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Abstract: In the present day, unmanned aerial vehicles become seemingly more popular every year,
but, without regulation of the increasing number of these vehicles, the air space could become chaotic
and uncontrollable. In this work, a framework is proposed to combine self-aware computing with
multirotor formations to address this problem. The self-awareness is envisioned to improve the
dynamic behavior of multirotors. The formation scheme that is implemented is called platooning,
which arranges vehicles in a string behind the lead vehicle and is proposed to bring order into chaotic
air space. Since multirotors define a general category of unmanned aerial vehicles, the focus of this
thesis are quadcopters, platforms with four rotors. A modification for the LRA-M self-awareness
loop is proposed and named Platooning Awareness. The implemented framework is able to offer two
flight modes that enable waypoint following and the self-awareness module to find a path through
scenarios, where obstacles are present on the way, onto a goal position. The evaluation of this work
shows that the proposed framework is able to use self-awareness to learn about its environment,
avoid obstacles, and can successfully move a platoon of drones through multiple scenarios.

Keywords: self-aware computing; unmanned aerial vehicles; multirotors; quadcopters; intelligent
transportation systems

1. Introduction

“We’ll have self-flying cars before self-driving cars”

This statement by Sebastian Thrun, who headed Google’s self-driving car initiative for years,
at TechCrunch Disrupt SF 2019 (https://techcrunch.com/2019/10/03/self-flying-before-self-driving/)
shows that unmanned aerial vehicles (UAV) are the next trend in transportation. Companies such as
Volocopter, Boeing (in cooperation with Porsche), and Airbus (in cooperation with Audi) make
tremendous progress in the development of self-flying air taxis. DHL already uses drones for
packet delivery (https://discover.dhl.com/business/business-ethics/parcelcopter-drone-technology);
Amazon plans to do so in the upcoming months (https://www.amazon.com/Amazon-Prime-Air/
b?node=8037720011). All those examples show that the presence of self-flying vehicles is no science
fiction anymore.

However, as those vehicles also fly within cities between buildings and skyscrapers in a height
that is not allowed for civil airplanes, they are traveling in unregulated environments. Without
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regulation of the increasing numbers of UAVs competing for air space, this could very well lead to
chaotic and inefficient use of this limited resource. It can be envisioned that numerous accidents in this
environment (to various degrees of severity) are likely to happen in the future. Furthermore, delays
in time-critical UAV missions are possible due to the unforeseeable nature of chaos. One approach
from the intelligent transportation systems research related to highway traffic that could be transferred
to the UAV traffic is platooning: The cooperative driving of automatically steering vehicles in close
formation with gaps of three to ten meters enabled through communication [1]. Platooning does
not only offer fuel-saving through slipstream effects, but it also helps to organize the traffic through
the homogenization of travel velocities and improving the capacity of streets. Usually, platooning is
proposed for highways; however, in [2], we propose a hybrid concept for platooning in cities. The
platooning concept is envisioned to create virtual air traffic lanes, which are dynamically planned with
the help of platooning derived rules and allow the safe coordinated flight of UAVs.

Combining UAVs with platooning may be one part of a solution to bring order to chaos. To
achieve this, we rely in this paper on the concept of Self-Aware Computing (SeAC) [3]: Self-aware
computing systems are computing systems that:

1. learn models capturing knowledge about themselves and their environment (such as their
structure, design, state, possible actions, and runtime behavior) on an ongoing basis and

2. reason using the models (e.g., predict, analyze, consider, and plan) enabling them to act based on
their knowledge and reasoning (e.g., explore, explain, report, suggest, self-adapt, or impact their
environment) in accordance with higher-level goals, which may also be subject to change.

SeAC supports the UAVs in learning, reasoning for self-adaptation [4], and acting, which enables
them, among other things, to handle exceptional (unforeseen) situations like collision avoidance for
(new) fast approaching entities. In addition, it should also improve its control by the input of high-level
goals that the SeAC logic breaks down into lower-level goals, which are then implemented by its
models and reasoning. Dynamic behavior benefits in the form of collision avoidance for known or
slow-moving objects and adaptation to changing conditions (besides the weather) like different failure
states of the quadcopter itself. Furthermore, we can integrate platooning capabilities into the reasoning
functionality to cope with changes in its platoon formation such as the election of a new leader–follower
constellation or new virtual air traffic lane. Accordingly, our contributions are threefold:

• We propose a framework (ToSaMuFo) for the platooning-based organization of UAVs using SeAC.
• We provide an implementation of our framework using the Robot Operating System (ROS).
• We evaluate our approach in various simulation settings and with real quadcopters.

The remaining sections of this work are structured in the following way: Next, Section 2 discusses
related work in the context of UAV formation. Section 3 (i) explains assumptions, constraints,
and requirements, (ii) presents the combination of SeAC and platooning into one framework, as well
as (iii) sketches the implementation of a prototype based on ROS. Afterwards, Section 4 details the
evaluation environment, flight scenarios, methodology, and informs about the results of the evaluations.
Finally, Section 5 concludes this work with a summary of our results and future work.

2. Related Work

Different types of control methods for quadcopter formations exist. Those can be clustered
into (i) flocking based quadcopter formation control, (ii) model predictive control, (iii) feedback
linearization, (iv) particle swarm optimization, (v) linear-quadratic regulator, (vi) sliding-mode control,
and (vii) self-aware quadcopters. In the following, we review these categories of strategies for
controlling quadcopters in general and formation in specific. Furthermore, we delineate the existing
work from the approach presented in this paper.

Flocking-based quadcopter formation control relies on three behavioral principles that are
transferred from collective motion observed in natural flocks, schools and herds (e.g., birds, fish,
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and other animals) [5]: collision avoidance, velocity matching, and flock centering. Based on these
three rules, Vásárhelyi et al. presented different aspects of the subject on quadcopter formation
control over the years. Starting with their work in 2014 [6], two decentralized control algorithms
are presented as a realistic simulation framework: a simple self-propelled flocking model (based
on the aforementioned principles) and a collective target tracking algorithm. Based on this work,
Vásárhelyi et al. described in [7] an approach in which every agent navigates on its own, based on
information received from nearby flock-entities and all computation is done on-board. Additionally,
Vásárhelyi et al. present an approach for seamless navigation in confined spaces for large flocks
of autonomous flying agents [8]. In [9], air-traffic related approaches of flocking were compared
in UAV traffic simulation scenarios. With two different self-organized algorithms, one for constant
direction and one for constant velocity, which both were optimized by evolutionary optimization.
Lastly, Vásárhelyi [10] presented an approach based on anisotropic repulsion, behavior-driven velocity
alignment, self-organized queuing, and conflict-avoiding self-driving. This model is also optimized
with evolutionary optimization and demonstrated outdoors with 30 quadcopters. Further works focus
on flocking-based coordination of land vehicle robots (e.g., [11,12]).

Model Predictive Control (MPC) enables process control using predictions to optimize output(s)
for a finite time-horizon while utilizing a dynamic model of the process as well as being able to
satisfy a set of constraints [13]. It is considered an advanced method in contrast to, for example,
generic proportional–integral–derivative (PID) controllers and is typically used when these controllers
can not cope with difficulties like large time delays or high-order dynamics [14]. Therefore, they
are often used for the complex dynamics of quadcopter systems. MPCs factor in the full sequence
of input steps that are required to optimally move the controlled system from its current state to
a future target [15]. After applying the first inputs, additional calculated sequences of inputs are
not used, but, instead, new measurements about the system states and external targets are taken.
This new information is, again, used to calculate an optimal trajectory. This procedure is repeatedly
executed with newly updated measurements of external and internal signals. The computational heavy
calculation process limited their application on quadcopter systems in the past, but modern model
variations and the latest progress of on-board processing capabilities enable more widespread usage on
these systems. Several authors present works based on MPC, e.g., hierarchical MPC controllers [16–19],
leader–follower approaches [20], a distributed MPC based collision avoidance controller [21], local
linear time-invariant MPC controllers [22,23], and for decoupling the formation control into horizontal
and vertical motions [24]. Furthermore, Kamel et al. gives an overview [25] on different (modern) MPC
variations, its design for multirotor systems, and implementation in Robot Operating System (ROS).

Feedback Linearization is used to control nonlinear systems as if they were linear systems. The
nonlinear system is to be transformed (not trivial) by ’changing variables and a suitable control
input’ [26]. In the case of the highly nonlinear quadcopter system, a linearization in one or more
ways is reasonable [26]. By utilizing feedback linearization, Mahmood and Kim simplified quadcopter
dynamics to achieve a formation through local information exchange [27]. Using a singularity-free
dynamic inversion scheme, the authors later achieved an ’almost linear’ control law [28]. Another
formal and more defined refinement of [27] can be seen in [29]. In the authors refined the presented
work by changing the control law to a robust feedback linearization and adding a sliding-mode
compensator against possible dynamics inversion errors.

Particle Swarm Optimization (PSO) is an optimization method that tries to solve a problem ‘by
iteratively trying to improve a candidate solution’ [30]. Particles start at different points and move
with a degree of randomness to find a solution while following parameter gradients [30]. Ma’sum et al.
presented a modified particle swarm optimization algorithm that tries to find, localize, and track
suspicious objects [31]. In case of this PSO for quadcopter formations, every UAV in the formation can
be seen as a particle in a swarm that tries to find a solution, e.g., the tracked target. Lazim et al. [32]
use PSO for optimizing feedback linearization formation control.
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Linear–quadratic regulator (LQR) generally tries to minimize a (quadratic) cost function
employing a set of linear differential equations (description of the linear dynamic system). The solution
can then be applied as a feedback controller. As one example for a LQR-based controller,
Rinaldi et al. [33] adopt a LQR controller which is applied to the full quadcopter dynamics and
a comparison of LQR with a neural network based control strategy for the vertical motion is given
(model reference control).

Sliding-mode control (SMC) supports the design of a sliding surface (in state space) and the
selection of a control law which attracts the system state (of a dynamic system) to the aforementioned
surface [34]. Mercado et al. uses an SMC for translational quadcopter dynamics and additionally
for follower UAVs to preserve their formation with the leader in [35]. Low-level control for each
quadcopter is accomplished by a classical PD (proportional-derivative) controller. Wu et al. [36] adopt
the idea of Mercado et al. [35] and use a PID (proportional-integral-derivative) controller for each UAV
as well as SMC to solve the formation flying problem through a leader–follower approach.

Self-aware quadcopters try to integrate artificial intelligence for improved quadcopter control.
Palossi et al. [37] deploy a deep neural network (DNN) on a 27-gram light nano-quadcopter (CrazyFlie
2.0) to add artificial intelligence-based visual navigation capabilities. Implementation of this low-power
DNN required extensive and deep onboard computer system modifications (e.g., memory mapping)
as well as their own PCB-shield to separate the low-level-flight control of the quadcopter from their
visual navigation engine. Kosak et al. [38] introduce a reference architecture for mobile robots. This
architecture integrates reconfigurable and self-descriptive hardware which the robot agents (e.g.,
quadcopters) can use to change their own setup at runtime to adapt to a new task. Their concept of
controlling robots with a layered software architecture combined with self-awareness showed that
robots can develop heterogeneous specific knowledge at runtime.

Delineation from Related Work: Related work provides several approaches for formation flights
of quadcopters as well as how to control the flight behavior of quadcopters autonomously. However,
most of the approaches focus on the establishment of the formation, i.e., keeping of distances and
coordinating flight activities, rather than the spontaneous establishment of the formations. Present-day
centralized air traffic control will not be able to extend its responsibilities to encompass the future
amount of UAVs whilst maintaining every safety regulation, safety distance, and govern all their
flight paths in a timely manner. Furthermore, the present-day quadcopter software rarely is equipped
with an extensive collision avoidance system, which would be able to function in unforeseeable
(usually meaning: not programmed) situations, and it is necessary to relieve air traffic control. The
learning aspect of SeAC can contribute to this issue. Therefore, we focus in this paper on a completely
new type of controlling the formation flights of drones. By implementing principles from SeAC on
quadcopters to realize platooning-based formation flights for UAVs, we aim at fostering individual
behavior. Through learning, the quadcopters can collaboratively find paths and fly together in a
loosely-coupled formation for organizing the air traffic. This can help to alleviate traffic control, bring
order to otherwise possibly chaotic air space, as well as advance quadcopter dynamic behavior through
this self-awareness.

3. Approach

This section first motivates the approach of this work by discussing constraints and assumptions,
and deriving several requirements our proposed framework called ToSaMuFo has to meet in Section 3.1.
Afterwards, Section 3.2 presents our system model that modifies a control loop introduced by the
SeAC community to combine self-awareness functionalities with platooning capabilities. Sections 3.3
and 3.4 describe the awareness as well as the platooning modules of the modified LRA-M loop in
detail. Finally, we propose a prototype implementation of ToSaMuFo with Virtual Robot Experimentation
Platform (V-REP) as a simulator using the Robot Operating System (ROS).
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3.1. Constraints, Assumptions, and Requirements

As the fields of quadcopter control and self-aware computing can be considered vast, the scope of
this work is only focused on aspects of both fields that merge profitably. To guarantee a flexible and
dynamically applicable framework, we define the following constraints and assumptions.

The first assumption we make is the ability of stable hovering the quadcopters in use need.
Second, each quadcopter is able to fly to a specified eligible position in a three-dimensional space.
We do not specify this ability in more detail as any specific constraint could limit the performance of
the platooning or collision avoidance. Third, every quadcopter needs to be equipped with reliable
sensors, capable of identifying obstacles repeatedly. Fourth, a communication module for each
quadcopter is required that enables the quadcopters to broadcast their knowledge about themselves
and the environment to all other quadcopters. Finally, we assume that the environment in which the
quadcopters fly remains static during the whole flight, i.e., besides the quadcopters within the platoon,
no moving objects are in this scenario and identified obstacles persist.

Based on these constraints and assumptions, we derive the following requirements: First,
a quadcopter should learn about itself and the environment on an ongoing base. Second, ToSaMuFo
needs to assemble the quadcopters of the given scenario on-the-fly into a platoon. Third, the platoon
should reach a goal position by finding a way to this position and avoiding possible obstacles. Fourth,
the proposed prototype implementation of the software framework should be designed modularly to
enable a flexible exchange of components. Finally, our prototype should support simulated flights as
well as real-world scenarios to allow for comprehensive and realistic evaluation.

3.2. System Model

After summarizing constraints and assumptions as well as deriving requirements for our
approach, we now give a broad overview on the system model of ToSaMuFo. As learning and
reasoning are the main points in SeAC systems and our requirements contain that quadcopters should
learn and reason about themselves and their environment, we decided to have a closer look into the
mechanisms from this research field.

An elementary model-based learning and reasoning loop that captures “the main activities in
a self-aware computing system” ([3] p. 13) is the learn-reason-action loop (LRA-M loop), which can be
seen in Figure 1. It illustrates the self, its interfaces, and inner workings of a self-aware system with
its empirical observations, as well as its goal-driven actions. The empirical observations are used in the
ongoing learning process that analyzes the observations and stores gathered knowledge about the
system and its environment using models. The reasoning process employs knowledge from the models
and the given goals to determine the next actions the system should execute to achieve these goals.
These actions may influence the systems’ behavior and possibly impact the environment.

The LRA-M loop seems to perfectly match our requirements, as ongoing learning about the
environment is used in combination with reasoning for the next actions of the system. However, we aim
at a modular framework that enables quadcopters to find a way through an environment containing
obstacles and to fly platoon formations. Therefore, the LRA-M loop is adapted to ensure the modularity
of our approach by implementing separate modules for the awareness and the platooning functionality
of each quadcopter, i.e., every quadcopter has its own modified LRA-M loop that is responsible
for the positioning and obstacle detection. By duplicating and connecting the inner workings of
the LRA-M loop into two separate modules, we improve the upgradeability and interchangeability
of features, e.g., to allow for changes in the collision detection of the awareness module without
modifications of the platooning module. Figure 2 shows the modified LRA-M loop containing separate
modules for awareness and platooning. The awareness module is responsible for maintaining a map of
the environment, finding a path through this map, and avoiding collisions. The platooning module
cares about all platooning-related information and decisions, i.e., assembles the quadcopters on-the-fly,
and manages safety distances between the quadcopters.
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Figure 1. Self-aware learning and reasoning loop: LRA-M loop [3]. External phenomena about, e.g., the
environment are captured inside the empirical observations block. The Reason component provides
possible adaptations of the systems after reasoning on information captured in models. The Learn
component improves the reasoning part by extending the existing models. Those models capture
observations, goals but also information about the system itself, e.g., feasible adaptation actions.

Platooning

Models Models

Learn ReasonReason

Self

Phenomena
(sensor data, drone positions, general information,...)

Actions
(position

commands
to drone

controller)

Awareness

Observations

Goals

Figure 2. Self-aware learning and reasoning loop with platooning. Duplicated and modified LRA-M
loop to separate the awareness and platooning responsibilities inside modules. The platooning module
captures all platooning-related information and makes appropriate decisions. The awareness module
maintains all self-aware functionalities and has the final say on decisions.

The loop receives information from the environment via measured phenomena and preset goals
from an operator. These phenomena, i.e., sensor data, quadcopter positions, and general information
about the map, are collected and stored without alteration in the observations block. This block serves
as an information provider of measured environmental data for both modules. External goals such as
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a final goal position or waypoints are given to both modules. The modified loop can not only sense
the environment but affect it by sending decisions using the actions block. These contain position
commands that the quadcopter controller uses for moving.

In summary, we take the key principles of the LRA-M loop, i.e., self, goals, phenomena, observations,
and actions as granted, but duplicate the inner workings containing learn, reason, and models into two
separate modules and connect them. Both modules receive observations and goals. The reason blocks
are connected so that a joint plan is forwarded to the actions block. In addition to this system model,
we add two flight modes to ToSaMuFo to support the functionality of flying in a platoon as well as
detecting and avoiding obstacles: (i) Using waypoint following, the platoon receives a list of positions
the leader has to fly to while the other quadcopters follow the leader maintaining predefined safety
distances. We assume that there are no obstacles in the environment for this flight mode. (ii) In the
pathfinding mode, the quadcopters receive one final goal position they need to reach. They have to
find a way to this position, detect obstacles in their way, and avoid them autonomously. The waypoint
following is located in the platooning module as the leader only has to follow given coordinates while
the pathfinding is located in the awareness as the quadcopters need autonomous capabilities of finding a
path and detecting obstacles. In the following, the two modules platooning and awareness are described
in more detail and a flowchart is provided in Figure 3 to illustrate the general framework behavior
based on our modified loop.

Figure 3. Platooning awareness flowchart. Inner workings of the learn and reason nodes are shown in
the context of the main loop. Colors correspond to the general loop illustration.



Computers 2020, 9, 7 8 of 29

3.3. The Platooning Module

The platooning module of the modified LRA-M loop is responsible for all platooning-related
parameters and decisions the quadcopters have to manage. Two main functionalities are modeled into
this module: (i) It assembles the quadcopters into a platoon on-the-fly, e.g., at the start of a scenario,
and (ii) determines new position coordinates for each quadcopter when the leading quadcopter moves.
In this subsection, the components of the platooning module, i.e., models and reason blocks, are described
in detail, before the functionality of the waypoint following flight mode is presented.

The models block inside the platooning module is used as introduced for the original LRA-M loop.
It stores information about the incoming goals, all platooning related parameters, as well as models for
decisions of the reason block. The incoming goal comprises the waypoints to be followed, containing a
platooning start position, several further coordinates representing the path, and a final goal position.
Platooning parameters can be the safety distance and platooning formation distances that need to
be maintained during a platooning flight and the desired number of quadcopters that should create
a platoon. In addition, a mathematical model is used to determine the position of each quadcopter
inside the platoon before assembling into one.

The reason block has two main responsibilities: (i) assembling a platoon on-the-fly and (ii)
determining the next position of all quadcopters during flight. Therefore, it receives sensed information
about all quadcopters from the observations block and combines them with knowledge requested from
the models to find the next position of the quadcopter it manages. This new position is then forwarded
to the reason block of the awareness module to determine whether this position can be reached or
potential obstacles block the path.

To assemble a platoon on-the-fly, first a position inside the platoon needs to be determined for
every quadcopter. Therefore, each quadcopter receives the platooning start position from the models
block. This position and the current position of the quadcopter is used to calculate the Euclidean
distance between these positions. The distances are then broadcast to all other quadcopters. The
position inside the platoon is then determined using the broadcast distances to the start position by
ordering them in ascending order, i.e., the quadcopter currently closest to the start position will be the
leader, the quadcopter second closest will be the first follower, and so on. After the position inside the
platoon is determined, the coordinates of the start position for all quadcopters need to be calculated.
The leader uses the given start position from the goal block and moves there. The followers use this
start position, the given safety distance, and their positions inside the platoon to calculate their position
offset from the leader. For example, the quadcopter in the second formation position uses the safety
distance as offset while the third quadcopter multiplies it by two, the fourth quadcopter by three,
and so on until all positions are determined and then the quadcopters move to this position. Hereby,
the waypoint following flight mode is assumed to be a two-dimensional formation, so the flight level of
all quadcopters is the same. After assembly and receiving a start signal, the leader follows predefined
waypoints or moves to a single goal position, while the formation follows in its current order.

The waypoint following mode is started when the assembly of the platoon is finished. Therefore,
the leader receives the given waypoint path from the goals block and needs to prepare the path to
remove breaks and abrupt direction changes. We assume for this flight mode that the environment
does not contain any obstacles and thus no collisions with other objects besides the quadcopters need
to be detected. In our approach, we provide a circle waypoint path that can be transformed into a
spiral if height steps are provided. The path starts in the center of the circle/spiral, extends to its
circumference and follows it for one round trip. First, a rudimentary path is created, planning a
straight line from the starting position in the center of the given waypoints to the circle that is defined
by the waypoints. Using a Bézier algorithm, we smooth the path, especially the connection between
the resulting line towards the circle path and the circle. Otherwise, the raw path would cause the
quadcopters to abruptly change their direction by 90 degrees and likely induce greater path deviations
while turning. After the leader smoothed the waypoint path to avoid unnecessary oscillations of the
platoon, it starts moving along this path by forwarding the next position to the awareness module. The
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followers store every broadcast leader position and use this list to determine a position behind the
leader similar to the calculation of the offsets when assembling the platoon.

3.4. The Awareness Module

The awareness module, depicted on the left in Figure 2, is responsible for the self-aware capabilities
of the quadcopters. Its main functionalities contain four different aspects: (i) It has the final
decision-making power, (ii) maintains a safety distance to obstacles, (iii) resolves conflicts generated
by the decisions of the platooning module, and (iv) publishes diverse information about quadcopter
positions and identified obstacles. In the following, all components of the awareness module, i.e., learn,
models, and reason are explained in detail, followed by the functionality of the pathfinding flight mode.

The models block contains all relevant information about the environment gathered over time
and the goals received at the start-up. It serves as an information provider and maintains a map of
the environment in which the positions of the other quadcopters as well as the current flight path
and obstacles are stored. For the pathfinding flight mode, it receives the platoon’s final goal position
and files it. In addition, the planned path of the quadcopter towards the goal is stored so that the
quadcopter solely follows this plan. It serves as a source of information for the reason block of this
module that resolves position conflicts of quadcopters and obstacles.

The learn block of the awareness module is responsible for the information interpretation and
update of the environmental map. Therefore, it receives information about the environment from the
observations block and interprets the detected objects. Hereby, it has to differentiate between other
quadcopters in the surrounding and actual obstacles. This gathered knowledge is then used to update
the existing map in the models block and store all relevant information into models.

The reason block has the general responsibility of conflict resolution between planned positions
of quadcopters and already identified obstacles. Therefore, it needs to distinguish between the two
flight modes waypoint following and pathfinding and adapts its decision logic accordingly. In the case
of the waypoint following flight mode, it receives the next planned position for the quadcopter. This
position is then checked for possible collisions with known obstacles or other quadcopters. If a collision
is detected, alternative coordinates are calculated by applying the pathfinding flight mode towards the
next waypoint. If the path is clear, the desired position from the platooning module is forwarded to the
action block. In the case of the pathfinding flight mode, the leader receives the final goal position and
searches a path to this goal using a modified A* algorithm. The followers receive their predecessors’
position as a goal so that a binary leader–follower platoon structure is deployed. However, the initial
assemble functionality lies inside the platooning module as well as the information about platoon
formation distances. The leaders’ aim, in this case, is to find a path around obstacles, the followers only
calculate a path to the quadcopter in front of them while navigating around obstacles and maintaining
the given safety and platoon formation distances.

The pathfinding flight mode is used to move a quadcopter from its current position to a goal
position in the presence of obstacles. The leader is moving towards the final goal position, while the
followers each have another quadcopter, their platoon forerunner, as the goal. The followers move
towards their predecessor until they reach the predefined formation distance. The quadcopters use a
modified A* algorithm either for finding the path to the final goal position or the predecessor. Whenever
one of the quadcopters detects a new obstacle, the A* algorithm is rerun for all quadcopters in this
platooning formation to ensure that all quadcopters recognize the obstacle and avoid it. Additionally,
if the followers detect that their predecessor has moved outside the desired formation distance, it
triggers the A* algorithm to again plan a path towards the predecessor and follow it.

During this flight mode, all quadcopters only move in straight lines on their unified flight level,
either going exclusively in + or - direction on the x-axis, or y-axis respectively, akin to a rook in chess.
This is done because the pathfinding algorithm uses an x–y grid map, comprised of small quadratic
spaces (herein called boxes) and moves the quadcopters from one box-center to the next resulting in a
line movement that can be seen in Figure 4a. Given that the framework should be usable by platoons
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consisting of different kinds of quadcopters with possibly different sizes, the box dimensions herein
are not related to the size of a specific quadcopter. The boxes in combination with a safety distance
ensure that a quadcopter flying nearby obstacles does not collide with it. The higher the resolution of
the map becomes, i.e., the smaller the boxes become, the closer a quadcopter would get to an obstacle
in an adjacent box. To explain this with an example: The quadcopter may have dimensions of 0.35 m
× 0.35 m and the general box size may be 0.20 m × 0.20 m. Meaning that a quadcopter in the center of
a box would extend 0.075 m over its borders and very likely collide with an obstacle in a box alongside.
The general idea behind the safety distance and taking smaller box sizes into account is illustrated in
Figure 4b. To counter the negative effects of the higher map resolution, a safety distance (depicted
in yellow) around obstacles (depicted in red) is introduced, which is also considered an obstacle,
i.e., a quadcopter must not use this box, by the pathfinding algorithm. This ensures that quadcopters
extending over box borders into the safety distance do not collide with known obstacles nearby. In
the example above, a safety distance of at least 0.075 m makes sure the quadcopter will not come into
contact with a known obstacle. In fact, it creates a distance of at least 0.125 m between quadcopter and
blocking box as the safety distance is also realized with boxes: the general box size in this example is 20
cm × 20 cm, which is larger than the required 0.075 m, incidentally creating a buffer zone of box size −
quadcopter extension over the border = required safety distance, in this example: 0.20m − 0.075m = 0.125m.
This has to be taken into account when choosing box sizes and safety distances as this mechanism
could block otherwise passable openings. Furthermore, in Figure 4a, a successful pathfinding flight is
shown. The start and goal positions are labeled A and A’, respectively. The red boxes are identified
obstacles, yellow represents the boxes within the safety distance, and the blue line shows the flight
path of the quadcopter. The grey boxes are still unexplored and no knowledge has been gathered
during the flight. In the case that there is not enough physical space behind the leader to fit the whole
platoon in a straight line, the platooning line would simply be in the same form as the path it has
moved and stay there until the platoon moves again.

(a) Scenario map with obstacles, their safety
distances and successful flight to the goal
position from A to A’.

Box Size

Obstacle

Boxes
Inside
Safety

Distance

Normal
Boxes 

Safety Distance

Resulting
Distance

Quadcopter

(b) Box sizes, safety distance, and blocked boxes. The addition of
a safety distance around an obstacle extends the safe zone to the
surrounding boxes to avoid collisions.

Figure 4. Operating principles for pathfinding flight mode showing obstacles (red), safety distances
(orange), and the found path (blue) through the environment on the grid map (grey).

3.5. Prototype Implementation

According to the requirements from Section 3.1, the framework needs to offer the possibility to test
and evaluate flights both in simulation and real-world scenarios. To satisfy this requirement and to be
able to thoroughly test the framework’s fulfillment of all other requirements, a simulation environment
needs to be selected. Therefore, we set the following requirements: (i) available for free or even
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an academic license must be provided, (ii) support quadcopters natively, (iii) offer an implemented
quadcopter controller, and (iv) offer a well-documented interface, i.e., an application programming
interface (API) that works with the Python programming language, which the framework intends
to mainly use. V-REP was chosen as the simulator because, additionally to satisfying all simulator
requirements, it offers a feature-rich environment, including a quadcopter test-scenario, can be used
with ROS, and is expandable with self-programmed add-ons or plugins. Furthermore, open-source
components are accessible on Coppelia Robotics GitHub (https://github.com/CoppeliaRobotics),
and the simulator can record simulation runs itself. Using this simulator as a basis, we now focus
on the prototype implementation of ToSaMuFo. Note: V-REP is now discontinued and replaced with
CoppeliaSim, which is not yet tested with our framework but should, according to Coppelia Robotics, still
be usable.

We choose ROS as the backbone for ToSaMuFo because of its modular design, which aligns with
the assumptions w.r.t. modularity (cf. Section 3.1). Furthermore, ROS is prevalent in the robotics
and multirotor simulation sector, V-REP offers a direct interface to ROS and the quadcopters of the
real-world flights also support ROS. Generally speaking, the use of ROS allows ToSaMuFo to be
distributed as a plug-and-play package and supports swapping out different nodes with varying
underlying functionality, as long as the required topics and messages are adapted.

The communication infrastructure of ROS is applied to separate identical nodes into a group
for each quadcopter and to emulate a broadcast (publish/subscribe) communication system between
them. In our framework, the inter-node communication is mainly utilizing custom messages derived
from the ROS standard message types.

Figure 5 depicts the node structure of ToSaMuFo (The code of our prototype implementation is
available at http://descartes.tools). This consists of a node to connect with a simulator and one for
real hardware, a node that encapsulates the Platooning Awareness functionality of each quadcopter,
called “Drone 1” to “Drone N”, and a connector node to connect them. Thus, ToSaMuFo supports an
arbitrary number of drones. Position data or other observations are relayed from, e.g., the simulator to
its interface, from there to the connector and then to the quadcopter. After the quadcopter chooses its
positional response to these inputs, a new position is commanded. This command now traverses from
right to left, passing the same nodes, as the inputs before, in reversed order. The Platooning Awareness
node is split into two nodes, corresponding to Figure 2 and incidental representing its two-node
implementation in ToSaMuFo. The inter-node communication network uses message topics. All nodes
that are subscribed to a topic will receive all messages published for this topic. In addition, it is feasible
to have multiple publishers at the same time for the same topic. In [39], we provide additional details
on the topics and their message types.

Connector Node

Simulator interface

Real hardware
interface

Simulator

Real hardware

Drone N

Drone 2

Drone 1Aware-
ness

Platoon-
ing

Aware-
ness

Platoon-
ing

Aware-
ness

Platoon-
ing

Observations

Commands
Commands

Observations

Figure 5. Abstract node graph of ToSaMuFo for multiple quadcopters with publish/subscribe topics.
Observations and data propagates from the simulator or hardware through the node network to the
platooning awareness loops of each drone and back, utilizing standard and custom ROS message types.

https://github.com/CoppeliaRobotics
http://descartes.tools
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4. Evaluation

This section describes the evaluation of the performance of ToSaMuFo and presents findings
from simulation and real-world flights. First, Section 4.1 introduces the evaluation environment.
Then, Section 4.2 explains the scenarios and Section 4.3 describes the evaluation metrics. Afterwards,
Section 4.4 presents the evaluation methodology. Next, Section 4.5 discusses the evaluation results
for three different flight types: circle waypoint paths, spiral waypoint paths, and pathfinding. Finally,
Section 4.6 presents a use case study in which ToSaMuFo runs on real quadcopters.

4.1. Evaluation Environment

In the following, we describe the environment for the evaluation. The setup consists of one
physical computer (Windows 10, 8 cores @ 3.5 GHz, Nvidia GTX 1070, 16 GB RAM) serving as host
system for a virtual machine (VM)(Kubuntu 18.04, 8 cores, vGPU with 128 MB memory, 8 GB RAM)
for evaluating and storing the flight data. The VM runs ToSaMuFo on top of ROS (cf. Section 3.5) and
uses the V-REP simulator. After the initial software setup (VBox: 5.2.28, ROS: Melodic Morenia, V-REP
PRO EDU: 3.6.1 (rev.3), Python: 2.7 and 3.7.4, IPython: 7.8.0, Jupyter Notebook: 6.0.1, pandas: 0.25.1),
ToSaMuFo is integrated into ROS’ catkin workspace as a source package.

Figure 6a shows the virtual drones inside the V-REP simulator. Their body base dimensions are
0.35 m × 0.35 m and they use a simple quadcopter controller, which is already included in V-REP and
based on a PID controller. To control the position of such a drone in V-REP, the position of the green
sphere is changed. This sphere represents the "target" position that the quadcopter controller aims
for and applies the motor thrust according to its control laws to fly there. Because the drones can not
be controlled directly by ToSaMuFo, the velocity and behavior of the drones can only be controlled
indirectly by setting waypoints/path positions closer together for slower movement or further away to
increase speed. In accordance with related work [40], our experiments have shown that it is preferable
in our setting to use slower speeds, i.e., put points closer to each other because the PID controller tends
to overshoot in acceleration for faraway points. Below this threshold, this behavior still exists but is
less prevalent and is similar to other controller schemes. Before the start of a platooning formation
flight, the virtual quadcopters are aligned behind the leader drone, and small variations in their z-axis
(height) position are applied to visualize the assembly command of the formation in the figures. These
height differences are typically in the range of five to ten cm, resulting in z-coordinates of 0.95 to
0.90 meters.

(a) Two virtual quadcopters inside V-REP
following their target position markers (green
points).

(b) Ten by ten meters waypoint
environment with a four drone platoon in
the center.

(c) Pathfinding environment
with a platoon, obstacles and
goal markers (red).

Figure 6. Usage of the V-REP simulator for evaluating the flight performance of ToSaMuFo.
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4.2. Scenarios

In total, we discuss 15 scenarios with three varying evaluation parameters w.r.t. the flight type,
the formation distance value, and the box size. Table 1 lists all conducted virtual evaluation scenarios.
Every scenario is carried out 30 times to allow for statistically significant conclusions.

Table 1. Overview on all evaluation scenarios and their parameters.

Scenario Number Flight Mode Formation Distance Parameter Box Size

1
Waypoints (circle)

0.50

N/A

2 0.60
3 0.70
4

Waypoints (spiral)
0.50

5 0.60
6 0.70

7

Pathfinding

0.50
0.158 0.60

9 0.70
10 0.50

0.2011 0.60
12 0.70
13 0.50

0.2514 0.60
15 0.70

Given that this framework is a proof-of-concept, only two simple scenario maps are used to
evaluate the concept. Furthermore, only four drones are used to keep in line with vehicle platooning
literature (3–5 cars and/or trucks) and restrict the computational resource requirements, but still show
the scalability of the approach. For future works, more drones and complex maps in a more realistic
simulation environment with inter-platoon interactions, coordination, and platoon assignments are
envisioned.

Figure 6b,c show the two maps that the scenarios use. To evaluate the two flight modes from
Section 3, two environments are prepared, each corresponding to one mode. In the first mode
“Waypoint following”, the leading quadcopter moves to given waypoints while the remaining follower
quadcopters form a platoon behind it. Because the geometrical form of the possible waypoint paths
is a circle or spiral with a given radius, a sufficiently wide square area with the basic dimensions of
ten meters by ten meters with the start waypoint is provided inside V-REP; see Figure 6b. The floor
panels incidentally are one meter squared, so the center of this environment is easily distinguishable
with the platoon leader drone hovering above. In this scenario, no obstacles are considered. In the
second flight mode implementing the pathfinding, the leading quadcopter is given a goal position
it has to reach, behind some obstacles. The follower drones precede it through the scenario, while
each has its forerunner drone as its goal position (cf. Section 3.4). To this end, three obstacles, as well
as two goal point markers, for first and last quadcopter, are positioned inside V-REP and the same
dimensions as before are used for the map size. In Figure 6c, the obstacles can be seen in the center,
with dimensions of one meter by one meter and a height of three meters. A very small red cylinder is
used as a goal position marker at the bottom of the figure. In addition, below the obstacles, a small red
bubble robot is placed. This indicates the position of the last quadcopter in the platoon if the platoon
reaches the goal position with four drones while a distance of 0.5 meters between their positions is
kept. Otherwise, it is an approximate end position for the last platooning drone.

Since two flight modes need to be evaluated, the scenarios need to differentiate between these
two. In fact, three, so called flight types, are used in ToSaMuFo’s evaluation, namely waypoints (circle),
waypoints (spiral), and pathfinding. The first flight mode waypoint following corresponds to the two types
waypoints (circle) and waypoints (spiral) in the scenarios, where spiral uses the same waypoints as in circle,
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but adding continuously height per step. Both types use fixed scenario parameters: 400 waypoints,
a radius of 1.5 meters and 0.01, respectively 0.00 meters for their height step values. After the waypoint
generation, the platoon leader drone flies to these locations, while the other quadcopters calculate
follow positions behind the leader and try to keep the platooning distances. The last mode pathfinding
has the platoon moving to a goal position in the presence of obstacles. The objective is to find a path
around the obstructions and get to the target location as a platoon. These three modes are chosen to
test the two flight modes individually, without the possibility of conflicts between the platooning and
awareness parts of the Platooning Awareness (cf. Section 3.3) as well as to analyze their similarities and
differences. In the case of the waypoint following mode, it is split into the two scenario flight modes
circle and spiral to evaluate possible differences or similarities, as well as the flight performance in 2D
and 3D following scenarios.

Besides the flight mode, the formation distance parameter represents the distance between the center
of two drones in formation that ideally should be held constant between every two drones, to keep the
overall platooning formation symmetrical. The three values that are chosen to be evaluated stem from
the first test flights of the framework, in which 0.70 meters emerged as a relatively stable formation
distance for all early tests, as it represents a one drone distance between two virtual drones with their
dimensions of 0.35 m × 0.35 m. Additionally, 0.50 and 0.60 meters are considered as values, to evaluate
if these parameters are candidates to supersede the default 0.70 meters in any or all scenario types.
Any higher values were not considered because it is assumed that this would elongate the platoon too
much and a minimal stable distance is preferred. This characteristic is chosen to evaluate the changes
in flight performance of ToSaMuFo with changing distances inside the formation and if one flight mode
is more susceptible to distance variations.

The last scenario parameter, box size, only applies to the third flight mode of pathfinding. It describes
a box size as a kind of map resolution (cf. Section 3.4). The referenced section also identifies the safety
distance parameter as an important one to possibly change the pathfinding behavior, e.g., blocking
passages, but, because of the interdependence of this characteristic and the box size, it is fixed to
0.35 meters and only the box size is allowed to vary in the evaluations. Furthermore, box size can
be considered the more far-reaching parameter, as it is able to change the map resolution, which
significantly influences the flight paths as the drones only move through box center and is assumed
to have a bigger impact on computational performance because the whole scenario grid map is
represented as a matrix which gets disproportionately bigger with slight increases in the box size.
The three values that are used here concentrate around the sweet spot of 0.20 meters. This was found
in early tests of the implementation, where larger values, in the range of approximately 0.40 meters,
blocked the path between the obstacles. As mentioned in Section 3.4, it is not related to the size of a
specific drone and is additionally varied slightly by 5 cm to evaluate its impact. A lower value, such
as 0.10 meters, slowed the quadcopter movement noticeable down because the position changes are
much smaller. The addition and subtraction of five centimeters aim to evaluate, if these two values, one
above, one below, represent a new sweet spot and if they influence the pathfinding flight performance.
Overall, this parameter is used as a scenario characteristic to evaluate the influences of the formation
distance parameter compared to the box size and to analyze the formation distance inside the platoon
through varying box sizes.

4.3. Metrics

To evaluate all scenarios, we rely on two distinctive metrics: position deviation and commanded
and observed distances between platooning drones. Because ToSaMuFo uses two flight modes, where the
modes aim to evaluate either the normal waypoint platooning or self-aware pathfinding components by
flying in a platoon formation, we apply the same distance and positional deviation metrics for both. This
additionally allows us to compare and evaluate both modes against each other, as well as concluding
an estimation of the combined framework for reference and possible future works. For each scenario
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flight, we analyze and aggregate both metrics in terms of their minimum, maximum, mean, median,
confidence interval of 95%, and standard deviation values.

Position Deviation

The position deviation δn specifies the deviation on the n-th axis at time t, meaning the difference
between the commanded (cn) and observed (on) flight path. Because the observations do not depend on
calculations, but only on simulator getPosition() functions, they are sent out more frequently than
commands from the other direction. This means initially that not every observation can be paired with
a command to evaluate the position deviation. Therefore, we fill these data set gaps by forward-filling,
meaning that a command or observation is repeated in the sets until a new one is calculated or received.
This introduces low noise into the data but allows for the evaluation of the position deviation at each
recorded time t and for every axis n. The resulting equation is presented in Formula (1):

δn(t) = cn(t)− on(t). (1)

Distance between Platooning Drones

The distance between platooning drones d(Dj, D(j+1)) captures the Euclidean distance between the
quadcopter positions Dj and D(j+1) at time t in three-dimensional space, where j identifies one drone
of the formation and ranges from 1 to (number o f drones − 1). Formula (2) presents the resulting
equation that relates the positions to the Euclidean distance. We categorize this distance into commanded
distances and observed distances, taking either only commands or observations for all participating
drones into account. Similar to position deviation δn before, gaps in the data sets are forward-filled
to enable distance evaluation at every time t for every two drones in the platoon. Otherwise, no
quadcopter positions are coinciding with other drone locations that are recorded at the same time:

d(Dj, D(j+1))(t) =

√√√√ 3

∑
i=1

(Dj i(t)− D(j+1)i
(t))2. (2)

4.4. Evaluation Methodology

The following sections present groups of scenarios that form an evaluation set, the related plots,
as well as summarizing tables. All values are, if not mentioned otherwise, in meters. The plots use
drone identification numbers, where the ID = 1 corresponds to the leader drone, 2 to the second drone
in the platooning formation, and so forth. The tables, on the other hand, represent aggregated data
sets for one metric each and are used as basis for the evaluation. For distance metrics, these tables also
incorporate a percentage that shows how much a particular value is above or below the discussed
formation distance parameter. Furthermore, superior values are typed in bold numbers.

4.5. Simulated Flights

This section contains all evaluations regarding the simulated flights that are conducted in V-REP
and are ran on the VM, which itself is detailed in Section 4.1. In the following, the evaluations of
different groups of scenarios are based on the three main types of scenarios, namely “Waypoints
(circle)”, “Waypoints (spiral)”, and “Pathfinding”. Each section groups its scenarios by the formation
distance parameter (FDP) that is changed between 0.50, 0.60, and 0.70 m. In the case of 0.70 m,
the distance between two virtual quadcopters equals one quadcopter length and is chosen as basis,
from which 10 and 20 cm are substracted to evaluate smaller distances. In the case of pathfinding,
we present an additional box size evaluation in the corresponding sections. The evaluation metric
results are better, if they are, in the case of distances between platooning drones, closer to the set
formation distance, or, in the case of position deviations, closer to zero. Given that all scenarios are
re-run 30 times because of their slightly different probabilistic dynamical behavior, we calculate the
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mean, median, standard deviation (SD), 95% confidence interval (CI), minimum (Min), and maximum
(Max) over all runs of that scenario. This attenuates the effect of outlier values and spikes in the flight
data of single flights that are recorded and enables statistically relevant statements for each scenario.

4.5.1. Circle Waypoint Path

This section evaluates the circle waypoint path flights (Scenarios 1 to 3), where the FDP is changed
between 0.50, 0.60, and 0.70 meters, for a platooning formation of four drones. Starting with an
overview over the scenarios commanded (Figure 7a) and observed (Figure 7b) flight paths for an FDP
of 0.50 meters. It can be seen that the path characteristics do not greatly differ between the initial
commands and resulting observations.

(a) Commanded positions for a platoon of four drones
with a formation distance parameter (FDP) of 0.50 meters
in waypoint following mode.

(b) Observed positions for a platoon of four drones with
a formation distance parameter (FDP) of 0.50 meters in
waypoint following mode.

Figure 7. Scenario 1—Circle waypoint following of four drones.

The drones start in a line, ranging from drone 4, path color yellow, at approximately (−2, 0) to
drone 1, path color red, located at (0, 0). In Figure 7a, the formation follows the exact route throughout
the scenario, whereas, in Figure 7b, the formation fans out during the left turn for approximately
one-eighth of a revolution. Because Figure 7a shows the commanded path and Figure 7b the observed
path, it is expected to see some differences in their actual flight paths and the formation fanning-out
can be explained with a positional overshoot of the follower drones, where their forward pitch could
not be changed fast enough into a to left-turn configuration, to fly exactly on the circle waypoint path.

In the following, Figure 8a,b show the commanded and observed distances between the drones in
their platooning formation for the same scenario flight as in Figure 7a,b above.
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(a) Commanded distances for a four drone platoon. Subplots for all interplatoon distances over time.

(b) Observed distances for a four drone platoon. Subplots for all interplatoon distances over time.

Figure 8. Scenario 1—Commanded and observed distances between drone pairs for a formation
distance paramerter (FDP) of 0.50 meters.

The visible general oscillations do not represent commanded oscillations; otherwise, this would
be apparent in Figure 7a from before. These oscillations are the product of the evaluation methodology,
as described in Section 4.4, as a byproduct of merging the data sets to evaluate the distances. These
artificial oscillations assumed as noise are more prevalent in the commanded distances because these
data sets have the most missing values, i.e., time gaps, between two commands. The greater starting
distances symbolize the initial positions, which are further apart. In the following 20 seconds after the
scenario starts, the assemble command is given and the platooning formation is formed. After that,
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the drones move on their waypoint path and dips occur when they are turning onto the circle. Their
curved on-path-distance is commanded to stay the same, in this case, 0.50 meters, but the distances that
are shown here represent calculated straight-line distances between the drones and therefore exhibit
these dips. The distances between the first drone pair are slightly elevated, owing to the fact that the
follower drones use the position history of the leader to determine their commanded positions and not
the waypoints, which the leader uses as commands for itself. This small offset depends on the flight
performance of the leader drone and therefore can not directly be detracted from the evaluation data
set. The similarities and uniformity of these distances for the first drone pair, with respect to the other
pairs, show the expected behavior.

The first scenario group evaluation concerns the position deviation, i.e., the deviation from the
commanded path, and is based on Table 2, which shows values for all FDP settings.

Table 2. Positional deviation metrics (in meters) for Scenarios 1–3.

FDP Mean Median SD CI Min Max

x deviation
0.50

−0.001 −0.000 0.026 ±1.21e-04 −0.187 0.550
y deviation −0.004 −0.006 0.014 ±6.54e-05 −0.049 0.127
z deviation −0.011 −0.012 0.005 ±2.11e-05 −0.031 0.076

x deviation
0.60

−0.001 −0.000 0.020 ±9.40e-05 −0.111 0.250
y deviation −0.004 −0.006 0.014 ±6.39e-05 −0.049 0.116
z deviation −0.011 −0.012 0.004 ±1.91e-05 −0.028 0.076

x deviation
0.70

−0.000 −0.000 0.019 ±8.46e-05 −0.094 0.166
y deviation −0.004 −0.006 0.014 ±6.11e-05 −0.049 0.118
z deviation −0.011 −0.012 0.004 ±1.82e-05 −0.031 0.076

The first three value rows (x, y, and z) represent the aggregated flights with FDP = 0.50, the next
with FDP = 0.60, and the last with FDP = 0.70. It can be seen that the overall positional deviation
does not change significantly with changing FDP values. In many cases, they are even the same.
In the x-axis, the deviations show the biggest fluctuations in the minimum, maximum, and standard
deviation value, but a nearly perfect median and mean value of zero. The z-axis, however, shows the
smallest fluctuations, meaning here: best values for all but the mean and median. These data show
that all three FDPs offer similar performance, given that their deviations are barely different from each
other and the absolute values are very low in the range of centimeters and millimeters, meaning that
they all can be used successfully for four drones in circle waypoint scenarios.

Following up is the commanded distance evaluation of each FDP, based on Table 3. The table
shows the distances between drone pairs, calculated from their commanded positions. The presented
values, although commanded, do not mirror the FDP exactly because each drone individually
and independently commands only its own path and is exposed to small dynamic fluctuations.
Additionally, the distance metric is based on Euclidean distances (cf. discussion on Figure 8a above) in
contrast to the on-path-distance that is commanded.

Notable in this data set is the minimum value of 0.183 meters as well as a maximum value of 1.052
meters for an FDP of 0.50 meters, relating to drones 3 and 4. The most optimal values for the standard
deviation, confidence interval, minimum, and maximum are located at the front of the platooning
formations, namely in the distances between drones 1 and 2. Inside the formations, the middle
drone pair offers the smallest deviations from the set FDP in the mean value, with the exception of a
0.70 meters FDP, where the distance between drones 3 and 4 is considered better. The best median
values are universally found in the last or additionally second to last drone pair. Overall, an FDP of
0.60 meters seems to deliver the best results in nearly every value.

The low minimum value of 0.183 meters, as well as the maximum value of 1.052 meters for an
FDP of 0.50 meters, are assumed to be erroneous values, which are located right at the start of the flight.
These single-spike phenomena can be seen to a lesser extent in Figure 8a and should be disregarded as
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an assemble-artifact, as the observed distances in Figure 7b show no collisions, which would happen
with only a distance of 0.183 meters.

Table 4 summarizes the observed distance metrics for Scenarios 1–3.

Table 3. Commanded distance metrics (in meters) for Scenarios 1–3.

Comm.
Distance
between

FDP Mean Median SD CI Min Max

1 and 2
0.50

0.548 (+9.6%) 0.547 (+9.4%) 0.038 ±3.97e-04 0.399 (−20.2%) 0.717 (+43.4%)
2 and 3 0.503 (+0.6%) 0.498 (−0.4%) 0.043 ±4.47e-04 0.356 (−28.8%) 0.845 (+69.0%)
3 and 4 0.507 (+1.4%) 0.499 (−0.2%) 0.046 ±4.79e-04 0.183 (−63.4%) 1.052 (+110.4%)

1 and 2
0.60

0.639 (+6.5%) 0.642 (+7.0%) 0.034 ±3.45e-04 0.457 (−23.83%) 0.775 (+29.17%)
2 and 3 0.600 (+0.0%) 0.597 (−0.5%) 0.037 ±3.79e-04 0.421 (−29.83%) 0.787 (+31.17%)
3 and 4 0.602 (+0.33%) 0.598 (−0.33%) 0.039 ±4.00e-04 0.421 (−29.83%) 0.853 (+42.17%)

1 and 2
0.70

0.733 (+4.71%) 0.739 (+5.57%) 0.038 ±3.77e-04 0.516 (−26.29%) 0.868 (+24.0%)
2 and 3 0.696 (−0.57%) 0.695 (−0.71%) 0.039 ±3.89e-04 0.482 (−31.14%) 0.899 (+28.43%)
3 and 4 0.697 (−0.43%) 0.695 (−0.71%) 0.042 ±4.10e-04 0.475 (−32.14%) 0.921 (+31.57%)

Table 4. Observed distance metrics (in meters) for Scenarios 1–3.

Obs.
Distance
between

FDP Mean Median SD CI Min Max

1 and 2
0.50

0.549 (+9.8%) 0.546 (+9.2%) 0.037 ±3.47e-04 0.422 (−15.6%) 0.717 (+43.4%)
2 and 3 0.511 (+2.2%) 0.501 (+0.2%) 0.041 ±3.80e-04 0.371 (−25.8%) 0.857 (+71.4%)
3 and 4 0.509 (+1.8%) 0.500 (+0.0%) 0.043 ±3.99e-04 0.377 (−24.6%) 0.986 (+97.2%)

1 and 2
0.60

0.643 (+7.17%) 0.644 (+7.33%) 0.033 ±3.05e-04 0.469 (−21.83%) 0.764 (+27.33%)
2 and 3 0.605 (+0.83%) 0.600 (+0.0%) 0.033 ±3.05e-04 0.458 (−23.67%) 0.765 (+27.5%)
3 and 4 0.606 (+1.0%) 0.599 (−0.17%) 0.035 ±3.22e-04 0.460 (−23.33%) 0.845 (+40.83%)

1 and 2
0.70

0.735 (+5.0%) 0.741 (+5.86%) 0.038 ±3.42e-04 0.529 (−24.43%) 0.853 (+21.86%)
2 and 3 0.700 (+0.0%) 0.699 (−0.14%) 0.034 ±3.10e-04 0.516 (−26.29%) 0.890 (+27.14%)
3 and 4 0.700 (+0.0%) 0.697 (−0.43%) 0.037 ±3.34e-04 0.509 (−27.29%) 0.921 (+31.57%)

For all standard deviations, confidence intervals, and minimum values, an FDP of 0.60 meters
provides the values closest to zero, respectively smallest differences to this FDP in the flight data.
The optimal mean values can be seen at an FDP of 0.70 meters for the second and last drone pair. The
median, however, exhibits perfect values for drone pairs 3 and 4 (FDP 0.50 meters), as well as 2 and
3 (FDP 0.60 meters and nearly perfect for FDP 0.70 meters). Furthermore, the smallest differences in
the maximum values are also located at this FDP. Given that the relative differences between an FDP
of 0.60 and 0.70 meters are quite small, both can be used successfully for these scenarios and offer
similar performance. The high value of 0.986 meters in the drone 3 and 4 pair maximum for an FDP of
0.50 meters stems from a small timing issue right at the scenario start in only one flight, where the last
two drones start slightly time-delayed from each other, which produces a one value maximum spike.

4.5.2. Spiral Waypoint Path

The spiral waypoint paths herein are based on the same underlying waypoint characteristics as in
the preceding section, enhanced with a height increase per waypoint step. Because of this similarity,
which can also be seen in Figure 9a,b, displaying the observed paths of both types. Given that only
one waypoint parameter, the height, is additionally changing, we compare this scenario to the circle
waypoint scenario. Contrary to before, we do not directly evaluate positional deviation, given that the
values of this metric are consistently low in their mean, standard deviation, and confidence interval,
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respectively very close to zero, throughout all scenarios and only min/max spikes from single flights
raise above notable levels.

(a) Circle waypoint path of four drones. (b) Spiral waypoint path of four drones.

Figure 9. Comparison between observed circle and spiral waypoint paths for a formation distance
parameter (FDP) of 0.60 meters, both depicted from above, i.e., on the x–y coordinate level.

In the following, Table 5 displays all observed distance metrics, for flights relating to the Scenario
numbers 5 and 6, which thereby are evaluated.

Table 5. Observed distance metrics (in meters) for Scenarios 5 and 6.

Obs.
Distance
between

FDP Mean Median SD CI Min Max

1 and 2
0.60

0.648 (+8.0%) 0.649 (+8.17%) 0.026 ±2.44e-04 0.511 (−14.83%) 0.750 (+25.0%)
2 and 3 0.610 (+1.67%) 0.604 (+0.67%) 0.028 ±2.62e-04 0.497 (−17.17%) 0.763 (+27.17%)
3 and 4 0.609 (+1.5%) 0.602 (+0.33%) 0.031 ±2.84e-04 0.491 (−18.17%) 0.834 (+39.0%)

1 and 2
0.70

0.742 (+6.0%) 0.747 (+6.71%) 0.029 ±2.64e-04 0.580 (−17.14%) 0.849 (+21.29%)
2 and 3 0.704 (+0.57%) 0.702 (+0.29%) 0.027 ±2.47e-04 0.572 (−18.29%) 0.88 (+25.71%)
3 and 4 0.705 (+0.71%) 0.701 (+0.14%) 0.029 ±2.69e-04 0.571 (−18.43%) 0.894 (+27.71%)

Directly evident is the missing FDP value of 0.50 meters, e.g., Scenario 4, which is omitted
from the table because its scenario flights are failing to finish their waypoint path. In this scenario,
the third drone moves partially under the second, while turning and climbing, and is hit with
a disturbed mass of air, so that the second quadcopters propellers push down (cf. prop wash
(https://www.skybrary.aero/index.php/Prop_Wash)). The resulting push on the third throws it
off far from its intended course. This scenario is repeated thirty times and always produces the
same result, indicating that special attention needs to be put on spiral waypoint scenarios with small
FDP values.

An FDP of 0.70 meters delivers superior values w.r.t. the smallest variation inside the platooning
formation. The scenario runs with an FDP of 0.60 meters still enable successful flights and are only
marginally different. In comparison to the observed circle waypoint path in Table 4, the spiral seems
to provide better standard deviations, confidence intervals, maximum, minimum values, and only
slightly worse mean or median values. This may indicate that ToSaMuFo’s flight performance is more
smooth while incorporating height changes, given the lower value variations and spikes.

https://www.skybrary.aero/index.php/Prop_Wash
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The observed distances over time plots in Figure 10a,b show further similarities between circle and
spiral scenarios. The anomalous spike from before, while turning at around 30 to 45 seconds, can also
be seen and only minor data glitches, i.e., one-value-spikes, show special differences between the two.
This further indicates that two and three-dimensional platoon flights in ToSaMuFo offer nearly the
same flight performance, as long as no drone is subjected to prop wash, which can be excluded with
larger FDP values.

(a) Circle waypoint path. Subplots for all interplatoon distances over time.

(b) Spiral waypoint path. Subplots for all interplatoon distances over time.

Figure 10. Similarities between observed distances for spiral and circle waypoint paths for a formation
distance parameter (FDP) of 0.60 meters.
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In summary, the findings of this section show that the proposed framework is able to successfully
perform on the circle and spiral waypoint paths, excluding only an FDP of 0.50 meters that exhibits
prop wash with spiraling waypoints. The other two FDPs of 0.60 and 0.70 meters can be used for either
scenario and offer similar performance. The addition of the z-axis that is not used for circle waypoint
following seemingly does not increase distance instability, as is shown by the observed distance metrics
in the case of spiral waypoint following.

4.5.3. Pathfinding

In the following, ToSaMuFo’s pathfinding abilities are evaluated on the basis of nine scenarios
with, again, 30 runs each. Given that the waypoint following scenarios use the same metrics and
formation distance parameters as the pathfinding scenarios herein, we broadly compare them to each
other. Additionally, three different box size parameters with 0.15, 0.20, and 0.25 meters are evaluated
for every FDP. Therefore, all combinations between FDP and box size can be assessed. This allows for a
comparison between the influences of the box size and formation distance parameter, on the observed
distances for pathfinding scenarios. Lastly, a summary of all findings in this section is given.

(a) Observed pathfinding paths of a four drone platoon.
Starting from the positions A to D and ending on positions
A’ to D’. Obstacles depicted as rectangles.

(b) Commanded (lower) and observed (upper) path for
drone 4. Spike at the start results from platoon assembly.

Figure 11. Visualization of pathfinding paths of one scenario in 2D and 3D.

To visualize a typical pathfinding scenario, Figure 11a,b show a 2D, respectively 3D overview plot
for (a) all drones of the scenario and (b) one drone compared to its commanded path. In Figure 11a,
the platoon starts at the lower left: the lead drone on position A, followers on B to D. They move
towards their end positions throughout the pathfinding scenario, denoted A’ to D’. In Figure 11b,
the flight also starts at the left, while the lower path represents the commanded and the upper the
observed flight path (cf. drone 4 in Figure 11a).

4.5.4. Scenarios 7–9: Formation Distance Parameter: 0.50–0.70 Meters, Box Size: 0.15 Meters

Scenarios 7–9 use a fixed value of 0.15 meters for box size, to evaluate the influence of the formation
distance parameter on drone formations of four drones and is based on Table 6.

In comparison to the two waypoint following scenario types, the pathfinding scenarios produce
larger offsets (distance between drone pairs) from the set FDP and larger positional deviations in
almost all metrics, which can be seen in comparison with Table 5, where the maximum mean was
8% above the FDP, whereas now the smallest mean value is 34.86% above the FDP, for example. This
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can be explained with the inherent difference between the two flight modes of ToSaMuFo, in which
the leader for waypoint following has a fixed set of waypoints for every scenario to fly to, whereas
the leader of a pathfinding platoon always has to find the path itself and can be influenced by the
smallest effects, changing the outcome. One such effect could be the initial positions before the scenario
start, which are changing slightly around their starting position, even in the simulation because the
drones are already hovering. Therefore, they can be different, when the platooning formation assembly
method is initiated. These slight variations in positions are countered in waypoint following by fixed
waypoints that the lead drone and in return the followers follow in every flight. The seemingly high
maximum values (greater than 170% above the set FDP) for all scenarios can be explained through
the platoons stop-and-go flight profile, where each drone waits until its immediate goal drone moves
a sufficient distance away before following, which happens in an asynchronous manner, opening
these interim distance gaps until they are closed again at a later flight time. Depending on the values
we focus on, all FDPs provide a category with the best values for the given box size, as for example,
an FDP of 0.70 meters offers the best mean and median values overall. In Figure 12a–c, the same data
are represented as three sets of box plots. It can be seen that all boxes are located above their set FDP,
which shows that all platooning formations are more likely to exceed their FDP and not undercut it.
This indicates low collision probabilities that also were not encountered in this setting.

Table 6. Observed distance metrics (in meters) for Scenarios 7–9.

Obs.
Distance
between

FDP Mean Median SD CI Min Max

1 and 2
0.50

0.780 (+56.0%) 0.733 (+46.6%) 0.211 ±1.10e-03 0.349 (−30.2%) 1.717 (+243.4%)
2 and 3 0.740 (+48.0%) 0.726 (+45.2%) 0.170 ±8.88e-04 0.322 (−35.6%) 1.400 (+180.0%)
3 and 4 0.749 (+49.8%) 0.744 (+48.8%) 0.170 ±8.89e-04 0.293 (−41.4%) 1.618 (+223.6%)

1 and 2
0.60

0.868 (+44.67%) 0.813 (+35.5%) 0.211 ±1.10e-03 0.499 (−16.83%) 1.630 (+171.67%)
2 and 3 0.873 (+45.5%) 0.855 (+42.5%) 0.203 ±1.06e-03 0.383 (−36.17%) 1.682 (+180.33%)
3 and 4 0.876 (+46.0%) 0.871 (+45.17%) 0.188 ±9.82e-04 0.383 (−36.17%) 1.719 (+186.5%)

1 and 2
0.70

0.952 (+36.0%) 0.891 (+27.29%) 0.239 ±1.27e-03 0.656 (−6.29%) 2.152 (+207.43%)
2 and 3 0.999 (+42.71%) 0.954 (+36.29%) 0.231 ±1.22e-03 0.461 (−34.14%) 2.205 (+215.0%)
3 and 4 0.944 (+34.86%) 0.907 (+29.57%) 0.213 ±1.13e-03 0.422 (−39.71%) 1.961 (+180.14%)

(a) FDP = 0.50 meters. (b) FDP = 0.60 meters. (c) FDP = 0.70 meters.

Figure 12. Observed path boxplots for different formation distance parameters (FDP) with a box size
of 0.15 meters.
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4.5.5. Scenarios 10–12: Formation Distance Parameter: 0.50–0.70 Meters, Box Size: 0.20 Meters

This section uses a fixed value of 0.20 meters for box size, to evaluate the influence of the formation
distance parameter on drone formations four drones and is based on Table 7.

Table 7. Observed distance metrics (in meters) for Scenarios 10–12.

Obs.
Distance
between

FDP Mean Median SD CI Min Max

1 and 2
0.50

0.827 (+65.4%) 0.781 (+56.2%) 0.242 ±1.42e-03 0.342 (−31.6%) 1.623 (+224.6%)
2 and 3 0.769 (+53.8%) 0.751 (+50.2%) 0.180 ±1.06e-03 0.341 (−31.8%) 1.316 (+163.2%)
3 and 4 0.760 (+52.0%) 0.742 (+48.4%) 0.180 ±1.06e-03 0.262 (−47.6%) 1.693 (+238.6%)

1 and 2
0.60

0.894 (+49.0%) 0.828 (+38.0%) 0.236 ±1.39e-03 0.523 (−12.83%) 1.836 (+206.0%)
2 and 3 0.899 (+49.83%) 0.866 (+44.33%) 0.215 ±1.26e-03 0.405 (−32.5%) 1.626 (+171.0%)
3 and 4 0.886 (+47.67%) 0.846 (+41.0%) 0.212 ±1.24e-03 0.416 (−30.67%) 1.601 (+166.83%)

1 and 2
0.70

0.970 (+38.57%) 0.915 (+30.71%) 0.229 ±1.35e-03 0.672 (−4.0%) 1.647 (+135.29%)
2 and 3 0.970 (+38.57%) 0.93 (+32.86%) 0.224 ±1.32e-03 0.607 (−13.29%) 1.817 (+159.57%)
3 and 4 0.979 (+39.86%) 0.963 (+37.57%) 0.209 ±1.23e-03 0.558 (−20.29%) 1.706 (+143.71%)

In comparison to Table 6, a box size of 0.20 meters seems to indicate a trend, in which a larger
FDP value correlates with less spread of nearly all metrics. Nevertheless, all FDPs enable successful
pathfinding scenarios with no observed collisions. The lower (-47.6%) and greater (+238.6%) values in
the last drone pair for an FDP of 0.50 meters can be traced back to two single flights in which right after
the start in one case the drones asynchronous motion caused a greater distance gap (maximum value)
and in the other case a smaller distance. In Figure 13a–c, the same data from Table 7 are represented as
three sets of box plots. Again, as with a box size of 0.20 meters, all boxes are located well above their
FDPs and indicate the low likelihood of collisions.

(a) FDP = 0.50 meters. (b) FDP = 0.60 meters. (c) FDP = 0.70 meters.

Figure 13. Observed path boxplots for different formation distance parameters (FDP) with a box size
of 0.20 meters.
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4.5.6. Scenarios 13–15: Formation Distance Parameter: 0.50–0.70 Meters, Box Size: 0.25 Meters

This section uses a fixed value of 0.25 meters for box size, to evaluate the influence of the formation
distance parameter on drone formations four drones and is based on Table 8.

Table 8. Observed distance metrics (in meters) for Scenarios 13–15.

Obs.
Distance
between

FDP Mean Median SD CI Min Max

1 and 2
0.50

0.893 (+78.6%) 0.806 (+61.2%) 0.312 ±2.04e-03 0.473 (−5.4%) 1.844 (+268.8%)
2 and 3 0.803 (+60.6%) 0.769 (+53.8%) 0.208 ±1.36e-03 0.326 (−34.8%) 1.582 (+216.4%)
3 and 4 0.821 (+64.2%) 0.797 (+59.4%) 0.207 ±1.35e-03 0.337 (−32.6%) 1.759 (+251.8%)

1 and 2
0.60

0.944 (+57.33%) 0.881 (+46.83%) 0.282 ±1.85e-03 0.528 (−12.0%) 1.722 (+187.0%)
2 and 3 0.945 (+57.5%) 0.930 (+55.0%) 0.232 ±1.52e-03 0.440 (−26.67%) 1.844 (+207.33%)
3 and 4 0.910 (+51.67%) 0.893 (+48.83%) 0.204 ±1.33e-03 0.353 (−41.17%) 1.541 (+156.83%)

1 and 2
0.70

1.058 (+51.14%) 0.993 (+41.86%) 0.290 ±1.90e-03 0.663 (−5.29%) 1.818 (+159.71%)
2 and 3 1.016 (+45.14%) 0.999 (+42.71%) 0.221 ±1.45e-03 0.458 (−34.57%) 1.825 (+160.71%)
3 and 4 1.008 (+44.0%) 0.994 (+42.0%) 0.219 ±1.43e-03 0.342 (−51.14%) 2.431 (+247.29%)

The trend from Table 7, which indicates a correlation between the lower spread of the metrics and
an increasing FDP, can still be observed for the mean and median values but is less pronounced in the
minimum (a contrary trend for the last drone pair) and maximum values. In Figure 14a–c, these data
are also represented as three sets of box plots. Following the general trend, all set FDPs are located
below the boxes and show the small likelihood of collisions between the drones.

(a) FDP = 0.50 meters. (b) FDP = 0.60 meters. (c) FDP = 0.70 meters.

Figure 14. Observed path boxplots for different formation distance parameters (FDP) with a box size
of 0.25 meters.

4.5.7. Summary

Collecting the findings of these three FDP scenarios with different box sizes and comparing
them, another trend emerges. A smaller box size seems to result in overall better metrics, as can be
seen in Tables 6–8, and their corresponding box plots. The results show that ToSaMuFo can perform
pathfinding and successfully move a whole platoon of quadcopters around obstacles onto a goal
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position with differing performance metrics, influenced by two main parameters, namely box size and
formation distance.

4.6. Real-World Flights

To prove the applicability of ToSaMuFo for real drones, we did a study to analyze that the proposed
framework (i) can be used on real hardware with only adapting communication topics and (ii) performs
considerably better with real quadcopter controllers. Its modularity allows ToSaMuFo to be agnostic of
the drone control scheme. However, the tests only show that ToSaMuFo runs on real drones (A video
of a test flight can be found at: https://youtu.be/qqovms3nY5A). In [39], we describe the two flights
in more detail. Further tests with more drones, pathfinding in the presence of obstacles, and more
detailed evaluations are required.

5. Conclusions

In this work, we propose ToSaMuFo, a framework that combines self-awareness with platooning
for small UAVs, i.e., quadcopters or drones. We decided to build on the LRA-M loop a new
self-awareness loop named Platooning Awareness. With this loop, the framework is able to control a
quadcopter formation through scenarios, while learning about the environment, avoiding obstacles,
and moving to the destination. The formation employs a hierarchic leader–follower structure, in which
any drone can act as a platooning leader or follower drone. In this paper, we investigated platoons
with up to four drones. The implementation of the framework is based on ROS that provides a
publish/subscribe communication approach and offers modularity through its node system. This
modularity abstracts the platooning awareness from the hardware and enables ToSaMuFo to function
within simulations and real quadcopters. We compare two flight modes: the platoon (i) follows given
waypoints and (ii) finds a path through an environment in the presence of obstacles. With those modes,
we evaluate either the platooning or awareness part of the Platooning Awareness in 15 scenarios with
different parameters using the V-REP simulator. In the first setting, employing circle waypoints, we
show that ToSaMuFo enables the leader drone to lead a platoon around a circle path. The second
setting, employing spiral waypoints leading to a three-dimensional path, delivers consistent results. In
the third setting, employing the pathfinding algorithms, the leader quadcopter can guide a platoon
around obstacles, which also learns about its environment.

Furthermore, a few limiting assumptions were made. Firstly, only four quadcopters are used for
the evaluation to keep in line with vehicle platooning literature and our proof-of-concept approach.
In [39], we discuss platoons of two and three quadcopters. Secondly, only three different parameter
values are used for FDP and box size herein. Lastly, real quadcopters are only used in two test flights.
To prove the reproducibility of the results with real quadcopters, further evaluations are required.

For the future, further evaluations and additional features could be envisioned. First,
the evaluation indicates that the 3D flights offer more stable flight performance; however, this is
not sufficiently evaluated yet. Second, single nodes of the framework could be expanded in the future
on a per-node basis. Multiple experts could collaborate and improve on different nodes at the same
time. Third, the obstacle avoidance could be extended to allow drones to additionally fly over them.
Finally, the platoon assembly could be extended to enable dynamically changing formations.
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Abbreviations

The following abbreviations are used in this manuscript:

UAV Unmanned Aerial Vehicle
SeAC Self-Aware Computing
MPC Model Predictive Control
PID Proportional-Integral-Derivative
ROS Robot Operating System
PSO Particle Swarm Optimization
LQR Linear-quadratic regulator
SMC Sliding-Mode Control
DNN Deep Neural Network
LRA-M Learn-Reason-Action Loop
V-REP Virtual Robot Experimentation Platform
API Application Programming Interface
VM Virtual Machine
FDP Formation Distance Parameter
SD Standard Deviation
CI Confidence Interval

References

1. Bergenhem, C.; Petterson, H.; Coelingh, E.; Englund, C.; Shladover, S.; Tsugawa, S. Overview of Platooning
Systems. In Proceedings of the 19th ITS World Congress, Vienna, Austria, 22–26 October 2012; pp. 1393–1407.

2. Krupitzer, C.; Segata, M.; Breitbach, M.; El-Tawab, S.S.; Tomforde, S.; Becker, C. Towards Infrastructure-Aided
Self-Organized Hybrid Platooning. In Proceedings of the Global Conference on Internet of Things,
Alexandria, Egypt, 5–7 December 2018.

3. Kounev, S.; Kephart, J.O.; Milenkoski, A.; Zhu, X. Self-Aware Computing Systems, 1st ed.; Springer Publishing
Company, Berlin Heidelberg, Germany, Incorporated: 2017.

4. Krupitzer, C.; Roth, F.M.; VanSyckel, S.; Becker, C. A Survey on Engineering Approaches for Self-Adaptive
Systems. Pervasive Mob. Comput. J. 2015, 17, 184–206.

5. Reynolds, C.W. Flocks, Herds and Schools: A Distributed Behavioral Model. In Proceedings of the 14th
Annual Conference on Computer Graphics and Interactive Techniques, Anaheim, CA, USA, 27–31 July 1987;
ACM: New York, NY, USA, 1987; pp. 25–34, doi:10.1145/37401.37406.

6. Virágh, C.; Vásárhelyi, G.; Tarcai, N.; Szörényi, T.; Somorjai, G.; Nepusz, T.; Vicsek, T. Flocking Algorithm
for Autonomous Flying Robots. Bioinspir. Biomim. 2014, 9, 025012.

7. Vásárhelyi, G.; Virágh, C.; Somorjai, G.; Tarcai, N.; Szörényi, T.; Nepusz, T.; Vicsek, T. Outdoor Flocking
and Formation Flight with Autonomous Aerial Robots. In Proceedings of the 2014 IEEE/RSJ International
Conference on Intelligent Robots and Systems, Chicago, IL, USA, 14–18 September 2014; pp. 3866–3873.

8. Vásárhelyi, G.; Virágh, C.; Somorjai, G.; Nepusz, T.; Eiben, A.E.; Vicsek, T. Optimized Flocking of
Autonomous Drones in Confined Environments. Sci. Robot. 2018, 3, eaat3536.

9. Virágh, C.; Nagy, M.; Gershenson, C.; Vásárhelyi, G. Self-Organized UAV Traffic in Realistic Environments.
In Proceedings of the International Conference on Intelligent Robots and Systems, Daejeon, Korea, 9–14
October 2016; pp. 1645–1652.

10. Balázs, B.; Vásárhelyi, G. Coordinated Dense Aerial Traffic with Self-Driving Drones. In Proceedings of
the 2018 IEEE International Conference on Robotics and Automation, Brisbane, Australia, 21–25 May 2018;
pp. 6365–6372.
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