauer, A., Züfle, M., Grohmann, J., Schmitt, N., Herbst, N., and Kounev, S.
(2020a). “An Automated Forecasting Framework based on Method Recom-
mendation for Seasonal Time Series”. In: Proceedings of the 11th ACM/SPEC
International Conference on Performance Engineering (ICPE). ACM, pp. 48–55
(see pages 7, 92, 149).

Bauer, A., Züfle, M., Herbst, N., Kounev, S., and Curtef, V. (2020b). “Telescope:
An Automatic Feature Extraction and Transformation Approach for Time
Series Forecasting on a Level-Playing Field”. In: Proceedings of the 36th IEEE
International Conference on Data Engineering (ICDE). IEEE, pp. 1902–1905 (see
pages 7, 92, 149).

Bauer, A., Züfle, M., Herbst, N., Zehe, A., Hotho, A., and Kounev, S. (2020c).
“Time Series Forecasting for Self-Aware Systems”. In: Proceedings of the IEEE
108.7, pp. 1068–1093 (see pages 4, 7, 74, 92, 149).

Bell, W. R. and Hillmer, S. C. (1984). “Issues Involved with the Seasonal Adjust-
ment of Economic Time Series”. In: Journal of Business & Economic Statistics
2.4, pp. 291–320 (see page 23).

Beltrán, M. (2015). “Automatic Provisioning of Multi-Tier Applications in
Cloud Computing Environments”. In: The Journal of Supercomputing 71.6,
pp. 2221–2250 (see pages 66, 122, 144, 186).

Benifa, J. B. and Dejey, D. (2019). “Rlpas: Reinforcement Learning-Based Proac-
tive Auto-Scaler for Resource Provisioning in Cloud Environment”. In:Mobile
Networks and Applications 24.4, pp. 1348–1363 (see pages 67, 144).

Benz, D., Hotho, A., Jäschke, R., Krause, B.,Mitzlaff, F., Schmitz, C., and Stumme,
G. (2010). “The Social Bookmark and Publication Management System Bib-
sonomy”. In: The International Journal on Very Large Data Bases 19.6, pp. 849–
875 (see page 182).

Bergmeir, C., Hyndman, R. J., and Benítez, J. M. (2016). “Bagging Exponential
Smoothing Methods Using STL Decomposition and Box–Cox Transforma-
tion”. In: International journal of forecasting 32.2, pp. 303–312 (see pages 3, 59,
116, 118, 119, 230).

240

Bibliography

Bolch, G., Greiner, S., De Meer, H., and Trivedi, K. S. (2006). Queueing Networks
and Markov Chains: Modeling and Performance Evaluation with Computer Science
Applications. John Wiley & Sons (see pages 43, 189).

Boser, B. E., Guyon, I. M., and Vapnik, V. N. (1992). “A Training Algorithm
for Optimal Margin Classifiers”. In: Proceedings of the fifth annual workshop on
Computational learning theory. ACM, pp. 144–152 (see page 37).

Boulegane, D., Bifet, A., and Madhusudan, G. (2019). “Arbitrated Dynamic
Ensemble with Abstaining for Time-Series Forecasting on Data Streams”. In:
2019 IEEE International Conference on Big Data (Big Data). IEEE, pp. 1040–1045
(see pages 55, 118).

Box, G. and Jenkins, G. (1970). Time Series Analysis: Forecasting and Control.
Holden-Day (see pages 2, 33).

Box, G. E. and Cox, D. R. (1964). “AnAnalysis of Transformations”. In: Journal of
the Royal Statistical Society. Series B (Methodological), pp. 211–252 (see page 25).

Breiman, L., Friedman, J., Olshen, R., and Stone, C. (1984). “Classification and
Regression Trees”. In: (see page 35).

Breiman, L. (2001). “Random Forests”. In: Machine learning 45.1, pp. 5–32 (see
page 36).

Brockwell, P. J. and Davis, R. A. (2016). Introduction to Time Series and Forecasting.
springer (see page 97).

Brown, R. G. (1956). “Exponential Smoothing for Predicting Demand”. In:
Operations Research. Vol. 5. 1, pp. 145–145 (see page 32).

Bunch, J. R. and Hopcroft, J. E. (1974). “Triangular Factorization and Inversion
by Fast Matrix Multiplication”. In:Mathematics of Computation 28.125, pp. 231–
236 (see page 183).

Cerqueira, V., Torgo, L., Pinto, F., and Soares, C. (2017). “Arbitrated Ensemble
for Time Series Forecasting”. In: Joint European conference on machine learning
and knowledge discovery in databases. Springer, pp. 478–494 (see pages 3, 54,
55, 118).

Chen, T. and Guestrin, C. (2016). “Xgboost: A Scalable Tree Boosting System”.
In: ACM SIGKDD 2016. ACM, pp. 785–794 (see page 37).

Chieu, T. C., Mohindra, A., Karve, A. A., and Segal, A. (2009). “Dynamic Scaling
of Web Applications in a Virtualized Cloud Computing Environment”. In:
E-Business Engineering, 2009. ICEBE’09. IEEE International Conference on. IEEE,
pp. 281–286 (see pages 67, 144, 186).

Cleveland, R. B., Cleveland, W. S., McRae, J. E., and Terpenning, I. (1990). “STL:
A Seasonal-Trend Decomposition Procedure based on Loess”. In: Journal of
Official Statistics 6.1, pp. 3–73 (see page 23).

241

Bibliography

Collopy, F. and Armstrong, J. S. (1992). “Rule-Based Forecasting: Development
and Validation of an Expert Systems Approach to Combining Time Series
Extrapolations”. In:Management Science 38.10, pp. 1394–1414 (see pages 56,
118).

Crone, S. F., Hibon, M., and Nikolopoulos, K. (2011). “Advances in Forecasting
with Neural Networks? Empirical Evidence from the NN3 Competition on
Time Series Prediction”. In: International Journal of forecasting 27.3, pp. 635–660
(see pages 62, 86).

Dagum, E. B. and Bianconcini, S. (2016). Seasonal Adjustment Methods and Real
Time Trend-Cycle Estimation. Springer (see page 23).

Dezhabad, N. and Sharifian, S. (2018). “Learning-Based Dynamic Scalable
Load-Balanced Firewall as a Service in Network Function-Virtualized Cloud
Computing Environments”. In: The Journal of Supercomputing 74.7, pp. 3329–
3358 (see pages 66, 144).

Dietterich, T. G. (2002). “Machine learning for Sequential Data: A Review”. In:
Joint IAPR InternationalWorkshops on Statistical Techniques in Pattern Recognition
(SPR) and Structural and Syntactic Pattern Recognition (SSPR). Springer, pp. 15–
30 (see page 99).

Domingos, P. M. (2012). “A Few Useful Things to Know about Machine Learn-
ing”. In: Commun. acm 55.10, pp. 78–87 (see page 22).

Dos Santos, P. M., Ludermir, T. B., and Prudencio, R. B. C. (2004). “Selection
of Time Series Forecasting Models Based on Performance Information”. In:
Fourth International Conference on Hybrid Intelligent Systems (HIS’04). IEEE,
pp. 366–371 (see page 89).

Drucker, H., Burges, C. J., Kaufman, L., Smola, A. J., and Vapnik, V. (1997).
“Support Vector Regression Machines”. In: Advances in neural information
processing systems, pp. 155–161 (see page 37).

Durbin, J. and Watson, G. S. (1950). “Testing for Serial Correlation in Least
Squares Regression: I”. In: Biometrika 37.3/4, pp. 409–428 (see page 106).

Efron, B. (1992). “Bootstrap Methods: Another Look at the Jackknife”. In: Break-
throughs in statistics. Springer, pp. 569–593 (see page 36).

Eismann, S., Grohmann, J., Eyk, E. van, Herbst, N., and Kounev, S. (2020).
“Predicting the Costs of Serverless Workflows”. In: Proceedings of the 2020
ACM/SPEC International Conference on Performance Engineering (ICPE) (see
page 232).

Eismann, S., Walter, J., Kistowski, J. von, and Kounev, S. (2018b). “Modeling of
Parametric Dependencies for Performance Prediction of Component-based
Software Systems at Run-time”. In: 2018 IEEE International Conference on
Software Architecture (ICSA). Seattle, USA, pp. 135–144 (see page 127).

242

Bibliography

Fernandez, H., Pierre, G., and Kielmann, T. (2014). “Autoscaling Web Applica-
tions in Heterogeneous Cloud Infrastructures”. In: 2014 IEEE International
Conference on Cloud Engineering (IC2E). IEEE, pp. 195–204 (see pages 4, 68,
144, 145, 186).

Folkerts, E., Alexandrov, A., Sachs, K., Iosup, A., Markl, V., and Tosun, C. (2012).
“Benchmarking in the Cloud: What it Should, Can, and Cannot Be”. In:
Technology Conference on Performance Evaluation and Benchmarking. Springer,
pp. 173–188 (see page 50).

Fontes, X. and Castro Silva, D. (2020). “Hybrid Approaches for Time Series
Prediction”. In: Hybrid Intelligent Systems. Cham: Springer International Pub-
lishing, pp. 146–155 (see page 91).

Fourier, J. B. J. (1822). Théorie Analytique de la Chaleur. F. Didot (see page 20).
Friedman, M. (1937). “The Use of Ranks to Avoid the Assumption of Normality
Implicit in the Analysis of Variance”. In: Journal of the american statistical
association 32.200, pp. 675–701 (see pages 162, 168, 178).

Fulcher, B. D., Little, M. A., and Jones, N. S. (2013). “Highly Comparative Time-
Series Analysis: The Empirical Structure of Time Series and their Methods”.
In: Journal of the Royal Society Interface 10.83, p. 20130048 (see pages 28, 86, 87,
168).

Galante, G. and Bona, L. de (2012). “A Survey on Cloud Computing Elasticity”.
In: IEEE UCC 2012. IEEE, pp. 263–270 (see page 63).

Gardner, J. R., Pleiss, G., Bindel, D., Weinberger, K. Q., and Wilson, A. G.
(2018). “GPyTorch: Blackbox Matrix-Matrix Gaussian Process Inference with
GPU Acceleration”. In: Advances in Neural Information Processing Systems (see
page 150).

Gershenfeld, N. A. andWeigend, A. S. (1993). The Future of Time Series. Tech. rep.
Xerox Corporation, Palo Alto Research Center (see page 62).

Grohmann, J., Herbst, N., Spinner, S., and Kounev, S. (2017). “Self-Tuning
Resource Demand Estimation”. In: IEEE ICAC 2017. Columbus, OH (see
page 189).

Grubinger, T., Zeileis, A., and Pfeiffer, K.-P. (2011). evtree: Evolutionary Learning
of Globally Optimal Classification and Regression Trees in R. Tech. rep. Working
Papers in Economics and Statistics (see page 35).

Guerrero, V. M. (1993). “Time-Series Analysis Supported by Power Transfor-
mations”. In: Journal of Forecasting 12.1, pp. 37–48 (see pages 26, 94).

Han, R., Guo, L., Ghanem, M. M., and Guo, Y. (2012). “Lightweight Resource
Scaling for Cloud Applications”. In: IEEE/ACM CCGrid 2012. IEEE, pp. 644–
651 (see pages 67, 144).

243

Bibliography

Haslett, J. and Raftery, A. E. (1989). “Space-TimeModellingwith Long-Memory
Dependence: Assessing Ireland’s Wind Power Resource”. In: Journal of the
Royal Statistical Society: Series C (Applied Statistics) 38.1, pp. 1–21 (see page 29).

Herbst, N. (2018). “Methods and Benchmarks for Auto-Scaling Mechanisms in
Elastic Cloud Environments”. PhD thesis. University of Würzburg, Germany
(see pages 8, 122, 123, 137, 198).

Herbst, N. R., Kounev, S., and Reussner, R. (2013). “Elasticity in Cloud Com-
puting: What it is, and What it is Not”. In: Proceedings of the 10th International
Conference on Autonomic Computing (ICAC 2013). San Jose, CA: USENIX (see
page 47).

Herbst, N., Kounev, S., Weber, A., and Groenda, H. (2015). “BUNGEE: An Elas-
ticity Benchmark for Self-Adaptive IaaS Cloud Environments”. In: SEAMS
2015. IEEE Press, pp. 46–56 (see page 50).

Herbst, N., Krebs, R., Oikonomou, G., Kousiouris, G., Evangelinou, A., Iosup,
A., and Kounev, S. (2016). “Ready for Rain? A View from SPEC Research on
the Future of Cloud Metrics”. In: CoRR abs/1604.03470 (see page 48).

Herbst, N. et al. (2018). “Quantifying Cloud Performance and Dependability:
Taxonomy, Metric Design, and Emerging Challenges”. In: ACM Transactions
on Modeling and Performance Evaluation of Computing Systems (TOMPECS) 3.4,
p. 19 (see pages 8, 123).

Ho, T. K. (1995). “Random Decision Forests”. In: Proceedings of 3rd international
conference on document analysis and recognition. Vol. 1. IEEE, pp. 278–282 (see
page 36).

Holt, C. (1957). “Forecasting Trends and Seasonal by Exponentially Weighted
Moving Averages”. In: ONR Memorandum 52 (see page 32).

Hong, T., Pinson, P., and Fan, S. (2014). “Global Energy ForecastingCompetition
2012”. In: International Journal of Forecasting 30.2, pp. 357–363 (see page 62).

Hong, T., Pinson, P., Fan, S., Zareipour, H., Troccoli, A., Hyndman, R. J., et
al. (2016). “Probabilistic Energy Forecasting: Global Energy Forecasting
Competition 2014 and Beyond”. In: International Journal of Forecasting 32.3,
pp. 896–913 (see page 62).

Huber, N., Brosig, F., Spinner, S., Kounev, S., and Bähr, M. (2017). “Model-Based
Self-Aware Performance and Resource Management Using the Descartes
Modeling Language”. In: IEEE Transactions on Software Engineering (TSE)
43.5 (see pages 124, 127).

Huppler, K. (2011). “Benchmarking with your Head in the Cloud”. In: Technol-
ogy Conference on Performance Evaluation and Benchmarking. Springer, pp. 97–
110 (see page 50).

244

Bibliography

– (2009). “The Art of Building a Good Benchmark”. In: Technology Conference on
Performance Evaluation and Benchmarking. Springer, pp. 18–30 (see page 50).

Hyndman, R. J. and Athanasopoulos, G. (2017). Forecasting: Principles and
Practice. Melbourne, Australia: OTexts (see pages 3, 13, 14, 23, 25, 29, 31, 32,
39, 74, 81, 91, 92, 94, 97, 150).

Hyndman, R. J. and Khandakar, Y. (2008). “Automatic Time Series Forecasting:
The Forecast Package for R”. In: Journal of Statistical Software 26.3, pp. 1–22
(see page 101).

Hyndman, R. J. and Koehler, A. B. (2006). “Another Look at Measures of
Forecast Accuracy”. In: International journal of forecasting 22.4, pp. 679–688
(see page 41).

Hyndman, R. J., Koehler, A. B., Snyder, R. D., and Grose, S. (2002). “A State
Space Framework for Automatic Forecasting Using Exponential Smooth-
ing Methods”. In: International Journal of Forecasting 18.3, pp. 439–454 (see
page 32).

Hyndman, R. J., Wang, E., and Laptev, N. (2015). “Large-Scale Unusual Time
Series Detection”. In: 2015 IEEE international conference on data mining workshop
(ICDMW). IEEE, pp. 1616–1619 (see pages 28, 86, 87, 168).

Hyndman, R., Athanasopoulos, G., Bergmeir, C., Caceres, G., Chhay, L., O’Hara-
Wild, M., Petropoulos, F., Razbash, S., Wang, E., and Yasmeen, F. (2018).
forecast: Forecasting Functions for Time Series and Linear Models. R package
version 8.4 (see page 38).

Ilyushkin, A., Ali-Eldin, A., Herbst, N., Bauer, A., Papadopoulos, A. V., Epema,
D., and Iosup, A. (2018). “An Experimental Performance Evaluation of Au-
toscalers for Complex Workflows”. In: ACM Transactions on Modeling and
Performance Evaluation of Computing Systems (TOMPECS) 3.2, pp. 1–32 (see
pages 145, 206, 215, 221, 222).

Iosup, A., Yigitbasi, N., and Epema, D. (2011). “On the Performance Variability
of Production Cloud Services”. In: CCGrid 2011, pp. 104–113 (see pages 197,
206).

Iqbal, W., Dailey, M. N., Carrera, D., and Janecek, P. (2011). “Adaptive Resource
Provisioning for Read Intensive Multi-Tier Applications in the Cloud”. In:
Future Generation Computer Systems 27.6, pp. 871–879 (see pages 4, 68, 144,
186).

James, G., Witten, D., Hastie, T., and Tibshirani, R. (2013). An Introduction to
Statistical Learning. Vol. 112. Springer (see page 31).

Jennings, B. and Stadler, R. (2015). “Resource Management in Clouds: Survey
and Research Challenges”. In: Journal of Network and Systems Management 23.3,
pp. 567–619 (see page 63).

245

Bibliography

Jiang, J., Lu, J., Zhang, G., and Long, G. (2013). “Optimal Cloud Resource
Auto-Scaling for Web Applications”. In: 2013 13th IEEE/ACM International
Symposium on Cluster, Cloud, and Grid Computing. IEEE, pp. 58–65 (see pages 4,
65, 144, 145).

Kalyvianaki, E., Charalambous, T., and Hand, S. (2009). “Self-Adaptive and
Self-Configured CPU Resource Provisioning for Virtualized Servers Using
Kalman Filters”. In: Proceedings of the 6th international conference on Autonomic
computing, pp. 117–126 (see pages 64, 144).

Kang, Y., Hyndman, R. J., and Smith-Miles, K. (2017). “Visualising Forecasting
Algorithm Performance Using Time Series Instance Spaces”. In: International
Journal of Forecasting 33.2, pp. 345–358 (see pages 28, 86, 87, 168).

Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma, W., Ye, Q., and Liu, T.-Y.
(2017). “Lightgbm: A Highly Efficient Gradient Boosting Decision Tree”. In:
Advances in Neural Information Processing Systems, pp. 3146–3154 (see page 98).

Kendall, D. G. (1953). “Stochastic Processes Occurring in the Theory of Queues
and their Analysis by the Method of the Imbedded Markov Chain”. In: The
Annals of Mathematical Statistics, pp. 338–354 (see page 45).

Kephart, J. O. and Chess, D. M. (2003). “The Vision of Autonomic Computing”.
In: Computer 36.1, pp. 41–50 (see page 134).

Khandelwal, I., Adhikari, R., and Verma, G. (2015). “Time Series Forecasting
Using Hybrid ARIMA and ANNModels Based on DWT Decomposition”.
In: Procedia Computer Science 48.1, pp. 173–179 (see pages 59, 118).

Khorsand, R., Ghobaei-Arani, M., and Ramezanpour, M. (2018). “FAHP Ap-
proach for Autonomic Resource Provisioning of Multitier Applications in
Cloud Computing Environments”. In: Wiley Software: Practice and Experience
48.12, pp. 2147–2173 (see pages 69, 144).

Kistowski, J. v., Arnold, J. A., Huppler, K., Lange, K.-D., Henning, J. L., and Cao,
P. (2015). “How to Build a Benchmark”. In: Proceedings of the 6th ACM/SPEC
International Conference on Performance Engineering. Austin, Texas, USA: ACM,
pp. 333–336 (see page 73).

Kistowski, J. v., Herbst, N. R., and Kounev, S. (2014). “Modeling Variations in
Load Intensity over Time”. In: Proceedings of the Third International Workshop
on Large Scale Testing. Dublin, Ireland: ACM, pp. 1–4 (see page 52).

Kounev, S., Huber, N., Brosig, F., and Zhu, X. (2016). “AModel-BasedApproach
to Designing Self-Aware IT Systems and Infrastructures”. In: IEEE Computer
49.7, pp. 53–61 (see page 124).

Kounev, S., Lange, K.-D., and Kistowski, J. von (2020). Systems Benchmarking:
For Scientists and Engineers (see pages 43, 44).

246

Bibliography

Kück, M., Crone, S. F., and Freitag, M. (2016). “Meta-Learning with Neural
Networks and Landmarking for Forecasting Model Selection an Empirical
Evaluation of Different Feature Sets Applied to Industry Data”. In: 2016
International Joint Conference on Neural Networks (IJCNN). IEEE, pp. 1499–1506
(see pages 57, 118, 119).

Kuhn, M. and Johnson, K. (2013). Applied Predictive Modeling. Vol. 26. Springer
(see page 31).

Kwiatkowski, D., Phillips, P. C., Schmidt, P., Shin, Y., et al. (1992). “Testing the
Null Hypothesis of Stationarity against the Alternative of a Unit Root”. In:
Journal of econometrics 54.1-3, pp. 159–178 (see page 29).

Lakew, E. B., Papadopoulos, A. V., Maggio, M., Klein, C., and Elmroth, E. (2017).
“KPI-Agnostic Control for Fine-Grained Vertical Elasticity”. In: 2017 17th
IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing
(CCGRID). IEEE, pp. 589–598 (see pages 65, 144).

Lazowska, E. D., Zahorjan, J., Graham, G. S., and Sevcik, K. C. (1984). Quanti-
tative System Performance: Computer System Analysis Using Queueing Network
Models. Upper Saddle River, NJ, USA: Prentice-Hall, Inc. (see page 46).

Lemke, C. and Gabrys, B. (2010a). “Meta-learning for Time Series Forecasting
and Forecast Combination”. In: Neurocomputing 73.10-12, pp. 2006–2016 (see
page 105).

– (2010b). “Meta-Learning for Time Series Forecasting in the NN GC1 Com-
petition”. In: International Conference on Fuzzy Systems. IEEE, pp. 1–5 (see
pages 27, 56, 118, 119).

Lesch, V., Bauer, A., Herbst, N., and Kounev, S. (2018). “FOX: Cost-Awareness
for Autonomic Resource Management in Public Clouds”. In: Proceedings of
the 9th ACM/SPEC International Conference on Performance Engineering (ICPE).
ACM, pp. 4–15 (see pages 8, 123, 181).

Liu, N., Tang, Q., Zhang, J., Fan, W., and Liu, J. (2014). “A Hybrid Forecasting
Model with Parameter Optimization for Short-Term Load Forecasting of
Micro-Grids”. In: Applied Energy 129, pp. 336–345 (see pages 58, 118).

Livera, A.M. D., Hyndman, R. J., and Snyder, R. D. (2011). “Forecasting Time Se-
ries With Complex Seasonal Patterns Using Exponential Smoothing”. In: Jour-
nal of the American Statistical Association 106.496, pp. 1513–1527 (see page 34).

Lorido-Botran, T., Miguel-Alonso, J., and Lozano, J. A. (2014). “A Review of
Auto-scaling Techniques for Elastic Applications in Cloud Environments”.
In: Journal of Grid Computing 12.4, pp. 559–592 (see page 63).

Makridakis, S. (1976). “A Survey of Time Series”. In: International Statistical
Review/Revue Internationale de Statistique, pp. 29–70 (see pages 16, 17).

247

Bibliography

Makridakis, S., Andersen, A., Carbone, R., Fildes, R., Hibon, M., Lewandowski,
R., Newton, J., Parzen, E., and Winkler, R. (1982). “The Accuracy of Extrap-
olation (Time Series) Methods: Results of a Forecasting Competition”. In:
Journal of forecasting 1.2, pp. 111–153 (see pages 61, 86).

Makridakis, S., Chatfield, C., Hibon, M., Lawrence, M., Mills, T., Ord, K., and
Simmons, L. F. (1993). “The M2-Competition: A Real-Time Judgmentally
Based Forecasting Study”. In: International Journal of Forecasting 9.1, pp. 5–22
(see page 61).

Makridakis, S. and Hibon, M. (1979). “Accuracy of Forecasting: An Empirical
Investigation”. In: Journal of the Royal Statistical Society: Series A (General) 142.2,
pp. 97–125 (see page 61).

– (2000). “The M3-Competition: Results, Conclusions and Implications”. In:
International journal of forecasting 16.4, pp. 451–476 (see pages 62, 86, 152).

Makridakis, S., Spiliotis, E., and Assimakopoulos, V. (2018a). “Statistical and
Machine Learning Forecasting Methods: Concerns and Ways Forward”. In:
PloS one 13.3, e0194889 (see pages 93, 94, 99).

– (2018b). “The M4 Competition: Results, Findings, Conclusion and Way For-
ward”. In: International Journal of Forecasting 34.4, pp. 802–808 (see pages 53,
62, 86, 161, 179).

Maurer, M., Brandic, I., and Sakellariou, R. (2011). “Enacting Slas in Clouds
Using Rules”. In: Euro-Par 2011. Springer, pp. 455–466 (see pages 67, 144).

Mell, P. and Grance, T. (2011). “The NIST Definition of Cloud Computing”. In:
(see page 47).

Menascé, D. A., Dowdy, L. W., and Almeida, V. A. F. (2004). Performance by
Design: Computer Capacity Planning By Example. Upper Saddle River, NJ, USA:
Prentice Hall PTR (see pages 46, 126).

Montero-Manso, P., Athanasopoulos, G., Hyndman, R. J., and Talagala, T. S.
(2020). “FFORMA: Feature-Based Forecast Model Averaging”. In: Interna-
tional Journal of Forecasting 36.1, pp. 86–92 (see pages 3, 55, 118).

Naskos, A., Gounaris, A., and Katsaros, P. (2017). “Cost-Aware Horizontal
Scaling of NoSQLDatabases Using Probabilistic Model Checking”. In: Cluster
Computing 20.3, pp. 2687–2701 (see pages 4, 68, 144, 145).

Nguyen, H., Shen, Z., Gu, X., Subbiah, S., and Wilkes, J. (2013). “AGILE: Elas-
tic Distributed Resource Scaling for Infrastructure-as-a-Service.” In: 10th
USENIX International Conference on Autonomic Computing (ICAC 13). San Jose,
CA: USENIX, pp. 69–82 (see pages 68, 122, 144, 186).

Nuttall, A. H. and Carter, G. C. (1982). “Spectral Estimation Using Combined
Time and Lag Weighting”. In: Proceedings of the IEEE 70.9, pp. 1115–1125 (see
page 28).

248

Bibliography

Padala, P., Hou, K.-Y., Shin, K. G., Zhu, X., Uysal, M., Wang, Z., Singhal, S., and
Merchant, A. (2009). “AutomatedControl ofMultiple Virtualized Resources”.
In: Proceedings of the 4th ACM European conference on Computer systems, pp. 13–
26 (see pages 64, 144).

Pai, P.-F. and Lin, C.-S. (2005). “AHybrid ARIMA and Support VectorMachines
Model in Stock Price Forecasting”. In: Omega 33.6, pp. 497–505 (see pages 58,
118).

Panigrahi, S. and Behera, H. S. (2017). “A Hybrid ETS–ANNModel for Time
Series Forecasting”. In: Engineering Applications of Artificial Intelligence 66,
pp. 49–59 (see pages 59, 118).

Papadopoulos, A. V., Ali-Eldin, A., Arzén, K.-E., Tordsson, J., and Elmroth,
E. (2016). “PEAS: A Performance Evaluation Framework for Auto-Scaling
Strategies in Cloud Applications”. In: ACM ToMPECS 1.4, pp. 1–31 (see
pages 145, 186, 206, 215, 221, 222).

Papadopoulos, A. V., Versluis, L., Bauer, A., Herbst, N., Kistowski, J. von, Ali-
Eldin, A., Abad, C., Amaral, J. N., Tuma, P., and Iosup, A. (2019b). “Method-
ological Principles for Reproducible Performance Evaluation in Cloud Com-
puting”. In: IEEE Transactions on Software Engineering (TSE) (see page 145).

Phillips, P. C. and Perron, P. (1988). “Testing for a Unit Root in Time Series
Regression”. In: Biometrika 75.2, pp. 335–346 (see pages 18, 29).

Pincus, S. M., Gladstone, I. M., and Ehrenkranz, R. A. (1991). “A Regularity
Statistic for Medical Data Analysis”. In: Journal of Clinical Monitoring 7.4,
pp. 335–345 (see page 105).

Plummer, D. C., Smith, D., Bittman, T., Cear-Ley, D. W., Cappuccio, D., Scott, D.,
Kumar, R., and Robertson, B. (2009). Study: Five Refining Attributes of Public
and Private Cloud Computing. Tech. rep. Gartner (see page 47).

Qu, C., Calheiros, R. N., and Buyya, R. (2018). “Auto-Scaling Web Applications
in Clouds: A Taxonomy and Survey”. In: ACM Comput. Surv. 51.4, pp. 1–33
(see pages 4, 63, 144).

Quinlan, J. R. (1993). “Combining Instance-Based and Model-Based Learning”.
In: Proceedings of the tenth international conference on machine learning, pp. 236–
243 (see page 36).

Quinlan, J. R. et al. (1992). “Learning with Continuous Classes”. In: 5th Aus-
tralian joint conference on artificial intelligence. Vol. 92. World Scientific, pp. 343–
348 (see page 36).

Rao, J., Bu, X., Xu, C.-Z., Wang, L., and Yin, G. (2009). “VCONF: A Reinforce-
ment Learning Approach to Virtual Machines Auto-Configuration”. In: Pro-
ceedings of the 6th international conference on Autonomic computing, pp. 137–146
(see pages 66, 144).

249

Bibliography

Rasmussen, C. E. and Williams, C. K. (2006). Gaussian Processes for Machine
Learning. Vol. 2. 3. MIT press Cambridge, MA (see page 152).

Rice, J. R. (1976). “The Algorithm Selection Problem”. In: Advances in computers.
Vol. 15. Elsevier, pp. 65–118 (see page 104).

RightScale (2019). RightScale 2019 State of the Cloud Report from Flexera. Tech. rep.
Flexera (see pages 2, 121).

Rose, O. (1996). “Estimation of the Hurst Parameter of Long-Range Dependent
Time Series”. In: University of Wurzburg, Institute of Computer Science Research
Report Series.-February (see page 29).

Rosenbush, S. and Loten, A. (2017).Oracle CEO Hurd Says 80% of Corporate Data
Centers Gone by 2025. https://blogs.wsj.com/cio/2017/01/17/oracle-co-
ceo-mark-hurd-says-80-of-corporate-data-centers-gone-by-2025/.
Accessed: 2020-09-23 (see page 1).

Saâdaoui, F. and Rabbouch, H. (2019). “A Wavelet-Based Hybrid Neural Net-
work for Short-Term Electricity Prices Forecasting”. In: Artificial Intelligence
Review 52.1, pp. 649–669 (see pages 60, 118).

Saâdaoui, F., Saadaoui, H., and Rabbouch, H. (2019). “Hybrid Feedforward
ANN with NLS-Based Regression Curve Fitting for US Air Traffic Forecast-
ing”. In: Neural Computing and Applications, pp. 1–13 (see pages 60, 118).

Schouten, E. (2012). Rapid Elasticity and the Cloud. https://www.ibm.com/
blogs / cloud - computing / 2012 / 09 / 12 / rapid - elasticity - and - the -

cloud/. Accessed: 2020-06-19 (see page 47).
Schuster, A. (1899). “The Periodgram ofMagnetic Declination as Obtained from
the Records of the Greenwich Observatory during the Years 1871-1895”. In:
Transactions of the Cambridge Philosophical Society 18, pp. 107–135 (see page 21).

Sevcik, P. (2005). “Defining the Application Performance Index”. In: Business
Communications Review 20 (see page 187).

Sharma, U., Shenoy, P., and Towsley, D. F. (2012). “Provisioning Multi-Tier
Cloud Applications Using Statistical Bounds on Sojourn Time”. In: 9th ACM
International Conference on Autonomic Computing (ICAC) 2010. ACM, pp. 43–52
(see pages 65, 144).

Shcherbakov, M. V., Brebels, A., Shcherbakova, N. L., Tyukov, A. P., Janovsky,
T. A., and Kamaev, V. A. (2013). “A Survey of Forecast Error Measures”. In:
World Applied Sciences Journal 24.24, pp. 171–176 (see page 41).

Shen, Z., Subbiah, S., Gu, X., andWilkes, J. (2011). “Cloudscale: Elastic Resource
Scaling for Multi-Tenant Cloud Systems”. In: Proceedings of the 2nd ACM
Symposium on Cloud Computing, pp. 1–14 (see pages 122, 186).

250

https://blogs.wsj.com/cio/2017/01/17/oracle-co-ceo-mark-hurd-says-80-of-corporate-data-centers-gone-by-2025/
https://blogs.wsj.com/cio/2017/01/17/oracle-co-ceo-mark-hurd-says-80-of-corporate-data-centers-gone-by-2025/
https://www.ibm.com/blogs/cloud-computing/2012/09/12/rapid-elasticity-and-the-cloud/
https://www.ibm.com/blogs/cloud-computing/2012/09/12/rapid-elasticity-and-the-cloud/
https://www.ibm.com/blogs/cloud-computing/2012/09/12/rapid-elasticity-and-the-cloud/

Bibliography

Shumway, R. H. and Stoffer, D. S. (2000). “Time Series Analysis and its Appli-
cations”. In: Studies In Informatics And Control 9.4, pp. 375–376 (see pages 13,
17, 18).

Singh, P., Gupta, P., Jyoti, K., and Nayyar, A. (2019). “Research on Auto-Scaling
of Web Applications in Cloud: Survey, Trends and Future Directions”. In:
Scalable Computing: Practice and Experience 20.2, pp. 399–432 (see page 63).

Smith-Miles, K. A. (2009). “Cross-Disciplinary Perspectives on Meta-Learning
for Algorithm Selection”. In: ACM Computing Surveys (CSUR) 41.1, pp. 1–25
(see page 104).

Smyl, S. (2020). “A Hybrid Method of Exponential Smoothing and Recurrent
Neural Networks for Time Series Forecasting”. In: International Journal of
Forecasting 36.1, pp. 75–85 (see pages 3, 61, 118, 229).

Sommer, M., Stein, A., and Hähner, J. (2016). “Local Ensemble Weighting in the
Context of Time Series Forecasting Using XCSF”. In: 2016 IEEE Symposium
Series on Computational Intelligence (SSCI). IEEE, pp. 1–8 (see pages 54, 118).

Spinner, S., Casale, G., Brosig, F., and Kounev, S. (2015). “Evaluating Ap-
proaches to Resource Demand Estimation”. In: Perform. Evaluation 92, pp. 51–
71 (see pages 46, 125).

Spinner, S., Casale, G., Zhu, X., and Kounev, S. (2014). “LibReDE: A library for
Resource Demand Estimation”. In:ACM/SPEC ICPE 2014. ACM, pp. 227–228
(see pages 125, 126, 184).

Spinner, S., Walter, J., and Kounev, S. (2016). “A Reference Architecture for
Online Performance Model Extraction in Virtualized Environments”. In:
ACM/SPEC ICPE 2017. ACM, pp. 57–62 (see page 124).

Sugiyama, M. and Kawanabe, M. (2012). Machine Learning in Non-Stationary
Environments: Introduction to Covariate Shift Adaptation. The MIT Press (see
pages 91, 94).

Talagala, T. S., Hyndman, R. J., and Athanasopoulos, G. (2018). Meta-Learning
How to Forecast Time Series. Tech. rep. Monash University, Department of
Econometrics and Business Statistics (see pages 3, 28, 57, 118, 119).

Taylor, S. J. and Letham, B. (2018). “Forecasting at Scale”. In: The American
Statistician 72.1, pp. 37–45 (see pages 3, 25, 60, 118).

Teräsvirta, T., Lin, C.-F., and Granger, C. W. (1993). “Power of the Neural
Network Linearity Test”. In: Journal of Time Series Analysis 14.2, pp. 209–220
(see page 29).

Tesauro, G., Jong, N. K., Das, R., and Bennani, M. N. (2006). “A Hybrid Rein-
forcement Learning Approach to Autonomic Resource Allocation”. In: IEEE
ICAC 2006. IEEE, pp. 65–73 (see pages 66, 144).

251

Bibliography

Urgaonkar, B., Shenoy, P., Chandra, A., and Goyal, P. (2005). “Dynamic Provi-
sioning ofMulti-Tier Internet Applications”. In: Second International Conference
on Autonomic Computing (ICAC’05). IEEE, pp. 217–228 (see pages 8, 122).

Urgaonkar, B., Shenoy, P., Chandra, A., Goyal, P., and Wood, T. (2008). “Agile
Dynamic Provisioning of Multi-tier Internet Applications”. In: ACM Transac-
tions on Autonomous and Adaptive Systems (TAAS) 3.1, pp. 1–39 (see pages 4,
65, 144, 186).

Vapnik, V. (1995). The Nature of Statistical Learning (see pages 37, 38).
Wang, X., Smith-Miles, K., and Hyndman, R. (2009). “Rule Induction for Fore-
casting Method Selection: Meta-Learning the Characteristics of Univariate
Time Series”. In: Neurocomputing 72.10 - 12, pp. 2581–2594 (see pages 27, 56,
57, 105, 118).

Wang, Z., Koprinska, I., Troncoso, A., and Martínez-Álvarez, F. (2018). “Static
andDynamic Ensembles of Neural Networks for Solar Power Forecasting”. In:
2018 International Joint Conference on Neural Networks (IJCNN). IEEE, pp. 1–8
(see pages 55, 118).

Widodo, A. and Budi, I. (2013). “Model Selection Using Dimensionality Reduc-
tion of Time Series Characteristics”. In: International Symposium on Forecasting,
Seoul, South Korea (see pages 57, 118, 119).

Willinger, W., Paxson, V., and Taqqu, M. S. (1998). “Self-Similarity and Heavy
Tails: Structural Modeling of Network Traffic”. In: A Practical Guide to Heavy
Tails: Statistical Techniques and Applications 23, pp. 27–53 (see page 29).

Willnecker, F., Dlugi, M., Brunnert, A., Spinner, S., Kounev, S., Gottesheim,
W., and Krcmar, H. (2015). “Comparing the Accuracy of Resource Demand
Measurement and Estimation Techniques”. In: EPEW 2015. Ed. by M. Beltrán,
W. Knottenbelt, and J. Bradley. Vol. 9272. Madrid, Spain: Springer, pp. 115–
129 (see page 46).

Winters, P. R. (1960). “Forecasting Sales by Exponentially Weighted Moving
Averages”. In:Management science 6.3, pp. 324–342 (see page 32).

Wold, H. (1938). “A Study in the Analysis of Stationary Time Series”. PhD
thesis. Almqvist & Wiksell (see page 34).

Wolpert, D. H. and Macready, W. G. (1997). “No Free Lunch Theorems for
Optimization”. In: IEEE Transactions on Evolutionary Computation 1.1, pp. 67–
82 (see pages 3, 31, 53, 91, 152, 162, 179, 229).

Wu, S., Li, B., Wang, X., and Jin, H. (2016). “HybridScaler: Handling Bursting
Workload for Multi-tier Web Applications in Cloud”. In: 15th International
Symposium on Parallel and Distributed Computing (ISPDC), 2016, pp. 141–148
(see pages 4, 69, 144, 145).

252

Bibliography

Xiong, P., Wang, Z., Malkowski, S., Wang, Q., Jayasinghe, D., and Pu, C. (2011).
“Economical and Robust Provisioning of n-Tier Cloud Workloads: A Multi-
Level Control Approach”. In: 2011 31st International Conference on Distributed
Computing Systems. IEEE, pp. 571–580 (see pages 65, 144).

Yule, G. U. (1927). “On a Method of Investigating Periodicities Disturbed Se-
ries, with Special Reference to Wolfer’s Sunspot Numbers”. In: Philosophical
Transactions of the Royal Society of London 226.636-646, pp. 267–298 (see page 2).

Zhang, D., Chen, S., Liwen, L., and Xia, Q. (2020). “Forecasting Agricultural
Commodity Prices Using Model Selection Framework With Time Series
Features and Forecast Horizons”. In: IEEE Access 8, pp. 28197–28209 (see
pages 58, 118).

Zhang, G. P. (2003). “Time Series Forecasting Using a Hybrid ARIMA and
Neural Network Model”. In: Neurocomputing 50, pp. 159–175 (see pages 58,
59, 118).

Zhang, J., Wei, Y., Tan, Z.-f., Ke, W., and Tian, W. (2017). “A Hybrid Method
for Short-Term Wind Speed Forecasting”. In: Sustainability 9.4, p. 596 (see
pages 59, 118).

Zhu, Q. and Agrawal, G. (2012). “Resource Provisioning with Budget Con-
straints for Adaptive Applications in Cloud Environments”. In: IEEE Transac-
tions on Services Computing 5.4, pp. 497–511 (see pages 64, 144).

Zuefle, M., Bauer, A., Lesch, V., Krupitzer, C., Herbst, N., Kounev, S., and Curtef,
V. (2019). “Autonomic Forecasting Method Selection: Examination andWays
Ahead”. In: Proceedings of the 16th IEEE International Conference on Autonomic
Computing (ICAC). IEEE, pp. 167–176 (see page 56).

Züfle, M., Bauer, A., Herbst, N., Curtef, V., and Kounev, S. (2017). “Telescope:
A Hybrid Forecast Method for Univariate Time Series”. In: Proceedings of the
4th International Work-Conference on Time Series (ITISE) (see pages 7, 92).

253

	Introduction
	Problem Statement
	Shortcomings of the State-of-the-Art
	Goals and Research Questions of the Thesis
	Contributions of this Thesis
	Thesis Outline

	Foundations and State-of-the-Art
	Time Series Analysis
	Terms and Definitions
	Components of a Time Series
	Statistical Analysis of Time Series
	Stationarity
	Time Series Forecasting

	Spectral Analysis
	Fourier Terms
	Frequency Detection via Periodograms

	Time Series Feature Engineering
	Time Series Decomposition
	Time Series Transformation
	Time Series Differencing

	Time Series Characteristics

	Time Series Forecasting
	Classical Forecasting Methods
	Naïve and sNaïve
	ETS
	Theta
	ARIMA and sARIMA
	TBATS

	Forecasting Methods based on Machine Learning
	CART
	Evtree
	Cubist
	Random Forest
	XGBoost
	SVM and SVR
	NNetar

	Assessing Forecasting Quality
	Scale-dependent Error Measures
	Percentage Error Measures
	Scaled Error Measures
	Discussion of the Measures

	Resource Management of Distributed Cloud Services
	A Brief Introduction to Basic Queueing Theory
	Characteristics of a Queue
	Service Demand Estimation

	Assessing the Quality of the Resource Adaptation
	Definition and Measures of Cloud Elasticity
	Elasticity Benchmarking Framework

	On the State-of-the-Art in Time Series Forecasting
	Ensemble Forecasting
	Forecasting Method Recommendation
	Time Series Decomposition
	Benchmarking of Forecasting Methods

	On the State-of-the-Art in Cloud Auto-Scaling
	Auto-Scalers based on Control Theory
	Auto-Scalers based on Queueing Theory
	Auto-Scalers based on Reinforcement Learning
	Auto-Scalers based on Threshold-Based Rules
	Auto-Scalers based on Time Series Analysis
	Cost-Efficient Auto-Scalers

	Contributions
	Forecasting Benchmark
	Literature Review
	Design Overview and Use Cases
	Time Series Data Set
	Evaluation Types and Rolling Origin Evaluation
	Proposed Forecast Error Measures
	Mean Wrong-Estimation Shares
	Mean Wrong-Accuracy Shares

	Comparison with other Forecasting Competitions
	Time Series Characteristics
	Distance between Time Series

	Concluding Remarks

	Automated Hybrid Forecasting Approach
	Design Overview
	Preprocessing
	Feature Extraction
	Model Building
	Time-Critical Scenario
	Non-Time-Critical Scenario

	Forecasting
	Postprocessing
	Fallback for Non-Seasonal Time Series
	Recommendation System for Machine Learning Method
	Meta-Learning for Method Selection
	Offline Training
	Recommendation
	Time Series Generator

	Assumptions and Limitations
	Differentiation from Related Work
	Concluding Remarks

	Forecasting-based Auto-Scaling of Distributed Cloud Applications
	Overview of the Chamulteon Approach
	Forecasting Component
	Service Demand Estimation Component
	Cost-Awareness Component
	Limitations of and Changes to the Chameleon Approach

	Decision Making Process
	Decision Conflict Resolution
	Scope Conflict Resolution
	Time Conflict Resolution
	Delay Conflict Resolution

	Cost-Aware Resource Management
	Design Overview of the Fox Approach
	Analyze
	Plan
	Execute

	Assessing the Auto-Scaling Quality
	Instability
	Auto-Scaling Deviation
	Elastic Speedup
	Auto-Scaling Worst-Case Deviation
	Cost-Saving Rate

	Assumptions and Limitations
	Distinctive Features of Chamulteon
	Concluding Remarks

	Benchmarking and Evaluation
	Time Series Forecasting Competition
	Global Experimental Setup
	Methods in Competition
	Applied Measures

	Benchmarking of Forecasting Methods
	Experimental Description
	Economics Use Case
	Finance Use Case
	Human Access Use Case
	Nature and Demographics Use Case
	Overall Evaluation
	Summary of the Results and Threats to Validity

	Evaluation of the Forecasting Method Recommendation
	Experimental Description
	Performance of the Regression-based Machine Learning Methods
	Analysis of the Recommendation Approaches
	Training Set Augmentation
	Summary of the Results and Threats to Validity

	Benchmarking the Telescope Approach
	Experimental Description
	Forecasting Method Competition
	Detailed Examination
	Repeatability
	Investigation of Alternative Building Blocks
	Summary of the Results and Threats to Validity

	Concluding Remarks

	Elastic Resource Management
	Global Experimental Setup
	Workload Description
	Deployed Applications
	Deployment Description
	Deployed Auto-Scaling Mechanisms
	Applied User and System Measures

	The Impact of Service Demand Estimation
	Experimental Description
	Hardware Contention Scenario
	Software Contention Scenario
	Mixed Contention Scenario
	Summary of the Results and Threats to Validity

	Benchmarking of the Chameleon Approach
	Experimental Description
	Introduction to the Results
	Auto-Scaling on Different Platforms
	Overall Evaluation
	Summary of the Results and Threats to Validity

	Evaluation of the Fox Approach
	Experimental Description
	Introduction to the Results
	Fox with Hourly Charging Scheme
	Fox with Two-Phase Charging Scheme
	Summary of the Results and Threats to Validity

	Benchmarking of the Chamulteon Approach
	Experimental Description
	Introduction to the Results
	Docker vs. VM Scaling
	Scalability
	Summary of the Results and Threats to Validity

	Concluding Remarks

	Conclusion
	Thesis Summary
	Open Challenges and Outlook

	Back Matter
	List of Figures
	List of Tables
	Bibliography

