
Why Is It Not Solved Yet?
Challenges for Production-Ready Autoscaling (Author Preprint)

Martin Straesser
University of Würzburg
Würzburg, Germany

martin.straesser@uni-wuerzburg.de

Johannes Grohmann
University of Würzburg
Würzburg, Germany

johannes.grohmann@uni-
wuerzburg.de

Jóakim von Kistowski
DATEV eG

Nürnberg, Germany
joakim.vonkistowski@datev.de

Simon Eismann
University of Würzburg
Würzburg, Germany

simon.eismann@uni-wuerzburg.de

André Bauer
University of Würzburg
Würzburg, Germany

andre.bauer@uni-wuerzburg.de

Samuel Kounev
University of Würzburg
Würzburg, Germany

samuel.kounev@uni-wuerzburg.de

ABSTRACT
Autoscaling is a task of major importance in the cloud computing
domain as it directly affects both operating costs and customer
experience. Although there has been active research in this area
for over ten years now, there is still a significant gap between the
proposed methods in the literature and the deployed autoscalers
in practice. Hence, many research autoscalers do not find their
way into production deployments. This paper describes six core
challenges that arise in production systems that are still not solved
by most research autoscalers. We illustrate these problems through
experiments in a realistic cloud environment with a real-world
multi-service business application and show that commonly used
autoscalers have various shortcomings. In addition, we analyze
the behavior of overloaded services and show that these can be
problematic for existing autoscalers. Generally, we analyze that
these challenges are only insufficiently addressed in the literature
and conclude that future scaling approaches should focus on the
needs of production systems.

CCS CONCEPTS
•Computer systems organization→Cloud computing; • Soft-
ware and its engineering→ Software performance.

KEYWORDS
Autoscaling, cloud computing, microservices
ACM Reference Format:
Martin Straesser, Johannes Grohmann, Jóakim von Kistowski, Simon Eis-
mann, André Bauer, and Samuel Kounev. 2022. Why Is It Not Solved Yet?
Challenges for Production-Ready Autoscaling (Author Preprint). In Pro-
ceedings of the 2022 ACM/SPEC International Conference on Performance
Engineering (ICPE ’22), April 9–13, 2022, Bejing, China. ACM, New York, NY,
USA, 11 pages. https://doi.org/10.1145/3489525.3511680

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICPE ’22, April 9–13, 2022, Bejing, China
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9143-6/22/04. . . $15.00
https://doi.org/10.1145/3489525.3511680

1 INTRODUCTION
Autoscaling has been a vital research topic since the beginning of
the cloud computing era [6] and has high relevance in several sub-
domains, such as serverless computing [1] or fog computing [49].
In general, scaling refers to the task of dynamically provisioning
computing resources under varying load. Scaling has to be auto-
mated in modern cloud environments with highly dynamic and
complex workloads [28]. Moreover, scaling has a major impact on
the business value of cloud software as it affects both operating
costs and customer experience. An optimal autoscaler is able to
minimize costs as well as violations of service level objectives (SLO).

Autoscaling solutions in the industry, for example, offered in
public clouds, like Google Cloud Engine [20], Microsoft Azure [9],
or Amazon Web Services [42], are often relatively simple and rely
on user-defined scaling rules (e.g., CPU utilization thresholds). The
default autoscaling behavior for Kubernetes, a widely-used con-
tainer orchestrator, is also based on a simple scaling rule assum-
ing a linear relationship between the supplied resources and the
target metric [8]. In a recent survey on autoscaling of web appli-
cations [47], over 100 autoscalers proposed in the literature were
evaluated. These autoscalers are usually more complex, employing
mechanisms based on concepts from queueing theory, fuzzy meth-
ods, control theory, reinforcement learning, and more. In general,
we observe a big difference between state-of-the-art autoscaling in
research papers and production systems. Consequently, the ques-
tion of why the majority of research autoscalers are not deployed
in practice arises.

To address this question, we state six core challenges that au-
toscalers face in modern production systems covering conceptual,
technical, and non-functional requirements. These challenges are
illustrated through experiments with a real-world multi-service
business application (based on Java and Spring microservices) run-
ning different realistic workloads. A cluster with a representative
hardware and software technology stack is used for the deploy-
ment. We evaluate the performance of different scaling strategies,
including reactive, proactive, and hybrid scalers and different scal-
ing metrics. Moreover, we report on the performance behavior
of overloaded services and, based on our findings, outline arising
problems for autoscalers.

We then analyze how these challenges are addressed in the litera-
ture and show that current research autoscalers rely on assumptions

https://doi.org/10.1145/3489525.3511680
https://doi.org/10.1145/3489525.3511680

ICPE ’22, April 9–13, 2022, Bejing, China M. Straesser et al.

that prevent them from being successfully deployed in practice.
Among other things, we see that most research autoscalers limit
themselves to either reactive or proactive scaling, which we con-
sider insufficient for workloads with limited predictability. Many
autoscalers rely only on platform-level metrics (such as CPU, mem-
ory), which are not always suitable to reflect the application state
and, hence, may lead to wrong autoscaling decisions. Finally, most
research autoscalers rely on various configuration parameters and
are typically evaluated in simulation environments or using syn-
thetic workloads only.

The goal of this paper is to serve as a reference for novel autoscal-
ing approaches and how they may find a way into being adopted in
industrial settings as well as to motivate further research addressing
the challenges in real-life production systems.

Summarizing, the contribution of this paper is twofold:

• We discuss autoscaling challenges in production systems in
detail and illustrate these challenges with experiments with
different autoscalers in a representative test setting.

• We highlight that these challenges are currently given in-
sufficient attention in the literature and pinpoint common
assumptions of research autoscalers that prevent their usage
in production systems.

The remainder of this paper is structured as follows: In Section 2,
we conduct multiple experiments to evaluate the performance of
different scaling strategies in our test cluster. Section 3 discusses
our findings and describes challenges for autoscaling in industrial
settings. In Section 4, we summarize related work in cloud service
autoscaling and derive common assumptions and limitations of the
proposed approaches. Finally, we conclude the paper in Section 5.

2 EXPERIMENTAL STUDY
In this section, we describe our experiment setup for investigating
different autoscalers. Sections 2.1 to 2.3 describe preliminaries such
as the test application and environment, while Sections 2.4 to 2.6
describe our results. Further discussion is presented in Section 3.

2.1 Application Under Test
For the experiments in this paper, we use a test application that
comprises a representative subset of some business services of our
industry partner in production. An overview of the application,
which consists of a gateway service, an eureka instance, and two
services with their own databases, is shown in Figure 1. Every user
request is first processed by the gateway service, which verifies
whether the request is valid. A request is considered valid if special
HTTP headers are present and the call refers to a registered URI. The
gateway service checks if these conditions are met. It then either
rewrites some headers and forwards the request to the business
services service1 and service2 or rejects the request.

Microservice service1 offers five endpoints overall, from which
three generate SELECT or INSERT requests to a connected Post-
greSQL database, one generates a request to service2, and one
retrieves information from a local information cache. In contrast
to this, service2 offers only one endpoint, which causes a SE-
LECT call to another PostgreSQL database. At startup, each service

gateway

eureka

service1

service2

DB

DB

Business requests Service discovery

Figure 1: Application Under Test

registers itself at the eureka service instance. All services are im-
plemented using Java and Spring1, a widely used framework for
backend development.

2.2 Technical Setup
The test application is deployed in a kubecf [22] cluster. kubecf
is an open-source distribution of the platform-as-a-service envi-
ronment Cloud Foundry2. The kubecf components run on top of a
Kubernetes cluster and are deployed using Kubernetes pods. Busi-
ness applications to be hosted in a kubecf cluster are built and
deployed in so-called Diego cells, which offer an isolated execution
environment. For each application, a memory limit has to be set.
The maximum CPU usage of an application is then derived from the
memory setting. For each service of our test application, we use a
memory limit of 1024MB. We deploy nine Diego cells in total, each
with a capacity of 40GB. For more information on kubecf and its
application resource management refer to the technical documenta-
tion [22]. In general, this technology stack mirrors the production
setup of our industry partner.

Our cluster consists of one physical master node and six physical
worker nodes. Five worker nodes are HPE ProLiant DL360 Gen9
servers with Intel(R) Xeon(R) E5-2650 CPU and 16 GiB DDR4 RAM,
and one worker node is an HPE ProLiant DL20 Gen9 server with
Intel(R) Xeon(R) E3-1230 CPU and 16 GiB DDR4 RAM. We use
a Prometheus v2.27.1 server for monitoring, which scrapes both
metrics from the kubecf platform (such as the number of currently
deployed instances and their CPU, memory, and disk usage) and the
application instances once every 30 seconds. The Spring services
expose their metrics using Spring Boot Actuator3.

For load generation, we use three Apache JMeter4 v5.4.1 in-
stances, which generate the six different request types supported
by the test application (see Section 2.1). Request parameters are
sampled from a uniform distribution. The implemented autoscalers
querymetrics from the Prometheus server and send scaling requests
to the master node. The autoscalers, Prometheus server, load gener-
ators, and PostgreSQL databases run on dedicated servers outside
the kubecf cluster and are not scaled within the experiments.
1https://spring.io/projects/spring-framework
2https://www.cloudfoundry.org/
3https://docs.spring.io/spring-boot/docs/current/reference/html/actuator.html
4https://jmeter.apache.org/

https://spring.io/projects/spring-framework
https://www.cloudfoundry.org/
https://docs.spring.io/spring-boot/docs/current/reference/html/actuator.html
https://jmeter.apache.org/

Why Is It Not Solved Yet? Challenges for Production-Ready Autoscaling (Author Preprint) ICPE ’22, April 9–13, 2022, Bejing, China

0

400

800

1200

0 25000 50000 75000
Time [s]

R
eq

ue
st

s
pe

r
S

ec
on

d

(a) Workload

0

1

2

3

4

5

0 25000 50000 75000
Time [s]

C
P

U
 U

til
iz

at
io

n

(b) CPU Utilization

5

10

15

20

0 25000 50000 75000
Time [s]

N
o.

 o
f I

ns
ta

nc
es

(c) Deployed Instances

2.5

5.0

7.5

10.0

12.5

15.0

17.5

0 25000 50000 75000
Time [s]

R
es

po
ns

e
T

im
e

[s
]

(d) Response Time

Figure 2: Workload and Measurement Results for Reactive CPU Scaling

2.3 Scaling Rules and Quality Measures
In our experiments, we limit ourselves to horizontal scaling, which
is a common focus in autoscaling research for microservices [47].
Although we evaluate different scaling metrics, we use one generic
scheme for scaling. Independently from the scaling metric, we
use the generic and widely used Kubernetes default scaling rule
to calculate the instances of service 𝑠 to be deployed in the next
scaling interval [8]:

𝑛𝑡+1 (𝑠) =
⌈
𝑛𝑡 (𝑠) ·

𝑚𝑡 (𝑠)
𝑚∗ (𝑠)

⌉
. (1)

Hereby, 𝑛𝑡+1 is the number of deployed instances in the next
interval, while𝑛𝑡 is the number of currently deployed instances. The
measured value of the scaling metric averaged over all instances of
the service is denoted as𝑚𝑡 and the desired metric value is denoted
as 𝑚∗. We limit the upscaling to 5 instances per one minute for
stability reasons. The downscaling is limited to 2 instances per 5
minutes. These rules represent company policies deduced from
the production environment of our industry partner. The scaling
mechanism is triggered once every 30 seconds, which means every
time new measurement values are available (see Section 2.2).

To rate the quality of the different scaling strategies, we con-
sider both costs and SLO violations. We define 𝑇 as the set of all
measurement intervals in the experiment and 𝑆 as the set of all

services that need to be scaled. For our experiments, we do not in-
clude the eureka service for scaling. Hence, 𝑆 consists of service1,
service2, and gateway. At the beginning of the experiments, five
instances of each service are deployed. The total costs 𝐶 are de-
fined as the sum of all deployed instances 𝑛𝑡 of all services in all
measurement intervals:

𝐶 =
∑
𝑠∈𝑆

∑
𝑡 ∈𝑇

𝑛𝑡 (𝑠) . (2)

For the SLO violation metric 𝑉 , we consider the ratio of failed
requests 𝑟𝑡 and total requests 𝑅𝑡 for each measurement interval 𝑡 . A
request is considered failed if its response time is above 20 seconds
or if an unhealthy response code is returned. We sum this ratio
up for all intervals 𝑡 and then divide the sum by |𝑇 |, which is the
number of measurement intervals in the experiment:

𝑉 =
1
|𝑇 | ·

∑
𝑡 ∈𝑇

𝑟𝑡

𝑅𝑡
. (3)

As stated above, the performance of an autoscaler should take
both costs and SLO violations into account. Depending on the use
case, they can be weighted differently. This is why we introduce
a scaling performance metric 𝑃𝑤 , which includes an adjustable
weight𝑤 for the desired costs and SLO violation ratio:

ICPE ’22, April 9–13, 2022, Bejing, China M. Straesser et al.

𝑃𝑤 = 𝑤 ·𝑉 + (1 −𝑤) · 𝐶

𝐶𝑚𝑎𝑥
. (4)

Thereby, 1/𝐶𝑚𝑎𝑥 is a normalization factor that maps the costs
to a scale between 0 and 1. We choose:

𝐶𝑚𝑎𝑥 = |𝑆 | · |𝑇 | · 𝑛𝑚𝑎𝑥 ,

where 𝑛𝑚𝑎𝑥 is the highest number of deployed instances for one
service. Hence, 𝐶𝑚𝑎𝑥 would be the costs if 𝑛𝑚𝑎𝑥 instances of all
services would be deployed the whole time. In our experiments,
the observed maximum number of instances of one service was 20,
and we set 𝑛𝑚𝑎𝑥 accordingly. All 𝐶 , 𝑉 , and 𝑃𝑤 can be considered
as lower-is-better metrics.

2.4 Threshold-based CPU Autoscaling
In Experiment 1, we evaluate threshold-based CPU autoscaling,
as it can be configured in public cloud environments. We use the
Kubernetes default scaling rule (1) to calculate the number of in-
stances. As the desired CPU utilization, we use a value of 80 percent.
In the first part, we use a simple reactive scaling strategy, which is
later compared to proactive and hybrid strategies. We use a typi-
cal workload from the production system of our industry partner
and evaluate the scaling behavior over 24 hours. We repeat the
measurement three times for each scaling strategy to validate our
results.

Figure 2a shows the workload used in this experiment. It varies
between 300 and 700 requests per second, with significant outliers
in both directions. In our setup, mostly service1 and gateway are
bottlenecks, while service2 shows a consistent performance with
few instances. Figure 2b shows the average CPU utilization, while
Figure 2c shows the number of deployed instances of service1
over time measured in one run. We see that the number of instances
deployed by the reactive autoscaler rises sharply in times of high
load. The upscaling period ends with a short time where the peak
number of instances is deployed. After that, a long and consistent
downscaling period follows. Figure 2d further shows the average
response times in each measurement interval. We see that, con-
gruent to the CPU utilization, the response times rise from their
normal value range of 2.5 to 4 seconds to a peak value of about 19
seconds. This congruence shows that CPU utilization can be used
to detect overloaded services. The reactive scaler responds only to
high CPU utilization, and it has limited capabilities to prevent SLO
violations, as the response time rises exponentially in these cases.

We compare a proactive and a hybrid autoscaler to this baseline.
The proactive autoscaler uses the time series of the total CPU uti-
lization, that is, the sum of all CPU usages of all instances of one
service, and it predicts the value one minute in the future. This
forecast horizon is long enough to start new instances, as the av-
erage readiness time of the evaluated microservices is about 35
seconds. The forecast value is then divided by our desired metric
value of 80 percent and yields the number of instances to be de-
ployed. As a time series forecaster, we use a non-seasonal ARIMA
model [36] as it is commonly used in many forecasting scenarios.
The hyperparameters 𝑝 , 𝑑 , and 𝑞 are optimized based on a grid
search and the time series conducted in the experiments with the
reactive autoscaler. The hybrid autoscaler uses both the reactive

Table 1: Quality Metrics for CPU Autoscaling

Strategy 𝐶 𝑉 𝑃1/2 𝑃2/3
Reactive 46626 0.205 0.237 0.226
Proactive 41465 0.213 0.226 0.222
Hybrid 44818 0.203 0.231 0.222

and proactive approach and deploys the rounded up mean number
of instances calculated by both strategies. It is, therefore, a simple
combination of both approaches. The problem of weighting reactive
and proactive scaling is further discussed in Section 3.

Table 1 shows the average costs and SLO violation scores of all
three scaling strategies. We see that the proactive autoscaler incurs
about 11.1% lower costs compared to the reactive autoscaler, while
causing 3.9% more SLO violations. Compared to the reactive ap-
proach, the hybrid autoscaler lowers both the costs (-3.9%) and SLO
violations (-0.9%). Which scaling strategy performs best depends on
the desired costs-to-SLO-violation ratio as shown by the 𝑃1/2 and
𝑃2/3 scores. If we weigh both goals equally, the proactive autoscaler
would perform better. The hybrid autoscaler is the better choice if
we put more weight on reducing SLO violations, which is desired
for production-grade customer-oriented business applications.

2.5 Exploring Alternative Scaling Metrics
In Experiment 2, we use application-level metrics for scaling instead
of platform-level metrics like CPU utilization. Overall, we collect 73
metrics per service, which can be divided into three groups. The first
group is the platform metrics queried from kubecf, for example,
the CPU, memory, and disk usage. The second group is application
metrics exported by the Spring microservices, for example, different
JVM and logging metrics. The last group is automatically created
metrics from the Prometheus monitoring server, such as the scrape
duration, which is the time, Prometheus needs to query application
metrics from a service instance. In the following, we pick metrics
from all these three categories and evaluate how a simple reactive
autoscaler performs with these input values.

A suitable scaling metric should have a preferably simple rela-
tionship to the application state and performance; also, it needs to
depict overloads as a minimum requirement. From Experiment 1,
we know that CPU utilization fulfills this requirement in our case.
In search of alternative scaling metrics, we analyzed the results
from the previous section and selected those metrics from each
category that fulfill the stated requirements best. The first metric
selected for further evaluation is the thread ratio \ . We define \ as
the ratio of the total number of threads of a service instance divided
by the number of running threads. A value of 1 would mean that
all created threads are running. The higher this value, the more
threads are in a waiting or blocked state in proportion to the num-
ber of running threads. This means that requests are potentially
queueing and waiting for processing time. For the autoscaler, we
use the average value of \ of all instances of one service and use
formula (1) to calculate the number of instances. The desired metric
value is set to 7 based on the experiment data from Section 2.4.

This metric works only for the business services service1 and
service2. The gateway service works with a nearly constant num-
ber of threads. For this service, we choose the application metric

Why Is It Not Solved Yet? Challenges for Production-Ready Autoscaling (Author Preprint) ICPE ’22, April 9–13, 2022, Bejing, China

0.00

0.25

0.50

0.75

1.00

0 500 1000 1500 2000 2500 3000
Time [s]

N
or

m
al

iz
ed

 V
al

ue
s

CPU
Load
Scrape Duration
System Load
Thread Ratio

Figure 3: Behavior of Scaling Metrics with Increasing Load

system_load_average_1m, which is exposed by Spring Boot Actu-
ator. This metric shows the sum of the number of runnable entities
queued to available processors and the number of runnable en-
tities running on the available processors averaged over the last
minute [35]. Similar to the thread ratio, this metric depicts some
kind of queue length. We use 4.5 as the desired metric value for
scaling.

From the group of automatically created metrics, we use the
scrape duration exported by the Prometheus server. This metric
mainly captures the response time of a service instance to its end-
point for metric exposition. Hence, in contrast to conventional
response time measurements, we only use the response time of one
request to an endpoint per 30 seconds, which is not relevant for the
user. Consequently, this metric is available without any additional
overhead and does not require an external tracing engine or similar.
It can be rather compared to a health check, whose response time is
interpreted as an independent metric. The desired value for scaling
is set to three seconds.

To show the relationship of these metrics, we performed a short
preliminary test. We deployed a single instance of service1 and
stressed it with an increasing load intensity. The test ended when
the first request timed out. Figure 3 shows the temporal courses
of the different scaling metrics with increasing load. As all metrics
have different value ranges, we normalized the values by the ob-
served maximum. In general, we see that all metrics are sensitive
to increasing load while having their own characteristics. The CPU
utilization follows the load course best while the system load has
higher variations. The thread ratio reaches its maximum value prior
to most other metrics, which means that, at this time, the maximum
number of total threads and running threads has been reached. Con-
sequently, it could be interpreted as an early warning of potentially
evolving overload. In contrast to this, the scrape duration does not
change much for different load levels and rises exponentially when
the service reaches its maximum throughput.

In the following, we evaluate how reactive autoscalers with these
different input metrics perform in our environment. We use the 3-
hour workload from the production system of our industry partner
shown in Figure 4 for evaluation. This workload consists of a peak,
followed by a phase of a rather low workload (lunch break) and an

increasing load at the end.We compare three different scaling strate-
gies. The first autoscaler is the same CPU-based autoscaler used in
Experiment 1. The second autoscaler, the application-specific au-
toscaler, uses the thread ratio for scaling service1 and service2
and the system load for scaling the gateway service. In rare cases
when application metrics are not reported for one minute or longer,
the application-specific autoscaler temporarily falls back to CPU
utilization for scaling (see Section 2.6). The third autoscaler uses
the scrape duration as the scaling metric. We performed three repe-
titions per scaling strategy similar to the previous experiment to
validate our results.

Table 2 shows the average costs and SLO violation metrics for all
scaling strategies. We see that the application-specific autoscaler
caused the fewest SLO violations but also the highest costs. The
CPU-based autoscaler has lower costs (-27%) but a higher number
of SLO violations (+15.1%) compared to the application-specific
strategy. The autoscaler with the scrape duration as its scaling
metric performs best in this case as it has the lowest costs and only
a few more SLO violations compared to the application-specific
autoscaler. This is also underlined by the 𝑃1/2 and 𝑃2/3 scores. In
general, we see that all strategies have their pros and cons and
the unconventional strategies achieve comparable results to the
CPU-based autoscaler.

2.6 Issues Found With Overloaded Services
In this section, we focus on four phenomena that we observed
during the experiments from the previous sections and discuss how
they affect autoscalers.

Scaling metrics might be delayed, invalid, or unavailable. In Exper-
iment 2, we use the scrape duration as a scaling metric. In general,
varying scrape duration is rather a problem than an opportunity. In
our experiments, the scrape duration varies between 0.2 and 10 sec-
onds. The highest value is thereby a third of the monitoring interval.
Such delays can be problematic for autoscalers for various reasons.
First, these effects mainly appear when a service is overloaded,
that is, exactly when a scaling action is necessary. The delays can
increase the reaction time of reactive autoscalers. Nevertheless,
also for proactive autoscalers, delayed metrics can be problematic,
especially in cases when time series forecasting is used, as many
time series forecasters rely on or work best with equidistant time

ICPE ’22, April 9–13, 2022, Bejing, China M. Straesser et al.

0

200

400

600

800

0 1500 3000 4500 6000 7500 9000 10500
Time [s]

R
eq

ue
st

s
pe

r
S

ec
on

d

Figure 4: Workload for Experiment 2

series [13]. In addition to delayed values, we observed that scal-
ing metrics can be unavailable or invalid, for example, when the
CPU utilization is zero. These failures appear more often in our
experiments with application metrics than with platform metrics.
This is why our application-specific autoscaler from Experiment 2
temporally falls back to platform metrics for scaling if application
metrics are not reported for one minute or longer.

Response time measurements can be misleading. As a special case
for misleading measurements, we analyze response time measure-
ments because they play an essential role in many state-of-the-art
autoscalers (see Section 4). In our experiments, we observe that the
response time cannot always be used to characterize the application
state. In Figure 2d, we see that the response time rises exponentially
when service instances are overloaded and the phases of slightly in-
creasing response times are short. Moreover, we notice a clear lower
bound near 2.5 seconds, which equals the minimum response time
of business applications in our setting. This time is independent
of the provisioned resources and hence cannot be lowered further
by supplying more resources. However, a few measurements re-
port response times below this boundary. This is the case when
service1 is overloaded and returns an unhealthy response code.
This shows that low response times can be misleading and might be
misinterpreted by autoscalers. We conclude that the response time
cannot be used to quantify the application state without limitations
as it has lower and upper boundaries.

Dependencies between services affect scaling metrics. As shown
in Figure 1, our test application consists of several services that
depend on each other. We especially see that every user request has
to pass the gateway service first. As a result, the informative value
of scaling metrics varies. We observe that whenever the gateway
service is overloaded, the processing time of a request increases.
This results in the fact that the arrival rate and consequently also
the resource demand of service1 and service2 is lowered. Es-
pecially the simple reactive CPU autoscaler sometimes performs
a downscaling action on these cases. This evolves as problematic
when the gateway service returns to normal operation and pro-
cessing time, as the number of forwarded requests to service1
and service2 increases significantly in a short time interval. This
leads to the fact that the bottleneck moves from the frontend to
the backend. Similar observations for the response time have been

Table 2: Quality Measures for Different Scaling Metrics

Strategy 𝐶 𝑉 𝑃1/2 𝑃2/3
CPU-Based 3833 0.206 0.236 0.226
App-Specific 5250 0.179 0.272 0.241
Scrape Duration 3822 0.187 0.226 0.213

made in the literature [27]. These dependencies and the potentially
limited informative value of scaling metrics are problematic for
many autoscalers as services are mostly treated as independent
entities.

Health monitoring causes restarts of overloaded services. Especially
in environments with orchestration frameworks, like Kubernetes
clusters or our test environment based on kubecf, a health moni-
toring unit is used. For many microservices, it is common to check
the application’s health by sending HTTP requests to dedicated
endpoints. If these requests fail or the response time is too high, the
respective service instance might be restarted. This phenomenon
occurs mainly for overloaded services. In our experiments, these
restarts occur up to 486 times in one repetition of Experiment 1 and
up to 15 times in one repetition of Experiment 2. Most autoscalers
are not aware of such restarts, although they influence the applica-
tion performance significantly. During the restart, fewer instances
are processing the workload than assumed by the autoscaler. In
addition, the performance of recently started instances differs from
the performance of instances that are longer in operation. These
and more effects are discussed further in the next section.

3 DISCUSSION
We divide our discussion into two parts. Section 3.1 discusses chal-
lenges for production-ready autoscalers, while Section 3.2 touches
upon the limitations of this study.

3.1 Challenges for Production-Ready
Autoscalers

This section summarizes our findings from the conducted experi-
ments and states six challenges that are likely to arise in production
systems and, therefore, should be addressed by production-ready
autoscalers.

Why Is It Not Solved Yet? Challenges for Production-Ready Autoscaling (Author Preprint) ICPE ’22, April 9–13, 2022, Bejing, China

Experiment 1

Experiment 2

0.0 0.3 0.6 0.9
Approximate Entropy

CPU
Load

Figure 5: Entropy Values for CPU and Load Time Series

Challenge 1: Balancing proactive and reactive scaling. In an opti-
mal setting, we would always provide resources proactively, which
means that we would know the workload and resource demand in
advance and know how to match this demand in a cost-efficient
manner. In many customer-oriented business applications, the
workload and its associated resource demands contain seasonal
patterns (e.g., daily, weekly, or monthly cycles). For seasonal time
series, a bunch of forecasting approaches is available [34]. However,
this is only one side of the medal. Real-world workloads are often
more complex, contain bursts, batch jobs, or anomalies, and differ
from one service to another. Hence, workloads cannot always be
reduced to strict seasonality and trend components.

Another problem for predictive scaling approaches is choosing
the right metric to forecast. In research and industry, both CPU
forecasting [33, 37, 42] and workload forecasting [5, 11, 50] is used.
For further investigation, we analyze the load intensity and total
CPU utilization time series from the experiments in Section 2 and
calculate their approximate entropy (ApEn) [38]. ApEn is an algo-
rithm for determining the regularity of a time series based on the
existence of patterns [18]. As a measure of entropy, ApEn quanti-
fies the information content of a time series [43]. The lower the
result value, the less information is captured by the time series. We
calculate ApEn5 for the time series measured in the experiments
from Sections 2.4 and 2.5 and report the average values for both
the load and CPU utilization time series in Figure 5. We see that
the CPU utilization has a lower information content compared to
the number of arriving requests. Concerning the numeric entropy
values and the visual impression from Figure 2b, we see that pure
forecasting of CPU utilization is not sufficient to predict the future
resource demand accurately, and workload forecasting may model
usage patterns better.

In general, we see that forecasting realistic workloads is chal-
lenging, and it can only achieve limited accuracy in the presence
of unexpected anomalies. Consequently, a reactive scaling compo-
nent, able to act in case of unexpected SLO violations, should be
part of every production-ready autoscaler. This necessitates hy-
brid scaling, which also showed promising results in Experiment 1.

5The algorithm needs input values for the parameters 𝑚 (template length) and 𝑟

(noise filtering). For our calculations, we choose𝑚 = 2 and 𝑟 = 0.25𝜎 , where 𝜎 is
the standard deviation of the time series, according to the recommendations in the
literature [18].

However, when having both a reactive and proactive component
in operation, conflict situations occur where the outputs of both
components are different and have to be aggregated into a single
decision [5]. This raises several other research questions like how
to aggregate proactive and reactive scaling decisions, especially in
conflict situations.

Challenge 2: Combining application-specific and generic platform
metrics. Modern cloud services expose many metrics that describe
the application state and health. In our setup with Spring Boot
Actuator, we retrieve 62 different application metrics from every
service. Not all of them are indeed meaningful for scaling tasks.
However, Experiment 2 showed that simple reactive scalers based
on unconventional metrics like the scrape duration can achieve
competitive results compared to traditional CPU-based scaling. In
general, the question of the best metric for scaling is congruent to
the question of what metric correlates most with the KPIs and has
to be stated for nearly every single service. While CPU, memory,
and disk usage are easily interpretable and mostly available met-
rics, custom measures could be advantageous in cases when the
performance profile of a service is not clearly CPU- or memory-
dominated. Moreover, hardware metrics are limited by design, and
the resource demand of a service cannot be derived in all cases [10].
Overall, it is not trivial for practitioners to determine the best scal-
ing metrics for individual services. Furthermore, when considering
both application and platform metrics for scaling, researchers and
experts in the industry face the conflict of developing autoscalers
that are generic and general-purpose, on the one hand, but perform
specifically tailored to their cloud application on the other hand.
This also has implications for the configurability (Challenge 3) and
explainability (Challenge 6) of autoscalers.

Challenge 3: Keeping configuration overhead as small as possible.
One of the major points of criticism for many approaches in the
autoscaling domain is the aspect of configurability, for example,
determining suitable scaling thresholds, cooldown times, model
parameters, or similar. In the experiments in this paper, we used
fixed CPU utilization thresholds of 80 percent. The thresholds for
the custom metrics have been chosen based on the results of Ex-
periment 1. As stated earlier, the configuration of an autoscaler is
hard, and the complexity is increased further when the configura-
tion differs from one service to another. Often, many configuration
values depend on the desired costs-to-SLO-violations ratio, that is,
how conservative the autoscaler should act. However, other factors
influence the configuration, such as expected application start and
shutdown times or the anticipated kind of workload. Although
the DevOps principle stands for stronger coupling of the develop-
ment and the operation of cloud software, application developers
are often not concerned with autoscaling or performance of the
application [15]. Furthermore, autoscaling might be outsourced
to the cloud provider. In these cases, the person responsible for
autoscaling has only limited insight into the functionalities and
performance characteristics of the services they should scale. The
problem is aggravated by frequent code updates. This might lead
to changed performance properties and the need to adapt models
or thresholds. In such situations, it is not feasible to rely on manual
reconfiguration. Therefore, production-ready autoscalers should
minimize configuration overhead and rely on self-optimization
instead.

ICPE ’22, April 9–13, 2022, Bejing, China M. Straesser et al.

Challenge 4: Scaling metrics might be unavailable, incomplete, in-
accurate, or delayed in production systems. Trusting the input metrics
is crucial for any autoscaler. A lot of advances have been achieved
in the field of continuously observing cloud systems. However, es-
pecially during high loads, several effects can influence the validity
of measurements in cloud environments. Application metrics are
particularly prone to delay or failed measurements, as they have to
be queried directly from the application instances. In our experi-
ments, we saw that the scrape duration during high loads increased
by more than nine seconds, and some instances do not even report
valid values when overloaded. Platform metrics are less prone to
failures; however, especially in large clusters, measurements could
be erroneous due to the fact that metrics have to be collected from
many nodes distributed all over the cluster.

Response time measurements play a special role in the design
and operation of many state-of-the-art autoscalers (see Section 4).
However, the reliable acquisition of response times, especially in
high load scenarios, is non-trivial. These rely either on measure-
ments by the application itself or have to be sampled using external
tracing frameworks. Moreover, by design, the response time always
reflects a past state of the application, as it is measured shortly
before or after the request left the system. Therefore, a delay of,
for example, 10 seconds in response time measurement is only ob-
servable after these 10 seconds have passed. Moreover, one has to
consider that the response time should not be the only criteria to
rate the application’s health and quality. In the presence of some
errors, the response time might be even lowered, for example, when
a service responds faster because of an internal error as discussed
in Section 2.6.

Another critical problemwhen interpreting scaling metrics is the
dependency between different cloud services. A typical property
of microservice architectures is that multiple services are involved
in processing a single user request. Consequently, errors and high
response times might propagate across several services, although
they have enough resources assigned to them [27]. In our experi-
ments, we saw similar effects. Whenever the gateway service was
overloaded, not all requests have been forwarded to the backend
services service1 and service2. This resulted in a temporary
reduction of the CPU utilization, and the simple reactive CPU au-
toscaler reduced the number of instances of the backend services.
The backend services then experienced degradations when the
gateway pursued working. All in all, we see that several factors
can influence the reliability of scaling metrics.

Challenge 5: Combining autoscaling, load balancing, and resilience
mechanisms. As discussed in Section 2.6, the autoscaler is not the
only mechanism that controls service instances in modern cloud
environments. We showed that the health monitoring unit might
restart overloaded services as they fail to send heartbeats. An au-
toscaler can profit from knowledge about such restarts, as they in-
fluence the application performance. First, the number of available
instances is reduced during the restart, and some requests might
be dropped. Second, after the restart, the performance of the newly
deployed instance often differs from those instances which are
running for a longer time. However, the detection of such restarts
remains a technical challenge. In addition to this, two conceptual
challenges arise. First, in production systems, there are technical
or implicit SLOs present, which are enforced by third parties and

the autoscaler might not be aware of, like the mentioned restarts
caused by failed heartbeats. Second, there is a strong interdepen-
dence of autoscaling, load balancing, and resilience mechanisms
in general, for example, health monitoring from a platform view
or circuit breakers from an application view. Load balancing is the
task of how much load to forward to a specific instance of a service.
Autoscaling is the task of determining how much resources are
needed to process a given load. Resilience mechanisms and health
monitoring are tasks to ensure that the application itself works
fine and possibly end malfunctions. These three cloud management
activities have to work together to fulfill their goal to keep the
application quality as high as possible. Consequently, autoscalers
need to interoperate with appropriate load balancing and health
management mechanisms, and vice versa.

Challenge 6: Keeping autoscalers explainable. As stated earlier,
scaling plays an outstanding role in the operation of cloud services.
It directly influences both customer experience and operating costs.
Obviously, in modern complex cloud environments, scaling tasks
have to be handled automatically. Moreover, many years of research
have shown that an autoscaler that addresses all of the previously
discussed challenges needs a considerable amount of complexity.
Nevertheless, an additional requirement for autoscalers in produc-
tion systems is the transparency of its decisions. This is not only
useful for debugging purposes but also necessary to increase trust
and potentially propose further enhancements. This explainability
does not mean that all calculations must be comprehensible for
everyone; it is rather the requirement for an autoscaler to state rea-
sons for its actions. Potentially, log entries like scaling up because
metric 𝑥 has/will have value 𝑦 which is considered too high may pro-
vide real benefits. However, this presents a challenge, especially for
many black-box or machine-learning-based approaches. We argue
that explainability, together with deployability and configurabil-
ity (see Challenge 3), are key requirements for production-ready
autoscalers in order to increase the trust in the resulting decisions.

3.2 Study Limitations
In this section, we discuss the limitations of our experimental study.
We limited ourselves to horizontal scaling problems and assumed
the usage of homogeneous instances; that is, all replicas of one
service have the same resource limitations. This is a common pri-
mary focus for autoscaling in the microservice domain [47], and we
argue that most of our observations can be transferred to vertical
scaling as well. Our results have been produced in one specific tech-
nology stack consisting of the hardware described in Section 2.2,
kubecf as a PaaS software, and Java and Spring as implementa-
tion technologies for the evaluated microservices. Consequently,
our results cannot be generally transferred to other environments.
However, we claim that our setup is still representative as it mirrors
the production setup of our industry partner and consists of several
isolated machines and state-of-the-art cloud software. Moreover, we
validated the measured results by performing multiple repetitions.

Considering the scaling logic, we worked with the generic for-
mula (1), which is the default relationship used for scaling in Ku-
bernetes. This scaling rule assumes a linear relationship between
the scaling metric and the number of instances, which is only an
approximation in most cases. We generally keep the scaling logic

Why Is It Not Solved Yet? Challenges for Production-Ready Autoscaling (Author Preprint) ICPE ’22, April 9–13, 2022, Bejing, China

constant and straightforward for different experiments and scaling
metrics. The used thresholds are set arbitrarily and have not been
optimized further. We used ARIMA as one representative state-of-
the-art general purpose time series forecaster for evaluation in the
proactive scaling domain. Consequently, we analyzed only a small
subset of possible scaling approaches. We argue that our results
are still meaningful for mainly two reasons. First, the scaling logic
in production-grade autoscalers is also kept simple. Our proactive
scaler is designed similar to the AWS EC2 predictive autoscaler [42],
which combines metric forecasting and threshold-based scaling as
well. Second, many of the problems stated in Section 3.1, such as
invalid measurements, appear in production systems independently
from the used scaling logic.

4 RELATEDWORK
This section summarizes related works from the autoscaling domain
and analyzes how the stated challenges are addressed. We identify
shortcomings that limit the applicability of research autoscalers
in practice. This section is structured according to the challenges
proposed in Section 3.1. A summary is given at the end of this
section.

Challenge 1. Singh et al. [47] summarize research approaches
for autoscaling of web applications in cloud environments. Less
than 15%, in total 15 out of 104, of the analyzed papers in that
survey combine reactive and proactive scaling. As stated earlier, we
argue that hybrid scaling should be used in production systems to
combine predictive power and stabilizing actions in case of unseen
load spikes. Ali-Eldin et al. [5] analyze different combinations of
reactive and proactive scalers and conclude that reactive scalers
should be involved in upscaling decisions while downscaling should
be initiated by proactive components only. This principle has also
been adapted by other approaches [29, 31]. These approaches re-
quire a proactive scaler that is not too conservative, meaning it
should regularly trigger downscaling actions. Otherwise, the goal of
cost-efficiency is not reached. The decision of whether to use proac-
tive or reactive scaling logic is often solved by using user-defined
thresholds [29, 48, 50] or other user-specified parameters [11]. Most
hybrid scalers rely on the reactive component only in case of SLO
violations [4]. Bauer et al. [12] use so-called trust thresholds that
take the accuracy of the predictive model into account and pos-
sibly omit reactive decisions to resolve scaling conflicts. Hence,
we state that many state-of-the-art hybrid autoscalers often rely
on additional configuration parameters to balance reactive and
proactive scaling. This stands in conflict with the goal of keeping
configuration overheads as small as possible.

Challenge 2.As stated earlier, platformmetrics are not always the
best scaling metrics available. Many papers use platform metrics
such as CPU utilization and memory metrics as their only input for
scaling [2, 26, 45, 49]; some are even purely CPU-focused [25, 33, 46].
The number of incoming requests is the most used application-
level metric used by more than half of the approaches analyzed by
Singh et al. [47]. Other custom scaling metrics used in literature are
limited to the number of active connections [16] or the number of
active sessions [17]. Based on our results from Section 2.5, we argue
that there is much potential in scaling based on other application
metrics and on the combination of platform and application metrics

for autoscaling. Many papers in the state-of-the-art literature only
combine the arrival rate and platform metrics. As a possible future
research direction, middleware metrics, such as JVM measures,
could come into focus. They are currently more established in
other areas of performance engineering, e.g., software performance
optimizations [41].

Challenge 3. The aspect of configurability is rarely addressed
in the autoscaling domain. Kalyvianaki et al. [33] provide a re-
source provisioning scheme based on Kalman filters while explic-
itly claiming low configuration overhead. The type and meaning of
configuration parameters needed by various approaches are man-
ifold. Threshold- or rule-based autoscalers require many critical
manual settings that influence the performance of the autoscaler
massively [3]. Most autoscalers require at least up- and downscaling
thresholds. Some require other inputs like manually created mod-
els [12] or costs of reconfiguration [39]. As stated above and by Jiang
et al. [30] especially hybrid scalers often require manual parameter
or offline tuning. Many of these settings cannot be determined in
advance by application developers or require extensive load testing
to be set appropriately. An additional challenge is keeping configu-
rations up to date especially with respect to frequent application up-
dates, which are more probable in DevOps contexts. Reinforcement
learning as used by various recent approaches [32, 40, 51] offers
one way to reduce configuration overhead. However, it comes with
the difficulties of defining a suitable reward function and needing
lots of training data. Moreover, most reinforcement learners assume
a static application and have problems with changes introduced by
updates [21].

Challenge 4. To the best of our knowledge, there is currently no
autoscaling approach explicitly concerning the problem of inac-
curate or delayed metrics. A major point of criticism for research
autoscalers is that many of them are evaluated in simulation en-
vironments only. According to the survey by Singh et al. [47], 30
autoscaling approaches are evaluated using simulation only, and an
even greater subset is using synthetic workloads. In general, this
leaves the question unanswered, how well these autoscalers per-
form in production environments and leads to the fact that delayed,
inaccurate, or incomplete measurements cannot be considered.

Many autoscaling approaches use response time measurements
for an internal model evaluation or, in cases when reinforcement
learning is used, to calculate the reward. For example, Aslanpour et
al. [7] require low and high response time thresholds for down- and
upscaling, respectively. We argue that there are two problems when
relying heavily on response time measurements. First, as described
in Section 3.1, response time measurements can be erroneous or
delayed in critical scenarios. As a special case, if errors occur in
the application, the response time alone might not be suited to
characterize an overloaded service. In these cases, other metrics
might depict the application state better. Second, the response time
has by design lower and upper bounds. The lower bound is given by
the minimal execution time of business requests, which cannot be
further reduced by provisioning more resources for the respective
service (cf. Figure 2d). The upper bound in interactive applications
is given by request timeouts. This is why the response time cannot
be used to derive scaling decisions without limitations.

In Section 3.1, we further discussed that inter-service dependen-
cies might be influencing factors for scaling metrics. Most research

ICPE ’22, April 9–13, 2022, Bejing, China M. Straesser et al.

autoscaler do not consider dependencies to other services. Some ap-
proaches explicitly target multi-tier web applications [14, 50, 52, 53].
For example, Sharma et al. [44] investigate multi-tier applications
and estimate response times with a multi-stage queueing network.
However, most of these approaches assume static applications, and
their performance concerning modern microservice applications
has not been evaluated.

Challenge 5. Only a few existing approaches target the depen-
dency between autoscaling and other orchestration tasks, like load
balancing and health monitoring, explicitly. Chen et al. [16] propose
an autoscaling mechanism and also evaluate load dispatching algo-
rithms in parallel. Dezhabad and Sharifan [19] connect a scaling and
a load balancing unit for the provisioning of firewall applications.
Gandhi et al. [23] connect the question of server provisioning and
traffic routing in a multi-tier data center. These studies indicate
that load balancing and other orchestration mechanisms have to
work together to achieve a good application service quality.

Challenge 6. Concerning the aspect of explainability in the au-
toscaling domain, Ghanbari et al. [24] state that model-based au-
toscaling, e.g., queueing network, are hard to understand, while
rule-based scaling is, in general, better in terms of explainability.
However, the authors state that, also for rule-based scaling, com-
plexity can be high when a large set of rules is used. Many research
autoscaler achieve some kind of explainability by reducing the
complexity of the scaling problem through the use of many con-
figuration parameters. We argue that explainability gets a concern,
especially for autoscalers that fulfill the goal of low configuration
overheads, as well as for machine-learning-based or black-box au-
toscalers.

In summary, we see that no approach tackles all of the stated chal-
lenges, and there are some common assumptions made by research
papers that might be violated in production systems. For example,
most research autoscalers rely on continuous, error-free, in-time
monitoring data or are evaluated in simulation environments only.
This stands in conflict with Challenge 4 and our observations from
Section 2.6. Moreover, many autoscalers assume that CPU or plat-
form metrics are the best scaling metrics. As shown in Section 2.5
and captured in Challenge 2, application metrics can also be used
for scaling and can achieve at least comparable results. Another
limitation of current approaches is that many configuration parame-
ters are required, which influence the scaling behavior significantly.
This stands in conflict with Challenge 3, as these parameters are
hard to determine by practitioners and might be service-specific. Fi-
nally, autoscalers are often evaluated as standalonemechanisms, i.e.,
not as a part of an orchestration or cloud management framework.
As discussed in Challenge 5, the interference of autoscaling, load
balancing, and resilience mechanisms might be non-neglectable in
production environments.

5 CONCLUSION
Although autoscaling is an established area of research in the per-
formance engineering and cloud computing community, many re-
search autoscalers do not find their way into production deploy-
ments. This paper states six core challenges for autoscalers in pro-
duction systems and performs experiments in a realistic setting to
illustrate these challenges. We have seen that hybrid autoscalers

should be preferred over purely reactive or proactive scalers, es-
pecially when the workload is irregular and complex. We show
that autoscalers have not to be focused on CPU or platform metrics
only, as application metrics exposed by modern microservices can
also be advantageous for scaling. However, custom metrics always
introduce a configuration cost, which must not be underestimated
for practical applicability. Moreover, we analyze effects in connec-
tion with overloaded services, which show that scaling metrics
might be delayed or inaccurate in production systems and motivate
a stronger interaction between autoscaling, load balancing, and
resilience mechanisms.

We analyze state-of-the-art research autoscalers and summarize
how they address these challenges. We pinpoint common assump-
tions that are not always given in production environments. We
came up with the fact that most autoscalers focus on either reactive
or proactive scaling. Moreover, many research autoscalers rely on
various configuration parameters, which heavily influence their
performance and scaling behavior. We argue that these parame-
ters are hard to choose or must be tuned offline. This is especially
difficult in DevOps contexts with frequently updated applications,
and we conclude that lower configuration overhead should be one
focus of future autoscaling approaches. Another weakness is that
many approaches focus much on algorithmic details and are evalu-
ated with synthetic workloads or in simulation environments only,
making the applicability in practice questionable.

All in all, we deduce that the properties of production envi-
ronments should be considered more in future autoscaling papers
to increase the success of research autoscalers in practice. Close
cooperation between industry and research is needed in this do-
main. For example, more real-world workload traces would help
researchers to conduct realistic evaluations of their approaches. We
conclude that production-ready autoscaling is not solved yet, and
both researchers and practitioners should combine their individual
strengths to face this problem.

REFERENCES
[1] Cristina Abad, Ian T. Foster, Nikolas Herbst, and Alexandru Iosup. 2021. Server-

less Computing (Dagstuhl Seminar 21201). In Dagstuhl Reports, Vol. 11. Schloss
Dagstuhl-Leibniz-Zentrum für Informatik.

[2] Auday Al-Dulaimy, Javid Taheri, Andreas Kassler, M. Reza Hoseiny Farahabady,
Shuiguang Deng, and Albert Zomaya. 2020. MULTISCALER: A Multi-Loop Auto-
Scaling Approach for Cloud-Based Applications. IEEE Transactions on Cloud
Computing (2020).

[3] Fahd Al-Haidari, Mohammed H. Sqalli, and Khaled Salah. 2013. Impact of CPU
Utilization Thresholds and Scaling Size on Autoscaling Cloud Resources. In 2013
IEEE 5th International Conference on Cloud Computing Technology and Science,
Vol. 2. 256–261.

[4] Ahmed Ali-Eldin, Maria Kihl, Johan Tordsson, and Erik Elmroth. 2012. Efficient
provisioning of bursty scientific workloads on the cloud using adaptive elasticity
control. In Proceedings of the 3rd workshop on Scientific Cloud Computing. 31–40.

[5] Ahmed Ali-Eldin, Johan Tordsson, and Erik Elmroth. 2012. An adaptive hybrid
elasticity controller for cloud infrastructures. In 2012 IEEE Network Operations
and Management Symposium. 204–212.

[6] Michael Armbrust, Armando Fox, Rean Griffith, Anthony D Joseph, Randy H Katz,
Andrew Konwinski, Gunho Lee, David A Patterson, Ariel Rabkin, Ion Stoica,
et al. 2009. Above the clouds: A berkeley view of cloud computing. Technical
Report. Technical Report UCB/EECS-2009-28, EECS Department, University of
California.

[7] Mohammad Sadegh Aslanpour, Mostafa Ghobaei-Arani, and Adel Nadjaran Toosi.
2017. Auto-scaling web applications in clouds: A cost-aware approach. Journal
of Network and Computer Applications 95 (2017), 26–41.

[8] The Kubernetes Authors. 2021. Horizontal Pod Autoscaler. https://kubernetes.io/
docs/tasks/run-application/horizontal-pod-autoscale/.

https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/

Why Is It Not Solved Yet? Challenges for Production-Ready Autoscaling (Author Preprint) ICPE ’22, April 9–13, 2022, Bejing, China

[9] Microsoft Azure. 2021. How To Scale Cloud Services. https://docs.microsoft.com/
de-de/azure/cloud-services/cloud-services-how-to-scale-portal.

[10] André Bauer, Johannes Grohmann, Nikolas Herbst, and Samuel Kounev. 2018.
On the Value of Service Demand Estimation for Auto-Scaling. In Proceedings of
19th International GI/ITG Conference on Measurement, Modelling and Evaluation
of Computing Systems (MMB 2018) (Lecture Notes in Computer Science, Vol. 10740).
Springer, Cham, 142–156.

[11] André Bauer, Nikolas Herbst, Simon Spinner, Ahmed Ali-Eldin, and Samuel
Kounev. 2019. Chameleon: A Hybrid, Proactive Auto-Scaling Mechanism on a
Level-Playing Field. IEEE Transactions on Parallel and Distributed Systems 30, 4
(2019), 800–813.

[12] André Bauer, Veronika Lesch, Laurens Versluis, Alexey Ilyushkin, Nikolas Herbst,
and Samuel Kounev. 2019. Chamulteon: Coordinated Auto-Scaling of Micro-
Services. In 2019 IEEE 39th International Conference on Distributed Computing
Systems (ICDCS). 2015–2025.

[13] André Bauer, Marwin Züfle, Nikolas Herbst, Samuel Kounev, and Valentin Curtef.
2020. Telescope: An automatic feature extraction and transformation approach
for time series forecasting on a level-playing field. In 2020 IEEE 36th International
Conference on Data Engineering (ICDE). IEEE, 1902–1905.

[14] Marta Beltrán. 2015. Automatic provisioning of multi-tier applications in cloud
computing environments. The Journal of Supercomputing 71, 6 (2015), 2221–2250.

[15] Cor-Paul Bezemer, Simon Eismann, Vincenzo Ferme, Johannes Grohmann, Robert
Heinrich, Pooyan Jamshidi, Weiyi Shang, André van Hoorn, Monica Villavicencio,
Jürgen Walter, and Felix Willnecker. 2019. How is Performance Addressed
in DevOps?. In Proceedings of the 2019 ACM/SPEC International Conference on
Performance Engineering (Mumbai, India) (ICPE ’19). Association for Computing
Machinery, New York, NY, USA, 45–50.

[16] Gong Chen, Wenbo He, Jie Liu, Suman Nath, Leonidas Rigas, Lin Xiao, and
Feng Zhao. 2008. Energy-Aware Server Provisioning and Load Dispatching
for Connection-Intensive Internet Services. In Proceedings of the 5th USENIX
Symposium on Networked Systems Design and Implementation (San Francisco,
California) (NSDI’08). USENIX Association, USA, 337–350.

[17] Trieu C. Chieu, Ajay Mohindra, Alexei A. Karve, and Alla Segal. 2009. Dynamic
Scaling of Web Applications in a Virtualized Cloud Computing Environment. In
2009 IEEE International Conference on e-Business Engineering. 281–286.

[18] Alfonso Delgado-Bonal and Alexander Marshak. 2019. Approximate Entropy
and Sample Entropy: A Comprehensive Tutorial. Entropy 21, 6 (2019).

[19] Naghmeh Dezhabad and Saeed Sharifian. 2018. Learning-based dynamic scal-
able load-balanced firewall as a service in network function-virtualized cloud
computing environments. The Journal of Supercomputing 74, 7 (2018), 3329–3358.

[20] Google Cloud Docs. 2021. Autosclaing groups of instances. https://cloud.google.
com/compute/docs/autoscaler.

[21] Xavier Dutreilh, Aurélien Moreau, Jacques Malenfant, Nicolas Rivierre, and Isis
Truck. 2010. From Data Center Resource Allocation to Control Theory and Back.
In 2010 IEEE 3rd International Conference on Cloud Computing. 410–417.

[22] CloudFoundry Foundation. 2021. KubeCF: A Kubernetes Native Distribution of
Cloud Foundry. https://kubecf.io/.

[23] Anshul Gandhi, Mor Harchol-Balter, Ram Raghunathan, and Michael A. Kozuch.
2012. AutoScale: Dynamic, Robust Capacity Management for Multi-Tier Data
Centers. ACM Trans. Comput. Syst. 30, 4, Article 14 (Nov. 2012).

[24] Hamoun Ghanbari, Bradley Simmons, Marin Litoiu, and Gabriel Iszlai. 2011.
Exploring alternative approaches to implement an elasticity policy. In 2011 IEEE
4th International Conference on Cloud Computing. IEEE, 716–723.

[25] Zhenhuan Gong, Xiaohui Gu, and John Wilkes. 2010. PRESS: PRedictive Elastic
ReSource Scaling for cloud systems. In 2010 International Conference on Network
and Service Management. 9–16.

[26] Johannes Grohmann, Patrick K. Nicholson, Jesus Omana Iglesias, Samuel Kounev,
and Diego Lugones. 2019. Monitorless: Predicting Performance Degradation in
Cloud Applications with Machine Learning. In Proceedings of the 20th Interna-
tional Middleware Conference (Davis, CA, USA) (Middleware ’19). Association for
Computing Machinery, New York, NY, USA, 149–162.

[27] Johannes Grohmann, Martin Straesser, Avi Chalbani, Simon Eismann, Yair Arian,
Nikolas Herbst, Noam Peretz, and Samuel Kounev. 2021. SuanMing: Explainable
Prediction of Performance Degradations in Microservice Applications. In Pro-
ceedings of the ACM/SPEC International Conference on Performance Engineering
(Virtual Event, France) (ICPE ’21). Association for Computing Machinery, New
York, NY, USA, 165–176.

[28] Nikolas Roman Herbst, Samuel Kounev, and Ralf Reussner. 2013. Elasticity in
Cloud Computing: What It Is, and What It Is Not. In 10th International Conference
on Autonomic Computing (ICAC 13). USENIX Association, San Jose, CA, 23–27.

[29] Waheed Iqbal, Matthew N. Dailey, David Carrera, and Paul Janecek. 2011. Adap-
tive resource provisioning for read intensive multi-tier applications in the cloud.
Future Generation Computer Systems 27, 6 (2011), 871–879.

[30] Jing Jiang, Jie Lu, Guangquan Zhang, and Guodong Long. 2013. Optimal cloud
resource auto-scaling for web applications. In 2013 13th IEEE/ACM International
Symposium on Cluster, Cloud, and Grid Computing. IEEE, 58–65.

[31] Bibal Benifa J.V. and Dejey Dharma. 2018. HAS: Hybrid auto-scaler for resource
scaling in cloud environment. J. Parallel and Distrib. Comput. 120 (2018), 1–15.

[32] Bibal Benifa J.V. and Dejey Dharma. 2019. Rlpas: Reinforcement learning-based
proactive auto-scaler for resource provisioning in cloud environment. Mobile
Networks and Applications 24, 4 (2019), 1348–1363.

[33] Evangelia Kalyvianaki, Themistoklis Charalambous, and Steven Hand. 2009.
Self-Adaptive and Self-Configured CPU Resource Provisioning for Virtualized
Servers Using Kalman Filters. In Proceedings of the 6th International Conference on
Autonomic Computing (Barcelona, Spain) (ICAC ’09). Association for Computing
Machinery, New York, NY, USA, 117–126.

[34] G. Mahalakshmi, S. Sridevi, and S. Rajaram. 2016. A survey on forecasting of
time series data. In 2016 International Conference on Computing Technologies and
Intelligent Data Engineering (ICCTIDE’16). 1–8.

[35] Micrometer Metrics. 2021. Micrometer GitHub Repository and Documentation.
https://github.com/micrometer-metrics/micrometer.

[36] Paul Newbold. 1983. ARIMAmodel building and the time series analysis approach
to forecasting. Journal of forecasting 2, 1 (1983), 23–35.

[37] Hiep Nguyen, Zhiming Shen, Xiaohui Gu, Sethuraman Subbiah, and John Wilkes.
2013. AGILE: Elastic Distributed Resource Scaling for Infrastructure-as-a-Service.
In 10th International Conference on Autonomic Computing (ICAC 13). USENIX
Association, San Jose, CA, 69–82.

[38] StevenM Pincus, Igor M Gladstone, and Richard A Ehrenkranz. 1991. A regularity
statistic for medical data analysis. Journal of clinical monitoring 7, 4 (1991), 335–
345.

[39] Nilabja Roy, AbhishekDubey, andAniruddhaGokhale. 2011. Efficient Autoscaling
in the Cloud Using Predictive Models for Workload Forecasting. In 2011 IEEE 4th
International Conference on Cloud Computing. 500–507.

[40] Krzysztof Rzadca, Pawel Findeisen, Jacek Swiderski, Przemyslaw Zych, Przemys-
law Broniek, Jarek Kusmierek, Pawel Nowak, Beata Strack, Piotr Witusowski,
Steven Hand, and John Wilkes. 2020. Autopilot: Workload Autoscaling at Google.
In Proceedings of the Fifteenth European Conference on Computer Systems (Her-
aklion, Greece) (EuroSys ’20). Association for Computing Machinery, New York,
NY, USA, Article 16.

[41] Semih Sahin, Wenqi Cao, Qi Zhang, and Ling Liu. 2016. JVM Configuration
Management and Its Performance Impact for Big Data Applications. In 2016 IEEE
International Congress on Big Data (BigData Congress). 410–417.

[42] Amazon Web Services. 2021. Predictive Scaling for EC2. https://aws.amazon.com/
en/blogs/aws/new-predictive-scaling-for-ec2-powered-by-machine-learning/.

[43] Claude Elwood Shannon. 1948. A mathematical theory of communication. The
Bell system technical journal 27, 3 (1948), 379–423.

[44] Upendra Sharma, Prashant Shenoy, and Donald F. Towsley. 2012. Provisioning
Multi-Tier Cloud Applications Using Statistical Bounds on Sojourn Time. In
Proceedings of the 9th International Conference on Autonomic Computing (San Jose,
California, USA) (ICAC ’12). Association for Computing Machinery, New York,
NY, USA, 43–52.

[45] Zhiming Shen, Sethuraman Subbiah, Xiaohui Gu, and John Wilkes. 2011. Cloud-
Scale: Elastic Resource Scaling for Multi-Tenant Cloud Systems. In Proceedings
of the 2nd ACM Symposium on Cloud Computing (Cascais, Portugal) (SOCC ’11).
Association for Computing Machinery, New York, NY, USA, Article 5.

[46] Bradley Simmons, Hamoun Ghanbari, Marin Litoiu, and Gabriel Iszlai. 2011.
Managing a SaaS application in the cloud using PaaS policy sets and a strategy-
tree. In 2011 7th International Conference on Network and Service Management.
1–5.

[47] Parminder Singh, Pooja Gupta, Kiran Jyoti, and Anand Nayyar. 2019. Research
on auto-scaling of web applications in cloud: survey, trends and future directions.
Scalable Computing: Practice and Experience 20, 2 (2019), 399–432.

[48] Parminder Singh, Avinash Kaur, Pooja Gupta, Sukhpal Singh Gill, and Kiran Jyoti.
2021. RHAS: robust hybrid auto-scaling for web applications in cloud computing.
Cluster Computing 24, 2 (2021), 717–737.

[49] Fan-Hsun Tseng, Ming-Shiun Tsai, Chia-Wei Tseng, Yao-Tsung Yang, Chien-
Chang Liu, and Li-Der Chou. 2018. A Lightweight Autoscaling Mechanism
for Fog Computing in Industrial Applications. IEEE Transactions on Industrial
Informatics 14, 10 (2018), 4529–4537.

[50] Bhuvan Urgaonkar, Prashant Shenoy, Abhishek Chandra, Pawan Goyal, and Tim-
othyWood. 2008. Agile Dynamic Provisioning of Multi-Tier Internet Applications.
ACM Trans. Auton. Adapt. Syst. 3, 1, Article 1 (March 2008).

[51] Yi Wei, Daniel Kudenko, Shijun Liu, Li Pan, Lei Wu, and Xiangxu Meng. 2019.
A reinforcement learning based auto-scaling approach for SaaS providers in
dynamic cloud environment. Mathematical Problems in Engineering 2019 (2019).

[52] SongWu, Binji Li, XinhouWang, and Hai Jin. 2016. HybridScaler: Handling Burst-
ing Workload for Multi-tier Web Applications in Cloud. In 2016 15th International
Symposium on Parallel and Distributed Computing (ISPDC). 141–148.

[53] Pengcheng Xiong, Zhikui Wang, Simon Malkowski, Qingyang Wang, Deepal
Jayasinghe, and Calton Pu. 2011. Economical and Robust Provisioning of N-Tier
Cloud Workloads: A Multi-level Control Approach. In 2011 31st International
Conference on Distributed Computing Systems. 571–580.

https://docs.microsoft.com/de-de/azure/cloud-services/cloud-services-how-to-scale-portal
https://docs.microsoft.com/de-de/azure/cloud-services/cloud-services-how-to-scale-portal
https://cloud.google.com/compute/docs/autoscaler
https://cloud.google.com/compute/docs/autoscaler
https://kubecf.io/
https://github.com/micrometer-metrics/micrometer
https://aws.amazon.com/en/blogs/aws/new-predictive-scaling-for-ec2-powered-by-machine-learning/
https://aws.amazon.com/en/blogs/aws/new-predictive-scaling-for-ec2-powered-by-machine-learning/

	Abstract
	1 Introduction
	2 Experimental Study
	2.1 Application Under Test
	2.2 Technical Setup
	2.3 Scaling Rules and Quality Measures
	2.4 Threshold-based CPU Autoscaling
	2.5 Exploring Alternative Scaling Metrics
	2.6 Issues Found With Overloaded Services

	3 Discussion
	3.1 Challenges for Production-Ready Autoscalers
	3.2 Study Limitations

	4 Related Work
	5 Conclusion
	References

