
Modeling Variations in Load Intensity
Profiles

Master Thesis of

Jóakim Gunnarsson v. Kistowski

At the Department of Informatics
Institute for Program Structures

and Data Organization (IPD)

Reviewer: Prof. Dr. Ralf H. Reussner
Second reviewer: Jun.-Prof. Dr.-Ing. Anne Koziolek
Advisor: Dipl.-Inform. Nikolas R. Herbst
Second advisor: Dipl.-Inform. Rouven Krebs, SAP

Duration: October 31st, 2013 – March 20th, 2014

KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association www.kit.edu

I declare that I have developed and written the enclosed thesis completely by myself, and
have not used sources or means without declaration in the text.

Karlsruhe, March 20th, 2014

. .
(Jóakim Gunnarsson v. Kistowski)

Zusammenfassung

Heutige Software Systeme müssen zuverlässige Leistung unter stark variierenden Lastin-
tensitäten liefern. Gleichzeitig sollen sie dynamisch allozierte Ressourcen effizient aus-
nutzen. Konventionelle Benchmarking Umgebungen unterstützen die Emulation von solch
dynamischen Lastprofilen nur teilweise. Industrielle Benchmarks nutzen typischerweise
Arbeitslasten mit konstanter oder schrittweise ansteigender Lastintensität. Alternativ
wiederholen sie einfach vergangene aufgenommene Lastverteilungen.

Als Ergebnis dieser Beobachtungen stellt diese Arbeit fest, dass Mittel zur Definition
von flexiblen Lastprofilen erstellt werden sollten. Dieser Bedarf wird durch die Ein-
führung von Metamodellen auf zwei verschiedenen Abstraktionsebenen adressiert. Auf der
niedrigeren Abstraktionsebene bietet das Descartes Load Intensity Meta-Model (DLIM)
eine strukturierte und zugängliche Herangehensweise, um Lastintensitätsprofile durch Edi-
tieren und Kombinieren von mathematischen Funktionen zu beschreiben. Das high-level
Descartes Load Intensity Meta-Model (hl-DLIM) ermöglicht die Beschreibung realitätsna-
her Lastintensitätsprofile mit der Hilfe von einigen wenigen Parametern, welche saisonale
Muster, Trends, Bursts und Rauschen beschreiben. Mit Hilfe dieser Parameter kann es
die am häufigsten vorkommende Teilmenge der insgesamt möglichen Lastintensitätsprofile
beschreiben.

Für den Einsatz der Meta-Modelle, wurde im Rahmen dieser Masterarbeit LIMBO en-
twickelt - eine Eclipse-basierende Umgebung für die Modellierung von variablen Lastpro-
filen, basierend auf DLIM und hl-DLIM als zugrundeliegende Modellierungsformalismen.
LIMBO bietet eine Visualisierung für DLIM Instanzen, sowie einen Modellerstellungs-
Wizard auf Basis der hl-DLIM Parameter. Weiterhin bietet es drei automatisierte Modell-
Extraktions-Prozesse an, mit denen DLIM und hl-DLIM Instanzen von existierenden Mes-
sungen von Ankunftsraten erstellt werden können. Es bietet auch eine Modell-zu-Modell
Transformation von hl-DLIM zu DLIM an.

Durch den Vergleich von neun unterschiedlichen realen Lastaufzeichnungen, welche über
Zeiträume von zwei Wochen bis sieben Monaten gemessen worden sind, mit den Modell-
Instanzen, die aus ihnen extrahiert worden sind, zeigt diese Arbeit, dass beide Metamod-
elle in der Lage sind Lastintensitätsprofile, wie sie in der realen Welt auftreten, mit einer
akzeptablen Genauigkeit bei einem durchschnittlichen Median-Fehler von 19.9% zu er-
fassen. Zusätzlich evaluiere ich die Nutzbarkeit und Zugänglichkeit von LIMBO anhand
eines Aufgaben- und Fragebogens, welcher von acht Informatikern aus fünf verschiedenen
Organisationen oder Unternehmen aus dem Performance-Engineering-Umfeld bearbeitet
und beantwortet wurde.

v

Abstract

Today’s software systems are expected to deliver reliable performance under highly vari-
able load intensities while at the same time making efficient use of dynamically allocated
resources. Conventional benchmarking frameworks provide limited support for emulating
such highly variable and dynamic load profiles and workload scenarios. Industrial bench-
marks typically use workloads with constant or stepwise increasing load intensity, or they
simply replay recorded workload traces.

Based on this observation, I identify the need for means allowing flexible definition of load
profiles and address this by introducing two meta-models at different abstraction levels.
At the lower abstraction level, the Descartes Load Intensity Meta-Model (DLIM) offers
a structured and accessible way of describing the load intensity over time by editing and
combining mathematical functions. The high-level Descartes Load Intensity Meta-Model
(hl-DLIM) allows the description of load variations using few defined parameters that
characterize the seasonal patterns, trends, bursts, and noise parts. Using these parameters,
hl-DLIM is capable of describing a subset of most common load intensity variations.

During the work on this thesis I developed LIMBO - an Eclipse-based tool for modeling
variable load intensity profiles based on DLIM and hl-DLIM as underlying modeling for-
malisms. LIMBO provides visualization for DLIM instances and a model creation wizard
based on hl-DLIM parameters. It also offers three automated model extraction processes
with which to extract DLIM and hl-DLIM instances from existing arrival rate traces. It
also offers a model-to-model transformation from hl-DLIM to DLIM.

I demonstrate that both meta-models are capable of capturing real-world load profiles
with acceptable accuracy, having an average median deviation of 19.9% from the original
trace. This is done by comparing nine different real life traces, which were measured over
duration of two weeks to seven months, to their respective model instances as extracted by
the automated model extraction processes. I also evaluate the usability and accessibility
of LIMBO based on a questionnaire which was answered by eight computer scientists from
five different organizations within the performance engineering community.

vii

Publications and Talks

1. Refereed Conference / Workshop Papers

1.1. Published

• [vKHK14c]

J. G. von Kistowski, N. R. Herbst, and S. Kounev, “LIMBO: A Tool For Mod-
eling Variable Load Intensities (Demonstration Paper)”, in Proceedings of the 5th
ACM/SPEC International Conference on Performance Engineering (ICPE 2014).
ACM, March 2014.

• [vKHK14b]

J. G. von Kistowski, N. R. Herbst, and S. Kounev, “Modeling Variations in Load In-
tensity over Time”, in Proceedings of the 3rd International Workshop on Large-Scale
Testing (LT 2014), co-located with the 5th ACM/SPEC International Conference on
Performance Engineering (ICPE 2014). ACM, March 2014.

1.2. Under Review

• [vKHK14a]

J. G. von Kistowski, N. R. Herbst, and S. Kounev, “Automatic Extraction of Load
Intensity Profiles using the Descartes Load Intensity Meta-Model”, in Proceedings of
the 11th International Conference on Autonomic Computing (ICAC 2014). USENIX,
June 2014, submitted on March 5th, 2014.

2. Invited Talks

• “LIMBO - A Load Intensity Modeling Platform”, at the SPEC RG Annual Meeting
2014, Dublin. March 26th, 2014.

ix

Contents

German Abstract v

Abstract vii

Publications and Talks ix
1. Refereed Conference / Workshop Papers . ix

1.1. Published . ix

1.2. Under Review . ix

2. Invited Talks . ix

1. Introduction 1
1.1. Motivation . 2

1.1.1. Motivation for Meta-Modeling in General 3

1.1.1.1. Model for Load Intensity Description 3

1.1.1.2. Model for Load Intensity Generation 3

1.1.1.3. Model for Load Intensity Pattern Formalization 3

1.1.2. Use-Cases for a Load Intensity Model 3

1.1.2.1. Use-Cases in the Focus of this Work 3

1.1.2.2. Additional Use-Cases . 4

1.2. Goals . 5

1.2.1. General Goals for Meta-Modeling . 5

1.2.2. Research Questions . 5

1.3. Benefits . 6

1.3.1. Accurate Description of Load Intensity Variations 6

1.3.2. Creation of specific Load Intensity Variations for Benchmarking . . 6

1.3.3. Automated Assistance for Load Intensity Analysis 6

1.4. Limitations of Scope . 6

2. Foundations 9
2.1. Open and Closed Workloads . 9

2.2. Load Intensity . 10

2.3. Pure Load Description vs. Workload Description 11

2.4. Self Similarity . 12

2.5. Meta-Model . 12

2.6. Tools . 13

3. Related Work 15
3.1. User Behavior Models . 15

3.2. Workload Modeling with Focus on Work Unit 16

3.3. Statistical Models . 16

3.4. Others . 17

xi

xii Contents

4. The Descartes Load Intensity Meta-Models 19
4.1. The Descartes Load Intensity Meta-Model 19

4.1.1. General Considerations and Requirements 19

4.1.2. Sequence . 20

4.1.3. TimeDependentFunctionContainer 21

4.1.3.1. Reference Clocks . 21

4.1.4. Function . 23

4.1.4.1. Concrete Functions . 23

4.1.4.2. Combinator . 24

4.1.4.3. Interpolation of Functions 25

4.1.5. Implemented Functions . 25

4.1.5.1. Seasonal . 25

4.1.5.2. Bursts . 25

4.1.5.3. Noises . 27

4.1.5.4. Trends . 27

4.1.5.5. Polynomial . 28

4.1.5.6. Arrival Rates from File . 28

4.1.6. Validation Constraints . 28

4.1.7. Technical Considerations . 28

4.1.7.1. Derived Time Attributes 29

4.1.7.2. Edit Provider Labels . 29

4.1.7.3. ArrivalRatesFromFile . 30

4.2. The high-level Descartes Load Intensity Model 30

4.2.1. Seasonal Part . 30

4.2.2. Trend Part . 31

4.2.3. Burst Part . 32

4.2.4. Noise Part . 32

4.2.5. The hl-DLIM to DLIM Model-to-Model Transformation 34

4.2.5.1. Transforming the Seasonal Part 34

4.2.5.2. Transforming the Trend Part 34

4.2.5.3. Transforming the Burst Part 35

4.2.5.4. Transforming the Noise Part 35

4.3. Conclusions . 35

5. LIMBO - The Descartes Load Intensity Modeling Platform 37
5.1. Requirements . 37

5.2. LIMBO Architecture . 38

5.2.1. DLIM Generator Plug-in . 39

5.2.2. DLIM Generator-Edit Plug-in . 43

5.2.3. DLIM Generator-Editor Plug-in . 43

5.2.4. DLIM Exporter Plug-in . 46

5.2.5. DLIM Extractor Plug-in . 46

5.3. DLIM Evaluator . 46

5.4. Arrival Rate and Request Time-Stamp Series Generator 47

5.4.1. Arrival Rates Series Generator . 47

5.4.2. Request Time-Stamp Series Generator 48

5.4.2.1. Errors due to Sampling . 48

5.5. Trend and Burst Calibration . 49

5.5.1. Calibration Errors . 50

5.6. Model Creation Wizard . 50

5.7. Additional Utilities . 50

5.7.1. Difference Calculator . 50

xii

Contents xiii

5.7.2. Time-Series Reader . 51

5.7.3. Plot View . 51

5.7.3.1. Combinator Impact Visualization 51

5.8. Conclusions . 51

6. Model Instance Extraction Process 53
6.1. Extracting the Seasonal Part . 54

6.2. Extracting the Trend Part . 54

6.2.1. Trend Part for S-MIEP . 56

6.2.2. Trend Part for P-MIEP . 56

6.3. Extracting the Burst Part . 56

6.4. Extracting the Noise Part . 56

6.4.1. Noise Reduction . 57

6.4.2. Calculating the Noise Distribution 57

6.5. Extracting a high-level Descartes Load Intensity Model Instance 58

6.5.1. Seasonal Part . 58

6.5.2. Trend Part . 58

6.5.3. Burst Part . 58

6.5.4. Noise Part . 58

6.6. Conclusions . 59

7. Evaluation 61
7.1. Evaluating Model Accuracy and the Model Extraction Process 61

7.1.1. Trace Requirements . 63

7.1.1.1. Noise Reduction . 63

7.1.2. Evaluation Metrics . 63

7.1.2.1. Motivating the Dynamic Time Warping-based Difference
Metric . 64

7.1.2.2. Difference Metric based on DTW 64

7.1.3. ClarkNet-HTTP . 65

7.1.4. NASA-HTTP . 67

7.1.5. Saskatchewan-HTTP . 69

7.1.6. WorldCup98 . 71

7.1.7. German Wikipedia . 74

7.1.8. French Wikipedia . 76

7.1.9. Russian Wikipedia . 78

7.1.10. English Wikipedia . 80

7.1.11. IBM z-Series Transactions . 81

7.1.11.1. IBM z-Series Transactions during work days 83

7.1.12. Comparison with BFAST . 84

7.1.13. Conclusions . 85

7.2. LIMBO Usability Evaluation . 85

7.3. Load Intensity Forecasting Evaluation . 89

8. Future Work 91
8.1. Improvement of existing features . 91

8.2. Extending for future Use-Cases . 92

9. Conclusion 93

Bibliography 95

xiii

xiv Contents

Appendix 99
A. LIMBO Tutorial . 99

A.1. Installing LIMBO . 99
A.1.1. Installation via Update Site 99
A.1.2. Building LIMBO from Code 100

A.2. Creating a new Model . 100
A.2.1. Modifying the Seasonal Part 101
A.2.2. Modifying the Trend Part 102
A.2.3. Modifying the Burst and Noise Parts 103

A.3. DLIM Editor . 104
A.3.1. Plot View . 105
A.3.2. Editing a DLIM instance in the Editor 105
A.3.3. Generating Time Stamps 108
A.3.4. Extracting a DLIM Sequence from a Trace 108
A.3.5. Comparing Model and Trace 109

A.4. Additional Features . 110
A.4.1. Periodic Process Extractor 110
A.4.2. Difference Calculator . 111

A.5. Example Models . 111
B. LIMBO Usability Questionnaire . 113

B.1. Questionnaire . 113
B.2. Responses . 117

Glossary 129

xiv

1. Introduction

Today’s cloud and web-based IT services need to handle huge numbers of concurrent users.
Customers access services independently of one another and expect reliable quality-of-
service under highly variable and dynamic load intensities. In this context, any knowledge
about a service’s load intensity profile is becoming a crucial information for managing the
underlying IT resource landscape.

Users use cloud and web-based IT services independently of one another and cause high
variability in the load intensity of the service. Considering the high amount of independent
users, one would assume that these load intensity variations are entirely random. This is
not the case however, since user behavior is influenced by human habits, trends, and events.
Factors such as time of day, time of the week, and/or current events can and do play a
role when it comes to the number of requests the cloud service has to handle.

Benchmarking uses work units that are deployed on a test system in order to measure the
system’s performance properties. In many cases, such as web or cloud systems, multiple
work units are deployed concurrently or sequentially to stress the system under test (SUT)
in a realistic manner. The rate at which a defined class of work units arrives at the SUT
is called arrival rate.

Cloud system benchmarks do not factor in this high load intensity variability. Common
benchmarking frameworks such as Faban1, Rain [BLY+10], and JMeter [Hal08] allow job
injection rates to be configured either to constant values, stepwise increasing rates (e.g.
for stress tests), or rates based on recorded workload traces. This work aims at closing the
gap between highly dynamic real-world load intensity profiles and the currently insufficient
flexibility in handling variable load profiles in the benchmarking and dynamic system
management domains.

To close the gap between the highly dynamic real-world load intensity variations and the
currently insufficiently variable load intensities used for benchmarking, I create load inten-
sity models for two major use-cases: Firstly, I support the creation of custom load intensity
behaviors, specifically designed to illicit certain system behavior, such as dynamic resource
allocation on elastic systems. Secondly, I realize a (partly) automatic approximation of
existing load intensity traces in form of a model instance. I propose two meta-models
at different abstraction level: The high-level Descartes Load Intensity Model (hl-DLIM)
allows the description of load variations using few defined parameters that characterize the

1Faban http://faban.org

1

2 1. Introduction

seasonal patterns, trends as well as bursts and noise parts. At the lower abstraction level,
the Descartes Load Intensity Model (DLIM) offers a structured and accessible way of de-
scribing load intensity profiles over time by editing and combining mathematical functions.
I also provide a transformation from hl-DLIM to DLIM model instances for the support
of further model refinements and automatic DLIM calibration features to be applied at
run-time as envisioned for future work.

For the handling and instantiation of the proposed load intensity models, I introduce
the LIMBO toolkit2 - an Eclipse-based tool for handling and instantiating load intensity
models based on DLIM. LIMBO offers an accessible way of editing DLIM instances and
extracting them from existing traces. It also supports using hl-DLIM parameters for easy
creation of new DLIM instances through a model creation wizard.

LIMBO provides automated model extraction processes with which DLIM and hl-DLIM
instances can be extracted from existing load variation traces. I present the Simple Model
Instance Extraction Process (S-MIEP), which is based on the approach taken in Breaks
For Additive Season and Trend (BFAST) [VHNC10] and the Periodic Model Instance
Extraction Process (P-MIEP) which features a wealth of repeating patterns, thus leading
into the direction of load intensity forecasting. The third extraction process, the high-level
Model Instance Extraction Process (hl-MIEP), extracts hl-DLIM instances.

I evaluate the accuracy of DLIM and hl-DLIM as well as the extraction processes by
comparing extracted model instances to real world traces. I measure absolute and relative
arrival rate differences between trace and model instance, and I also apply a difference
metric based on Dynamic Time Warping (DTW) [Mül07], which I created specifically for
the comparison of load intensity variations. The evaluation shows that my optimal model
extraction approach using S-MIEP has an average median accuracy of 19.9%, while at the
same time performing 8354 as fast as the BFAST decomposition.

LIMBO usability is then evaluated based on a questionnaire, which was taken by members
of the performance engineering community of different affiliations after working through a
simple LIMBO tutorial.

I also perform a preliminary evaluation of the applicability of DLIM and the Periodic Model
Instance Extraction Process (P-MIEP) for the purpose of load intensity forecasting. In
this preliminary evaluation P-MIEP is able to forecast a month of requests with a median
accuracy of 7.3%.

The remainder of this introduction is structured as follows: The following section outlines
the motivation for the development of a meta-model for load intensity variations and the
goals of the thesis. I describe some possible applications of a load intensity model and
state the applications this thesis lays focus on. Sections 1.2 and 1.3 then describe the goals
and benefits of the work in this thesis. Finally, Section 1.4 explains where the scope of
this work ends.

1.1. Motivation

Some of the motivations for a load intensity model derive from the general motivations of
model use in model-based and model-driven development.

Additional motivation for the Descartes Load Intensity Model (DLIM) can be found in
the use cases, which I envision for DLIM and LIMBO.

2LIMBO http://www.descartes-research.net/tools/

2

1.1. Motivation 3

1.1.1. Motivation for Meta-Modeling in General

Modeling of load intensity variations can help with the communication of load intensity
behavior, as it enables people who are unaware of platform details to define and develop
varying load intensities for benchmarking purposes. It also provides an abstraction level
that can be used to describe and formalize already existing loads.

1.1.1.1. Model for Load Intensity Description

Load intensity description by modeling has several advantages. Firstly, it improves com-
munication on the subject. A cloud platform customer might have a better ability of
specifying the load distributions his platform is supposed to handle. Developers might
then base tests on this more concrete description instead of having to rely on fuzzy state-
ments and a few describing numbers.

1.1.1.2. Model for Load Intensity Generation

A model could also be used to describe the workload intensity of benchmarks, specifically.
When this is the case, the model could be used to generate load intensities for bench-
marking and load testing. A well defined and powerful model could enable the fast and
easy creation of a variety of benchmark load intensities for a number of different scenar-
ios, such as representative loads or specific problem oriented loads for a certain platform
configuration.

1.1.1.3. Model for Load Intensity Pattern Formalization

Flexible composition of parametrized model elements allows to formalize characteristic
patterns of load intensity behavior. I envision that the process of composition of model
elements, with the purpose of creating a model based on an already existing load intensity
(i.e. the decomposition of an already existing load intensity behavior into model elements)
can lead to insight on different patterns and properties of the original load intensity be-
havior. This insight can then be formalized within the model elements’ parameters as well
as the composition of the elements themselves.

1.1.2. Use-Cases for a Load Intensity Model

A load intensity model can be applied in many contexts, some of which might not be
directly apparent. The following sections describe a few use-case scenarios in which a load
intensity model might be useful, in order to show the usefulness of load intensity modeling
and to give the reader a few additional ideas on what to do with the Descartes Load
Intensity Model.

1.1.2.1. Use-Cases in the Focus of this Work

This thesis places its focus on two major use-cases for the load intensity model:

• Creation of artificial load intensity variations for specific benchmarking purposes

• Extraction of existing load intensity variations from pre-existing traces.

Other possible use cases of the load intensity model will be part of future work.

1. Creating artificial Load Intensities for Benchmarking

A model describing the load intensity variations over time can be used to create
request or user arrival time-stamps that can then be used to define the beginning
time of a unit of work within a benchmarking framework. This enables a user to use a

3

4 1. Introduction

multitude of different varying workloads, which in turn helps with the benchmarking
of system properties that deal with such variations (such as elasticity).

This use-case describes the possibility of a custom created load intensity variation,
that has been specifically designed to help with the benchmarking of such a property.
Of course, this load intensity variation may be subject to additional requirements,
such as representability.

2. Creating a Load Intensity Model Instance from an existing Trace

A model instance can be used to describe a past real world load variation (within a
certain error). Doing so can be useful in a number of sub-use-cases:

• Parametrization of Request / User Arrival Traces

Among others, Zakay et al. [ZF13] sample request traces for benchmark work-
load generation. When doing so several problems may arise. The trace might
be taken from a system that is magnitudes larger than the test system on which
the benchmark is to be executed. The trace might also have been taken over
a long time period and has to be temporally compressed for the benchmark.
When using a load intensity model instead of a simple trace, these problems
become easily manageable. They can be managed either by modifying the
model instance directly, or through parametrization of the request time-stamp
generation (see Section 5.4.2).

• Anonymization of Request / User Arrival Traces

Request traces of real cloud or web based systems often include additional
information that may contain information about the system’s users. Even the
exact time-stamps themselves may still provide a reader of the trace with the
ability to extract information about the behavior of single users.

An abstract load variation representation helps to minimize this problem. Sys-
tem providers, who are concerned about customer anonymity, might be more
likely to provide usage information for research purposes in an abstract form as
made possible by a load intensity model.

1.1.2.2. Additional Use-Cases

These additional use-cases are either derived from the two previous cases or constitute new
approaches to the Load Intensity Model that may be useful to consider as part of future
work.

1. Load Intensity Forecasting

A model instance that has been derived from the incoming request trace of a currently
running system might be used to predict future request intensity variations. This
can then additionally help with the detection of unplanned events that deviate from
the periodic model that most likely results from such an extrapolation. Such a
forecasting mechanism could then be deployed on cloud systems. There it would
help to improve dynamic resource management, by increasing the efficiency of elastic
resource re-allocation.

2. Anomaly Detection

The use-case of using a model for load intensity forecasting already hinted at the use
of a load intensity model as a baseline of predicted system behavior. This baseline
can also be used in other fields of computer science, since it can always be used for

4

1.2. Goals 5

comparison against anomalies. In a security context, it might be used for finding
access patterns that deviate from usual access patterns in the form of their load
intensity as part of an intrusion detection benchmark as proposed in [MK12].

1.2. Goals

This thesis focuses on the use of the proposed meta-models for the creation of varying
load intensity behavior. The goals are thus aligned with the properties that improve
model instance creation. These properties are mainly:

• Model applicability: The model, as well as the provided modeling tools, are easy
to use, even by untrained third party users. Users shall be able to create a model
instance based on their specifications within relatively short time periods and without
prior training.

• Model accuracy: The model is capable of accurately describing a desired load
intensity behavior.

1.2.1. General Goals for Meta-Modeling

The meta-model captures a load intensity model, based on arrival rates with the goal of
creating a benchmark based on an open workload. To this end, the meta-model is to be
defined in a way that allows a benchmark based on the model to adequately fulfill the
quality criteria as put forth by Huppler in [Hup09]:

• Relevancy

• Repeatability

• Fairness

• Verifiability

• Economy

While these properties are also highly dependent on the workload itself, the meta-model
should aim to fulfill them for the benchmark’s load intensity level.

The meta-model should create a deterministic model, ensuring repeatability. The only
exception to the determinism are random noise model elements, which, while not being
deterministic, should still be reproducible using the same seed and therefore enabling
complete repeatability.

Benchmark relevancy, while being in the hands of the benchmark developer should be
improved by creating a meta-model powerful enough to describe real world load inten-
sities. The model should also be understandable enough to warrant its use in the first
place, speeding up the benchmark development process and thus enhancing the economy
requirement stated above.

1.2.2. Research Questions

During the course of this thesis, I answer the following research questions. They represent
the major research goals to be achieved by each unit of work (Meta-Model Definition,
Process Definition, Evaluation . . .). In detail, the research questions are:

1. Is it possible to create a model to capture load intensity variations over time?

a) Can this model be used for custom load intensity variation creation for specific
benchmarking purposes?

5

6 1. Introduction

b) Can this model be used to model existing real world load intensity traces accu-
rately?

2. Is it possible to formalize a process in order to extract model instances from existing
load intensity traces?

a) Can this process extract model instances accurately?

b) Can this process extract model instances reliably?

c) Which parts of the process require automation?

1.3. Benefits

The goals of this thesis provide benefits both towards creation as well as analysis of load
intensity variation profiles.

1.3.1. Accurate Description of Load Intensity Variations

A model of load intensity variations can be used to describe the underlying variations. This
description can be tailored towards human readability or modeling accuracy. In order to
achieve both benefits, this thesis introduces two meta-models.

• DLIM provides an accurate way of describing load intensity variations, as shown in
Section 7.1.

• hl-DLIM provides a less accurate, yet more understandable and intuitive way for
load intensity description (see Section 7.2).

Description of these load intensity variations can lead to a better understanding of the
involved patterns, as well as an easier identification of important or recurring components
within these variations. They also enable easy sharing of load intensity variations.

1.3.2. Creation of specific Load Intensity Variations for Benchmarking

The DLIM and hl-DLIM meta-models as well as the LIMBO modeling platform enable
the creation of specific load intensity variations. The major use-case for these variations is
the use as input for benchmarking frameworks, as is supported by LIMBO. Benchmarks
based on the created variations can then be used to test specific system properties, such
as elastic resource allocation.

1.3.3. Automated Assistance for Load Intensity Analysis

LIMBO provides automated model instance extraction processes (see Chapter 6), which
can be used to create DLIM and hl-DLIM instances from existing arrival rate traces. While
this obviously enables the communicative aspect described in Section 1.3.1, it also enables
further analysis of the load intensity variations through LIMBO’s provided tools, such as
the model decomposition visualization (see Section 5.7.3).

1.4. Limitations of Scope

The models in this thesis describe load intensities by arrival rates. They do not model
user behavior, resource demand, response times, or any other workload related property.
For this thesis, I assume that users in a typical cloud environment are completely unaware
of one another and access a software service without having any knowledge of other users’
behavior. Since the meta-models do not model the workload itself, they can only be used

6

1.4. Limitations of Scope 7

to define the intensity of an open workload. The open workload-approach is necessary,
considering the execution time and behavior of each work unit remains unknown to the
model.

Furthermore, DLIM and hl-DLIM do not announce the dispatched workload units. For
the use of these models, I assume that work units induce statistically indistinguishable
resource demands on the underlying hardware. Users of DLIM and hl-DLIM should thus
assume a homogenous request / user mix when modeling load intensities or construct
separate model instances accordingly.

7

2. Foundations

This chapter explains the central foundations needed for understanding the thesis. I discuss
the differences between open and closed workloads and define what load intensity means
for this work. I also describe the properties of load intensity that need to be considered
for modeling.

2.1. Open and Closed Workloads

Schroeder et al. [SWHB06] define open and closed workloads as follows (also see Fig. 2.1):

• Closed workload: New job arrivals are only triggered by job completions.

• Open workload: New jobs arrive independently of job completions.

Figure 2.1.: Illustrations of the closed and open system models. Source:[SWHB06]

The models in this thesis do not make any assumptions about the jobs themselves. They
do not know when they complete or if they complete at all. Considering that, they model
the arrival of jobs completely independently of job completion. It is clear that the models
of this thesis therefore describes the intensity of an open workload.

This makes sense, considering that users in a typical cloud environment are completely
unaware of one another. They will access the service without having any knowledge of
other users’ behavior. In the interest of keeping the model as simple as possible, I have

9

10 2. Foundations

decided to omit the (in cloud computing scenarios) rare case of job completion dependent
scheduling from the model all together.

Combining open and closed workload approaches is possible. In the context of this work
that would entail a user or work unit model, which would be triggered by the load intensity
model. The load intensity model would then trigger the arrival of closed workload batches,
modeled using think-times, and life-times.

2.2. Load Intensity

In this thesis load intensity is the function describing arrival rates of workload units over
time.

The arrival rate r(t) at time t is defined as follows:

r(t) = R′(t)
with R(t) = |{ut0 |t0 ≤ t}|

R(t) being the amount of all work units ut0 , with their respective arrival time t0, that
have arrived up until t.

no. iterations to estimate breakpoints: 4

50
00

00
20

00
00

0

Y
t

−
1e

+
06

5e
+

05

S
t

50
00

00
15

00
00

0
30

00
00

0

T
t

−
5e

+
05

5e
+

05

0 10 20 30 40 50 60

et

Time

Figure 2.2.: The decomposition of a time series into seasonal, trend, and remainder, using
BFAST [VHNC10].

The models of this thesis describe arrival rates of work units, with a major goal being the
creation of a time series for workload execution. As such it is sensible to view the model as
a specific way to describe a time series decomposition. For this reason, I chose to use the
decompositional elements of time series as used by BFAST [VHNC10] as the foundation
of the meta-model.

BFAST decomposes time series into the following functions (see Fig. 2.2):

10

2.3. Pure Load Description vs. Workload Description 11

• Seasonal: A possibly infinitely repeating function of the time series’ seasonal char-
acteristics (such as sin or cos functions).

• Trend: An additive trend that shows the change of the seasonal pattern over time.

• Remainder: The remainder, in the case of load intensity modeling this includes bursts
and noise.

2.3. Pure Load Description vs. Workload Description

The Load Intensity Model resulting from this thesis’ work is a model that describes load
intensity only. It is independent of all considerations for the actual unit of work that is
being executed. The load description used as part of the model thus only describes request
arrival rates.

It does not model the following properties:

• Resource allocation and use

• Response, waiting, or service times

• The mix of different work units

• User behavior

Note that when modeling load intensity based on arrival rates using an open workload
approach (as is done in this thesis), I do not model any user behavior including the time
at which the session is ended by each user. Thus the model does not contain the number
of concurrent users on the system. It models the number of concurrently arriving users.

Other models (see Chapter 3) model some or all of the excluded properties. They do
however not go into detail with the description of varying load intensities.

A work that also takes varying load intensities into account is the thesis of Eike Schulz
[Sch14]. He uses this thesis’ approach as part of his workload model. His model consists
of the following parts:

• Application Model

– Session Layer : validity of service invocation sequences

– Protocol Layer : service-related protocol details

• Behavior Models

– Markov chains are used to capture probabilistic behavior of user types

– Distribution of think times

• Behavior Mix is the relative frequencies of the mix of different Behavior Models,
which make up the total workload

• Workload Intensity: (varying) number of virtual users
as modeled by DLIM instances resulting from this thesis.

11

12 2. Foundations

2.4. Self Similarity

Bai et al. [BS13] describe the property of self similarity for a process as follows: ”A
process shows self-similarity implies the process is indistinguishable from its scaled versions
obtained by averaging the original process within different observation time scales.”

This means that a load intensity model that is being stretched or compressed to another
time scale has to scale its arrival rate behavior accordingly. If s(t) is a linear function that
scales the current time, and ar(t) is the arrival rate function that results from the load
intensity model, which is defined over the interval of [0, tmax), then the following must hold
true for the scaled arrival rate functions ars(t) (defined over the interval of [0, s(tmax)):

ar(t) = ars(s(t))

Forcing self similarity for the load intensity model is important for some use cases such
as network traffic simulation. It also enables an intuitive understanding of the model’s
scaling behavior.

2.5. Meta-Model

A meta-model is a model describing another model. Thomas Stahl and Markus Völter
[SV06] define a meta-model as describing the following parts:

Parts : Define the model’s elements.

Rules : Define the rules of model validity.

Abstract Syntax : Describes the elements and their relations, representation independent.

Concrete Syntax : Describes the representation of model instances. In this case this is
defined by the Eclipse Modeling Framework, which I use for meta-model definition
(see the Tools Section 2.6).

Static Semantics : Contain the semantics independent of model execution (e.g. con-
straints).

Dynamic Semantics : Define the meaning of the model (in the case of this work: the load
intensity variation, as described by the model).

Meta-models vary in the approach they take, they can attempt describe the problem-space
itself and implicitly arrive at the solution or they can attempt to describe the solution and
omit the problem. this seems to be a trade-off at times, with the two extremes being:

• A problem oriented approach: Creates a meta-model with the elements describing
entities typically associated with load intensity behavior, such as bursts or sinusodial
patterns.

• A solution oriented approach: Creates a less intuitive model based on freely con-
figurable mathematical functions that can describe a wide range range of arrival rate
distributions. This approach would promise a more powerful resulting model, which
would be less intuitive to use.

12

2.6. Tools 13

2.6. Tools

The DLIM meta-model as well as the LIMBO modeling platform are based on the Eclipse
Modeling Framework (EMF) [SBMP08]. EMF already provides a basic modeling en-
vironment, whereas additional tooling is added using the standard Eclipse plug-in devel-
opment environment.

The Eclipse Rich Client Platform [MLA10] is also used to provide extension points for
future work. These extension points can be used to add custom model exporters and model
instance extractors to LIMBO. Default exporters and extractors are already implemented
and shipped with LIMBO. These default exporters and extractors are capable of reading
and writing both arrival rate and request time-stamp series.

The created time-series are in a .csv format. The goal of the exporters is to generate these
time-stamps in a format, which is readable by benchmarking frameworks such as these:

• Faban1 is a performance workload creation and execution framework for perfor-
mance, scalability, and load testing of server applications.

• Fincos2 is a benchmarking framework for evaluating complex event processing sys-
tems.

• Rain [BLY+10] is a workload generation toolkit for cloud computing applications.

• JMeter [Hal08] is a Java-based framework widely used for load and stress testing
purposes in general.

1Faban: http://faban.org
2Fincos: https://code.google.com/p/fincos/

13

3. Related Work

A number of approaches to generate workloads for cloud systems have been created already.
These approaches differ from this thesis’ approach in two key aspects, however. They are
either statistical or they put key emphasis on the behavior of the actual units of work
they dispatch (or both). As mentioned in Section 1.4, DLIM and hl-DLIM focus on the
description of request or user arrivals, yet not their behavior after arrival. They do so
in a deterministic fashion (excluding noise), which differs from the statistical modeling
approaches.

Most of the related work can thus be grouped in at least one of the following three cate-
gories:

• User behavior models: [vHRH08], [RBG13], [BLY+10], [MAFM99].

These models model work by modeling the behavior and tasks triggered by a user.
This has a direct impact on the work type itself and differs greatly from my approach
of only modeling user arrival rates.

Models of this kind can however be easily combined with the Descartes Load Intensity
Model, since they model what the user does after his/her arrival as modeled by the
Descartes Load Intensity Model.

• Workload modeling with a focus on work units and resource demands:
[CKKR12], [BC98].

These models focus on the actual unit of work and model it in a way that allows for
a specific resource use. These models differ from the approach taken in this work,
since this thesis does not model the work unit at all. The use case of creating work
for benchmarking of specific system behavior however, stays the same.

• Statistical models: [Fei02], [Li10], [MAR+03], [RLGPC+99], [BFF+10].

These models try to extract workload intensity into a few statistical numbers that
describe the workload. These approaches differ from my deterministic approach
(although the DLIM Noise is not deterministic, but still reproducible), in that they
do not capture the load intensity behavior changes over time.

3.1. User Behavior Models

Van Hoorn et al.[vHRH08] create an entire workload from his model. They model both
the workload itself, as well as user behavior using Markov chains. This results in a closed

15

16 3. Related Work

workload model and thus differs strongly from the open workload approach employed in
this work.

Roy et al.[RBG13] again model user behavior via Markov chains in the domain specific
context of Video on Demand platforms.

Beich et al.[BLY+10] create workloads specifically targeted for clouds. Their focus is on
workload properties such as data usage hotspots with the goals of evaluating cloud specific
properties such as elastic behavior and user separation. For this they take a closed workload
approach at modeling user behavior. Their RAIN framework relates to the work in this
thesis however in that their very basic user scheduler can take custom time-series as input.

Menascé et al. [MAFM99] analyze HTTP session logs in order to create Customer Behavior
Model Graphs (CBMG), which they use to characterize user behavior within sessions.

3.2. Workload Modeling with Focus on Work Unit

Casale et al.[CKKR12] create bursty workloads by modeling the workload intensity. Their
approach differs from this thesis’ approach however, since it defines load intensity by arrival
rates, whereas they define it by the number of concurrently running units of work times
the resource usage of these work units. As a result their work focuses on assumptions on
work unit resource usage and duration and the cross testing of these assumptions.

Barford et al. [BC98] model their workload with a focus on the type of requests to send.
For this they evaluate workload properties, such as file popularity and distribution in order
to create the typical challenges posted by Web workloads.

3.3. Statistical Models

Feitelson[Fei02] creates a statistical model for parallel job schedulers with the goal of
system comparison through system performance evaluation. This differs considerably from
this thesis’ approach, especially considering the goals in mind. While DLIM and hl-DLIM
should also be usable for system comparison, I envision that their deterministic natures
enables easy communication and might also enable their use for intensity forecasting in
the future.

Hui Li [Li10] models batch workloads for eScience grids. Batch workloads differ greatly
from the cloud workload type that is the focus of this thesis. Li’s focus is also more on
statistical analysis than on deterministic workload creation. Li’s work does however raise
two points, which are fundamental to my work: Inter-arrival times and Periodicity. Inter-
arrival times are the inverse to the arrival rates, which I am modeling and the observation
that Periodicity exists is central to my Meta-Model.

Menascé et al. [MAR+03] analyze workloads on multiple layers: Business, Session, Func-
tion, and the HTTP Request layer. The latter is related to my work. While analyzing
HTTP Request volume, they notice several of the patterns, that where part of the moti-
vations for this work (such as: lower request volumes on weekends). To this end they split
the workload into two parts: noisy (non-predictable) oscillations and scales with strong
correlations. On this they perform a statistical analysis in order to extract properties,
such as variance and correlations.

Reyes at el. [RLGPC+99] use a multi-layered approach towards www traffic modeling.
Thy model Session inter-arrival times in their Session Level, which is the object of the
Descartes Load Intensity Model as well. They do however model it as an exponentially
distributed random variable, which differs greatly from my more deterministic approach,
since they do not model the change of the inter-arrival rates over time.

16

3.4. Others 17

Bod́ık et al. [BFF+10] model workload spikes with the goal of workload generation. They
apply a single user model, in which one user sends a number of requests as defined by the
model. This is effectively the open workload approach also taken by DLIM and hl-DLIM.
They also focus on arrival rates and they evaluate their model using many of the workload
traces used in this work (WorldCup98, Wikipedia project counts . . .). The major difference
to my work however is both the focus on spikes, as DLIM and hl-DLIM model bursts as
part of a greater model, thus putting less emphasis on them, as well as the statistical
approach, which they base on request distributions within the spikes.

3.4. Others

Zakay et al. [ZF13] partition workloads into users and then sample workload traces for each
user in order to describe user behavior. On a superficial level, this approach can also be
taken using the Descartes Load Intensity Model by employing the ArrivalRatesFromFile
model element for sampling. At closer inspection however, Zakay’s work differs greatly
from mine. Whereas I focus on creation and description of load intensities, Zakay et al.
focus on the difficulties of sampling workload traces. Far beyond the naive approach of
ArrivalRatesFromFile they employ advanced techniques, such as the partitioning of traces
into subtraces for different users.

17

4. The Descartes Load Intensity
Meta-Models

I describe load intensity using two models: The Descartes Load Intensity Model (DLIM)
and the high-level Descartes Load Intensity Model (hl-DLIM). The base load intensity
model provides structuring and compositing functionality for piece-wise mathematical
functions, whereas the high-level model provides a set of parameters that describe load
intensity variations in a more concise fashion on a more abstract level.

A Model-to-Model (M2M) transformation from the high-level Descartes Load Intensity
Model to the Descartes Load Intensity Model is also provided.

4.1. The Descartes Load Intensity Meta-Model

4.1.1. General Considerations and Requirements

The Descartes Load Intensity Model (DLIM) describes request arrival rates over time.
Specifically, the model is aimed at describing the abstract variations of work unit arrival
rates into characteristic load intensity behavior. This can also be achieved by a piece-wise
mathematical function. A mathematical function can be used to approximate any variable
load intensities and describe them within a certain error.

DLIM offers a way to structure this underlying function for easy editing according to
the following considerations and requirements and being centered around the following
properties:

• (Partial) Periodicity : Model Elements may be repeating. Examples:

– Peak usage during business hours for commercial systems.

– Low usage during night times or weekends.

• Flexible incorporation of unplanned events: Obviously, the model has to account for
non-periodic events, such as unplanned bursts, as well.

• Compositability : Elements may consist of a tree of other elements. The encompassing
element may then modify its children. Examples:

– A weekly pattern (more usage on weekdays, less on weekends) encompasses
daily patterns (more usage at day, less at night).

19

20 4. The Descartes Load Intensity Meta-Models

Figure 4.1.: The Descartes Load Intensity Meta-Model (DLIM) without the child imple-
mentations of the abstract Noise, Burst, Seasonal, and Trend.

– An unplanned burst adds onto the usual periodic usage.

Additional Requirements for the Meta-Model are:

• The functionality of each model element should be self-explanatory (as far as possi-
ble). As a result, all elements and attributes should have well defined and describing
names.

• A user should be able to understand the model instance’s behavior as easily as
possible. Among other things, this means that there should be no hidden settings
within model elements.

4.1.2. Sequence

Figure 4.2.: The Sequence of the Descartes Load Intensity Model (DLIM).

20

4.1. The Descartes Load Intensity Meta-Model 21

The root element of any Descartes Load Intensity Model instance is a Sequence (see Fig.
4.2). The Sequence holds an ordered List of TimeDependentFunctionContainers, which
describe the basic arrival rate functions (see Section 4.1.3). The TimeDependentFunction-
Containers are executed in sequence. This execution repeats as many times as indicated
by the terminateAfterLoops attribute. If the terminateAfterLoops attribute is unset (de-
fault value: −1), the Sequence repeats for the time indicated by the terminateAfterTime
attribute. If both are set, the variation resulting in the shortest execution time is selected
(meaning finalDuration = min(terminateAfterLoops∗loopDuration, terminateAfterT ime).

Note that LIMBO does not allow infinite Sequences in order to guarantee benchmark
termination.

Additionally, the Sequence holds a list of Combinators (see Section 4.1.4.2), which it in-
herits from Function.

4.1.3. TimeDependentFunctionContainer

The TimeDependentFunctionContainer contains functions that describe the arrival rate on
a basic mathematical level, meaning that it contains one instance of a child of the abstract
class Function. This can either be a Sequence, a child of Noise, Seasonal, Burst, or Trend,
or a custom child of Function, such as Polynomial or ArrivalRateFromFile.

Any Function can be combined with other Functions using a Combinator, which results in
a TimeDependentFunctionContainer carrying an entire Tree of functions.

The TimeDependentFunctionContainer describes its arrival rates for a set duration, after
which the next TimeDependentFunctionContainer in the parent Sequence’s list is executed.

TimeDependentFunctionContainers do not have an offset time to wait before execution.
Every TimeDependentFunctionContainer is executed directly when the previous TimeDe-
pendentFunctionContainer ends. An offset can be achieved by creating a TimeDepen-
dentFunctionContainer without any defined functions. This TimeDependentFunctionCon-
tainer will then return the parent Sequence’s Combinator’s neutral Element (1 for mul-
tiplication, 0 for addition and subtraction). The Reason for the absence of an offset is
the goal of making model instances easier to grasp visually (Thus helping to fulfill the
requirement of being able to grasp model behavior, see 4.1.1). By adding an additional
TimeDependentFunctionContainer, optionally named by the DLIM user as offset, rather
then editing an attribute, a reader can see the offset more easily. Thus, this decision is
primarily based on the way in which attributes are presented in the EMF Model Editor.

The ReferenceClockObject and ClockType Attributes govern the input variable for all Func-
tions within the TimeDependentFunctionContainer’s Function tree.

4.1.3.1. Reference Clocks

All functions DLIM are of the form a = f(t), where a is the resulting arrival rate and t is
the current time. The question, however, is: What specific time does t represent?

Reference Clocks, in the form of ClockType and ReferenceClockObject help to answer this
question.

ClockType

ClockType is an enum with four possible values, which define the input time for the func-
tion:

• RootClock: The time since the beginning of the load intensity description (i.e. the
time since the root Sequence started exection)

21

22 4. The Descartes Load Intensity Meta-Models

• ElementClock: The time since the current TimeDependentFunctionContainer started
executing.

• SequenceClock: The time since the current Sequence (the Sequence containing the
currently running TimeDependentFunctionContainer) started executing.

• LoopClock: The time since the current Sequence’s first TimeDependentFunction-
Container started its most current execution run.

ReferenceClockObject

LoopClock and SequenceClock cause all Functions within the TimeDependentFunctionCon-
tainer to use a time defined by the TimeDependentFunctionContainer’s parent Sequence
as input time. This parent Sequence may be the function of another TimeDependentFunc-
tionContainer, however, which in turn is the child of another Sequence. This results in a
tree of Sequences holding multiple TimeDependentFunctionContainers, which may again
hold Sequences and so on.

When choosing the input time for a Function, a scenario might occur, in which it is
necessary to use the time as defined by a Sequence that is not the direct parent of the
Function’s containing TimeDependentFunctionContainer, but rather a node higher up in
the tree that contains the Function, its parent TimeDependentFunctionContainer as well
as its containing Sequence.

When using a time dependent on a parent Sequence as function input, it might be necessary
to use the time dependent on a Sequence further up the tree, instead of the direct parent.

The ReferenceClockObject allows the user to do this. Every Sequence may contain an
optional ReferenceClockObject, which a TimeDependentFunctionContainer may then ref-
erence. When using SequenceClock or LoopClock as function input, the Sequence chosen
as the time reference is not the direct parent Sequence (as is the case, when no Reference-
ClockObject is referenced), but the Sequence holding the ReferenceClockObject instead.

Note that the ReferenceClockObject ’s parent Sequence must be currently executing when
the function is being calculated. This means that the ReferenceClockObject’s parent Se-
quence must be a node within the part of the tree that contains the current TimeDepen-
dentFunctionContainer.

Figure 4.3.: An Example model using a Reference Clock Object.

Figure 4.3 shows a simple artificial example of the usage of a ReferenceClockObject. This
example features a simple day and night cycle over the course of a week. The night
features random arrival rate noise, whereas the day features a linear decline from Monday
morning to Sunday Evening. Since this decline depends on the time within the week
rather than the time within the single day, the time of the Sequence week needs to be
used as the input time for the TimeDependentFunctionContainer day, which contains the

22

4.1. The Descartes Load Intensity Meta-Model 23

linear function. This is done by referencing the Sequence week ’s Reference Clock Object
weekClock in the TimeDependentFunctionContainer and setting the Point Of Reference
Clock Type to LOOPCLOCK. This results with the time since the start of the current
week as the input time for the linear declining function. The resulting arrival rates can be
seen in Figure 4.4.

Reference_Clock_Example Arrival Rates

Reference_Clock_Example

0 25 50 75 100 125 150 175 200 225 250 275 300 325 350

time

0

50

100

150

200

250

300

350

400

450

500

550

a
rr

iv
a

l
ra

te

Figure 4.4.: The resulting arrival rates of the model in Figure 4.3, over the course of two
weeks.

4.1.4. Function

Figure 4.5.: The Function of the Descartes Load Intensity Model (DLIM).

The Function (see Fig. 4.5) is the abstract parent class to mathematical functions contained
within the TimeDependentFunctionContainer.

4.1.4.1. Concrete Functions

The Function is abstract and cannot be instantiated. Instead a number of non-abstract
children are provided that can be used as a TimeDependentFunctionContainer’s Function
(For a complete list of currently available concrete Functions see Section 4.1.5). The most
notable concrete Function is the Sequence, which effectively means that any TimeDepen-
dentFunctionContainer may hold a (complex) Sequence in its Function tree. This Sequence
will then again contain further TimeDependentFunctionContainers, creating an even big-
ger tree of Sequences holding TimeDependentFunctionContainers, which hold Sequences

23

24 4. The Descartes Load Intensity Meta-Models

and so on. Note that any Sequence contained within a TimeDependentFunctionContainer
must be unique, thus preventing circular references.

Most other concrete Functions fall into one of the following categories (each represented
by their abstract super-class):

• Seasonal: Functions that describe seasonal, recurring patterns (such as sin).

• Bursts: Functions that describe singular bursts that reach a certain peak value at a
peakTime and then return to the base value, from which they started.

• Noise: Functions that describe random Noise.

• Trends: Functions that describe monotonic trends. These Functions are intended
to be applied to other Functions describing the underlying patterns (usually Sea-
sonal Functions). They are interpolated Functions, described by their start and end
values. They can also be used to approximate seasonal dummy functions by interpo-
lating between the local minima and maxima within the seasonal function (e.g. see
Section 4.2.5.1).

4.1.4.2. Combinator

The Combinator allows the combination of a Function’s arrival rates with the arrival rates
generated by other concurrently running Functions. It contains the operator (+,-,*) with
which to combine the arrival rates and a reference to a unique Function describing the
arrival rates to be combined with.

It is also important to consider the order, in which the Combinators are applied to their
parent Function. The TimeDependentFunctionContainer in Figure 4.6 helps to illustrate
this problem.

Figure 4.6.: Two different Combinator’s as children of a Function.

There are three approaches on the order in which the Combinators should be evaluated:

1. Standard mathematical evaluation:

1parent + 2 ∗ 3 =EvaluateTree 1 + (2 ∗ 3) = 1 + 6 = 7

The downside if this approach is obvious: The concept of the Combinator suggests
the application with the parent Function containing the Combinator. In this case
the Constant 1.0 Function holds both the Constant 2.0, as well as the Constant 3.0
Functions. The Constant 3.0 Function is not applied to its Combinator’s parent
Function however, but to its sibling Constant 2.0 instead.

2. In Order (Left to Right) Evaluation:

1parent + 2 ∗ 3 =EvaluateTree ((1 + 2) ∗ 3) = (3 ∗ 3) = 9

This approach solves the problem, that Combinators are not applied to their parent
Function. However, the order of the Combinators still matters, which might lead
confusing results for the modeler.

24

4.1. The Descartes Load Intensity Meta-Model 25

3. Execute Multiplications First:

1parent + 2 ∗ 3 =EvaluateTree 1 ∗ 3 + 2 = 3 + 2 = 5

This approach selects all multiplicative Combinators to be evaluated first. This
results in an order independent way for all Combinators to be applied on their parent
Function. LIMBO currently uses this approach.

As any Function, the Function contained within the Combinator may be a Sequence. In
this case it is important to note that an expired Sequence (a Sequence that has passed
beyond its termination-duration or maximum number of allowed loops) always returns an
arrival rate of 0 or 1 depending on the operator of the Combinator holding it. This means
that a Sequence that is a held by a Combinator with a multiplicative operator will return 1,
whereas a Sequence held by a Combinator with an additive or subtractive operator will
return 0. A Sequence may only be held by one Combinator in order to avoid conflicts as
a result of this constraint.

4.1.4.3. Interpolation of Functions

Interpolated Functions are usually either Trends (with a functionOutputAtStart and func-
tionOutputAtEnd value), or Bursts (with a base level, a peak value and a peak time at
which this peak value is reached).

The begin and end time, at which the start and end values (or the base level) are defined,
are denoted by the Reference Clock of the TimeDependentFunctionContainer holding this
Function. The begin time is thus the time at which the reference clock starts running,
whereas the end time is the time at which it stops (as defined by the duration of the
parent TimeDependentFunctionContainer / the Sequence holding the referenced Refer-
enceClockObject).

4.1.5. Implemented Functions

The implemented Functions are a collection of parametrized functions that describe arrival
rate variations. This list of functions is open and may be improved upon by adding
additional functions as part of future work.

4.1.5.1. Seasonal

The following Seasonal functions have been implemented so far:

• Constant : A constant function returning value.

• Sin : A sin function defined by its min value, max value, period, and phase.

• Absolute Sin : A sin function that returns the absolute value of the sin result.

4.1.5.2. Bursts

The following Bursts have been implemented so far:

• Linear Increase And Decline : This function starts and ends at its base value
at the respective times of 0 (as defined by the Reference Clock) and duration (as
defined by the Reference Clock’s parent). It reaches its peak value at peakTime and
interpolates linearly between these values.

• Exponential Increase And Decline : This function is parametrized with the same
attributes as its linear counterpart. The interpolation results in two exponential
curves, however.

25

26 4. The Descartes Load Intensity Meta-Models

F
igu

re
4.7.:

T
h
e

co
m

p
lete

D
esca

rtes
L

o
a
d

In
ten

sity
M

eta-M
o
d

el
(D

L
IM

),
in

clu
d

in
g

all
im

p
lem

en
ted

fu
n
ction

s
at

th
e

tim
e

at
w

h
ich

th
e

w
ork

on
th

is
th

esis
is

co
n
clu

d
ed

(M
arch

20
th

,
2014).

26

4.1. The Descartes Load Intensity Meta-Model 27

• Exponential Increase, Logarithmic Decline : This function rises with an ex-
ponential curve, until reaching its peak value at peakTime, but declines using a
logarithmic curve. The logarithmic interpolation uses the same approach as used by
the logarithmic Trend in Section 4.1.5.4.

4.1.5.3. Noises

All Noises are generated based on distributions that use random variables provided by the
java.util.Random random generator. This random generator is initialized using a fixed
seed in order to guarantee reproducibility of its results. For different random distributions
the distributions in the Apache Commons Math [Dev] library are employed.

The following Noises have been implemented so far:

• Uniform Noise : This Noise generates arrival rates based on a uniform distribution
between its min and max values.

• Normal Noise : This Noise generates arrival rates based on a normal distribution,
defined by its mean and standard deviation.

4.1.5.4. Trends

Trends always interpolate between a functionOutputAtStart at time 0 (as defined by the
parent TimeDependentFunctionContainers’s Reference Clock) and a functionOutputAtEnd
reached at time duration (as defined by the Reference Clock’s parent).

The following Trends have been implemented so far:

• Linear : a linear interpolation between functionOutputAtStart and functionOutpu-
tAtEnd.

• Sin : this Trend interpolates between the functionOutputAtStart and functionOut-
putAtEnd using the flank of a sine-curve.

• Exponential : an exponential interpolation between functionOutputAtStart and
functionOutputAtEnd.

• Logarithmic: a logarithmic interpolation between functionOutputAtStart and func-
tionOutputAtEnd. The shape of the curve is defined using the parameter order.

Note that the logarithmic curve is always the same curve, starting at 1 and rising
to order, which is then parametrized. This results in the following interpolation
function being used:

f(t) = start+ (end− start) ∗ 1
order ∗ log(t∗(e

order−1)
duration + 1)

This interpolation approach is used to prevent eend−start from taking too large a
value, and thus resulting in a double overflow, as it would, when directly interpolating
a logarithmic curve between the functionOutputAtStart and functionOutputAtEnd
values. At the same time this solution limits the performance impact of this model
element, thus helping to fulfill the performance and resource use requirement for the
tooling environment (see Section 5.1).
For reference, the original interpolation function, resulting in a double overflow for
large values:

f(t) = start+ log(t
duration ∗ (eend−start − 1) + 1)

27

28 4. The Descartes Load Intensity Meta-Models

4.1.5.5. Polynomial

The Polynomial allows the definition of custom polynomials to serve as function. A Poly-
nomial consists of a list of PolynomialFactors and calculates its end result as follows:

f(x) =
∑factors.size()−1

i=0 factori ∗ (x+ offseti)
i

The offset is especially important, since it enables negative polynomial inputs and thus
the creation of functions describing parables and other graphs requiring negative inputs.
The offset of the 0th factor is never taken into account however, and thus always assumed
to be 0. It is also not displayed in LIMBO’s DLIM editor.

4.1.5.6. Arrival Rates from File

It is possible to specify a file containing arrival rates as input for a function. The file
must follow the same format and pattern as arrival rate files generated by the time-stamp
and arrival rate generator, which generates the time-stamp and arrival rate files from a
Descartes Load Intensity Model.

The resulting function uses linear interpolation between the arrival rate values specified by
the input arrival rate file. This enables the sampling of this function at points in time that
were not specifically defined in the input arrival rate file. It should however be noted that
the result of the linear interpolation might not always make sense depending on context
(e.g. interpolation of Noise values is questionable). The user should always try to sample
at the points in time that were specified in the original file.

LIMBO (see Chapter 5) includes a feature capable of generating these files from a series
of time-stamps.

4.1.6. Validation Constraints

The DLIM EMF-Editor checks model multiplicity constraints automatically. Other vali-
dation constraints have been added manually:

• Sequence::durationDefined(): Checks if the Sequence duration has been properly
defined. Returns false if loops is set to infinite (-1) and the duration is less or equal
to 0.0.

• TimeDependentFunctionContainer::durationGreaterZero(): Returns false
if the duration is less or equal to 0.0.

• TimeDependentFunctionContainer::referenceClockInTreeNode(): Returns
false if the Sequence containing the referenced Reference Clock Object is not an
(indirect) parent of the TimeDependentFunctionContainer.

• Burst::peakTimeGreaterZero(): Returns false if the Burst’s peakTime is less or
equal to 0.

4.1.7. Technical Considerations

The ecore Meta-Model (see [SBMP08]) used by the generator and editor has a few addi-
tional elements that have not been described so far. The purpose of these elements is to
enable functionality for the generator and editor without adding semantics to model. All
of these elements are invisible to the user. They are mostly derived attributes.

28

4.1. The Descartes Load Intensity Meta-Model 29

4.1.7.1. Derived Time Attributes

Both Sequence and TimeDependentFunctionContainer hold a few derived Attributes that
are used to store the points in time at which these are executed. These values are derived
from the duration and loops attributes. They are:

• TimeDependentFunctionContainer::firstIterationStart: The point in time at
which the TimeDependentFunctionContainer first begins execution.

• TimeDependentFunctionContainer::firstIterationEnd: The point in time at
which the TimeDependentFunctionContainer ends execution during its first execu-
tion run. This is usually also the firstIterationStart value of the next TimeDepen-
dentFunctionContainer.

• Sequence::firstIterationStart: The point in time at which the Sequence first be-
gins execution.

• Sequence::firstIterationEnd: The point in time at which the Sequence ends its
first execution run.

• Sequence::loopDuration: The duration of a single loop. This is the sum of the
durations of the Sequence’s child TimeDependentFunctionContainers.

• Sequence::finalDuration: The actual duration for which the Sequence runs. This
is calculated as min(loops ∗ loopDuration, duration).

• ReferenceClockObject::loopTime: The time since the Sequence containing the
ReferenceClockObject started its last loop. This value is updated dynamically dur-
ing time-series generation and accessed by a TimeDependentFunctionContainer, by
setting its PointOfReferenceClockType to LOOPCLOCK.

• ReferenceClockObject::seqTime: The time since the Sequence containing the
ReferenceClockObject first started executing (currentT ime − (Sequence :: start)).
This value is updated dynamically during time-series generation and accessed by
a TimeDependentFunctionContainer, by setting its PointOfReferenceClockType to
SEQCLOCK .

Note that while a Sequence’s actual duration can derive from its child TimeDependent-
FunctionContainer’s durations (by way of loopDuration), a TimeDependentFunctionCon-
tainer’s duration is always the value set by its attributes and is never derived from its
(optional) child Sequence. This is done to minimize confusion and to allow the import
of Sequences into TimeDependentFunctionContainers with shorter durations (In this case,
the rest of the Sequence will not be executed. The Sequence will cut of at the end of the
TimeDependentFunctionContainer.).

4.1.7.2. Edit Provider Labels

When being displayed in the EMF tree editor, the edit providers provide a label string
for each element, with which it can identify itself and its contents to the user. For some
elements this string is derived from their name (see Sequence), others have a single value,
which gives conclusive insight into their functionality (such as Constant, which is defined
by its one constant value) and is thus displayed in their label. Others however have mul-
tiple attributes, which all play an important part in the definition of the model element’s
behavior. In this case it is useful to derive the label from multiple attributes, in order to
fill it with an overview of the element’s attribute contents, so that they are visible at one
glance. An example of this is shown in Figure 4.8.

The Edit Provider labels also add unit denominations to their respective attributes. Se-
quence::terminateAfterTime and TimeDependentFunctionContainer::duration both dis-
play (s) to show that they are defined in seconds.

29

30 4. The Descartes Load Intensity Meta-Models

Figure 4.8.: The label representation of a polynomial function, derived from the function’s
PolynomialFactors.

4.1.7.3. ArrivalRatesFromFile

The ArrivalRatesFromFile reads a sequential arrival rate file and interpolates its values for
random access. For this it needs to store the arrival rate values. It contains an ArrayList
of arrival rate tuples, which is filled by calling its ArrivalRatesFromFile::readFile()
method. The interpolated value at time x can then be retrieved by calling ArrivalRates-
FromFile::getArrivalRate(EDouble x).

4.2. The high-level Descartes Load Intensity Model

While the Descartes Load Intensity Model (DLIM) offers a convenient way of structur-
ing and ordering functions for the description of load intensity variations, it offers little
abstracted knowledge about those variations. Users may also find that the definition of
mathematical functions using the Descartes Load Intensity Model requires too much work
and time. The high-level Descartes Load Intensity Model (hl-DLIM) addresses this issue
by describing load intensity variations with a limited number of parameters. These param-
eters can then be used to quickly define and characterize a load intensity model. A DLIM
instance can be derived from an hl-DLIM instance using a Model-to Model-transformation.

Just as in BFAST [VHNC10], the high-level Descartes Load Intensity Model is split into
a Seasonal Part and Trend Part. To those parts a burst and a noise component is added.
As a result the model consists of the following components:

• Seasonal: As in BFAST, the Seasonal part denotes a repeating dummy function.

• Trend: The Trend is an overarching function containing several Seasonal functions,
which is either multiplied or added to these seasonal functions (Other than in BFAST,
where trends are always additive).

• Burst: An additive, recurring function that is added onto the Seasonal and Trend
parts.

• Noise: Random uniformly distributed noise, which is added onto the function.

Other than base DLIM, the high-level Descartes Load Intensity Model (hl-DLIM) is not
intended to cover all possible load intensity variations. It is primarily designed to allow for
easy load intensity behavior creation and possibly a concise way of capturing the properties
of the most common load intensity variations.

4.2.1. Seasonal Part

The Seasonal Part describes the underlying dummy function that repeats for every seasonal
iteration (e.g. every day in a month long load intensity description). The high-level
Descartes Load Intensity Model (hl-DLIM) describes it using the following parameters:

• Period: The duration of a single iteration of the seasonal function.

30

4.2. The high-level Descartes Load Intensity Model 31

Figure 4.9.: The decomposition of a load intensity variation into its Seasonal, Trend, and
Burst parts.

• Number of Peaks: The amount of arrival rate peaks within a single iteration of
the seasonal function.

• Base Arrival Rate Level: The arrival rate at the beginning and end of a seasonal
function iteration.

• Base Arrival Rate Level between Peaks: The arrival rate between two peaks.

• First Peak Arrival Rate: The arrival rate of the first peak.

• Last Peak Arrival Rate: The arrival rate of the last peak (if more than one peak
exist).

All other peak arrival rates are derived from First Peak Arrival Rate and Last Peak
Arrival Rate using linear interpolation.

• Interval containing Peaks: The time interval during which the peaks are defined.

This interval is centered around Period/2, meaning that the first peak is defined at
Period−Interval

2 , whereas that last peak is defined at Period+Interval
2 .

• Seasonal Shape: The shape of the function interpolating between peaks and base
levels. The Shape can be any Trend Functionas defined in base DLIM.

4.2.2. Trend Part

The Trend Part describes the overarching function that describes the high-level Descartes
Load Intensity Model. It can be either added or multiplied onto the Seasonal Part.

The Trend Part is defined using the following parameters:

• Number of Seasonal Periods within one Trend: The duration of each Trend
segment. It must be a positive integer number. As a result, the Trend segments’
duration is always a multiple of the Seasonal Period.

• Trend Shape: The mathematical function used to describe the Trend segments.
The Shape can be any Trend Functionas defined in base DLIM.

31

32 4. The Descartes Load Intensity Meta-Models

Figure 4.10.: The parameters defining the Seasonal part of the high-level Descartes Load
Intensity Model (hl-DLIM).

• Operator: The operator (additive, multiplicative) with which the Trend is applied
to the Seasonal part.

• List of maximum target Seasonal Arrival Rate Peaks: The arrival rate at the
beginning and end of the Trend segments.

The Trend segment functions are defined so that they always begin and end at the
largest Seasonal Peak. As a result, the values contained in this list define the resulting
maximum peak after Trend application at the corresponding point in time. The point
in time at which each arrival rate in this list is defined is always the time of the largest
peak in the (ArrivalRateIndexInList∗SeasonalPeriodsWithinOneTrend)th Sea-
sonal iteration.

4.2.3. Burst Part

Hl-DLIM allows the definition of recurring bursts. These bursts are added onto the existing
arrival rate behavior. The Burst Part is thus defined using the following parameters:

• First Burst Offset: The time at which the first burst peaks.

• Inter Burst Period: The time between two peaks.

• Burst Peak Arrival Rate: The arrival rate added by the burst at its peak time.

• Burst Width: The time interval in which a burst is executed. The peak takes place
at BurstWidth/2.

4.2.4. Noise Part

hl-DLIM allows the addition of a uniform distributed noise function. The function is
defined by the following parameters:

32

4.2. The high-level Descartes Load Intensity Model 33

Figure 4.11.: The parameters defining the Trend part of the high-level Descartes Load
Intensity Model (hl-DLIM).

Figure 4.12.: The parameters defining the Burst part of the high-level Descartes Load
Intensity Model (hl-DLIM).

33

34 4. The Descartes Load Intensity Meta-Models

• Minimum Noise Arrival Rate

• Maximum Noise Arrival Rate

Other noise distributions can easily be added in the Descartes Load Intensity Model, which
results from the Model-to-Model transformation.

4.2.5. The hl-DLIM to DLIM Model-to-Model Transformation

Hl-DLIM instances are transformed into DLIM Instances using a Model-to-Model trans-
formation.

Figure 4.13.: A typical result of the Model-to-Model transformation from hl-DLIM to
DLIM.

4.2.5.1. Transforming the Seasonal Part

The Seasonal Part is transformed into the TimeDependentFunctionContainers contained
in DLIM’s root Sequence. Each TimeDependentFuctionContainer then contains one Func-
tion, which interpolates between the curent Base Level and the next Peak Arrival Rate
(or vice versa).

The concrete Function implementation used for this interpolation is defined using hl-
DLIM’s Seasonal Shape parameter.

The TimeDependentFunctionContainers’ duration is derived from the point in time at
which the peaks are defined.

4.2.5.2. Transforming the Trend Part

The Trend Part is transformed into a Sequence, which is contained by a Combinator. The
Combinator ’s Operator is defined by the Trend Operator parameter.

The Trend segment functions are contained by the Sequence’s TimeDependentFunction-
Containers, which all have the duration of

SeasonalPeriod ∗NumberOfSeasonalPeriodsWithinOneTrend.

An offset TimeDependentFunctionContainer, containing a Constant Function is defined at
both the beginning and the end of the Sequence’s TimeDependentFunctionContainer list.
The duration of these offset containers guarantees that each Trend segment begins and
ends at the point in time at which the largest Seasonal peak within the current Seasonal
iteration is defined.

The duration of the entire Trend part is also set as the terminateAfterTime attribute of
the root Sequence.

34

4.3. Conclusions 35

Figure 4.14.: A typical result of the Trend Part’s Model-to-Model transformation from
hl-DLIM to DLIM.

4.2.5.3. Transforming the Burst Part

The Burst part is added to the root Sequence using and additive Combinator. It contains
a Sequence with an offset TimeDependentFunctionContainer (for the First Burst Offset)
and a second TimeDependentFunctionContainer containing another Sequence with the
actual bursts.

Figure 4.15.: A typical result of the Burst Part’s Model-to-Model transformation from
hl-DLIM to DLIM.

This last Sequence contains two TimeDependentFunctionContainers, one with the actual
Burst Function, and one offset container for the Inter Burst Period. This Sequence repeats
for the model’s entire duration.

4.2.5.4. Transforming the Noise Part

The Noise Part is transformed to an additive Combinator within the root Sequence. This
Combinator contains a UniformNoise function. The function’s min and max attributes are
set using the Minimum Noise Arrival Rate and Maximum Noise Arrival Rate parameters.

4.3. Conclusions

This chapter introduces and describes the Descartes Load Intensity Model (DLIM), which
can be used to describe load intensity variations over time. It does so by providing a
way to structure piece-wise mathematical functions over a defined duration. Thus, the
first of the research questions from Section 1.2 (Is it possible to create a model to capture
load intensity variations over time?) is answered: It is possible to model load intensity
variations over time using a structured approach for composing piece-wise mathematical
functions.

This piece-wise function approach has a few drawbacks, however. It does not allow easy
recognition of load intensity behavior at first glance, and the creation of custom load
intensity variations can result in tedious work. This is addressed by the high-level Descartes
Load Intensity Model (hl-DLIM), which uses a smaller set of parameters to condense
the information about a load intensity variation. This should help to alleviate concerns

35

36 4. The Descartes Load Intensity Meta-Models

when addressing research question 1.a (Can this model be used for custom load intensity
variation creation for specific benchmarking purposes?). A model-to-model transformation
transforms hl-DLIM instances into DLIM instances.

The accuracy and usability of these two models is extensively evaluated in Chapter 7.

36

5. LIMBO - The Descartes Load
Intensity Modeling Platform

LIMBO is a DLIM modeling environment, which is based on the Eclipse Modeling Frame-
work (EMF) [SBMP08]. Thus, it is a plug-in feature for the Eclipse IDE, which provides
an editor for the creation and modification of load intensity models, as well as additional
utilities for model application.

The DLIM editor has been automatically generated by EMF using an EMF genmodel and
Ecore meta-model. Section 5.2 gives an outline of the plug-ins and code that are part of
the entire feature. It also points out which parts of the code are generated and which have
been added or modified manually.

The following sections shows the functionality of all other manual additions to the gener-
ated code base. These additions are split into three parts:

• Model Evaluation: These additions help to evaluate models and derive the de-
scribed instances. This includes a core Model Evaluator (see Section 5.3) and the
generators for arrival rate and request time-stamp series (see Section 5.4).

• Modeling Process Assistance: LIMBO provides assistance (such as the Model
Creation Wizard 5.6), which help modelers to easily use LIMBO by providing struc-
ture and guidance during the process of modeling. Additionally, LIMBO provides
help and automation for using the DLIM instance extraction processes, as defined in
Chapter 6 .

• Utilities: Additional functionality that is useful when working with DLIM. This
includes utilities, such as generation of arrival rate time-series from a time-stamp
series (see 5.7.2), and a tool that calculates the difference between an arrival rate file
and a model instance (see 5.7.1).

A tutorial for the use of LIMBO can be found in Appendix A.

5.1. Requirements

The functional requirements of LIMBO’s DLIM tools are mostly derived from the goals of
this thesis in general. They are:

• Creation and modification of models and their elements.

37

38 5. LIMBO - The Descartes Load Intensity Modeling Platform

• Creation of arrival rate and request time-stamp series based on models.

• Assistance for following the DLIM modeling process.

• Validation feedback to the user.

• Ability to compare traces (arrival rate or time-stamp series) with model instances.

Non-functional requirements:

• Usage of the modeling environment shall require no extensive setup.

• Extensibility: The plug-ins should be easily extensible for the purposes of future
work.

• The tools should demand as few processing resources (CPU, memory) as possible.

• Generated and hand-written code should be kept separate.

5.2. LIMBO Architecture

LIMBO consists of five plug-ins, as visualized in Fig. 5.1 and Fig. 5.2:

exporter

extractor

dlim.editor

dlim.edit

dlim.generator

Figure 5.1.: LIMBO architecture.

• dlim.generator: Contains the meta-model, its implementation, and evaluation
functionality.

• dlim.generator.edit: Contains the model element providers.

• dlim.generator.editor: Contains the editor and all other GUI elements, such as
right-click menu elements.

• dlim.exporter: Contains default implementations for the Exporter extension point.

• dlim.extractr: Contains default implementations for the Extractor extension point.

The following sections describes the artifacts within these plug-ins, their functions, and
elaborates on which artifacts are generated and which are hand-written.

Note, that all generated code is annotated with the @generated tag. Modifications within
generated files are annotated using the @generated not tag. Completely hand-written files
have none of those tags.

38

5.2. LIMBO Architecture 39

Figure 5.2.: LIMBO’s plug-ins and packages.

5.2.1. DLIM Generator Plug-in

The dlim.generator plug-in contains the meta-model Ecore file and the genmodel from
which the default meta-model interfaces, their implementations, providers, and the editor
are generated. It also contains the meta-model element interfaces and implementations,
as well as their default utilities (such as validation utilities). It also contains the adapters
that modify model element behavior, the model evaluation tools, and the arrival rate and
time-stamp series generators (hence the plug-in’s name).

It features two Extension Points:

• Exporter: Allows the addition of exporters that export a DLIM instance to a file.
Exporters must implement the dlim.exporter.IDlimExporter interface.

Default exporters are contained in the dlim.exporter plug-in.

• Extractor: Allows the addition of extractors, which extract a model instance from
an existing trace. Extractors must implement dlim.reader.IDlimArrivalRateReader
for their trace parser and dlim.extractor.IDlimExtractor for the model instance cre-
ator. Default implementations for both interfaces are provided, in case the user
wants to implement only one of these interfaces.

Default extractors are contained in the dlim.extractor plug-in.

39

40 5. LIMBO - The Descartes Load Intensity Modeling Platform

The following packages within the dlim.generator plug-in are visible to other plug-ins:

• dlim

• dlim.assistant

• dlim.exporter

• dlim.extractor

• dlim.generator

• dlim.reader

• dlim.util

Two additional packages, dlim.exporterHandler and dlim.extractorHandler are only visible
to the dlim.generator.editor plug-in.

The following packages are part of the dlim.generator plug-in:

5.2.1.1. dlim.model

This package contains the meta-model Ecore file and the generator model (genmodel) file,
which EMF uses to generate the default editor and meta-model interfaces, implementa-
tions, and providers.

5.2.1.2. dlim

This package contains the model element interfaces. This package is generated by the
EMF genmodel and has only one custom hand-written modification:

• DlimFactory.eINSTANCE has been modified to return a CustomDlimFactoryImpl
as instance, instead of the generated DlimFactoryImpl.

5.2.1.3. dlim.impl

This package contains the default model element implementations. All instances are cre-
ated by the dlim.DlimFactory, of which an implementation is provided as well. This
package and its contents have been generated by the EMF genmodel. A few modifications
have been made though:

• Validation constraints: The validation constraints (see 4.1.6) are part of the meta-
model and are thus being generated by the genmodel. The originally generated meth-
ods contain errors that prohibit compilation. For this reason the custom validation
constraint implementations have been implemented within the generated code.

5.2.1.4. dlim.util

This package contains the utilities generated by the genmodel, whereas DlimAdapterFac-
tory and DlimSwitch are stubs without any functionality, DlimValidator contains the di-
agnostics tools that use the generated validation methods (see 4.1.6) for model validation.
This code has no hand-written modifications or additions.

5.2.1.5. dlim.impl.custom

This package contains the CustomDlimFactoryImpl. This class inherits the dlim.impl.
DlimFactoryImpl. It overrides the element creation methods for the elements for which
custom implementations exist.

40

5.2. LIMBO Architecture 41

Also contained in this package are the custom model element implementations that add
functionality not implemented in the generated implementations in dlim.impl. This allows
the safe and easy separation of generated and hand-written code (with the exception of
the validation methods).

At the moment, only ArrivalRatesFromFile (see 4.1.5.6) has a custom implementation.
This custom implementation implements the methods described in Section 4.1.7.3.

5.2.1.6. dlim.exporter

This package contains the IDlimExporter interface, which must be implemented by any
plug-in wishing to make use of the Exporter extension point.

5.2.1.7. dlim.exporter.utils

This package contains utilities that help when implementing a new exporter. The use of
these utilities is highly recommended.

• ArrivalRateGenerator: Provides functionality to sample a list of arrival rates
from a DLIM instance, represented by its dlim.generator.ModelEvaluator. It is
also able to write this list to a file. See Section 5.4 for further details on arrival rate
time series generation.

• TimeStampWriter: Provides functionality to write request time stamps using a
list of arrival rates (as is provided by ArrivalRateGenerator. See Section 5.4.2 for
further details on request time stamp generation.

• DlimFileUtils: Miscellaneous utilities for accessing DLIM files and handling their
file paths and contents.

5.2.1.8. dlim.exporterHandler

This package is hidden to all plug-ins except for the dlim.editor plug-in. It manages all
registered implementations of the Exporter extension point.

5.2.1.9. dlim.extractor

This package contains classes and interfaces used for the Extractor extension point.

• IDlimExtractor: This interface must be implemented by any extractor implement-
ing the Extractor extension point.

• SimpleExtracotr: IDlimExtractor default implementation. This extractor should
be used for testing custom arrival rate readers, as dlim.reader.IDlimArrivalRateReader
must also be implemented when implementing the Extractor extension point.

• ModelExtractor: Provides static functionality for the automated parts of model
extraction based on the model extraction processes defined in Chapter 6.

• HLDlimParameterContainer: A container for all parameters used in hl-DLIM.
Use this when extracting hl-DLIM instances.

5.2.1.10. dlim.extractorHandler

This package is hidden to all plug-ins except for the dlim.editor plug-in. It manages all
registered implementations of the Extractor extension point.

5.2.1.11. dlim.generator

This package contains the model evaluation logic, primarily used for arrival rate and time-
stamp series generation.

41

42 5. LIMBO - The Descartes Load Intensity Modeling Platform

The following classes provide the model evaluation logic:

• ModelEvaluator: The primary access point to all model evaluation logic. It is
instantiated using the model’s root element (which is always a Sequence) and a seed
for the random number generator (for Noise evaluation).

It provides the getArrivalRateAtTime(double rootTime) method, which re-
turns the model’s resulting arrival rate for a given time.

• ModelEvaluatorUtil: Provides additional utilities for model evaluation, such as
the abilitiy to get the parent element within the models tree, or to get the duration
of the TimeDependentFunctionContainer or Sequence that is the (possibly indirect)
parent of a given Function.

These classes provide additional functionality, mostly used when generating time series:

• DiffAnalyzer: Uses a ModelEvaluator to sample the model at the points in time
specified within the provided arrival rate .txt file. Returns the difference between
the read file and the model instance arrival rates in a .txt file. Also returns statisti-
cal values about the overall differences. The DiffAnalyzer ’s functionality is further
described in Section 5.7.1.

• ArrivalRateTuple: Provides a class to store the tuple of arrival rates and their
time-stamps. Also provides a method to get the sampling interval by getting the
difference of two tuple’s time-stamps.

• IGeneratorConstants: Provides constants for the TimeStampGenerator. These
constants indicate the distribution of the time-stamps.

5.2.1.12. dlim.generator.util

This package contains utilities for the ModelEvaluator. This package is hidden from all
plug-ins, with the exception of dlim.generator.

• FunctionValueCalculator: Contains the logic to evaluate the values for single
simple functions (simple functions being the Functions that do not contain nested
Functions). To do this, the FunctionValueCalculator reads the attributes of the
passed concrete Function and returns its arrival rate for the given input value x
(This value has been derived by the ModelEvaluator, using the current time and the
ReferenceClocks).

• TimeKeeper: The ModelEvaluator uses the TimeKeeper to set the derived time
attributes (see 4.1.7.1) for Sequences and TimeDependentFunctionContainers. Be-
ginning at the root Sequence, the TimeKeeper descends the model’s tree and sets
the firstIterationStart and firstIterationEnd times, as well as the loopDuration and
finalDuration for Sequences.

5.2.1.13. dlim.reader

This package contains classes and interfaces responsible for the parsing of time series.

• ArrivalRateReader: Provides functionality to read arrival rates from an arrival
rate file. Can read either a single arrival rate at a given time, or returns a list of all
ArrivalRateTuples contained in the file.

• IDlimArrivalRateReader: Interface for an arrival rate reader. Must be imple-
mented by a reader for the Extractor extension point.

42

5.2. LIMBO Architecture 43

• DefaultArrivalRateReader: A default implementation of IDlimArrivalRateReader.
Is able to read arrival rate files of the same format as produced by the arrival rate
file exporter.

• ReadingUtils: Provides additional functionality for the reading of files (such as
extracting the file name from its path).

• RequestTimeSeriesReader: Provides functionality to parse a request time-stamp
trace into an file containing the arrival rates per second for each second. The reader’s
functionality is further described in Section 5.7.2.

5.2.1.14. dlim.assistant

This package contains modeling process assistant logic. It provides calibration utilities
which can be used by the extraction process and the user. It contains:

• Calibrator: Provides functions for the calibration of the set values within inter-
polated functions. For a more detailed description of calibration functionality, see
Section 5.5.

• CalibrationException: Is thrown by the Calibrator in case of a calibration error.

5.2.2. DLIM Generator-Edit Plug-in

This plug-in contains the providers used by the editor. These providers provide display
specific information, such as the element’s display images and labels. All classes in this
plug-in have been generated by the EMF genmodel.

The following hand-written changes have been made to the generated code in the dlim.provider
package:

• TimeDependentFunctionContainerItemProvider:: addDurationProperty-
Descriptor(Object object): The unit of seconds (s) has been added to the dura-
tion property description.

• SequenceItemProvider::addTerminateAfterTimePropertyDescriptor(Object
object): The unit of seconds (s) has been added to the terminateAfterTime prop-
erty description.

• PolynomialItemProvider::getText: The editor label has been changed to repre-
sent the polynomial’s contents (see Section 4.1.7.2).

• PolynomialItemProvider::notifyChanged(Notification notification): Changes
the editor label each time the polynomial’s contents have been changed.

5.2.3. DLIM Generator-Editor Plug-in

The dlim.editor plug-in contains all GUI elements and their utilities. It is organized into
the following packages:

5.2.3.1. dlim.presentation

This package contains all editor classes generated by the EMF genmodel. They are:

• DlimEditorPlugin: The plug-in singleton.

• DlimEditor: The editor.

• DlimActionBarContributor: Contributes generic actions (such as load, save) to
the toolbars and menus.

• DlimModelWizard: The default wizard for the creation of a new model instance.

All these classes are completely generated and unmodified.

43

44 5. LIMBO - The Descartes Load Intensity Modeling Platform

5.2.3.2. dlim.presentation.custom

Contains the CustomDlimEditor, which is a custom implementation of the DlimEditor.
The changes in the custom editor are geared towards updating the plot view when changes
have been made.

5.2.3.3. dlim.generator.editor.views

This package contains the PlotView, which is an Eclipse view that contains a PlotCan-
vas on which the arrival rate function that results from the current DLIM instance is
displayed.

5.2.3.4. dlim.editor.wizards

This package contains the CustomDlimModelWizard. This wizard subclasses the gen-
erated dlim.presentation.DlimModelWizard. It provides a custom hand-written wizard for
the creation of model instances. This wizard prompts the user for the parameters defined
as part of hl-DLIM (see Section 4.2) and then creates a new DLIM instance.

It also contains all the wizard pages used by the CustomDlimWizard, they are:

• DlimPageChoiceModelWizardPage: This page allows the user to choose which
pages are to be displayed later in the wizard and which pages are to be omitted.

• DlimModelWizardPage: An abstract wizard page that contains a plot canvas,
which visualizes the current DLIM instance. The interactive wizard page area has
to be filled by its child implementations.

• DlimReadFileModelWizardPage: Allows the user to extract the hl-DLIM pa-
rameters from an existing arrival rate trace file.

• DlimSeasonalModelWizardPage: Prompts the user for the paramters of the hl-
DLIM’s Seasonal Part.

• DlimTrendModelWizardPage: Prompts the user for the parameters of the hl-
DLIM’s Trend Part.

• DlimBurstModelWizardPage: Prompts the user for the parameters of the hl-
DLIM’s Burst Part and Noise Part.

5.2.3.5. dlim.generator.editor.popup.actions

Contains all the right-click context menu elements added by LIMBO. They are:

• TimeStampGeneratorAction: Allows the user to select an exporter (implement-
ing the Exporter extension point in the dlim.generator plugin). This exporter is
then provided with a dlim.generator.ModelEvaluator for the selected DLIM in-
stance and executed.

• TimeSeriesReaderAction: Reads a .txt time-stamp series into an arrival rate
series. Uses dlim.reader.RequestTimeSeriesReader.

• DiffRunnerAction: Calculates the difference between the arrival rates within the
model and a given arrival rate series (.txt file). Prompts the user for the .txt file and
random number generator seed using a dlim.generator.editor.dialogs.LaunchDiffDialog.
It then initializes a dlim.generator.ModelEvaluator and passes it to the dlim.generator.
DiffAnalyzer.

• CalibrationAction: This abstract action contains the abstract executeCalibra-
tion(double desiredValue) method, which launches the dlim.assistant.Calibrator
for the respective attribute in the respective model element. Its concrete children
are:

44

5.2. LIMBO Architecture 45

– CalibrateTrendStartValue: Calibrates the startValue attribute of a Trend,
so that the model output at that time equals a desired value.

– CalibrateTrendEndValue: Calibrates the endValue attribute of a Trend, so
that the model output at that time equals a desired value.

– CalibrateBurstPeakValue: Calibrates the peakValue attribute of a Burst, so
that the model output at that time equals a desired value.

• DecomposeInPlotViewAction: Decomposes the selected Sequence in the PlotView.

• ExtractionAction: Allows the user to select an extractor (implementing the Ex-
tractor extension point in the dlim.generator plugin). This extractor is then exe-
cuted.

• OpenPlotViewAction: Opens the PlotView.

• PlotArrivalRateFileInPlotViewAction: Plots an arrival rate trace file in the
PlotView for comparison.

• SaveGraphFromPlotViewAction: Saves the graph that is currently displayed in
the PlotView to a .png file.

• ToggleDecomposeInPlotViewAction: Toggles the PlotView decomposition vi-
sualization (see Section5.7.3).

5.2.3.6. dlim.generator.editor.dialogs

This package provides the dialogs that prompt the user for parameters when running an
action (see dlim.generator.editor.popup.actions). They are:

• LaunchDiffDialog: Prompts the user for the .txt arrival rate series file that is to
be compared with the model. Also asks for the random number generator seed for
model evaluation.

• DiffResultsDialog: Displays the results of the difference calculation between a
DLIM instance and an arrival rate trace file.

• PlotArrivalRateFileDialog: Prompts the user for parameters in order to plot the
arrival rates from an arrival rate trace file in the PlotView.

• SavePlotViewImageDialog: Prompts the user for parameters in order to save the
contents of the PlotView to a file.

• SelectExporterDialog: Displays all registered implementations of the Exporter
extension point and lets the user pick one to use.

• SelectExtractorDialog: Displays all registered implementations of the Extractor
extension point and lets the user pick one to use.

• TimeStampGeneratorParametersDialog: Prompts the user for the parameters
for arrival rate and request time-stamp series generation.

• LaunchCalibrationDialog: Prompts the user for the desired value to calibrate to.
Alternatively uses dlim.reader.ArrivalRateReader to read this value from an arrival
rate file. Then launches CalibrationAction.executeCalibration(desiredValue). Errors
in form of a dlim.assistant.CalibrationException are displayed to the user.

45

46 5. LIMBO - The Descartes Load Intensity Modeling Platform

5.2.3.7. dlim.generator.editor.utils

Contains utilities that help the GUI elements to deal with the Eclipse platform. Contains
only the ProjectManager at the moment. The ProjectManager helps with the manage-
ment of the current Eclipse Project, its resources and selections within this project.

5.2.4. DLIM Exporter Plug-in

The dlim.exporter plug-in offers default implementations of the dlim.generator plug-in’s
dlim.exporter.IDlimExporter interface and the Exporter extension point.

Its three exporter implementations are contained in its dlim.exporter package:

• DlimArrivalRateExporter: Exports an arrival rate time series. Uses the dlim.
exporter.utils.ArrivalRateGenerator.

• DlimEqualDistanceRequestStampExporter: Exports request time stamps with
an equal distance from one another within each sampled arrival rate interval. Uses
the dlim.exporter.utils.T imeStampWriter.

• DlimUniformRequestStampExporter: Exports request time stamps with a uni-
form random sampling within each sampled arrival rate interval. Uses the
dlim.exporter.utils.T imeStampWriter

The dlim.exporter.dialogs package contains the dialogs displayed to the user for exporter
parameters.

5.2.5. DLIM Extractor Plug-in

The dlim.extractractor plug-in offers default implementations of the dlim.generator plu-
gin’s dlim.extractor.IDlimExtractor interface and the Extractor extension point.

Its two extractor implementations are contained in the dlim.extractor package, both use
dialogs in te dlim.exporter.dialogs package for user parameter input:

• PeriodicProcessExtractor: Extracts a DLIM model instance based on the peri-
odic extraction process. Uses the dlim.extractor.ModelExtractor.

• SimpleProcessExtractor: Extracts a DLIM model instance based on the simple
extraction process. Uses the dlim.extractor.ModelExtractor.

Both Extractor extension point implementations in this plugin use the provided default
dlim.reader.ArrivalRateReader arrival rate reader provided by the dlim.generator plugin.

5.3. DLIM Evaluator

The DLIM Evaluator reads the Model element attributes and provides the functionality
of being able to calculate the model’s arrival rate for a set point in time.

To achieve this, the evaluator must first set the derived time values described in Sec-
tion 4.1.7.1 during initialization. These values are calculated from the Sequence and
TimeDependentFunctionContainer duration and loops attributes. At this time, other
model initialization methods, such as ArrivalRatesFromFile’s readFile() (see 4.1.7.3) method
are also called. The evaluator also initializes the random number generator, used for Noises
with a set seed provided by the user. This seed makes the evaluation result reproducible.

46

5.4. Arrival Rate and Request Time-Stamp Series Generator 47

When calculating the arrival rate for a certain point in time, the evaluator then checks
the current time against the start and end times of the Sequences and TimeDependent-
FunctionContainers, to see which are currently active. The running TimeDependentFunc-
tionContainer’s functions are then evaluated. All inactive Sequences and TimeDependent-
FunctionContainers return 0 (or 1, depending on the parent Combinator).

Since Sequences and TimeDependentFunctionContainers are held by parent Sequences,
which can loop, they can also start and end at multiple points in time (A start and end time
during the first loop iteration, one during the second and so on). To account for this, the
time used for checking if a TimeDependentFunctionContainer is still active (called guard
time), is always the time during the first loop of the Sequence holding the TimeDependent-
FunctionContainer (i.e. guardT ime = Sequence :: start + loopT ime). When calculating
this guard time, the current time references (loop time and seq time) are also calculated,
so that they can be stored in the ReferenceClockObjects and used as function inputs (for
more on Reference Clocks see Section 4.1.3.1).

The model evaluator also provides all of the logic necessary to calculate the function
values from the model element attributes. This logic is not included in the model element
implementations themselves for two major reasons:

1. The model element implementations are generated by the EMF genmodel:

In order to keep generated and hand-written code separated, almost no evaluation
logic is included in the model element implementations. The only exception is:

• ArrivalRatesFromFile::getArrivalRate(EDouble x): This method returns
the interpolated arrival rate from the arrival rate ArrayList stored within the
model element (see 4.1.7.3).

2. Increased code-re-usability:

Since Bursts logically consist of two Trends (one increasing trend until peak is
reached, and one decreasing trend afterward), it is good practice to reuse Trend
evaluation logic for Bursts, if possible. Keeping parametrized function evaluation
methods independent from the actual model elements enables their reuse in different
contexts.

5.4. Arrival Rate and Request Time-Stamp Series Generator

The DLIM plug-in features two separate time series generators. The arrival rate series
generator generates a time series of arrival rates with their time stamps, whereas the
request time-stamp series generator generates pure request/user arrival time-stamps based
on the arrival rates provided by the arrival rate series generator.

5.4.1. Arrival Rates Series Generator

The arrival rate generator uses the Model Evaluator to calculate the arrival rates at given
points in time. It samples the arrival rates at a sampling interval provided by the user.
It starts at samplinginterval/2 (this is useful for the time-stamp generator, see 5.4.2)
and continues until the current time is greater or equal to the finalDuration of the root
Sequence.

Note that the width of the sampling interval has a significant impact on the final result.
Under-sampling causes loss of details, whereas over-sampling may lead to rounding errors
during time-stamp generation. Noises are also only evaluated at the points at which
they are sampled. This leads to the sampling interval having a significant impact on the
resulting Noise.

47

48 5. LIMBO - The Descartes Load Intensity Modeling Platform

5.4.2. Request Time-Stamp Series Generator

The request time-stamp generator creates request/user arrival time-stamps based on the
arrival rates provided by the arrival rate generator.

It does so by creating the time-stamps within an interval around the time-stamp of the
arrival rate. This interval has the same width as the sampling width of the arrival rate
generator. (This is the reason why the first arrival rate is sampled at samplinginterval/2.
The first time-stamp creation interval is then [0, samplinginterval).) Centering the time-
stamp generation interval around the measured point of the arrival rate is intended to
minimize the overall error that results from the sampling.

The request time-stamp generator provides two methods with which to generate the time-
stamps within this interval:

• Equal Distance: The time-stamps are spread throughout the interval with equal
distances.

• Uniform Random Distribution: Time-stamps between begininterval and endinterval
are generated using a uniform random distribution.

The amount of time-stamps generated within each interval is arrivalrate ∗ intervalwidth.
The time-stamp generator provides an arrival rate devisor, which can be used to change
the number of time-stamps. The resulting amount of time-stamps within the interval is
then

arrivalrate∗intervalwidth
arrivalratedevisor .

This is especially useful when creating “mini-benchmarks” from models based on huge
cloud or web systems with arrival rates that order in the millions.

The time stretch parameter also helps in this scenario. It can be used to compress or
stretch the time used for time-stamp generation in relation to the time used for arrival
rate generation. This may lead to an amplification of sampling errors, however. As a
result, the sampling interval width should always be set accordingly. The property of self
similarity (see Section 2.4) holds true when stretching the time scale, since the arrival rates
are sampled from the original arrival rate function within the unscaled model instance.

The last parameter used to set up the request time-stamp generator is the amount of
decimal places a time-stamp may have. This accounts for the fact that benchmarking
frameworks (which the time-stamp series is usually intended as input for) only have a
limited accuracy. By limiting the amount of decimal places, the user can account for this
limitation.

5.4.2.1. Errors due to Sampling

Under-sampling may lead to problems with signal reconstruction in general. In the context
of the time-series generator, these problems may be enhanced, specifically when using the
random distribution for time-stamp generation. The random distribution may lead to a
lopsided distribution of time-stamps within the sampling interval. This may lead to arrival
rates that go contrary to the unsampled arrival rates of the original model.

Over-sampling problems lead to errors due to the fact that the request time-stamp gener-
ator always creates an integer amount of time-stamps, whereas the arrival rates provided
are floating point values. The decimal places of the arrival rates must either be rounded to
the next integer number or discarded (rounding to the lower integer number). While this

48

5.5. Trend and Burst Calibration 49

leads to an error in itself, this error is enhanced by over-sampling. Considering the amount
of time-stamps is calculated by: arrivalrate∗intervalwidth

arrivalratedevisor , a smaller interval width leads to a
greater significance of the decimal places of the resulting number of time-stamps. Rounding
this number can add or discard time-stamps a maximum of one time-stamp per interval.
A greater amount of intervals leads to a greater amount of discarded or erroneously added
time-stamps.

Consider a constant function with an arrival rate value of 1 as an example. When sampling
this function with an interval width of 1, the amount of time-stamps in this interval is:
arrivalrate ∗ intervalwidth = 1.0 ∗ 1.0 = 1.0 ≈ 1. Sampling the same function with
a smaller sampling interval of 1

3 however results in the loss of the time-stamp since the
amount of time-stamps is now: arrivalrate ∗ intervalwidth = 1.0 ∗ 1

3 = 1
3 ≈ 0 for each

interval, resulting in 0 time-stamps for all three intervals covering the same interval as the
original interval with a width of 1.

5.5. Trend and Burst Calibration

Trends and Bursts are interpolated functions that interpolate between their attributes
(Trend from startValue to endValue, Burst from baseLevel to peakValue and then back to
baseLevel). Since they reach these defined values at defined times, it is easy to automat-
ically set these values in a way that results in the entire model producing a desired total
arrival rate (desiredValue).

The model’s total arrival rate derives directly from the Trend’s or Burst’s unknown arrival
rate. it is only modified by the output of all other concurrently running Functions. Since
all concurrently running functions are connected via Combinators, these other Functions
can only be added, multiplied, and subtracted from the unknown attribute, which is being
calibrated. Since the point in time at which calibration occurs is also a set and a constant
point in time, it follows that all Function output values are also constant (Note: When
calibrating, all Noises are set to 0). As a result, the model output can be described this
way:

desiredV alue = constantLevel + constantFactor ∗ unknownAttributeV alue

desiredValue is set by the user. constantLevel and constantFactor can be easily extrapo-
lated, by evaluating the model with two set values for the attribute which is being cali-
brated. The Calibrator thus evaluates the model twice, with the attribute being set to 0
the first, and being set to 1 the second time. constantLevel and constantFactor can now
be derived:

constantLevel = modelEvaluatonResult(attribute = 0)

constantFactor =
modelEvaluatonResult(attribute = 1)−modelEvaluatonResult(attribute = 0)

Once these are known the attribute’s value can simply be calculated:

unknownAttributeV alue = desiredV alue−constantLevel
constantFactor

= desiredV alue−modelEvaluatonResult(attribute=0)
modelEvaluatonResult(attribute=1)−modelEvaluatonResult(attribute=0)

49

50 5. LIMBO - The Descartes Load Intensity Modeling Platform

5.5.1. Calibration Errors

Two error types can occur during calibration:

• Calibration results in 0:

modelEvaluatonResult(attribute = 1)−modelEvaluatonResult(attribute = 0) = 0

This usually occurs, if the Function that is being calibrated is not being executed at
the point in time at which the calibrated attribute is defined. In this case the change
of the attribute has no effect on the model output at this time, making this method
of calibration unusable.

This effect always occurs when calibrating Trend.endValue, since the ModelEvaluator
will already be evaluating the starting value of the next TimeDependentFunction-
Container’s Functions at this point in time. In order to work around this problem,
the point in time for which Trend.endValue is being calibrated is decremented by the
minimum decrement for its double value, thus forcing model evaluation at a point of
time, at which the Trend that is being calibrated is actually being executed. Tests
have shown that the resulting error is reliably less then 1.0 ∗ 10−14 and thus within
acceptable boundaries.

• desiredValue can not be reached: This happens especially if the calibrated
Function is a child of an AbsoluteValueFunction and desiredValue is negative.

The Calibrator tests for both of these errors. If they remain unresolved, a CalibrationEx-
ception is thrown, and its message is displayed to the user.

5.6. Model Creation Wizard

When creating a new DLIM instance, LIMBO uses a model creation wizard for easy initial
model creation. This wizard prompts the user for parameters, as defined by the high-level
Descartes Load Intensity Model (hl-DLIM) (see Section 4.2). Each model part (Seasonal
Part, Trend Part, Burst Part, and Noise Part) is queried in its own wizard page. The
wizard also provides a method of extracting the hl-DLIM parameters from an existing
arrival rate trace (see Section 6.5).

5.7. Additional Utilities

These utilities provide functionality that is useful to a modeler, without directly contribut-
ing to the goals of this thesis.

5.7.1. Difference Calculator

The Difference Calculator computes the difference between an arrival rate time series and
a model instance. Just like the arrival rate and time-stamp series generators, it uses a
pre-initialized Model Evaluator. It compares the arrival rate values within the file with
the model evaluation result for every point in time specified in the read arrival rate file.

The Difference Calculator only takes an arrival rate series as input for comparison. A
time-stamp series must first be converted using the provided Time-Series Reader (see
5.7.2).

The resulting difference between these two arrival rate values at the respective point in
time, as read from the arrival rate trace, is printed to a .txt file. The difference calculator
also returns the median and mean absolute difference as well as the relative median and
mean differences. It also returns a difference metric based on DTW (see Section 7.1.2.2).

50

5.8. Conclusions 51

5.7.2. Time-Series Reader

The Time-Series Reader reads a time-stamp series and generates an arrival rate series from
it. This arrival rate series can then be used as input for the Difference Calculator (see
5.7.1) or ArrivalRatesFromFile (see 4.1.5.6).

To do this, the Time-Series Reader counts the amount of time-stamps within each time
bucket with the width of one second. It then prints this amount of time-stamps per second
as the arrival rate at the bucket’s “center” time (meaning beginbucket − lengthbucket/2).

5.7.3. Plot View

LIMBO offers a view to display the arrival rate function described by the current DLIM
instance. This view also offers the functionality of displaying the arrival rates of an arrival
rate trace for comparison and offers to visualize the impacts of TimeDependentFunction-
Containers and Combinators on the total output function of their containing Sequence.

5.7.3.1. Combinator Impact Visualization

Figure 5.3.: An example visualization of Combinator impacts within a Sequence.

The Combinator Impact Visualization (also called Sequence decomposition), displays the
impact of all Combinators contained within the Sequence in the Plot View. It does this
by calculating the difference of the Sequence’s arrival rate function with and without the
respective Combinator. This difference is then drawn as a colored area in the Plot View.
A yellow area visualizes the impact of a multiplicative Combinator, whereas a red area
visualizes the impact of an additive Combinator.

The Sequence’s function without any Combinators is displayed with a dashed blue line,
whereas the final arrival rate function is displayed as a solid black line.

A colored area below the blue line of the original function signifies a negative impact
(meaning that the corresponding Combinator’s function decreases the Sequence’s total
function), whereas a colored area above the dashed blue line of the original function signifies
a positive impact on behalf of the respective Combinator.

5.8. Conclusions

This chapter introduces LIMBO. LIMBO is the tooling platform that is being used for
the modeling of DLIM instances and hl-DLIM instances. LIMBO’s architecture as well as
the functionality of its core components is discussed. Extensibility of LIMBO offers easy
addition of functionality as part of future work.

51

6. Model Instance Extraction Process

This chapter presents automated methods for the extraction of Descartes Load Intensity
Model (DLIM) instances from arrival rate traces. Each method requires a set of config-
uration parameters for the remaining automated model instance extraction. Some of the
steps of the methods could be easily performed by hand, others require automation in
order to be completed within a reasonable time frame.

Complete automation of the model instance extraction process however will be part of
future work.

I define the following three methods:

1. Simple Model Instance Extraction Process (S-MIEP): Extracts a DLIM in-
stance. This process (and its resulting DLIM instance) are inspired from the time-
series decomposition approach in BFAST [VHNC10].

The Simple Model Instance Extraction Process (S-MIEP) extracts a repeating Sea-
sonal Part and a non-repeating Trend Part. This non-repeating Trend Part contains
a list of Trend segments of fixed size, that interpolate between their start and end
arrival rate value. The Trend list extends throughout the entire time duration for
which the extracted model is defined. Additionally a Burst Part and an optional
Noise Part are extracted. S-MIEP is visualized in Fig. 6.1.

2. Periodic Model Instance Extraction Process (P-MIEP): This is a variation
of the simple extraction process that features multiple repeating trends. Again a
DLIM instance is extracted, however, in contrast to S-MIEP, Periodic Model Instance
Extraction Process (P-MIEP) does not feature a single list of equal length Trend
segments. Instead it features multiple lists of Trends, each containing a fixed number
of Trend segments of (potentially) different lengths. These Trend lists repeat and
do not extend indefinitely as the single S-MIEP Trend list does. Examples for this
are: Weekly trends and monthly trends.

3. High-level Model Instance Extraction Process (hl-MIEP): Extracts a hl-DLIM
Instance. This process is based on the simple model extraction process. It uses the
same information that is extracted by S-MIEP in order to fill the parameters defined
by the high-level Descartes Load Intensity Model (hl-DLIM) (see Section 4.2).

Some parts of the model extraction process mirror the model-to-model transformation from
a custom hl-DLIM instance to a DLIM instance (see Section 4.2.5), in that the extracted

53

54 6. Model Instance Extraction Process

parameters are at times identical to the parameters provided by hl-DLIM. In these cases
it follows that the creation of the DLIM instance is then identical to the model-to-model
transformation. For instance, the Trend extraction extracts the exact same Trend list as
the Trend list that defines the hl-DLIM Trend Part.

6.1. Extracting the Seasonal Part

The Seasonal Part of the read arrival rate trace is modeled using a Sequence of TimeDe-
pendentFunctionContainers and their Functions. This mirrors the approach taken in the
model-to-model transformation in Section 4.2.5. Each Function within the TimeDepen-
dentFunctionContainers interpolates the corresponding peaks and lows within each sea-
sonal period. As a result, the following data needs to be derived in order to build the
Seasonal Part:

• The duration of a seasonal period

• Arrival rate peaks and their time-stamps

• Arrival rate lows and their time-stamps

• The function type used to interpolate between peaks and lows.

The seasonal period (length) is set by the user. It is usually selected using meta-knowledge
about the trace. A trace that extends for multiple days, for example, has its period set as
the duration of one day.

The peaks and lows are automatically determined by using a local minimum/maximum
search on the arrival rates within the trace. The local arrival rate minima and maxima and
their corresponding time-stamps within a seasonal period constitute the peaks and lows.
Since the trace usually contains multiple seasonal periods, the respective median arrival
rate value is selected for each local maximum and minimum within the Seasonal Part.
Selecting the median instead of the mean reduces the impact of outliers on the extracted
value. As a result, the derived functions interpolate first between the first median low and
the first median peak, then between the first median peak and the second median low, and
so on.

The last low must be of the same arrival rate as the first low in order for the Seasonal
Part to repeat seamlessly.

The shape of the interpolating function (linear, exponential, logarithmic, sin) is selected
by the user based on a best effort guess. Advanced heuristics for selection should be part
of future work. According to my experience, the sin interpolation usually results in a good
fit.

6.2. Extracting the Trend Part

The Trend Part consist of a series of functions (trend segments) that are either added or
multiplied onto the Seasonal Part (the hl-DLIM-to-DLIM transformation in Section 4.2.5
works identically).

Each trend segment begins at the maximum peak of the Seasonal Part and ends at the
maximum peak of the Seasonal Part in a later Seasonal iteration. This minimizes errors
with trend calibration. The trend extraction uses the calibrator introduced in Section 5.5
in order to calibrate the trend in a way that the model output arrival rate at the trend
segment’s beginning (or end) equals the trace’s actual arrival rate at the respective point
in time.

The shape of the trend function (linear, exponential, logarithmic, sin) is selected using a
best effort guess, similar to the selection of the seasonal shape.

54

6.2. Extracting the Trend Part 55

Noise Part

build Noise Part

calculate difference distribution

calculate difference
between filtered

and original
arrival rates

original arrival rates

Burst Part

calibrate Burst Part
to match
burst list

build Burst Part

burst list

get positive outlier time-stamps
get arrival rates at time-stampsget burst list

trend list

Trend Part

calculate trend segment duration
get arrival rates at time-stamps

calibrate Trend Part
to match
trend list

build Trend Part

get trend list

Seasonal Part

seasonal parameters

build Seasonal Part

extract peaksextract lows

local maximalocal minima

[no Noise extraction]

(filtered)

arrival rates

[Noise extraction]

apply gaussian filter

calculate local minima and maxima

Figure 6.1.: Activity Diagram of the Simple Model Instance Extraction Process.

55

56 6. Model Instance Extraction Process

6.2.1. Trend Part for S-MIEP

The simple extraction process features a list of equal-length trend segments. These seg-
ments have a set duration that is a multiple of the seasonal period. Just like the seasonal
period, it is also usually selected using meta knowledge about the trace. These segments
are then calibrated at their beginning and end to match the arrival rates in the trace.

6.2.2. Trend Part for P-MIEP

The periodic extraction process takes into account, that multiple repeating trends may be
part of the arrival rate trace. Examples are weekly and monthly trends.

Since repeating trends (like the Seasonal Part) should end on the same arrival rate as the
arrival rate they started on (allowing seamless repetition), each of these repeating trends
contains at least two trend segments. These trend segments’ duration is a multiple of the
seasonal period. Unlike the trend segments in the simple extraction process they are not
required to be of equal length, thus allowing odd multiples of seasonal periods as total
trend durations.

The user selects lists of at least two trend segment durations for each repeating Trend Part.
LIMBO’s user interface currently (versions 0.14.3 and older) only allows lists of size 2 in
order to minimize confusion in the user interface. P-MIEP and the automated extractor
do however support longer lists.

6.3. Extracting the Burst Part

Extracting bursts is the matter of finding the points in time at which significant outliers
from the previously extracted Seasonal and Trend parts are observed in the trace. Once
a burst is found, it is added to the root Sequence and then calibrated to match the arrival
rate from the trace.

Finding a burst requires the arrival rate in the trace to differ significantly from the pre-
dicted value based on the Seasonal and Trend parts. In order to eliminate false positives
due to Seasonal Parts that are offset time-wise, the Seasonal Part used for the reference
model in the burst recognition activity differs from the actual extracted Seasonal Part.
The difference is that the Seasonal Part used in the burst recognition activity does not
interpolate between the peaks and lows of the original arrival rate trace. Instead it in-
terpolates only between the peaks. This removes false positives due to seasonal periods
that are slightly offset in time, it does however also eliminate bursts that do not exceed
the current seasonal peak. This trade-off is considered acceptable, since time-wise offset
seasonal periods are commonly observed.

6.4. Extracting the Noise Part

The extraction of the Noise Part consists of two steps:

1. Noise reduction

2. Calculation of noise distribution

The idea behind this approach is to first reduce noise observed within the arrival rates
contained in the trace, and then reconstruct the reduced noise by calculating the difference
between the original trace and the filtered one.

Having filtered the noise, the extraction of the Seasonal Part, Trend Part, and Burst Part
are then performed on the filtered trace. This has a significant impact on the extraction

56

6.4. Extracting the Noise Part 57

accuracy of these parts, and thus the accuracy of the extracted model instance, especially
when extracting hl-DLIM instances, as shown in the model accuracy evaluation (see Sec-
tion 7.1). Depending on the trace, even the total accuracy of DLIM extraction can be
improved by noise elimination. In this case I recommend applying noise extraction, even
if the extracted noise component itself is deleted later on.

6.4.1. Noise Reduction

Noise is reduced via the application of a one dimensional Gaussian filter on the read arrival
rates.

A Gaussian filter has a kernel based on the Gaussian distribution, it thus has the following
form (as defined in [BZ86]):

G(x) = 1√
2πσ

e−
x2

2σ2

The width of a Gaussian filter’s kernel is defined in relation to the standard deviation:

KernelWidth = 6σ − 1

I choose the kernel width depending on the Seasonal period and the expected number of
peaks within a Seasonal period:

KernelWidth = SeasonalPeriod
ExpectedMaximumSeasonalPeaks

As a result the standard deviation is defined as:

σ =
SeasonalPeriod

ExpectedMaximumSeasonalPeaks
+1

6

The frequency response of a Gaussian filter is:

ĝ(f) = e
− f2

2σ2
f , with σf = 1

2πσ

As a result any frequency higher than the expected maximum number of peaks will be
smoothed.

The Gaussian filter is a quick and easy way of reducing high frequencies and thus reducing
noise in a trace. Other more sophisticated noise filtering and anomaly detection methods,
such as proposed in [Bie12], could be applied at this point.

6.4.2. Calculating the Noise Distribution

The Noise Part is modeled as a normally distributed random variable. This variable is
added onto the DLIM instance’s root Sequence.

The normal distribution’s mean and standard deviation are calculated as the mean and
standard deviation of the differences between the filtered arrival rate trace.

S-MIEP and P-MIEP both only support the extraction of normally distributed noise.
Other noise distributions are not supported. The high-level Model Instance Extraction
Process (hl-MIEP), however, supports the extraction of uniformly distributed noise.

57

58 6. Model Instance Extraction Process

6.5. Extracting a high-level Descartes Load Intensity Model
Instance

The high-level Model Instance Extraction Process (hl-MIEP) is similar to the Simple Model
Instance Extraction Process. This section only highlights the differences between those two
processes.

6.5.1. Seasonal Part

Hl-DLIM is restricted to only support peaks with an equal distance from one another. The
arrival rates of such peaks are linearly interpolated between the first peak’s arrival rate
and the last peak’s arrival rate.

When extracting an hl-DLIM instance from an arrival rate trace, the difference thus lies
in the interval containing peaks and in the search for the maximum and minimum peak.

The interval containing peaks is calculated as the time difference between the first and
the last peak, the first peak ’s arrival rate is then set either as the minimum or maximum
peak (depending on whether the first median peak has a greater or a smaller arrival rate
than the last median peak in the trace) and the last peak is set as the corresponding
counter-part.

6.5.2. Trend Part

Extracting the Trend Part is done almost identically as in the simple model extraction
process, since hl-DLIM defines its Trend Part as a list of arrival rates at the beginning and
end of each trend segment, identically to the arrival rate list extracted in S-MIEP.

The only difference is the offset before the first trend segment begins. The trend segment
always ranges from the maximum peak within one seasonal period to the maximum peak
within a following seasonal period. The simple model extraction process allows this max-
imum peak to be any seasonal peak. Hl-DLIM, however, only allows the first or last peak
to be the maximum peak. As a result the time offset for the first trend segment is slightly
different.

6.5.3. Burst Part

Bursts are detected and calibrated using the same peak-only Seasonal Part as in Section
6.3.

While the other model extraction processes modeled each burst individually, hl-DLIM only
supports recurring bursts. Thus, only the first burst offset and the inter burst period are
extracted, as well as only a single burst arrival rate.

The first burst offset is selected based on its time-stamp, whereas the period between
recurring bursts is calculated as the median inter burst period from the independent bursts.
The burst arrival rate is also calculated as the median burst arrival rate.

6.5.4. Noise Part

Hl-DLIM Noise is extracted using the filtering approach, thus having the same noise re-
duction side-effects as in the other model extraction processes.

Hl-DLIM, however, only supports a uniformly distributed random variable as noise. In
order to eliminate outliers, the minimum and maximum value of the respective uniform
distribution are selected as the 10th and 90th percentile of the difference between the filtered
and unfiltered arrival rates.

58

6.6. Conclusions 59

6.6. Conclusions

This chapter presents three model extraction methods that allow the extraction of model
instances from an arrival rate trace, thus answering research question 2 from Section 1.2
(Is it possible to formalize a process in order to extract model instances from existing load
intensity traces?). The Simple Model Instance Extraction Process and the Periodic Model
Instance Extraction Process extract DLIM instances, with different Trend Parts, whereas
the high-level Model Instance Extraction Process extracts an hl-DLIM instance.

The differences between the three processes were pointed out, as well as their degree of
automation.

59

7. Evaluation

The Descartes Load Intensity Model as well as the high-level Descartes Load Intensity
Model are evaluated on the basis of existing real world load intensities, based on 9 existing
Web and Cloud server traces. The model extraction methods (see Chapter 6) are applied
to these traces in order to extract DLIM and hl-DLIM instances. The arrival rate variation
within these instances are compared to one another using the difference metrics described
in Section 7.1.2.2. I also compare the model extraction methods’ accuracy and run-time
with BFAST time-series decomposition.

The applicability and usability of the model for custom load variation creation is evaluated
separately based on a case study. Computer scientists from industry and academia (some of
them already using results of this thesis’ work for their purposes) answered a questionnaire
about the model’s applicability and the LIMBO’s usability for their purposes.

Finally, I perform a short evaluation on whether future work on DLIM for load intensity
forecasting is warranted.

7.1. Evaluating Model Accuracy and the Model Extraction
Process

I evaluate the presented model extraction methods based on 9 different real-world Web
and Cloud server traces covering between two weeks and seven months.

The first batch of traces was retrieved from The Internet Traffic Archive1. They were
parsed to arrival rate traces of a quarter-hourly resolution (meaning 96 arrival rate samples
per day).

• ClarkNet-HTTP: HTTP requests to the ClarkNet WWW server between August
28, 1995 at 00:00 and September 10th, 1995 at 23:59. ClarkNet is an Internet access
provider in the Metro Baltimore-Washington DC area.

• NASA-HTTP: HTTP requests to the NASA Kennedy Space Center WWW server
between July 1st, 1995 at 00:00 and August 31st, 1995 at 23:59.

• Saskatchewan-HTTP: HTTP requests to the University of Saskatchewan’s WWW
server between June 1st, 1995 at 00:00 and December 31st, 1995 at 23:59.

1Internet Traffic Archive: http://ita.ee.lbl.gov

61

http://ita.ee.lbl.gov

62 7. Evaluation

• WorldCup98: Web requests recorded at servers for the 1998 World Cup between
April 30th, 1998 at 22:00 UTC and June 8th, 1998 at 22:00 UTC.

The second batch of traces was retrieved from the Wikipedia page view statistics2.They
were parsed from the projectcount dumps, which already feature hourly arrival rates. All
traces are from December 2013, with the exception of the English Wikipedia trace, which
is from November 2013. The English December 2013 trace features a major irregularity
during the 4th day, which I attribute to a measurement or parsing error.

• de.wikipedia.org: Requests to all German Wikipedia projects during December
2013.

• fr.wikipedia.org: Requests to all French Wikipedia projects during December 2013.

• ru.wikipedia.org: Requests to all Russian Wikipedia projects during December
2013.

• wikipedia.org: Requests to all English Wikipedia projects during November 2013.

The Wikipedia traces feature an access behavior over different time zones. The German
Wikipedia projects are mostly accessed from a single time zone (CET), whereas the English
Wikipedia is accessed from all over the world. Evaluating the Wikipedia traces thus also
helps to asses how well the DLIM extraction processes deal with local vs. global access
patterns.

The final trace is a trace of transactions on an IBM z-Series Mainframe [Vau13] from
February 2011. It already features arrival rates using a quarter-hourly resolution.

For each trace DLIM instances are extracted using S-MIEP. Different Trend lengths are
compared for the resulting model instances. Best results are expected at Trend length of
one Seasonal period, whereas lower accuracy is expected at the longest evaluated Trend
length of three Seasonal periods. I also evaluate the effect of noise reduction and extraction,
by comparing an extracted model instance that was not extracted using noise reduction
and extraction with an instance that features extracted noise and an instance that was
extracted using noise reduction (the Gaussian filter, see 7.1.1.1).

For traces with a duration greater than one month, I also apply P-MIEP. P-MIEP is
configured to extract weeks as the periodic Trend list with two Trend segments of the
length 3 and 4. Additionally it extracts a bi-weekly period with a Trend list using two
Trend segments of the length 7. Finally, it extracts a monthly (4-weekly) period with a
Trend list using two Trend segments of the length 14. I also evaluate the impact of noise
reduction and extraction by comparing the three different extracted model instances.

I also extract hl-DLIM parameters from the traces (see Section 6.5) using hl-MIEP and
discuss the impact of noise reduction and extraction as part of the evaluation.

The shape of the interpolating functions is always selected as the DLIM SinTrend, meaning
that sin flanks are always used for the interpolation between arrival rate peaks and lows.
I choose SinTrend because it fits closest to the original trace in the majority of cases. An
advance interpolation function selection will have to be part of future work.

For the same reasons as the SinTrend selection for SeasonalShape and TrendShape, Ex-
ponentialIncreaseAndDecline is always selected for Burst modeling. Trends are always
selected to be multiplicative since this way they have a lower impact on arrival rate lows
and a relatively high impact on arrival rate peaks (contrary to additive Trends, which have
a constant impact on both). I do this, since arrival rate lows seem to vary less than arrival
rate peaks according to my observations.

2Wikipedia project-counts: http://dumps.wikimedia.org/other/pagecounts-raw/

62

http://dumps.wikimedia.org/other/pagecounts-raw/

7.1. Evaluating Model Accuracy and the Model Extraction Process 63

7.1.1. Trace Requirements

Considering that the model extraction methods and hl-DLIM are specifically designed
for load intensity variations with a seasonal base part and overarching trends, which are
caused by human motivated request arrival rate behavior, the traces used for the extraction
process and hl-DLIM evaluation should be selected to mirror these considerations.

The requirements for traces to be used as part of the evaluation process are therefore:

• Requests within the traces must originate from human users.

This requirement excludes traces of requests within any fully automated system,
such as scientific computing grids, or similar systems.

• The traces must have a duration of at least several days.

Since most human based activities have an inherent seasonal period based on the
daily cycle it stands to reason that traces with a duration of multiple days contain
some sort of repeating seasonal pattern.

• The traces should have minimal noise.

Noise adds an additional level of difficulty to the model extraction process. For more
details on this requirement see Section 7.1.1.1.

7.1.1.1. Noise Reduction

Noise adds an additional difficulty to the model extraction. It must first be eliminated in
order to make the seasonal and trend parts more visible.

Since automatic model extraction was not part of the original scope of this work, noise
reduction for automatic model extraction was only done superficially. A Gaussian filter
attempts to limit the impact of noise by removing high frequencies from the trace. Unfor-
tunately, this may lead to decreased model accuracy of the extracted model instance.

I attempt to limit the impact of existing noise in the traces by clever use of the sampling
frequency. By allowing a seasonal period to only contain between 20 and 100 sampled
arrival rates, noise is expected to have less of an impact on the min-max search employed
as part of the model extraction process.

I do evaluate the impact of the Gaussian filter on overall process accuracy. Future work
should, however, use more advanced techniques in order to remove noise. This could lead
to a considerable improvement for any automated model extraction.

7.1.2. Evaluation Metrics

I calculate the difference between the original trace and the extracted model instance using
LIMBO’s difference calculator (see Section 5.7.1). The difference calculator returns a list
of absolute differences between each arrival rate defined in the trace and the arrival rate
produced by the model at its respective time-stamp. It also returns the overall relative
absolute mean and median differences. It does so by calculating the relative absolute
arrival rate difference at each sampled point in time:

relative∆ = |arrivalRateread−arrivalRatemodelarrivalRateread
|

The mean and median relative absolute differences are then derived from the list of all
relative absolute differences.

63

64 7. Evaluation

Additionally the difference calculator features a Dynamic Time Warping (DTW) [Mül07]
based difference metric.

Typical statistical test, such as the F-Test, (paired) T-Test, or Chi2-Test were not per-
formed on the extracted model instances, as they ignore the time-component when eval-
uating the distribution of measured arrival rates. Since the time-dependent change of
the arrival rate variations is an integral part of DLIM and the extraction methods, these
statistical test are unfit for the comparison of the arrival rate distributions.

7.1.2.1. Motivating the Dynamic Time Warping-based Difference Metric

The median and mean arrival rate difference features a major problem: It does not take
the time-stamp of the arrival rates into account. The two arrival rate variation profiles in
Fig. 7.1 illustrate this. These two arrival rate variation profiles are clearly identical, yet
one lags 5 seconds behind. Simply calculating the arrival rate difference does not take this
into account (mean difference being at 37.5%, median difference being at 10%).dtwMotivation Arrival Rates

dtwMotivation dtwMotivationOffset

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

time

0

5

10

15

20

25

30

35

40

a
rr

iv
a

l
ra

te

Figure 7.1.: Two identical, yet time-wise offset arrival rate variation profiles.

This problem can be solved by applying Dynamic Time Warping (DTW) [Mül07] to the
two-dimensional data space consisting of both the time-stamps and their respective arrival
rates. DTW can then find the closest data point in this two dimensional space and calculate
the distance between these two points (using the euclidean distance).

For the example arrival rate variations in Fig. 7.1, the DTW based curve difference is thus
at 0.06875.

7.1.2.2. Difference Metric based on DTW

The difference calculator provides an additional difference metric based on the FastDTW
[SC07] implementation of the Dynamic Time Warping (DTW) algorithm. It calculates
the distance of the trace arrival rate time series and the model’s arrival rates at the times
specified within the trace. The euclidean distance is used to calculate the distance of

64

7.1. Evaluating Model Accuracy and the Model Extraction Process 65

the two-dimensional data points consisting of the arrival rates and their respective time-
stamps (the time-stamps have to be taken into account in order to detect and penalize
identical yet time-wise offset arrival rate functions). The resulting DTW distance is then
normalized by division through the amount of data points (arrival rate samples) as well
as division through the maximum arrival rate in the trace.

This DTW-based difference metric is thus defined as 1 for the difference between a constant
function (defined by the trace’s maximum value) and the constant zero-function, and 0 for
the two identical arrival rate functions. Each point in time, at which the data points in the
DLIM instance and trace are closer to one another, diminishes the overall DTW-distance.

The DTW-based difference metric allows easy comparison of different model instances,
which are based on the same arrival rate trace, as the metric is always normalized to the
trace’s maximum arrival rate value.

7.1.3. ClarkNet-HTTP

The ClarkNet-HTTP trace3 features two weeks of HTTP requests to the ClarkNet WWW
server between August 28, 1995 at 00:00 and September 10th, 1995 at 23:59. ClarkNet
is an Internet access provider in the Metro Baltimore-Washington DC area. I parsed the
trace to an arrival rate trace with a quarter-hourly resolution.

As a result the Seasonal Part is extracted from 96 arrival rate samples.

For the Trend Part I extract different model instances with segment lengths between 1
and 3 Seasonal periods for S-MIEP. The hl-DLIM Extraction Process only uses a segment
length of 1 Seasonal period for comparison with the DLIM extraction.

Both extraction processes are performed using noise reduction only, noise reduction and
then extraction, and without any noise reduction and extraction for evaluation of the effect
of noise on the extraction process.

P-MIEP was not performed on this trace, since it only features two weeks of requests and
is thus too short repeating weekly, bi-weekly, and monthly patterns.

relative relative DTW
Extraction median mean curve
Parameters error (%) error (%) difference

S-MIEP, Trend length 1, noise extracted 21.195 26.0 0.051992
S-MIEP, Trend length 1, noise reduced 17.509 20.475 0.046219
S-MIEP, Trend length 1, noise ignored 12.409 15.753 0.037891
S-MIEP, Trend length 2, noise ignored 14.734 20.343 0.044982
S-MIEP, Trend length 3, noise ignored 14.919 19.542 0.043292
hl-MIEP, Trend length 1, noise extracted 20.105 22.479 0.043371
hl-MIEP, Trend length 1, noise reduced 19.361 21.477 0.042963
hl-MIEP, Trend length 1, noise ignored 72.924 66.024 0.269728

Table 7.1.: ClarkNet-HTTP model extraction accuracy.

The ClarkNet extraction results in Table 7.1 and Figures 7.2 and 7.3 show that S-MIEP
offers by far the best results, especially with a Trend length of 1. Noise elimination does
not seem to help for this particular trace during the DLIM extraction. The result is also
not optimal when extracting noise, since the randomly generated noise does not produce
the exact same results as the original noise, thus increasing the difference between model
and original trace arrival rates.

3ClarkNet-HTTP: http://ita.ee.lbl.gov/html/contrib/ClarkNet-HTTP.html

65

http://ita.ee.lbl.gov/html/contrib/ClarkNet-HTTP.html

66 7. Evaluation

ClarkNet_S-MIEP_Trendlength1_Noise_ignored Arrival Rates

ClarkNet_S-MIEP_Trendlength1_Noise_ignored ClarkNet_trace

0 100 200 300 400 500 600 700 800 900 1,000 1,100 1,200 1,300

time

0

500

1,000

1,500

2,000

2,500

3,000

3,500

4,000

4,500

5,000

5,500

a
rr

iv
a

l
ra

te

Figure 7.2.: The arrival rates as defined by the original trace (blue) and the extracted
DLIM instance using S-MIEP with Trend length 1 and ignoring noise (red).

T.1.noise T.1.noise.eliminated T.1.no.noise T.2.no.noise T.3.no.noise

0
50

0
10

00
15

00
20

00
25

00
30

00

Clarknet, Simple DLIM Extraction Process

T=Trend length in Seasonal periods

ar
riv

al
 r

at
e

di
ffe

re
nc

e

Figure 7.3.: Arrival rate accuracy of the different DLIM S-MIEP configurations.

66

7.1. Evaluating Model Accuracy and the Model Extraction Process 67

Hl-MIEP shows another picture entirely. Considering that hl-DLIM only offers a small
number of pre-defined parameters, the extracted hl-DLIM instances are surprisingly close
to the original model. Contrary to what was observed in the DLIM extraction, the hl-
DLIM extraction heavily relies on the noise reduction. Hl-MIEP accuracy is significantly
improved once noise is filtered and not ignored. This can easily be attributed to the linear
interpolation between extracted peaks. Since hl-DLIM interpolates between the highest
and lowest peak (thus only extracting two peaks), the non-filtered trace offers a great
number of noisy peaks with minimal impact on the overall arrival rate. The filtered version
however only offers a few remaining peaks, which have a far greater impact on the overall
arrival rate. Applying noise reduction forces hl-MIEP to only consider the remaining peaks
with greater impact and not accidentally choosing an outlier for its peaks.

7.1.4. NASA-HTTP

The NASA-HTTP trace4 features two months of HTTP requests to the NASA Kennedy
Space Center WWW server between July 1st, 1995 at 00:00 and August 31st, 1995 at
23:59. I parsed the trace to an arrival rate trace with a quarter-hourly resolution.

As a result the Seasonal Part is extracted from 96 arrival rate samples.

For the Trend Part I extract different model instances with segment lengths between 1
and 3 Seasonal periods for S-MIEP. The hl-DLIM Extraction Process only uses a segment
length of 1 Seasonal period for comparison with the DLIM extraction.

P-MIEP is configured to extract weeks as the periodic Trend list with two Trend segments
of the length 3 and 4. Additionally it extracts a bi-weekly period with a Trend list using
two Trend segments of the length 7. Finally, it extracts a monthly (4-weekly) period with
a Trend list using two Trend segments of the length 14.

All extraction processes are performed using noise reduction only, noise reduction and then
extraction, and without any noise reduction and extraction for evaluation of the effect of
noise on the extraction process.

relative relative DTW
Extraction median mean curve
Parameters error (%) error (%) difference

P-MIEP, noise extracted 32.223 87.619 0.026951
P-MIEP, noise reduced 28.944 85.013 0.024968
P-MIEP, noise ignored 23.633 91.185 0.028573
S-MIEP, Trend length 1, noise extracted 26.446 77.651 0.022533
S-MIEP, Trend length 1, noise reduced 23.56 73.865 0.020487
S-MIEP, Trend length 1, noise ignored 18.812 69.113 0.018773
S-MIEP, Trend length 2, noise ignored 20.8 77.354 0.02209
S-MIEP, Trend length 3, noise ignored 27.577 83.306 0.030999
hl-MIEP, Trend length 1, noise extracted 26.541 76.31 0.020706
hl-MIEP, Trend length 1, noise reduced 24.539 73.531 0.021203
hl-MIEP, Trend length 1, noise ignored 55.575 64.494 0.05495

Table 7.2.: NASA-HTTP model extraction accuracy.

The NASA-HTTP extraction results in Table 7.2 and Figures 7.4 and 7.5, while not per-
forming quite as well as in the ClarkNet-HTTP extraction, enforce several of the conclu-
sions from the ClarkNet trace evaluation. S-MIEP still provides the best results, especially
with Trend length 1, and noise reduction seems to be useful for hl-MIEP.

4NASA-HTTP: http://ita.ee.lbl.gov/html/contrib/NASA-HTTP.html

67

http://ita.ee.lbl.gov/html/contrib/NASA-HTTP.html

68 7. Evaluation

NASA_S-MIEP_Trendlength1_Noise_ignored Arrival Rates

NASA_S-MIEP_Trendlength1_Noise_ignored NASA_trace

0 250 500 750 1,000 1,250 1,500 1,750 2,000 2,250 2,500 2,750 3,000 3,250 3,500 3,750 4,000 4,250 4,500 4,750 5,000 5,250 5,500 5,750

time

0

500

1,000

1,500

2,000

2,500

3,000

3,500

4,000

a
rr

iv
a

l
ra

te

Figure 7.4.: The arrival rates as defined by the original trace (blue) and the extracted
DLIM instance using S-MIEP with Trend length 1 and ignoring noise (red).

T.1.noise T.1.noise.eliminated T.1.no.noise T.2.no.noise T.3.no.noise

0
50

0
10

00
15

00
20

00
25

00

NASA, Simple DLIM Extraction Process

T=Trend length in Seasonal periods

ar
riv

al
 r

at
e

di
ffe

re
nc

e

Figure 7.5.: Arrival rate accuracy of the different DLIM S-MIEP configurations.

68

7.1. Evaluating Model Accuracy and the Model Extraction Process 69

The discrepancies between extracted model instance and original trace seem to have three
major causes:

• Burst detection fails to notice a major burst at around time-stamp 1200.

• The server was shut down for maintenance between time-stamps 2700 and 2900. The
extraction processes do not have a contingency for this case.

• Deviating Seasonal Patters: This is a major cause for all deviations in all eval-
uated traces. The extraction processes all assume a single, identically repeating
Seasonal Part. Depending on the trace, this assumption may be valid to a different
extent. In this case, the extracted Seasonal pattern is able to approximate most days
in the trace, but a number of significant deviations do occur. Manual modeling in the
DLIM editor can circumvent this problem, hl-DLIM and the automated extractors
however are not able to do this.

P-MIEP performs well when being compared to the other two extraction processes. This
is surprising in that the periodic process assumes that all trends repeat. In this case, this
assumption seems to be relatively accurate. As a result, this trace might be well suited
for workload forecasting.

7.1.5. Saskatchewan-HTTP

The Saskatchewan-HTTP trace5 features seven months of HTTP requests to the University
of Saskatchewan’s WWW server between June 1st, 1995 at 00:00 and December 31st, 1995
at 23:59. I parsed the trace to an arrival rate trace with a quarter-hourly resolution.

As a result the Seasonal Part is extracted from 96 arrival rate samples.

For the Trend Part I extract different model instances with segment lengths between 1
and 3 Seasonal periods for S-MIEP. The hl-DLIM Extraction Process only uses a segment
length of 1 Seasonal period for comparison with the DLIM extraction.

P-MIEP is configured to extract weeks as the periodic Trend list with two Trend segments
of the length 3 and 4. Additionally it extracts a bi-weekly period with a Trend list using
2 Trend segments of the length 7. Finally, it extracts a monthly (4-weekly) period with a
Trend list using 2 Trend segments of the length 14.

All extraction processes are performed using noise reduction only, noise reduction and then
extraction, and without any noise reduction and extraction for evaluation of the effect of
noise on the extraction process.

The Saskatchewan-HTTP extraction results in Table 7.3 and Figures 7.6 and 7.7 show a
different picture than the previous trace extraction results. First off, in this case noise
reduction also improves S-MIEP results. Secondly the extraction results can not reach the
same accuracy as in the ClarkNet and NASA extraction.

The major explanation for the relatively poor results for this trace is once more the Sea-
sonal pattern deviation. Since the Saskatchewan-HTTP trace extends over 7 months, the
Seasonal patterns have a lot of room for deviation. The model extractors fail to capture
this. This leads to an additional error in the Trend calibration. Since the trends are
supposed to be calibrated, so that each greatest Seasonal peak matches the trace’s nearest
local arrival rate maximum. Since the greatest extracted Seasonal peak’s time of day does
not match the trace’s greatest Seasonal peak’s time of day, the calibration takes place at
the wrong time-stamp. This explains why a majority of extracted days have a lower peak
than their counterparts in the original trace.

5Saskatchewan-HTTP: http://ita.ee.lbl.gov/html/contrib/Sask-HTTP.html

69

http://ita.ee.lbl.gov/html/contrib/Sask-HTTP.html

70 7. Evaluation

relative relative DTW
Extraction median mean curve
Parameters error (%) error (%) difference

P-MIEP, noise extracted 43.293 78.011 0.035426
P-MIEP, noise reduced 35.831 62.666 0.035263
P-MIEP, noise ignored 35.663 60.937 0.033896
S-MIEP, Trend length 1, noise extracted 35.551 68.764 0.029433
S-MIEP, Trend length 1, noise reduced 26.492 49.736 0.030491
S-MIEP, Trend length 1, noise ignored 29.171 50.37 0.026332
S-MIEP, Trend length 2, noise ignored 30.273 53.303 0.027575
S-MIEP, Trend length 3, noise ignored 32.085 58.495 0.029935
hl-MIEP, Trend length 1, noise extracted 37.942 60.15 0.031448
hl-MIEP, Trend length 1, noise reduced 33.24 52.568 0.034878
hl-MIEP, Trend length 1, noise ignored 80.792 75.635 0.100943

Table 7.3.: Saskatchewan-HTTP model extraction accuracy.

Saskatchewan_S-MIEP_Trendlength1_Noise_reduced Arrival Rates

Saskatchewan_S-MIEP_Trendlength1_Noise_reduced Saskatchewan_trace

0 2,500 5,000 7,500 10,000 12,500 15,000 17,500 20,000

time

0

100

200

300

400

500

600

700

800

900

a
rr

iv
a

l
ra

te

Figure 7.6.: The arrival rates as defined by the original trace (blue) and the extracted
DLIM instance using S-MIEP with Trend length 1 and with noise having
been eliminated (red).

70

7.1. Evaluating Model Accuracy and the Model Extraction Process 71

T.1.noise T.1.noise.eliminated T.1.no.noise T.2.no.noise T.3.no.noise

0
10

0
20

0
30

0
40

0
50

0
60

0

Saskatchewan, Simple DLIM Extraction Process

T=Trend length in Seasonal periods

ar
riv

al
 r

at
e

di
ffe

re
nc

e

Figure 7.7.: Arrival rate accuracy of the different DLIM S-MIEP configurations.

The major deviation from the trace’s Seasonal patterns also explains why S-MIEP performs
better using noise elimination for the Saskatchewan-HTTP extraction. Noise reduction
helps to mitigate the effect of seasonal pattern changes over time, thus reducing the effect
of the Seasonal pattern deviation.

7.1.6. WorldCup98

The WorldCup98 traces6 features Web requests recorded at servers for the 1998 World
Cup. I only used the requests between April 30th, 1998 at 22:00 UTC and June 8th, 1998
at 22:00 UTC, considering the trace is extremely large. I parsed the trace to an arrival
rate trace with a quarter-hourly resolution.

As a result the Seasonal Part is extracted from 96 arrival rate samples.

For the Trend Part I extract different model instances with segment lengths between 1
and 3 Seasonal periods for S-MIEP. The hl-DLIM Extraction Process only uses a segment
length of 1 Seasonal period for comparison with the DLIM extraction.

P-MIEP is configured to extract weeks as the periodic Trend list with 2 Trend segments
of the length 3 and 4. Additionally it extracts a bi-weekly period with a Trend list using
2 Trend segments of the length 7. Finally, it extracts a monthly (4-weekly) period with a
Trend list using 2 Trend segments of the length 14.

All extraction processes are performed using noise reduction only, noise reduction and then
extraction, and without any noise reduction and extraction for evaluation of the effect of
noise on the extraction process.

6WorldCup98: http://ita.ee.lbl.gov/html/contrib/WorldCup.html

71

http://ita.ee.lbl.gov/html/contrib/WorldCup.html

72 7. Evaluation

W
o

rld
C

u
p

98_S
-M

IE
P

_T
ren

d
len

g
th

1_N
o

ise_ig
n

o
red

 A
rrival R

ates

W
orldC

up98_S
-M

IE
P

_T
rendlength1_N

oise_ignored
W

orldC
up98_trace

0
250

500
750

1,000
1,250

1,500
1,750

2,000
2,250

2,500
2,750

3,000
3,250

3,500
3,750

tim
e

0

2,500

5,000

7,500

10,000

12,500

15,000

17,500

20,000

22,500

25,000

27,500

30,000

arrival rate

F
igu

re
7.8.:

T
h
e

arriva
l

ra
tes

a
s

d
efi

n
ed

b
y

th
e

origin
al

trace
(b

lu
e)

an
d

th
e

ex
tracted

D
L

IM
in

stan
ce

u
sin

g
S
-M

IE
P

w
ith

T
ren

d
len

gth
1

an
d

ign
orin

g
n
oise

(red
).

72

7.1. Evaluating Model Accuracy and the Model Extraction Process 73

relative relative DTW
Extraction median mean curve
Parameters error (%) error (%) difference

P-MIEP, noise extracted 52.304 63.847 0.047354
P-MIEP, noise reduced 53.316 61.522 0.045723
P-MIEP, noise ignored 53.495 56.625 0.069748
S-MIEP, Trend length 1, noise extracted 19.735 32.485 0.017751
S-MIEP, Trend length 1, noise reduced 16.882 27.575 0.014515
S-MIEP, Trend length 1, noise ignored 12.979 22.157 0.018861
S-MIEP, Trend length 2, noise ignored 15.691 25.458 0.020503
S-MIEP, Trend length 3, noise ignored 19.161 28.886 0.019215
hl-MIEP, Trend length 1, noise extracted 16.093 26.562 0.017208
hl-MIEP, Trend length 1, noise reduced 15.66 25.995 0.017179
hl-MIEP, Trend length 1, noise ignored 43.957 43.129 0.061156

Table 7.4.: WorldCup98 model extraction accuracy.

T.1.noise T.1.noise.eliminated T.1.no.noise T.2.no.noise T.3.no.noise

0
50

00
10

00
0

15
00

0
20

00
0

World Cup, Simple DLIM Extraction Process

T=Trend length in Seasonal periods

ar
riv

al
 r

at
e

di
ffe

re
nc

e

Figure 7.9.: Arrival rate accuracy of the different DLIM S-MIEP configurations.

73

74 7. Evaluation

The WorldCup98 extraction results in Table 7.4 and Figures 7.8 and 7.9 follow the patterns
of the previous trace extraction results. Noise elimination is useful for hl-MIEP, shorter
trends produce better results, with S-MIEP producing the best results.

Notable however is that P-MIEP performs worst of all considered traces, especially since
the other two processes fare relatively well. The obvious cause of this is the observation
that the WorldCup98 trace does not feature repeating trends and it only features increasing
trends. The S-MIEP and hl-MIEP can handle this easily, whereas P-MIEP cannot.

The major error cause is once again the Seasonal pattern deviation. Additionally, the last
day is not interpolated correctly. The trend interpolation ignores it, as it is not a complete
day within the trace (the trace cuts off about 18 hours into the last day), and the trace
interpolation ignores incomplete Seasonal periods at the end of the trace.

7.1.7. German Wikipedia

This trace contains the requests to all German Wikipedia projects during December 20136.
It already contained arrival rates with an hourly resolution.

As a result the Seasonal Part is extracted from 24 arrival rate samples.

For the Trend Part I extract different model instances with segment lengths between 1
and 3 Seasonal periods for S-MIEP. The hl-DLIM Extraction Process only uses a segment
length of 1 Seasonal period for comparison with the DLIM extraction.

Both extraction processes are performed using noise reduction only, noise reduction and
then extraction, and without any noise reduction and extraction for evaluation of the effect
of noise on the extraction process.

P-MIEP was not performed on this trace, since it only features one month of requests and
is thus too short repeating monthly patterns.

relative relative DTW
Extraction median mean curve
Parameters error (%) error (%) difference

S-MIEP, Trend length 1, noise extracted 11.215 16.623 0.027493
S-MIEP, Trend length 1, noise reduced 10.511 16.013 0.026259
S-MIEP, Trend length 1, noise ignored 8.538 16.55 0.027512
S-MIEP, Trend length 2, noise ignored 9.956 17.659 0.031427
S-MIEP, Trend length 3, noise ignored 11.771 17.884 0.03574
hl-MIEP, Trend length 1, noise extracted 11.898 19.26 0.027019
hl-MIEP, Trend length 1, noise reduced 11.393 18.991 0.027193
hl-MIEP, Trend length 1, noise ignored 13.126 23.392 0.030153

Table 7.5.: de.wikipedia.org model extraction accuracy.

The de.wikipedia.org extraction results in Table 7.5 and Figures 7.10 and 7.11 confirm
many of the observations made with the Internet Traffic Archive traces. Noise extraction
is most useful for hl-MIEP, Trend length 1 as part of S-MIEP performs best. The overall
accuracy, however, is significantly better than for the Internet Traffic Archive traces since
the Seasonal pattern deviation, while still relevant, shows less impact than before.

6Wikipedia project-counts, December 2013: http://dumps.wikimedia.org/other/pagecounts-raw/

2013/2013-12/

74

http://dumps.wikimedia.org/other/pagecounts-raw/2013/2013-12/
http://dumps.wikimedia.org/other/pagecounts-raw/2013/2013-12/

7.1. Evaluating Model Accuracy and the Model Extraction Process 75

de.wikipedia.org_S-MIEP_Trendlength1_Noise_ignored Arrival Rates

de.wikipedia.org_S-MIEP_Trendlength1_Noise_ignored de.wikipedia.org_trace

0 25 50 75 100 125 150 175 200 225 250 275 300 325 350 375 400 425 450 475 500 525 550 575 600 625 650 675 700 725 750

time

0

250,000

500,000

750,000

1,000,000

1,250,000

1,500,000

1,750,000

2,000,000

2,250,000

2,500,000

2,750,000

a
rr

iv
a

l
ra

te

Figure 7.10.: The arrival rates as defined by the original trace (blue) and the extracted
DLIM instance using S-MIEP with Trend length 1 and ignoring noise (red).

T.1.noise T.1.noise.eliminated T.1.no.noise T.2.no.noise T.3.no.noise

0
50

00
00

10
00

00
0

15
00

00
0

wikipedia_de, Simple DLIM Extraction Process

T=Trend length in Seasonal periods

ar
riv

al
 r

at
e

di
ffe

re
nc

e

Figure 7.11.: Arrival rate accuracy of the different DLIM S-MIEP configurations.

75

76 7. Evaluation

7.1.8. French Wikipedia

This trace contains the requests to all French Wikipedia projects during December 20136.
It already contained arrival rates with an hourly resolution.

As a result the Seasonal Part is extracted from 24 arrival rate samples.

For the Trend Part I extract different model instances with segment lengths between 1
and 3 Seasonal periods for S-MIEP. The hl-DLIM Extraction Process only uses a segment
length of 1 Seasonal period for comparison with the DLIM extraction.

Both extraction processes are performed using noise reduction only, noise reduction and
then extraction, and without any noise reduction and extraction for evaluation of the effect
of noise on the extraction process.

P-MIEP was not performed on this trace, since it only features one month of requests and
is thus too short repeating monthly patterns.

T.1.noise T.1.noise.eliminated T.1.no.noise T.2.no.noise T.3.no.noise

0
50

00
00

10
00

00
0

15
00

00
0

wikipedia_fr, Simple DLIM Extraction Process

T=Trend length in Seasonal periods

ar
riv

al
 r

at
e

di
ffe

re
nc

e

Figure 7.12.: Arrival rate accuracy of the different DLIM S-MIEP configurations.

The fr.wikipedia.org extraction results in Table 7.6 and Figures 7.13 and 7.12 confirm
previous observations. Noise extraction is most useful for hl-MIEP, Trend length 1 as part
of S-MIEP performs best. The overall accuracy is similar to the de.wikipedia.org trace
extraction, since the Seasonal pattern deviation, while still relevant, has similarly little
impact.

6Wikipedia project-counts, December 2013: http://dumps.wikimedia.org/other/pagecounts-raw/

2013/2013-12/

76

http://dumps.wikimedia.org/other/pagecounts-raw/2013/2013-12/
http://dumps.wikimedia.org/other/pagecounts-raw/2013/2013-12/

7.1. Evaluating Model Accuracy and the Model Extraction Process 77

fr
.w

ik
ip

ed
ia

.o
rg

_S
-M

IE
P

_T
re

n
d

le
n

g
th

1_
N

o
is

e_
ig

n
o

re
d

 A
rr

iv
al

 R
at

es

fr
.w

ik
ip

ed
ia

.o
rg

_S
-M

IE
P

_T
re

nd
le

ng
th

1_
N

oi
se

_i
gn

or
ed

fr
.w

ik
ip

ed
ia

.o
rg

_t
ra

ce

0
25

50
75

10
0

12
5

15
0

17
5

20
0

22
5

25
0

27
5

30
0

32
5

35
0

37
5

40
0

42
5

45
0

47
5

50
0

52
5

55
0

57
5

60
0

62
5

65
0

67
5

70
0

72
5

75
0

ti
m

e

0

25
0,

00
0

50
0,

00
0

75
0,

00
0

1,
00

0,
00

0

1,
25

0,
00

0

1,
50

0,
00

0

1,
75

0,
00

0

2,
00

0,
00

0

2,
25

0,
00

0

2,
50

0,
00

0

2,
75

0,
00

0

arrival rate

F
ig

u
re

7
.1

3.
:

T
h
e

ar
ri

va
l
ra

te
s

as
d

efi
n
ed

b
y

th
e

or
ig

in
al

tr
ac

e
(b

lu
e)

an
d

th
e

ex
tr

ac
te

d
D

L
IM

in
st

an
ce

u
si

n
g

S
-M

IE
P

w
it

h
T

re
n

d
le

n
gt

h
1

an
d

ig
n

or
in

g
n
o
is

e
(r

ed
).

77

78 7. Evaluation

relative relative DTW
Extraction median mean curve
Parameters error (%) error (%) difference

S-MIEP, Trend length 1, noise extracted 10.472 15.064 0.024289
S-MIEP, Trend length 1, noise reduced 8.566 13.984 0.022583
S-MIEP, Trend length 1, noise ignored 7.6 16.249 0.020954
S-MIEP, Trend length 2, noise ignored 8.973 17.393 0.02476
S-MIEP, Trend length 3, noise ignored 9.813 15.439 0.025621
hl-MIEP, Trend length 1, noise extracted 8.503 15.92 0.021719
hl-MIEP, Trend length 1, noise reduced 8.373 15.645 0.021834
hl-MIEP, Trend length 1, noise ignored 10.816 19.789 0.024962

Table 7.6.: fr.wikipedia.org model extraction accuracy.

7.1.9. Russian Wikipedia

This trace contains the requests to all Russian Wikipedia projects during December 20136.
It already contained arrival rates with an hourly resolution.

As a result the Seasonal Part is extracted from 24 arrival rate samples.

For the Trend Part I extract different model instances with segment lengths between 1
and 3 Seasonal periods for S-MIEP. The hl-DLIM Extraction Process only uses a segment
length of 1 Seasonal period for comparison with the DLIM extraction.

Both extraction processes are performed using noise reduction only, noise reduction and
then extraction, and without any noise reduction and extraction for evaluation of the effect
of noise on the extraction process.

P-MIEP was not performed on this trace, since it only features one month of requests and
is thus too short repeating monthly patterns.

relative relative DTW
Extraction median mean curve
Parameters error (%) error (%) difference

S-MIEP, Trend length 1, noise extracted 9.964 12.99 0.019626
S-MIEP, Trend length 1, noise reduced 9.912 12.763 0.018085
S-MIEP, Trend length 1, noise ignored 11.251 13.768 0.024094
S-MIEP, Trend length 2, noise ignored 11.683 14.452 0.02651
S-MIEP, Trend length 3, noise ignored 11.42 14.249 0.028279
hl-MIEP, Trend length 1, noise extracted 12.392 16.239 0.020092
hl-MIEP, Trend length 1, noise reduced 12.496 16.256 0.020114
hl-MIEP, Trend length 1, noise ignored 13.31 16.829 0.024575

Table 7.7.: ru.wikipedia.org model extraction accuracy.

The ru.wikipedia.org extraction results in Table 7.7 and Figures 7.14 and 7.15 differ from
the previous Wikipedia traces in that noise reduction also improves S-MIEP, while also
being useful for hl-MIEP. The overall accuracy is similar to the previous Wikipedia trace
extractions. For this single trace, however, the Seasonal patterns are shaped so the noise
reduction lessens the impact of Seasonal pattern deviation.

6Wikipedia project-counts, December 2013: http://dumps.wikimedia.org/other/pagecounts-raw/

2013/2013-12/

78

http://dumps.wikimedia.org/other/pagecounts-raw/2013/2013-12/
http://dumps.wikimedia.org/other/pagecounts-raw/2013/2013-12/

7.1. Evaluating Model Accuracy and the Model Extraction Process 79

ru.wikipedia.org_S-MIEP_Trendlength1_Noise_reduced Arrival Rates

ru.wikipedia.org_S-MIEP_Trendlength1_Noise_reduced ru.wikipedia.org_trace

0 25 50 75 100 125 150 175 200 225 250 275 300 325 350 375 400 425 450 475 500 525 550 575 600 625 650 675 700 725 750 775

time

0

250,000

500,000

750,000

1,000,000

1,250,000

1,500,000

1,750,000

2,000,000

2,250,000

2,500,000

2,750,000

3,000,000

a
rr

iv
a

l
ra

te

Figure 7.14.: The arrival rates as defined by the original trace (blue) and the extracted
DLIM instance using S-MIEP with Trend length 1 and noise having been
eliminated (red).

T.1.noise T.1.noise.eliminated T.1.no.noise T.2.no.noise T.3.no.noise

0
50

00
00

10
00

00
0

15
00

00
0

wikipedia_ru, Simple DLIM Extraction Process

T=Trend length in Seasonal periods

ar
riv

al
 r

at
e

di
ffe

re
nc

e

Figure 7.15.: Arrival rate accuracy of the different DLIM S-MIEP configurations.

79

80 7. Evaluation

7.1.10. English Wikipedia

This trace contains the requests to all English Wikipedia projects during November 20137.
It already contained arrival rates with an hourly resolution.

As a result the Seasonal Part is extracted from 24 arrival rate samples.

For the Trend Part I extract different model instances with segment lengths between 1
and 3 Seasonal periods for S-MIEP. The hl-DLIM Extraction Process only uses a segment
length of 1 Seasonal period for comparison with the DLIM extraction.

Both extraction processes are performed using noise reduction only, noise reduction and
then extraction, and without any noise reduction and extraction for evaluation of the effect
of noise on the extraction process.

P-MIEP was not performed on this trace, since it only features one month of requests and
is thus too short repeating monthly patterns.

relative relative DTW
Extraction median mean curve
Parameters error (%) error (%) difference

S-MIEP, Trend length 1, noise extracted 7.764 8.199 0.018225
S-MIEP, Trend length 1, noise reduced 7.838 8.074 0.017131
S-MIEP, Trend length 1, noise ignored 4.855 5.391 0.018488
S-MIEP, Trend length 2, noise ignored 5.27 6.346 0.022529
S-MIEP, Trend length 3, noise ignored 7.23 9.744 0.037233
hl-MIEP, Trend length 1, noise extracted 7.75 8.044 0.01765
hl-MIEP, Trend length 1, noise reduced 7.961 8.097 0.017208
hl-MIEP, Trend length 1, noise ignored 8.868 10.143 0.042072

Table 7.8.: wikipedia.org model extraction accuracy.

wikipedia.org_S-MIEP_Trendlength1_Noise_ignored Arrival Rates

wikipedia.org_S-MIEP_Trendlength1_Noise_ignored wikipedia.org_trace

0 25 50 75 100 125 150 175 200 225 250 275 300 325 350 375 400 425 450 475 500 525 550 575 600 625 650 675 700 725

time

0

2,500,000

5,000,000

7,500,000

10,000,000

12,500,000

15,000,000

17,500,000

20,000,000

a
rr

iv
a

l
ra

te

Figure 7.16.: The arrival rates as defined by the original trace (blue) and the extracted
DLIM instance using S-MIEP with Trend length 1 and ignoring noise (red).

The wikipedia.org extraction results in Table 7.8 and Figures 7.16 and 7.17 are similar
to the German and French Wikipedia extraction results. Noise extraction is most useful
for hl-MIEP, Trend length 1 as part of S-MIEP performs best. The extraction results of

7Wikipedia project-counts, November 2013: http://dumps.wikimedia.org/other/pagecounts-raw/

2013/2013-11/

80

http://dumps.wikimedia.org/other/pagecounts-raw/2013/2013-11/
http://dumps.wikimedia.org/other/pagecounts-raw/2013/2013-11/

7.1. Evaluating Model Accuracy and the Model Extraction Process 81

T.1.noise T.1.noise.eliminated T.1.no.noise T.2.no.noise T.3.no.noise

0e
+

00
1e

+
06

2e
+

06
3e

+
06

4e
+

06

wikipedia_en, Simple DLIM Extraction Process

T=Trend length in Seasonal periods

ar
riv

al
 r

at
e

di
ffe

re
nc

e

Figure 7.17.: Arrival rate accuracy of the different DLIM S-MIEP configurations.

this trace, however, exhibit by far the best overall accuracy across all examined traces.
The reason for this is the unusually high arrival rate base level. Since wikipedia.org is
accessed globally at all times, the load intensity variations on top of the base level have
little impact on the relative load variations in general. As a result, all modeling errors are
also relatively small.

7.1.11. IBM z-Series Transactions

This trace contains the count of completed transactions on an IBM z196 Mainframe during
February 2011 as used in [HHKA14]. The trace features the amount of CICS, IMS, and
OPEN transactions with a quarter-hourly resolution.

As a result the Seasonal Part is extracted from 96 arrival rate samples.

For the Trend Part I extract different model instances with segment lengths between 1
and 3 Seasonal periods for S-MIEP. The hl-DLIM Extraction Process only uses a segment
length of 1 Seasonal period for comparison with the DLIM extraction.

Both extraction processes are performed using noise reduction only, noise reduction and
then extraction, and without any noise reduction and extraction for evaluation of the effect
of noise on the extraction process.

P-MIEP was not performed on this trace, since it only features one month of requests and
is thus too short repeating monthly patterns.

The IBM trace features an arrival rate variation that differs completely during weekdays
and weekends. As a result Seasonal pattern deviation plays a major role. The single
extracted seasonal pattern matches neither weekday nor weekend behavior and thus leads

81

82 7. Evaluation

relative relative DTW
Extraction median mean curve
Parameters error (%) error (%) difference

S-MIEP, Trend length 1, noise extracted 95.351 431.165 0.033344
S-MIEP, Trend length 1, noise reduced 79.031 356.08 0.019388
S-MIEP, Trend length 1, noise ignored 74.368 124.603 0.040656
S-MIEP, Trend length 2, noise ignored 76.812 137.906 0.041428
S-MIEP, Trend length 3, noise ignored 74.063 220.94 0.038953
hl-MIEP, Trend length 1, noise extracted 91.05 254.992 0.034215
hl-MIEP, Trend length 1, noise reduced 85.613 229.08 0.029841
hl-MIEP, Trend length 1, noise ignored 84.972 487.071 0.079584

Table 7.9.: IBM z-Series Transactions model extraction accuracy.
IBM_Transactions_S-MIEP_Trendlength1_Noise_ignored Arrival Rates

IBM_Transactions_S-MIEP_Trendlength1_Noise_ignored IBM_Transactions_trace

0 250 500 750 1,000 1,250 1,500 1,750 2,000 2,250 2,500 2,750

time

0

10,000

20,000

30,000

40,000

50,000

60,000

70,000

80,000

90,000

a
rr

iv
a

l
ra

te

Figure 7.18.: The arrival rates as defined by the original trace (blue) and the extracted
DLIM instance using S-MIEP with Trend length 1 and ignoring noise (red).

T.1.noise T.1.noise.eliminated T.1.no.noise T.2.no.noise T.3.no.noise

0
20

00
0

40
00

0
60

00
0

80
00

0

IBM z−Series Transactions, Simple DLIM Extraction Process

T=Trend length in Seasonal periods

ar
riv

al
 r

at
e

di
ffe

re
nc

e

Figure 7.19.: Arrival rate accuracy of the different DLIM S-MIEP configurations.

82

7.1. Evaluating Model Accuracy and the Model Extraction Process 83

a decrease in overall accuracy (see Table 7.9 and Figures 7.18 and 7.19). This trace shows
a need for a future extraction process using multiple Seasonal patterns.

7.1.11.1. IBM z-Series Transactions during work days

To test whether Seasonal pattern deviation between work days and weekends is actually
the main cause of the extraction error within the IBM z-Series trace, I extract a DLIM
instance from the first 5 days within the trace. These days are all work days, as a result
the problem of Seasonal pattern deviation should not have as much of an impact on the
extraction.

relative relative DTW
Extraction median mean curve
Parameters error (%) error (%) difference

S-MIEP, Trend length 1, noise extracted 89.828 336.09 0.033807
S-MIEP, Trend length 1, noise reduced 74.43 260.609 0.022686
S-MIEP, Trend length 1, noise ignored 22.946 101.132 0.019704

Table 7.10.: IBM z-Series Transactions model extraction accuracy (work days only).

IBM_Transactions_weekdays_S-MIEP_Trendlength1_Noise_ignored Arrival Rates

IBM_Transactions_weekdays_S-MIEP_Trendlength1_Noise_ignored IBM_Transactions_weekdays_trace

0 25 50 75 100 125 150 175 200 225 250 275 300 325 350 375 400 425 450 475 500 525

time

0

10,000

20,000

30,000

40,000

50,000

60,000

70,000

80,000

90,000

a
rr

iv
a

l
ra

te

Figure 7.20.: The arrival rates as defined by the original trace (blue) and the extracted
DLIM instance using S-MIEP with Trend length 1 and ignoring noise (red).

With weekends not being part of the trace, extraction results improve significantly (see
Table 7.10 and Figure 7.20). The IBM trace is still a weak point of this work’s extraction
processes, it does however fare significantly better than with weekends included. The
median accuracy of the extracted model instance without any noise reduction reaches
acceptable bounds again.

Note that the DTW based curve difference is significantly better than the median and
mean differences would suggest. The main reason for this phenomenon is also found in
the main source of arrival rate deviation between work day trace and the extracted model
instance. The extracted model instances are offset by time during the later days. Simply
speaking: People seem to perform their transactions starting later on Fridays than they
do on Mondays. The extracted model instance does not take this into account. The DTW
distance however, detects this time-wise deviation. As explained in Section 7.1.2.2, the
DTW based curve difference penalizes time-wise offset of otherwise similar arrival rates
less than the simple mean and median arrival rate differences do. This leads to the DTW
based curve difference indicating a significantly better match between model instance and
trace than the mean and median differences.

83

84 7. Evaluation

7.1.12. Comparison with BFAST

Table 7.11 shows the comparison of the extraction accuracy of S-MIEP, with the optimal
configuration for each trace, against the extraction accuracy of the BFAST[VHNC10] time-
series decomposition.

To enable a fair comparison, I configured BFAST to extract one seasonal pattern and not
more than 1 trend per day. In contrast to DLIM instances, where the seasonal pattern is
represented by piece-wise interpolating functions, in a BFAST output, the seasonal pattern
is represented as a less compact discrete function.

I also measured the run-time of both the S-MIEP extraction within LIMBO and BFAST
decomposition within R. The extraction was performed on a PC with an Intel Core i7 4770
processor with 3.4 GHz and 16 GB DDR3 RAM running Windows 8.1.

LIMBO, version 14.03.0314, ran on an Eclipse Kepler Service Release 1 instance (Build ID:
20130919-0803), using the Eclipse Modeling Tools, version 2.0.2.20140224-0000, deployed
on JRE Version 7 Update 51. For BFAST, I used version 1.4.4, it was run using R [Den12],
version 3.0.2.

Both BFAST and S-MIEP use one processor core only, as they run on a single thread.

Each run-time measurement was executed 10 times. The measured times in table 7.11 are
averages.

S-MIEP BFAST S-MIEP BFAST
relative median relative median run-time run-time

Trace error (%) error (%) (ms) (ms)

ClarkNet-HTTP 12.409 12.243 4.2 76276
NASA-HTTP 18.812 - 25.2 -
Saskatchewan-HTTP 26.492 - 118.8 -
WorldCup98 12.979 - 11.8 -
de.wikipedia.org 8.538 11.223 3.9 23518
fr.wikipedia.org 7.6 8.511 3.5 23630
ru.wikipedia.org 9.912 5.809 5.8 23803
wikipedia.org 4.855 2.302 3.2 21517
IBM Transactions 74.368 - 16.7 -

Table 7.11.: Accuracy and run-time comparison between S-MIEP and BFAST.

S-MIEP performs well compared to BFAST. BFAST has problems extracting large traces
and did not terminate when trying to extract these traces. BFAST only terminates in
traces with fewer data points. The ClarkNet-HTTP trace only extends over 2 weeks,
and the Wikipedia traces contain less data points due to their lower resolution. S-MIEP
performs better than BFAST for both the German and French Wikipedia traces. Here, S-
MIEP’s accuracy profits from its support of multiplicative trends. BFAST does, however,
provide better accuracy for the English and Russian traces. It also performs slightly better
than S-MIEP in the ClarkNet-HTTP extraction. In these cases, BFAST’s more advanced
Trend calibration mechanisms outperform S-MIEP.

S-MIEP is, however, significantly faster than BFAST. Running on the same machine,
LIMBO’s S-MIEP implementation performed 8354 times faster on average than BFAST’s
R implementation, offering the greatest speedup for the ClarkNet extraction with its higher
resolution, and the smallest speedup for the Russian Wikipedia trace. The best Russian
Wikipedia extraction in LIMBO entails noise reduction, which costs additional time com-
pared to S-MIEP extractions that do not utilize noise reduction.

84

7.2. LIMBO Usability Evaluation 85

7.1.13. Conclusions

Evaluating DLIM and hl-DLIM accuracy has shown that the model extraction processes
are capable of extracting DLIM and hl-DLIM instances with convincing accuracy from a
number of different real life load intensity traces. The Wikipedia traces are the strong
suit of the model extraction. The daily use patterns on Wikipedia vary very little and
repeat predictably. As a result extracted Seasonal patterns match the trace’s days well
and overlaying Trends are easily calibrated.

Other traces on the other hand suffer from significant Seasonal pattern deviation. The
IBM z-Series Transactions trace is a prime example of this. Different usage patterns on
weekdays and weekends make it impossible to extract a single accurate seasonal pattern
for all days. This leads to a significant decrease in accuracy. Long traces such as the seven
moth long Saskatchewan-HTTP trace also suffer from Seasonal pattern deviation, since
they leave too much time for Seasonal changes.

S-MIEP performs most accurately of all extraction methods. It can reach similar extraction
accuracy as the BFAST time-series decomposition, while performing 8354 times as fast.

Answering research question 2.1 from Section 1.2, I can state that I have shown that it
is possible to accurately extract model instances from existing traces in most cases, the
major drawback being the problem of Seasonal pattern deviation. The assumption of a
single Seasonal pattern for the entire trace is not always accurate. Future work will have
to address this issue and define DLIM extraction processes that extract multiple Seasonal
patterns from traces.

7.2. LIMBO Usability Evaluation

LIMBO Usability is evaluated on the basis of a questionnaire (see Appendix B) filled out
by subjects from within the performance engineering community. All of the subjects are
people involved in the LIMBO project in a way, in which they are considering the use of
LIMBO as part of their own projects in the future.

The subjects are members of the following academic affiliations or corporations:

• Karlsruhe Institute of Technology (KIT)

• FZI Forschungszentrum Informatik, Karlsruhe

• Christian Albrechts University, Kiel

• SAP

• ABB

The subjects filled out the form right after completing a short 20 to 25 minute tutorial on
LIMBO (see Appendix A).

The questionnaire is designed to have subjects rate the difficulty of feature use on a scale
of 1 (easy) to 4 (difficult). Subjects also rate the perceived usefulness of features on a
scale of 1 (very useful) to 4 (not useful). Using an even numbered scale forces subjects to
choose between a positive or negative answer to each question, they cannot simply choose
the middle option. In the end the questionnaire provides a few free form answer fields for
envisioned use cases and needed future features.

Figures 7.21 and 7.22 show that subjects are generally satisfied with the usability of LIMBO
features. All features are rated on mean ease of 1 to 2, which is on the positive end of

85

86 7. Evaluation

1 8 100%

2 0 0%

3 0 0%

4 0 0%

1 3 38%

2 5 63%

3 0 0%

4 0 0%

1 5 63%

2 3 38%

3 0 0%

4 0 0%

1 3 38%

2 4 50%

3 1 13%

4 0 0%

1. LIMBO Installation is ...

2. Creating a custom DLIM instance with the model creation wizard is ...

3. Extracting new model wizard parameters from an existing arrival rate trace

is ...

4. Editing a DLIM instance in the DLIM editor is ...

Figure 7.21.: Responses to the first 4 feature-ease-of-use questions on a scale of 1 (easy)
to 4 (difficult).

86

7.2. LIMBO Usability Evaluation 87

1 6 75%

2 1 13%

3 1 13%

4 0 0%

1 3 43%

2 2 29%

3 2 29%

4 0 0%

1 5 63%

2 3 38%

3 0 0%

4 0 0%

1 5 63%

2 3 38%

3 0 0%

4 0 0%

5. Extracting a DLIM Sequence from an existing arrival rate trace using the

Simple Extraction Process is ...

6. Extracting a DLIM Sequence from an existing arrival rate trace using the

Periodic Extraction Process is ...

7. Creating an arrival rate time-series from a DLIM instance is ...

8. Creating a request time-stamp-series from a DLIM instance is ...

Figure 7.22.: Responses to the second 4 feature-ease-of-use questions on a scale of 1 (easy)
to 4 (difficult).

87

88 7. Evaluation

1 5 71%

2 2 29%

3 0 0%

4 0 0%

1 6 86%

2 1 14%

3 0 0%

4 0 0%

1 5 71%

2 2 29%

3 0 0%

4 0 0%

1 7 88%

2 1 13%

3 0 0%

4 0 0%

9. Ability to create custom pre-populated model instances using the model

creation wizard is ...

10. Ability to extract model creation wizard parameters from an existing trace is

...

11. Ability to extract a DLIM Sequence from an existing trace is ...

12. Ability to generate time-series based on a DLIM instance is ...

Figure 7.23.: Responses to the questions on perceived feature usefulness on a scale of 1
(very useful) to 4 (not useful).

88

7.3. Load Intensity Forecasting Evaluation 89

the spectrum. The only two features that received any negative feedback at all in terms
of ease of use are the DLIM Editor and the extraction processes.

The relative difficulty of DLIM Editor use can be attributed to the overall difficulty of
EMF Editor use, especially for people who are not used to EMF. Providing a custom
editor using GMF or Graphiti might be worth considering for the future. This might help
to make DLIM modeling easier for people without an EMF background.

The relative difficulty of using automated model extraction in the form of S-MIEP and
P-MIEP within LIMBO on the other hand can be directly attributed to the complexity
of those model instance extraction methods. The model instance extraction GUI dialogs
might still be improved however, to ease the user into S-MIEP and P-MIEP use.

Figure 7.23 shows that none of the LIMBO testers disputes the usefulness of any of the
major LIMBO features. The feature of time-series generation, especially, is considered as
being very useful by the testers. This is not surprising as it is at the core of a majority
of LIMBO use-cases. The free-form answers also emphasize this point. A majority of
testers is interested in using LIMBO for benchmarking purposes. Time-series generation
is a critical part for that application.

Overall LIMBO’s usability can be characterized as good. Testers were generally satisfied
with the ease of use of all features. The most positive outlook however, is provided by the
evaluation of perceived feature usefulness. The questionnaire responses show that all of
LIMBO’s features are considered useful by the testers.

7.3. Load Intensity Forecasting Evaluation

This load intensity forecasting evaluation is designed to indicate whether future work on
DLIM for the purpose of load intensity forecasting is warranted. The purpose of this
evaluation is not a full evaluation of currently existing DLIM forecasting mechanisms,
since they are out of scope for this work.

For this evaluation, I extract the first week of the wikipedia.org trace (see Section 7.1.10)
into a DLIM instance using P-MIEP. As with previous periodic extractions, I set the Trend
list for the weekly repeating Trend to encompass Trend segments of the length 3 and 4.
Bi-weekly and monthly repeating Trends are omitted for this evaluation, since the original
trace is not long enough.

relative relative DTW
Extraction median mean curve
Parameters error (%) error (%) difference

P-MIEP, noise extracted 6.583 9.577 0.033744
P-MIEP, noise reduced 6.332 9.507 0.034726
P-MIEP, noise ignored 8.082 11.669 0.041693

Table 7.12.: wikipedia.org week 1 model extraction accuracy.

This extracted first week (extraction accuracy, see Table 7.12) is then repeated for the
entire month and compared to the complete wikipedia.org trace.

Judging by the overall accuracy in Table 7.13 and Figures 7.24 and 7.25, the forecast
accuracy is very good for this trace. Noise elimination seems to be useful since it always
helps to mitigate the effects of Seasonal pattern deviation. Looking at the arrival rate
comparison in Figure 7.24, however, shows significant room for improvement. Future work
will have to attempt to predict future patterns and not simply repeat old ones, as is done
here.

89

90 7. Evaluation

relative relative DTW
Extraction median mean curve
Parameters error (%) error (%) difference

P-MIEP, noise extracted 7.655 9.755 0.032351
P-MIEP, noise reduced 7.292 9.571 0.031137
P-MIEP, noise ignored 8.546 11.513 0.036384

Table 7.13.: wikipedia.org forecast accuracy.

wikipedia.org_week1_P-MIEP_Noise_reduced Arrival Rates

wikipedia.org_week1_P-MIEP_Noise_reduced wikipedia.org_trace

0 25 50 75 100 125 150 175 200 225 250 275 300 325 350 375 400 425 450 475 500 525 550 575 600 625 650 675 700 725

time

0

2,500,000

5,000,000

7,500,000

10,000,000

12,500,000

15,000,000

17,500,000

20,000,000

a
rr

iv
a

l
ra

te

Figure 7.24.: The arrival rates as defined by the original trace (blue) and the extracted
DLIM instance using S-MIEP with Trend length 1 and noise having been
eliminated (red).

noise noise.eliminated no.noise

0e
+

00
1e

+
06

2e
+

06
3e

+
06

4e
+

06
5e

+
06

wikipedia.org, forecast based on week 1 extraction

ar
riv

al
 r

at
e

di
ffe

re
nc

e

Figure 7.25.: Arrival rate forecast accuracy of the different DLIM P-MIEP configurations.

90

8. Future Work

While DLIM and LIMBO already provide a great wealth of features and uses, room for
future works still exists. LIMBO has been designed to be extended for use with other
benchmarking and workload analysis tools. For now, it is to be extended to use or be used
as part of the following tools:

• Descartes Query Language (DQL) [Gor13]

• JMeter [Hal08]

Other future work can for now be split into two parts: the extension and improvement of
existing features and the adaptation of DLIM and LIMBO for other uses, such as workload
forecasting.

8.1. Improvement of existing features

At the center of future work improving the current DLIM and LIMBO implementations
is the problem of Seasonal pattern deviation. Future work will have to address this issue.
For now I foresee two approaches:

• Defining and extraction process for multiple Seasonal patterns. A process could ex-
tract multiple Seasonal patterns and then match them to extracted Seasonal periods
using a best-fit approach. This could be achieved using a similar approach as in the
BFAST Seasonal break detection, one could also attempt to include meta-data, such
as calendars, in order to determine the best Seasonal pattern.

– Alternatively, read time-series could be split before model extraction begins.
This split would also happen on the basis of heuristics most likely based on
available meta-data, such as calendar information.

• Implementing more advanced trend calibration mechanisms: The current trend cal-
ibration tries to match the maximum Seasonal peak with the read arrival rate at
its time-stamp. This approach can be extremely inaccurate when Seasonal pat-
tern deviation occurs. Implementing more advanced calibration mechanisms could
circumvent this problem.

Other existing features can also be improved regardless of Seasonal pattern deviation.

91

92 8. Future Work

• Implement advanced Noise Reduction techniques: The Gaussian filter currently em-
ployed for noise reduction is a simple and quick way of filtering frequencies. Far
more complex and effective methods of noise reduction do exist and should be tried
in the DLIM context.

• Automated Seasonal period extraction: The current model instance extraction pro-
cesses require the user to define the Seasonal period based on meta information
about the trace available to the user. Future work could use frequency analysis in
order to automatically determine Seasonal periods.

• Extracting Trends of variable length and break detection: The current model in-
stance extraction processes extract Trends of a pre-defined and fixed length. Future
work could attempt to define Trends of differing lengths depending on current load
intensity shapes within the trace. This could lead to a more dynamic and accurate
DLIM instance.

• Automated Seasonal and Trend shape detection: Current model instance extrac-
tion processes require the user to define the shape of the interpolating functions for
the Seasonal and Trend parts. Using heuristics, these shapes could be extracted
automatically.

8.2. Extending for future Use-Cases

LIMBO is designed to be used with two major use cases in mind: Custom load intensity
creation for benchmarking, and model instance extraction from existing traces. DLIM and
LIMBO might however be useful for a great range of additional use-cases. Future work
will have to extend DLIM and LIMBO to better fit these use-cases. Currently planned is
the application of DLIM and LIMBO for load intensity forecasting. For this, LIMBO will
have to be extended at the following fronts:

• Advanced heuristics for future Trends: The Periodic Model Instance Extraction
Process assumes that all Trends repeat indefinitely and unchanged. More advanced
heuristics could be implemented to go beyond this assumption for greater forecasting
accuracy.

• Merge Simple and Periodic Model Instance Extraction Process: While the Periodic
Model Instance Extraction Process can be used for simple load intensity forecasting,
it can not handle a number of detectable trends. The evaluation on the basis of the
WorldCup98 trace (see Section 7.1.6) showed, that it fares poorly while attempting
to model a trace, which increases or decreases its load intensity over the duration of
the entire trace. The Simple Model Instance Extraction Process on the other hand
has no problems with this kind of trace. Future work may try to merge these two
approaches in order to combine the best of both worlds.

• Extend LIMBO for run-time model calibration: LIMBO should provide utilities to
calibrate an existing model instance based on new information that arrived at run-
time. The performance comparison between S-MIEP and BFAST in Section 7.1.12
already shows that automated model extraction in LIMBO is fast enough in order
to be used in such a context. LIMBO and DLIM could then be used for online
load-forecasting.

Future work for all use-cases could entail the extension of DLIM with new Function imple-
mentations. The current list of DLIM Functions is designed to be extended and improved
upon for future use.

92

9. Conclusion

This thesis presents the need for load intensity modeling formalisms. Load intensity models
can be used for the creation of custom load intensity variations for benchmarking purposes.
Benchmarks based on custom load intensity variations can be used to test specific system
properties, such as elastic resource allocation and release. Load intensity models can also
be used for the analysis and parametrization of existing load intensity traces.

Load intensity is defined on the basis of user or request arrival rates. When modeling
variations of these arrival rates, an open workload approach has to be taken, as knowledge
about work unit completion is not known by the load intensity model. Since the model
only models arrival rates, it assumes that the modeled requests or user behavior present a
homogenous resource use mix.

The Descartes Load Intensity Model (DLIM) provides a way of modeling arrival rate
variations over time by structuring and combining mathematical functions. The evaluation
(see Section 7.1) shows that it does so with great accuracy. The optimal accuracy reached
during my evaluation was a median accuracy of 4.86%. This great power comes at the
expense of usability, as shown in the usability evaluation in Section 7.2.

For greater usability and easier modeling this thesis also introduces the high-level Descartes
Load Intensity Model (hl-DLIM). Hl-DLIM models arrival rate variations using a few
parameters. While this enables better usablility (as shown in Section 7.2), it comes at the
expense of DLIM’s accuracy.

To enable modeling, LIMBO is introduced. LIMBO is an Eclipse-based tool for handling
and instantiating load intensity models based on DLIM. LIMBO users can define variable
arrival rates. LIMBO offers an accessible way of editing DLIM instances and extracting
them from existing traces. It also supports additional modeling utilities, such as using
hl-DLIM parameters for easy creation of new DLIM instances through a model creation
wizard.

LIMBO features three model instance extraction methods. These methods can be used to
extract DLIM or hl-DLIM instances from existing arrival rate traces. The model accuracy
evaluation in Section 7.1 uses these methods in order to extract model instances from
arrival rate traces for comparison.

The three extraction methods are:

• Simple Model Instance Extraction Process (S-MIEP): An accurate extraction pro-
cess, which extracts DLIM instances from existing arrival rate traces with a median

93

94 9. Conclusion

error of 19.9%. Comparison with BFAST[VHNC10] also shows, that S-MIEP pro-
vides excellent performance, with all extractions completing in less than 0.2 seconds
and providing an average speedup of 8354 compared to BFAST decomposition.

• Periodic Model Instance Extraction Process (P-MIEP): A less accurate extraction
process to extract DLIM instances from existing arrival rate traces. Other than S-
MIEP, P-MIEP instances are intended to be repeated for load intensity forecasting.
A preliminary load intensity forecasting evaluation (see Section 7.3) shows promising
results, as it is able to forecast a month of requests with a median accuracy of 7.3%.

• high-level Model Instance Extraction Process (hl-MIEP): Extracts hl-DLIM instances
from existing arrival rate traces. Due to hl-DLIM’s limitations, this is less accurate
than S-MIEP. The limited accuracy can however be improved by applying noise
reduction during the extraction process.

By introducing DLIM, hl-DLIM, the extraction methods, and LIMBO, the products of
this thesis provide a powerful and flexible way of modeling and analyzing various load
intensity variation profiles. This can be done for a multitude of purposes, such as custom
request time-stamp generation for benchmarking or the re-parametrization of arrival rate
traces. LIMBO is already being used as part of other works such as Andreas Weber’s on-
going master’s thesis on resource elasticity in cloud environments [WHGK14], an on-going
master’s thesis of Syed-Wahaj Ali, conducted at ABB Ladenburg, and in a case study for
VMware by Simon Spinner [SKZU13].

94

Bibliography

[BC98] P. Barford and M. Crovella, “Generating representative web workloads for
network and server performance evaluation,” in Proceedings of the 1998
ACM SIGMETRICS joint international conference on Measurement and
modeling of computer systems, ser. SIGMETRICS ’98/PERFORMANCE
’98. New York, NY, USA: ACM, 1998, pp. 151–160. [Online]. Available:
http://doi.acm.org/10.1145/277851.277897

[BFF+10] P. Bodik, A. Fox, M. J. Franklin, M. I. Jordan, and D. A. Patterson, “Char-
acterizing, modeling, and generating workload spikes for stateful services,”
in Proceedings of the 1st ACM symposium on Cloud computing. ACM,
2010, pp. 241–252.

[Bie12] T. C. Bielefeld, “Online performance anomaly detection for large-scale soft-
ware systems,” 2012.

[BLY+10] A. Beitch, B. Liu, T. Yung, R. Griffith, A. Fox, and D. A.
Patterson, “Rain: A workload generation toolkit for cloud computing
applications,” EECS Department, University of California, Berkeley,
Tech. Rep. UCB/EECS-2010-14, Feb 2010. [Online]. Available: http:
//www.eecs.berkeley.edu/Pubs/TechRpts/2010/EECS-2010-14.html

[BS13] X. Bai and A. Shami, “Modeling self-similar traffic for network simulation,”
CoRR, vol. abs/1308.3842, 2013.

[BZ86] H. J. Blinchikoff and A. I. Zverev, Filtering in the time and frequency do-
mains. Krieger Publishing Co., Inc., 1986.

[CKKR12] G. Casale, A. Kalbasi, D. Krishnamurthy, and J. Rolia, “Burn: Enabling
workload burstiness in customized service benchmarks,” IEEE Transactions
on Software Engineering, vol. 38, no. 4, pp. 778–793, 2012.

[Den12] B. Dennis, The R Student Companion. Boca Raton, FL: Chapman
& Hall/CRC Press, 2012. [Online]. Available: http://www.crcpress.com/
product/isbn/9781439875407

[Dev] C. M. Developers, “Apache commons math.” [Online]. Available:
http://commons.apache.org/proper/commons-math/

[Fei02] D. Feitelson, “Workload modeling for performance evaluation,” in
Performance Evaluation of Complex Systems: Techniques and Tools,
ser. Lecture Notes in Computer Science, M. Calzarossa and S. Tucci,
Eds. Springer Berlin Heidelberg, 2002, vol. 2459, pp. 114–141. [Online].
Available: http://dx.doi.org/10.1007/3-540-45798-4 6

[Gor13] F. Gorsler, “Online Performance Queries for Architecture-Level Performance
Models,” Master’s thesis, Karlsruhe Institute of Technology (KIT), Am
Fasanengarten 5, 76131 Karlsruhe, Germany, July 2013.

95

http://doi.acm.org/10.1145/277851.277897
http://www.eecs.berkeley.edu/Pubs/TechRpts/2010/EECS-2010-14.html
http://www.eecs.berkeley.edu/Pubs/TechRpts/2010/EECS-2010-14.html
http://www.crcpress.com/product/isbn/9781439875407
http://www.crcpress.com/product/isbn/9781439875407
http://commons.apache.org/proper/commons-math/
http://dx.doi.org/10.1007/3-540-45798-4_6

96 Bibliography

[Hal08] E. H. Halili, Apache JMeter: A Practical Beginner’s Guide to Automated
Testing and performance measurement for your websites. Packt Publishing
Ltd, 2008.

[HHKA14] N. R. Herbst, N. Huber, S. Kounev, and E. Amrehn, “Self-adaptive
workload classification and forecasting for proactive resource provisioning,”
Concurrency and Computation: Practice and Experience, pp. n/a–n/a,
2014. [Online]. Available: http://dx.doi.org/10.1002/cpe.3224

[Hup09] K. Huppler, “The art of building a good benchmark,” in Performance
Evaluation and Benchmarking, ser. Lecture Notes in Computer Science,
R. Nambiar and M. Poess, Eds. Springer Berlin Heidelberg, 2009,
vol. 5895, pp. 18–30. [Online]. Available: http://dx.doi.org/10.1007/
978-3-642-10424-4 3

[Li10] H. Li, “Realistic workload modeling and its performance impacts in large-
scale escience grids,” Parallel and Distributed Systems, IEEE Transactions
on, vol. 21, no. 4, pp. 480–493, 2010.

[MAFM99] D. A. Menascé, V. A. Almeida, R. Fonseca, and M. A. Mendes, “A method-
ology for workload characterization of e-commerce sites,” in Proceedings of
the 1st ACM conference on Electronic commerce. ACM, 1999, pp. 119–128.

[MAR+03] D. A. Menascé, V. A. F. Almeida, R. Riedi, F. Ribeiro, R. Fonseca,
and W. Meira, Jr., “A hierarchical and multiscale approach to analyze
e-business workloads,” Perform. Eval., vol. 54, no. 1, pp. 33–57, Sep. 2003.
[Online]. Available: http://dx.doi.org/10.1016/S0166-5316(02)00228-6

[MK12] A. Milenkoski and S. Kounev, “Towards Benchmarking Intrusion
Detection Systems for Virtualized Cloud Environments,” in Proceedings
of the 7th International Conference for Internet Technology and Secured
Transactions (ICITST 2012). New York, USA: IEEE, December 2012,
pp. 562–563. [Online]. Available: http://ieeexplore.ieee.org/xpl/login.jsp?
tp=&arnumber=6470873

[MLA10] J. McAffer, J.-M. Lemieux, and C. Aniszczyk, Eclipse rich client platform.
Addison-Wesley Professional, 2010.

[Mül07] M. Müller, “Dynamic time warping,” Information Retrieval for Music and
Motion, pp. 69–84, 2007.

[RBG13] S. Roy, T. Begin, and P. Goncalves, “A complete framework for modelling
and generating workload volatility of a vod system,” in Wireless Commu-
nications and Mobile Computing Conference (IWCMC), 2013 9th Interna-
tional, 2013, pp. 1168–1174.

[RLGPC+99] A. Reyes-Lecuona, E. González-Parada, E. Casilari, J. Casasola, and
A. Diaz-Estrella, “A page-oriented www traffic model for wireless system
simulations,” in Proceedings ITC, vol. 16, 1999, pp. 1271–1280.

[SBMP08] D. Steinberg, F. Budinsky, E. Merks, and M. Paternostro, EMF: eclipse
modeling framework. Pearson Education, 2008.

[SC07] S. Salvador and P. Chan, “Toward accurate dynamic time warping in linear
time and space,” Intell. Data Anal., vol. 11, no. 5, pp. 561–580, Oct. 2007.
[Online]. Available: http://dl.acm.org/citation.cfm?id=1367985.1367993

[Sch14] E. Schulz, “Integrating Performance Tests in a Generative Software Devel-
opment Platform,” Master’s thesis, Christian-Albrechts-Universität zu Kiel,
Christian-Albrechts-Platz 4, 24118 Kiel, Germany, July 2014.

96

http://dx.doi.org/10.1002/cpe.3224
http://dx.doi.org/10.1007/978-3-642-10424-4_3
http://dx.doi.org/10.1007/978-3-642-10424-4_3
http://dx.doi.org/10.1016/S0166-5316(02)00228-6
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=6470873
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=6470873
http://dl.acm.org/citation.cfm?id=1367985.1367993

Bibliography 97

[SKZU13] S. Spinner, S. Kounev, X. Zhu, and M. Uysal, “Towards Online Performance
Model Extraction in Virtualized Environments,” in Proceedings of the 8th
Workshop on Models @ Run.time (MRT 2013), N. Bencomo, R. France,
S. Götz, and B. Rumpe, Eds. CEUR-WS, 2013, pp. 89–95.

[SV06] T. T. Stahl and M. Voelter, Model-driven software development. John
Wiley & Sons Chichester, 2006.

[SWHB06] B. Schroeder, A. Wierman, and M. Harchol-Balter, “Open versus closed:
a cautionary tale,” in Proceedings of the 3rd conference on Networked
Systems Design & Implementation - Volume 3, ser. NSDI’06. Berkeley,
CA, USA: USENIX Association, 2006, pp. 18–18. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1267680.1267698

[Vau13] R. Vaupel, High Availability and Scalability of Mainframe Environments
using System z and z/OS as example. KIT Scientific Publishing, Karlsruhe,
2013.

[VHNC10] J. Verbesselt, R. Hyndman, G. Newnham, and D. Culvenor, “Detecting
trend and seasonal changes in satellite image time series,” Remote Sensing
of Environment, vol. 114, no. 1, pp. 106 – 115, 2010. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S003442570900265X

[vHRH08] A. van Hoorn, M. Rohr, and W. Hasselbring, “Generating probabilistic
and intensity-varying workload for web-based software systems,” in
Proceedings of the SPEC international workshop on Performance
Evaluation: Metrics, Models and Benchmarks, ser. SIPEW ’08. Berlin,
Heidelberg: Springer-Verlag, 2008, pp. 124–143. [Online]. Available:
http://dx.doi.org/10.1007/978-3-540-69814-2 9

[vKHK14a] J. G. von Kistowski, N. R. Herbst, and S. Kounev, “Automatic Extraction of
Load Intensity Profiles using the Descartes Load Intensity Meta-Model,” in
Proceedings of the 11th International Conference on Autonomic Computing
(ICAC 2014). USENIX, June 2014, submitted on March 5th, 2014.

[vKHK14b] ——, “LIMBO: A Tool For Modeling Variable Load Intensities,” in Pro-
ceedings of the 5th ACM/SPEC International Conference on Performance
Engineering (ICPE 2014). ACM, March 2014, accepted for Publication.

[vKHK14c] ——, “Modeling Variations in Load Intensity over Time,” in Proceedings
of the 3rd International Workshop on Large-Scale Testing (LT 2014), co-
located with the 5th ACM/SPEC International Conference on Performance
Engineering (ICPE 2014). ACM, March 2014, accepted for Publication.

[WHGK14] A. Weber, N. R. Herbst, H. Groenda, and S. Kounev, “Towards a Resource
Elasticity Benchmark for Cloud Environments,” in Proceedings of the 2nd
International Workshop on Hot Topics in Cloud Service Scalability (Hot-
TopiCS 2014), co-located with the 5th ACM/SPEC International Conference
on Performance Engineering (ICPE 2014). ACM, March 2014, accepted
for Publication.

[ZF13] N. Zakay and D. G. Feitelson, “Workload resampling for performance
evaluation of parallel job schedulers,” in Proceedings of the 4th ACM/SPEC
International Conference on Performance Engineering, ser. ICPE ’13.
New York, NY, USA: ACM, 2013, pp. 149–160. [Online]. Available:
http://doi.acm.org/10.1145/2479871.2479893

97

http://dl.acm.org/citation.cfm?id=1267680.1267698
http://www.sciencedirect.com/science/article/pii/S003442570900265X
http://dx.doi.org/10.1007/978-3-540-69814-2_9
http://doi.acm.org/10.1145/2479871.2479893

Appendix

A. LIMBO Tutorial

LIMBO requires an up-to-date version of the Kepler Modeling Tools, available at:

http://www.eclipse.org/downloads/packages/eclipse-modeling-tools/keplersr1

The Eclipse instance must be running using Java 6 or newer.

A.1. Installing LIMBO

There are two ways to gain access to LIMBO:

A.1.1. Installation via Update Site

LIMBO can be downloaded from its Eclipse Update Site at:

http://sdqweb.ipd.kit.edu/eclipse/misc/limbo

To use this site click on Help→ Install new Software ... in the Eclipse IDE, then click
the Add... Button and enter the URL there. The site can then be selected in the Work
with: drop-down menu and the feature should appear.

Figure A.1.: The Install new Software ... dialog, with LIMBO selected.

99

http://www.eclipse.org/downloads/packages/eclipse-modeling-tools/keplersr1
http://sdqweb.ipd.kit.edu/eclipse/misc/limbo

100 Appendix

Please note: LIMBO is still in development and the update site’s existence and location
should remain confidential.

A.1.2. Building LIMBO from Code

The feature can be built directly from Code, available on GitHub at

https://github.com/joakimkistowski/LIMBO

by checking out the following plugin projects:

https://github.com/joakimkistowski/LIMBO/tree/master/dlim.exporter

https://github.com/joakimkistowski/LIMBO/tree/master/dlim.extractor

https://github.com/joakimkistowski/LIMBO/tree/master/dlim.generator.edit

https://github.com/joakimkistowski/LIMBO/tree/master/dlim.generator.editor

https://github.com/joakimkistowski/LIMBO/tree/master/dlim.generator

LIMBO can then be executed by right-clicking on any of the Eclipse-projects and choosing
Run As → Eclipse Application.

A.2. Creating a new Model

A new Descartes Load Intensity Model can be created within the context of any Eclipse
Project (Using separate projects for DLIM modeling is recommended).

To create a new model instance click File → New → Other; in the dialog choose:
Descartes Load Intensity Model → Descartes Load Intensity Model and click
Next >. Now select the project in which to place the model and enter a name.

The model creation wizard allows for easy creation of an initial Model with the use of
parameters for the different parts of the model. This will be done during the course of this
tutorial. Click on Next > to get to the next wizard page. It can however be skipped at
any point by clicking the Finish button.

Figure A.2.: Choosing the DLIM creation wizard.

100

https://github.com/joakimkistowski/LIMBO
https://github.com/joakimkistowski/LIMBO/tree/master/dlim.exporter
https://github.com/joakimkistowski/LIMBO/tree/master/dlim.extractor
https://github.com/joakimkistowski/LIMBO/tree/master/dlim.generator.edit
https://github.com/joakimkistowski/LIMBO/tree/master/dlim.generator.editor
https://github.com/joakimkistowski/LIMBO/tree/master/dlim.generator

A. LIMBO Tutorial 101

Figure A.3.: Creating a new model.

The next page offers a choice about which model parts to edit in the wizard. We can
extract the wizard’s parameters from an arrival rate trace and modify the seasonal, trend,
burst, and noise parts of the model. For now we leave this page at its default settings
(Extract Model Parameters from Trace unchecked, everything else: checked) and
click on Next >.

Figure A.4.: Choosing which parameters to edit.

A.2.1. Modifying the Seasonal Part

This page offers to define the model’s seasonal part. The seasonal part is the repeating
base function of the model. It is defined by its arrival rate peaks and base values, as well
as its period (duration of a single seasonal iteration). I recommend playing around with
the parameters to get a feel for them. In the end set them as follows:

101

102 Appendix

Period: 24
Number of Peaks: 2
Base Arrival Rate Level: 2
Base Arrival Rate Level between Peaks: 4
First Peak Arrival Rate: 12
Last Peak Arrival Rate: 11
Interval containing Peaks: 12
Seasonal Shape: SinTrend

Then click on Next >.

Figure A.5.: The Seasonal Part.

A.2.2. Modifying the Trend Part

This Page defines the model’s trend part. The trend part defines a piece-wise function,
which interpolates at the maximal seasonal peaks so that these peaks reach the target
arrival rate defined in the list view. Each trend segment stretches over multiple seasonal
iterations and interpolates between these defined target peaks.

The trend segment length is defined by the Number of Seasonal Periods within one
Trend. Set this to 2.

Next we must define the target arrival rates which the seasonal peaks are to reach:

In the text-field next to Interpolate max. seasonal peak to target arrival rate:
enter 12, then klick the Add button. The first trend segment will now begin at the
biggest peak of the first seasonal iteration. This peak will have the arrival rate of 12.

102

A. LIMBO Tutorial 103

Next enter 20 in the same text-field and click Add again. The first trend segment will
end by interpolating the maximum arrival rate of its last seasonal iteration (remember:
the segment stretches over 2 seasonal iterations) to the arrival rate of 20.

At last enter 16 and click Add again.

As the Trend Shape select SinTrend. This is the function the trend uses for interpolation
between its defined arrival rates.

Figure A.6.: The Trend Part.

Click Next >.

A.2.3. Modifying the Burst and Noise Parts

This page offers the definition of recurring bursts and random noise. Both are added onto
the existing arrival rate output.

Define the bursts as follows:

First Burst Offset: 28
Inter Burst Period: 72
Burst Peak Arrival Rate: 10
Burst Width: 4

Additionally set the Maximum Noise Arrival Rate to 3.

103

104 Appendix

Figure A.7.: The Burst and Noise Parts.

You are now done. Click Finish to exit the wizard.

A.3. DLIM Editor

The DLIM Editor will automatically open. The model should already be pre-populated
with a root Sequence, a number of TimeDependentFunctionContainers, and a few Combi-
nators.

It is recommended to turn on Live Validation for easy modeling feedback, by right-clicking
inside the editor and checking Live Validation. Model element attributes can be changed
in the Properties View, which can be opened by right-clicking on any model element (such
as the root Sequence) and selecting Show Properties View. You should also open the
Plot View, which visualizes the model’s current arrival rate function. Do this by right-
clicking anywhere in the editor and the clicking on Show Plot View.

Rearrange the Plot View and Properties View so that both are accessible at the same time.

104

A. LIMBO Tutorial 105

Figure A.8.: The initial model.

A.3.1. Plot View

Right-clicking in the Plot View offers a few options. You can save the current plot to a
file or display arrival rates from a trace for comparison.

For now, toggle the plot decomposition by clicking on Toggle Decomposition. The
decomposition shows the impact of the different Combinators on the total arrival rate
function.

A.3.2. Editing a DLIM instance in the Editor

All functions displayed in the DLIM editor can be deleted or edited. For this tutorial we are
going to delete the uniform noise function and replace it with a normal noise distribution.
We are then going to multiply a linear function onto this noise, so that it is strongest at
the beginning and then fades out towards the end.

The Uniform Noise is contained in the third Combinator (The second Combinator ADD).
Open this Combinator, then click on the Uniform Noise and delete it. The editor will now
display an error, if Live Validation is enabled.

105

106 Appendix

Figure A.9.: Our model with the Uniform Noise deleted.

Next add a Normal Noise to the Combinator. For this right-click on the Combinator’s
then New Child → Normal Noise.

Figure A.10.: Creating a new model element.

To edit the new Normal Noise select it (click on it), then change its attributes in the
Properties View. Set its Mean to 5 and its Standard Deviation to 3.

106

A. LIMBO Tutorial 107

Figure A.11.: Editing the Normal Noise.

Next we add a Combinator to the Normal Noise. Right-click on the Normal Noise →
New Child → Combinator. Set the new Combinator’s Operator to MULT in the
Properties View.

We now add a Linear Trend to the new Combinator. Right-click on the Combinator →
New Child → Linear Trend. In the Properties View set the Linear Trend ’s Function
Output At Start to 1 and its Function Output At End to 0.

We have now successfully replaced the original Uniform Noise with a linearly diminishing
Normal Noise.

Figure A.12.: The edited Model.

107

108 Appendix

A.3.3. Generating Time Stamps

Once no validation errors appear and the model has been saved (ctrl+s), a request time-
stamp series can be generated by right-clicking the .dlim model file in the Eclipse Package
Explorer and selecting Generate Time Stamps. A list of all currently installed time-
stamp exporters appears. All default exporters, shipped with the DLIM feature write their
resulting time series to their respective folders within the model’s Eclipse project.

Figure A.13.: Generate Time-Stamps.

For this tutorial we want to create request time stamps for the use with a benchmarking
framework. For this, the time-stamp generator samples the arrival rate function and
then generates time-stamps according to the sampled arrival rate within each sampled
interval. Select Request Time Stamps via Equal Distance Sampling, then click
OK. This creates the request time-stamps with an equal distance from each other within
each sampled arrival rate interval.

The resulting dialog offers a number of parameters with which to change sampling interval,
the time over which the function is defined, and other parameters. The default parameters
are fine for now. Click on OK to generate the time-stamps. A .txt file appears in the
timeStamps folder in the .dlim file’s Eclipse project.

A.3.4. Extracting a DLIM Sequence from a Trace

Next we are going to extract a Sequence from an existing arrival rate trace. For this we
use an arrival rate trace from the German Wikipedia. Download it here:

https://github.com/joakimkistowski/LIMBO/blob/master/DLIM_examples/trace/wikipedia_

trace.txt

The extraction process takes a DLIM Sequence and fills it with model elements modeling
the arrival rates defined in the trace. Right-click on the model’s root Sequence→ Extract
Sequence from Arrival Rate File.

108

https://github.com/joakimkistowski/LIMBO/blob/master/DLIM_examples/trace/wikipedia_trace.txt
https://github.com/joakimkistowski/LIMBO/blob/master/DLIM_examples/trace/wikipedia_trace.txt

A. LIMBO Tutorial 109

Figure A.14.: Extract Sequence from Arrival Rate Trace.

Set the downloaded trace as the Arrival Rate File, then select the Simple Process
Extractor and click OK (The Periodic Process Extractor is explained in Section A.4.1).

In the following dialog, set the Seasonal Period to 24 (the trace features hourly samples)
and set the Seasonal Periods per Trend to 1 (This setting affects trend segment length,
just as it did in the model creation wizard). Click OK.

Figure A.15.: Extract Sequence from Arrival Rate Trace.

A.3.5. Comparing Model and Trace

There are two ways to compare the extracted model instance to the original trace:

In the Plot View: Right-click→ Toggle Arrival Rate File Plot→ select the Wikipedia
trace → OK. You might want to also Toggle Decomposition again for better visibility.
The Plot View now displays the arrival rates from the trace and the arrival rates of the
model for comparison.

109

110 Appendix

Figure A.16.: Plot View Comparison of Model and Trace.

Save the .dlim file (ctrl+s). In the Project Explorer Right-click on the .dlim file → Cal-
culate Difference to Arrival Rate File → select the Wikipedia trace for the Arrival
Rate File → OK. A dialog with a number of difference metrics appears. A list of all
absolute differences is also written to the Eclipse project’s diffs folder.

Figure A.17.: Calculate Difference between Model and Trace.

A.4. Additional Features

These additional features are not part of the tutorial, but warrant additional explanation.

A.4.1. Periodic Process Extractor

The periodic extractor is a more complex extractor, which assumes that trends are repeat-
ing. For this the periodic extractor takes trend-segment-lists, which repeat. While the
process allows for trend lists of arbitrary length, the GUI only allows for lists with 2 trend
segments.

These lists can be added by filling the two text-fields below the list view in the extractor’s
dialog and then clicking Add.

Common inputs are weekly repeating trend lists with a total duration of 7 seasonal periods
(days) (e.g.: 3,4) or monthly / 4-week lists with a total duration of 28 days (e.g.: 14,14).

110

A. LIMBO Tutorial 111

Sequences derived using the Periodic Process Extractor are usually less accurate than
Sequences derived using the Simple Process Extractor. They can however extend infinitely
since their trends repeat.

Figure A.18.: Periodic Process Extraction Dialog.

A.4.2. Difference Calculator

The difference calculator calculates the difference between an arrival rate trace file and
a DLIM instance. In the Project Explorer Right-click on the .dlim file → Calculate
Difference to Arrival Rate File → select the arrival rate trace for the Arrival Rate
File → OK. A list of all absolute differences is also written to the Eclipse project’s diffs
folder.

Additionally, the difference calculator displays its results in a dialog. This dialog displays
the absolute and relative median and mean differences, as well as a relative curve difference
based on the Dynamic Time Warping (DTW) algorithm. The DTW difference takes into
account that the arrival rate variations may contain accurate arrival rates, yet be offset
by time. As a result it is usually smaller than the relative mean and median differences.
It is useful for comparing different model instances on the basis of the same trace.

Figure A.19.: Results of a difference calculation.

A.5. Example Models

An Eclipse project with example Models can be downloaded from GitHub at:

https://github.com/joakimkistowski/LIMBO/tree/master/DLIM_examples

111

https://github.com/joakimkistowski/LIMBO/tree/master/DLIM_examples

112 Appendix

112

B. LIMBO Usability Questionnaire 113

B. LIMBO Usability Questionnaire

B.1. Questionnaire

LIMBO Usability Evaluation - Difficulty/Ease of Feature

Use
LIMBO is an Eclipse-based tool for handling and instantiating load intensity models based on the

Descartes Load Intensity Model (DLIM). LIMBO users can define variable arrival rates for a multitude of

purposes, such as custom request time-stamp generation for benchmarking or the re-parametrization of

request traces. LIMBO offers an accessible way of editing DLIM instances and extracting them from

existing traces. It also supports additional modeling utilities, such as using High-Level DLIM (HLDLIM)

parameters for easy creation of new DLIM instances through a model creation wizard.

LIMBO includes a number of different features. By filling out this form, you help us evaluate the

usefulness and ease of use of these features. This will help for evaluation purposes, and help us focus

our efforts for future work. So, in advance: A big Thank You for taking the time to fill out this form!

The Questions on this page evaluate the difficulty/ease of using major features within the LIMBO plugin.

1. LIMBO Installation is ...

Mark only one oval.

1 2 3 4

easy difficult

2. Creating a custom DLIM instance with the model creation wizard is ...

Mark only one oval.

1 2 3 4

easy difficult

3. Extracting new model wizard parameters from an existing arrival rate trace is ...

Mark only one oval.

1 2 3 4

easy difficult

4. Editing a DLIM instance in the DLIM editor is ...

Mark only one oval.

1 2 3 4

easy difficult

113

114 Appendix

5. Extracting a DLIM Sequence from an existing arrival rate trace using the Simple

Extraction Process is ...

Mark only one oval.

1 2 3 4

easy difficult

6. Extracting a DLIM Sequence from an existing arrival rate trace using the Periodic

Extraction Process is ...

Mark only one oval.

1 2 3 4

easy difficult

7. Creating an arrival rate time-series from a DLIM instance is ...

Mark only one oval.

1 2 3 4

easy difficult

8. Creating a request time-stamp-series from a DLIM instance is ...

Mark only one oval.

1 2 3 4

easy difficult

Limbo Usability Evaluation - Feature Usefulness
The Questions on this page evaluate the usefulness of different features whithin LIMBO.

9. Ability to create custom pre-populated model instances using the model creation wizard

is ...

Mark only one oval.

1 2 3 4

very useful not useful

114

B. LIMBO Usability Questionnaire 115

10. Ability to extract model creation wizard parameters from an existing trace is ...

Mark only one oval.

1 2 3 4

very useful not useful

11. Ability to extract a DLIM Sequence from an existing trace is ...

Mark only one oval.

1 2 3 4

very useful not useful

12. Ability to generate time-series based on a DLIM instance is ...

Mark only one oval.

1 2 3 4

very useful not useful

Limbo Usability Evaluation - Others
Please take the time to fill out these answers.

13. 13. Which use-cases do you envision for LIMBO?

14. 14. Which additional features would you like to see realized?

115

116 Appendix

Pow ered by

15. 15. How would you create a variable workload from scratch without LIMBO?

Mark only one oval.

 Trace Replay

 Stochastic Model

 Other:

16. Please Enter your Organization/Affiliation:

116

B. LIMBO Usability Questionnaire 117

B.2. Responses

1 8 100%

2 0 0%

3 0 0%

4 0 0%

1 3 38%

2 5 63%

3 0 0%

4 0 0%

1 5 63%

2 3 38%

3 0 0%

4 0 0%

1 3 38%

2 4 50%

3 1 13%

4 0 0%

1. LIMBO Installation is ...

2. Creating a custom DLIM instance with the model creation wizard is ...

3. Extracting new model wizard parameters from an existing arrival rate trace

is ...

4. Editing a DLIM instance in the DLIM editor is ...

Figure B.20.: Responses to the first 4 feature-ease-of-use questions on a scale of 1 (easy)
to 4 (difficult).

117

118 Appendix

1 6 75%

2 1 13%

3 1 13%

4 0 0%

1 3 43%

2 2 29%

3 2 29%

4 0 0%

1 5 63%

2 3 38%

3 0 0%

4 0 0%

1 5 63%

2 3 38%

3 0 0%

4 0 0%

5. Extracting a DLIM Sequence from an existing arrival rate trace using the

Simple Extraction Process is ...

6. Extracting a DLIM Sequence from an existing arrival rate trace using the

Periodic Extraction Process is ...

7. Creating an arrival rate time-series from a DLIM instance is ...

8. Creating a request time-stamp-series from a DLIM instance is ...

Figure B.21.: Responses to the second 4 feature-ease-of-use questions on a scale of 1 (easy)
to 4 (difficult).

118

B. LIMBO Usability Questionnaire 119

1 5 71%

2 2 29%

3 0 0%

4 0 0%

1 6 86%

2 1 14%

3 0 0%

4 0 0%

1 5 71%

2 2 29%

3 0 0%

4 0 0%

1 7 88%

2 1 13%

3 0 0%

4 0 0%

9. Ability to create custom pre-populated model instances using the model

creation wizard is ...

10. Ability to extract model creation wizard parameters from an existing trace is

...

11. Ability to extract a DLIM Sequence from an existing trace is ...

12. Ability to generate time-series based on a DLIM instance is ...

Figure B.22.: Responses to the questions on perceived feature usefulness on a scale of 1
(very useful) to 4 (not useful).

119

120 Appendix

Trace Replay 2 29%

13. Which use-cases do you envision for LIMBO?

closer workload models LIMBO can produce very useful input for both workload-simulation

and trace-replay benchmarks. For use with different application (benchmark) drivers that

currently support only static or simple interval-based schemes for load variation. Extraction of

workload intensity from a given set of user traces. Generating workloads for elasticity

benchmarking! any use-case where load intensity is dramatically changing during some

period of time Will be looking to use LIMBO for testing performance usage scenarios for

testing automation applications in the cloud. LIMBO will certainly help with testing the elasticity

and scalability of the deployed system with its ability to generate variable models.

14. Which additional features would you like to see realized?

sliders to select values direct edit of the plot (click at the function and move it with the mouse

into any direction) Not sure if this already works, but jMeter also allows for distributed test.

Would be nice if LIMBO also supports. One way would be to create separate timestamps for

each of the slave based on the model (maybe by specifying the number of slaves one wishes to

have). Or a better way would be to just divide the workload using jMeter. Like I mentioned

earlier, not sure if it already works with the current jMeter plugin. Zoom support for Plot view.

Support for closed-workload scenarios (maybe one can already do that but I am currently unsure

how to do it best. At least a discussion in the documentation would help) In creation wizard:

Field "Interval containing peaks" should automatically adapt when field "period" is edited.

Example: Period: 120, Number of Peaks 2 -> Interval containing peaks should automatically

jump to 60 to generate a "uniform distribution" of peaks. -it were nice to have some help

documentation. In LIMBO there are a lot of parameters that the user can set (especially when a

new model is being created). Not all of them are self-explanatory To have various types of

"work units" within one model. Also, some hints in the GUI that briefly explain which parameter

does what would be helpful. Just some GUI issues, e.g., short tool-tips for (at least) function-

elements in editor; plots are sometimes difficult to be viewed -> zooming functionality would be

of great help.

15. How would you create a variable workload from scratch without LIMBO?

Figure B.23.: Responses to the free-form questions.

120

B. LIMBO Usability Questionnaire 121

Stochastic Model 3 43%

Other 2 29%

Please Enter your Organization/Affiliation:

Diplomand/Hiwi am FZI SAP KIT, SDQ ABB Uni-Kiel KIT

Figure B.24.: Responses to the free-form questions.

121

List of Figures

2.1. Illustrations of the closed and open system models. Source:[SWHB06] . . . 9

2.2. The decomposition of a time series into seasonal, trend, and remainder,
using BFAST [VHNC10]. 10

4.1. The Descartes Load Intensity Meta-Model (DLIM) without the child im-
plementations of the abstract Noise, Burst, Seasonal, and Trend. 20

4.2. The Sequence of the Descartes Load Intensity Model (DLIM). 20

4.3. An Example model using a Reference Clock Object. 22

4.4. The resulting arrival rates of the model in Figure 4.3, over the course of two
weeks. 23

4.5. The Function of the Descartes Load Intensity Model (DLIM). 23

4.6. Two different Combinator’s as children of a Function. 24

4.7. The complete Descartes Load Intensity Meta-Model (DLIM), including all
implemented functions at the time at which the work on this thesis is con-
cluded (March 20th, 2014). 26

4.8. The label representation of a polynomial function, derived from the func-
tion’s PolynomialFactors. 30

4.9. The decomposition of a load intensity variation into its Seasonal, Trend,
and Burst parts. 31

4.10. The parameters defining the Seasonal part of the high-level Descartes Load
Intensity Model (hl-DLIM). 32

4.11. The parameters defining the Trend part of the high-level Descartes Load
Intensity Model (hl-DLIM). 33

4.12. The parameters defining the Burst part of the high-level Descartes Load
Intensity Model (hl-DLIM). 33

4.13. A typical result of the Model-to-Model transformation from hl-DLIM to
DLIM. 34

4.14. A typical result of the Trend Part’s Model-to-Model transformation from
hl-DLIM to DLIM. 35

4.15. A typical result of the Burst Part’s Model-to-Model transformation from
hl-DLIM to DLIM. 35

5.1. LIMBO architecture. 38

5.2. LIMBO’s plug-ins and packages. 39

5.3. An example visualization of Combinator impacts within a Sequence. 51

6.1. Activity Diagram of the Simple Model Instance Extraction Process. 55

7.1. Two identical, yet time-wise offset arrival rate variation profiles. 64

7.2. The arrival rates as defined by the original trace (blue) and the extracted
DLIM instance using S-MIEP with Trend length 1 and ignoring noise (red). 66

7.3. Arrival rate accuracy of the different DLIM S-MIEP configurations. 66

123

124 List of Figures

7.4. The arrival rates as defined by the original trace (blue) and the extracted
DLIM instance using S-MIEP with Trend length 1 and ignoring noise (red). 68

7.5. Arrival rate accuracy of the different DLIM S-MIEP configurations. 68

7.6. The arrival rates as defined by the original trace (blue) and the extracted
DLIM instance using S-MIEP with Trend length 1 and with noise having
been eliminated (red). 70

7.7. Arrival rate accuracy of the different DLIM S-MIEP configurations. 71

7.8. The arrival rates as defined by the original trace (blue) and the extracted
DLIM instance using S-MIEP with Trend length 1 and ignoring noise (red). 72

7.9. Arrival rate accuracy of the different DLIM S-MIEP configurations. 73

7.10. The arrival rates as defined by the original trace (blue) and the extracted
DLIM instance using S-MIEP with Trend length 1 and ignoring noise (red). 75

7.11. Arrival rate accuracy of the different DLIM S-MIEP configurations. 75

7.12. Arrival rate accuracy of the different DLIM S-MIEP configurations. 76

7.13. The arrival rates as defined by the original trace (blue) and the extracted
DLIM instance using S-MIEP with Trend length 1 and ignoring noise (red). 77

7.14. The arrival rates as defined by the original trace (blue) and the extracted
DLIM instance using S-MIEP with Trend length 1 and noise having been
eliminated (red). 79

7.15. Arrival rate accuracy of the different DLIM S-MIEP configurations. 79

7.16. The arrival rates as defined by the original trace (blue) and the extracted
DLIM instance using S-MIEP with Trend length 1 and ignoring noise (red). 80

7.17. Arrival rate accuracy of the different DLIM S-MIEP configurations. 81

7.18. The arrival rates as defined by the original trace (blue) and the extracted
DLIM instance using S-MIEP with Trend length 1 and ignoring noise (red). 82

7.19. Arrival rate accuracy of the different DLIM S-MIEP configurations. 82

7.20. The arrival rates as defined by the original trace (blue) and the extracted
DLIM instance using S-MIEP with Trend length 1 and ignoring noise (red). 83

7.21. Responses to the first 4 feature-ease-of-use questions on a scale of 1 (easy)
to 4 (difficult). 86

7.22. Responses to the second 4 feature-ease-of-use questions on a scale of 1 (easy)
to 4 (difficult). 87

7.23. Responses to the questions on perceived feature usefulness on a scale of 1
(very useful) to 4 (not useful). 88

7.24. The arrival rates as defined by the original trace (blue) and the extracted
DLIM instance using S-MIEP with Trend length 1 and noise having been
eliminated (red). 90

7.25. Arrival rate forecast accuracy of the different DLIM P-MIEP configurations. 90

A.1. The Install new Software ... dialog, with LIMBO selected. 99

A.2. Choosing the DLIM creation wizard. 100

A.3. Creating a new model. 101

A.4. Choosing which parameters to edit. 101

A.5. The Seasonal Part. 102

A.6. The Trend Part. 103

A.7. The Burst and Noise Parts. 104

A.8. The initial model. 105

A.9. Our model with the Uniform Noise deleted. 106

A.10.Creating a new model element. 106

A.11.Editing the Normal Noise. 107

A.12.The edited Model. 107

A.13.Generate Time-Stamps. 108

124

List of Figures 125

A.14.Extract Sequence from Arrival Rate Trace. 109
A.15.Extract Sequence from Arrival Rate Trace. 109
A.16.Plot View Comparison of Model and Trace. 110
A.17.Calculate Difference between Model and Trace. 110
A.18.Periodic Process Extraction Dialog. 111
A.19.Results of a difference calculation. 111
B.20.Responses to the first 4 feature-ease-of-use questions on a scale of 1 (easy)

to 4 (difficult). 117
B.21.Responses to the second 4 feature-ease-of-use questions on a scale of 1 (easy)

to 4 (difficult). 118
B.22.Responses to the questions on perceived feature usefulness on a scale of 1

(very useful) to 4 (not useful). 119
B.23.Responses to the free-form questions. 120
B.24.Responses to the free-form questions. 121

125

List of Tables

7.1. ClarkNet-HTTP model extraction accuracy. 65
7.2. NASA-HTTP model extraction accuracy. 67
7.3. Saskatchewan-HTTP model extraction accuracy. 70
7.4. WorldCup98 model extraction accuracy. 73
7.5. de.wikipedia.org model extraction accuracy. 74
7.6. fr.wikipedia.org model extraction accuracy. 78
7.7. ru.wikipedia.org model extraction accuracy. 78
7.8. wikipedia.org model extraction accuracy. 80
7.9. IBM z-Series Transactions model extraction accuracy. 82
7.10. IBM z-Series Transactions model extraction accuracy (work days only). . . 83
7.11. Accuracy and run-time comparison between S-MIEP and BFAST. 84
7.12. wikipedia.org week 1 model extraction accuracy. 89
7.13. wikipedia.org forecast accuracy. 90

127

Glossary

BFAST Breaks For Additive Season and Trend. 2, 10, 30, 53, 61, 84, 85, 92, 94, 123, 127

Breaks For Additive Season and Trend A decomposition approach of time series into
trend, season, and remainder components. See [VHNC10]. 2, 127, 129

Burst DLIM Element. Inherits from Function. Abstract parent of all interpolated burst
Functions. Has a base level and a peak, which it reaches at a peak-time. 20, 21, 24,
25, 28, 45, 47, 49, 123, 127

Burst Part Hl-DLIM Part. Describes the recurring additive arrival rate bursts, wich are
added onto the Seasonal Part and Trend Part. Also extracted for DLIM instances
as part of S-MIEP and P-MIEP. 32, 35, 44, 50, 53, 56, 123, 127

Combinator DLIM Element. Contains a Function describing arrival rate variations and a
mathematical operator. Combines its contained Function with its parent Function
using its operator. 21, 24, 25, 47, 49, 51, 104–107, 123, 127

Descartes Load Intensity Model Meta-Model allowing the definition of varying load in-
tensities through combination of piece-wise mathematical functions. 2, 15–17, 19–21,
23, 28, 30, 34, 35, 53, 61, 93, 123, 127, 129

DLIM Descartes Load Intensity Model. 2, 6, 7, 11, 13, 15–17, 19–21, 23, 26, 28, 30, 31,
34–39, 41, 44–47, 50, 51, 53, 54, 57, 59, 61, 62, 65–83, 85, 89, 90, 93, 94, 123, 124,
127, 129, 130

DTW Dynamic Time Warping. 2, 64, 65, 67, 70, 73, 74, 78, 80, 82, 83, 89, 90, 127

Dynamic Time Warping Algorithm to calculate the distance between multi-dimensional
series. See [Mül07]. 2, 64, 127, 129

Function DLIM Element. Abstract parent of all mathematical functions that describe load
intensity variations. May contain Combinators for combination with other functions.
Is usually held by either a Combinator or a TimeDependentFunctionContainer. 21–
25, 42, 49, 50, 54, 92, 123, 127

high-level Descartes Load Intensity Model Meta-Model allowing the definition of vary-
ing load intensities through a small set of seasonal, trend, burst, and noise parame-
ters. 1, 19, 30–33, 35, 50, 53, 61, 93, 123, 127, 129

high-level Model Instance Extraction Process Extracts the set of hl-DLIM parameters
from an arrival rate trace. 2, 53, 57–59, 94, 127, 130

hl-DLIM high-level Descartes Load Intensity Model. 1, 2, 6, 7, 15–17, 19, 30, 32–36, 41,
44, 50, 51, 53, 54, 57–59, 61–63, 65, 67, 69, 71, 74, 76, 78, 80, 81, 85, 93, 94, 123,
127, 129, 130

129

130 Glossary

hl-MIEP high-level Model Instance Extraction Process. 2, 53, 57, 58, 62, 65, 67, 70, 73,
74, 76, 78, 80, 82, 94, 127

LIMBO Eclipse-based tooling platform for editing of hl-DLIM and DLIM instances. 2, 6,
13, 21, 25, 28, 37–39, 44, 50, 51, 56, 61, 63, 84, 85, 89, 92–94, 123, 127

Noise DLIM Element. Inherits from Function. Abstract parent of all random noise func-
tions. 15, 20, 21, 24, 27, 42, 46, 47, 49, 123, 127

Noise Part Hl-DLIM Part. Random uniformly distributed noise. Extracted as normal
distributed noise for DLIM instances as part of S-MIEP and P-MIEP. 35, 44, 50,
53, 56, 57, 127

P-MIEP Periodic Model Instance Extraction Process. 2, 53, 56, 57, 62, 65, 67, 69–71, 73,
74, 76, 78, 80, 81, 89, 90, 94, 124, 127, 129, 130

Periodic Model Instance Extraction Process Extracts a DLIM Sequence from an arrival
rate trace. Uses multiple repeating trend-lists. 2, 53, 59, 94, 127, 130

Reference Clock Describes the time that is used as input for any arrival rate Function.
Is defined by two DLIM Elements: ClockType and ReferenceClockObject. 21, 25,
27, 127

S-MIEP Simple Model Instance Extraction Process. 2, 53, 57, 58, 62, 65–85, 89, 90,
92–94, 123, 124, 127, 129, 130

Seasonal DLIM Element. Inherits from Function. Abstract parent of all seasonal Func-
tions, such as sin functions. 20, 21, 24, 25, 123, 127

Seasonal Part Hl-DLIM Part. Describes the repeating base dummy-function. Also ex-
tracted for DLIM instances as part of S-MIEP and P-MIEP. 30, 31, 34, 44, 50, 53,
54, 56, 58, 65, 67, 69, 71, 74, 76, 78, 80, 81, 127, 129, 130

Sequence DLIM Element. Inherits from Function. Contains a list of TimeDependent-
FunctionContainers, which are executed in order. Terminates after a certain number
of loops or a set time. 20–25, 28, 29, 42, 46, 47, 51, 54, 104, 108, 111, 123, 127, 130

Simple Model Instance Extraction Process Extracts a DLIM Sequence from an arrival
rate trace. Uses a list of non-repeating trends. 2, 53, 55, 58, 59, 93, 123, 127, 130

TimeDependentFunctionContainer DLIM Element. Contains a Function describing ar-
rival rate variations during its duration. Terminates after a certain duration. 21–25,
27–29, 42, 46, 47, 50, 51, 54, 104, 127

Trend DLIM Element. Inherits from Function. Abstract parent of all interpolated trend
Functions. Interpolates between a functionOutputAtStart and functionOutputA-
tEnd. 20, 21, 24, 25, 27, 45, 47, 49, 50, 123, 127

Trend Part Hl-DLIM Part. Describes the list of interpolated functions which are multi-
plied or added onto the Seasonal Part. Also extracted for DLIM instances as part
of S-MIEP and P-MIEP. 30, 31, 34, 35, 44, 50, 53, 54, 56, 58, 59, 65, 67, 69, 71, 74,
76, 78, 80, 81, 123, 127, 129

130

	German Abstract
	Abstract
	Publications and Talks
	1 Refereed Conference / Workshop Papers
	1.1 Published
	1.2 Under Review

	2 Invited Talks

	Contents
	1 Introduction
	1.1 Motivation
	1.1.1 Motivation for Meta-Modeling in General
	1.1.1.1 Model for Load Intensity Description
	1.1.1.2 Model for Load Intensity Generation
	1.1.1.3 Model for Load Intensity Pattern Formalization

	1.1.2 Use-Cases for a Load Intensity Model
	1.1.2.1 Use-Cases in the Focus of this Work
	1.1.2.2 Additional Use-Cases

	1.2 Goals
	1.2.1 General Goals for Meta-Modeling
	1.2.2 Research Questions

	1.3 Benefits
	1.3.1 Accurate Description of Load Intensity Variations
	1.3.2 Creation of specific Load Intensity Variations for Benchmarking
	1.3.3 Automated Assistance for Load Intensity Analysis

	1.4 Limitations of Scope

	2 Foundations
	2.1 Open and Closed Workloads
	2.2 Load Intensity
	2.3 Pure Load Description vs. Workload Description
	2.4 Self Similarity
	2.5 Meta-Model
	2.6 Tools

	3 Related Work
	3.1 User Behavior Models
	3.2 Workload Modeling with Focus on Work Unit
	3.3 Statistical Models
	3.4 Others

	4 The Descartes Load Intensity Meta-Models
	4.1 The Descartes Load Intensity Meta-Model
	4.1.1 General Considerations and Requirements
	4.1.2 Sequence
	4.1.3 TimeDependentFunctionContainer
	4.1.3.1 Reference Clocks

	4.1.4 Function
	4.1.4.1 Concrete Functions
	4.1.4.2 Combinator
	4.1.4.3 Interpolation of Functions

	4.1.5 Implemented Functions
	4.1.5.1 Seasonal
	4.1.5.2 Bursts
	4.1.5.3 Noises
	4.1.5.4 Trends
	4.1.5.5 Polynomial
	4.1.5.6 Arrival Rates from File

	4.1.6 Validation Constraints
	4.1.7 Technical Considerations
	4.1.7.1 Derived Time Attributes
	4.1.7.2 Edit Provider Labels
	4.1.7.3 ArrivalRatesFromFile

	4.2 The high-level Descartes Load Intensity Model
	4.2.1 Seasonal Part
	4.2.2 Trend Part
	4.2.3 Burst Part
	4.2.4 Noise Part
	4.2.5 The hl-DLIM to DLIM Model-to-Model Transformation
	4.2.5.1 Transforming the Seasonal Part
	4.2.5.2 Transforming the Trend Part
	4.2.5.3 Transforming the Burst Part
	4.2.5.4 Transforming the Noise Part

	4.3 Conclusions

	5 LIMBO - The Descartes Load Intensity Modeling Platform
	5.1 Requirements
	5.2 LIMBO Architecture
	5.2.1 DLIM Generator Plug-in
	5.2.2 DLIM Generator-Edit Plug-in
	5.2.3 DLIM Generator-Editor Plug-in
	5.2.4 DLIM Exporter Plug-in
	5.2.5 DLIM Extractor Plug-in

	5.3 DLIM Evaluator
	5.4 Arrival Rate and Request Time-Stamp Series Generator
	5.4.1 Arrival Rates Series Generator
	5.4.2 Request Time-Stamp Series Generator
	5.4.2.1 Errors due to Sampling

	5.5 Trend and Burst Calibration
	5.5.1 Calibration Errors

	5.6 Model Creation Wizard
	5.7 Additional Utilities
	5.7.1 Difference Calculator
	5.7.2 Time-Series Reader
	5.7.3 Plot View
	5.7.3.1 Combinator Impact Visualization

	5.8 Conclusions

	6 Model Instance Extraction Process
	6.1 Extracting the Seasonal Part
	6.2 Extracting the Trend Part
	6.2.1 Trend Part for S-MIEP
	6.2.2 Trend Part for P-MIEP

	6.3 Extracting the Burst Part
	6.4 Extracting the Noise Part
	6.4.1 Noise Reduction
	6.4.2 Calculating the Noise Distribution

	6.5 Extracting a high-level Descartes Load Intensity Model Instance
	6.5.1 Seasonal Part
	6.5.2 Trend Part
	6.5.3 Burst Part
	6.5.4 Noise Part

	6.6 Conclusions

	7 Evaluation
	7.1 Evaluating Model Accuracy and the Model Extraction Process
	7.1.1 Trace Requirements
	7.1.1.1 Noise Reduction

	7.1.2 Evaluation Metrics
	7.1.2.1 Motivating the Dynamic Time Warping-based Difference Metric
	7.1.2.2 Difference Metric based on DTW

	7.1.3 ClarkNet-HTTP
	7.1.4 NASA-HTTP
	7.1.5 Saskatchewan-HTTP
	7.1.6 WorldCup98
	7.1.7 German Wikipedia
	7.1.8 French Wikipedia
	7.1.9 Russian Wikipedia
	7.1.10 English Wikipedia
	7.1.11 IBM z-Series Transactions
	7.1.11.1 IBM z-Series Transactions during work days

	7.1.12 Comparison with BFAST
	7.1.13 Conclusions

	7.2 LIMBO Usability Evaluation
	7.3 Load Intensity Forecasting Evaluation

	8 Future Work
	8.1 Improvement of existing features
	8.2 Extending for future Use-Cases

	9 Conclusion
	Bibliography
	Appendix
	A LIMBO Tutorial
	A.1 Installing LIMBO
	A.1.1 Installation via Update Site
	A.1.2 Building LIMBO from Code

	A.2 Creating a new Model
	A.2.1 Modifying the Seasonal Part
	A.2.2 Modifying the Trend Part
	A.2.3 Modifying the Burst and Noise Parts

	A.3 DLIM Editor
	A.3.1 Plot View
	A.3.2 Editing a DLIM instance in the Editor
	A.3.3 Generating Time Stamps
	A.3.4 Extracting a DLIM Sequence from a Trace
	A.3.5 Comparing Model and Trace

	A.4 Additional Features
	A.4.1 Periodic Process Extractor
	A.4.2 Difference Calculator

	A.5 Example Models

	B LIMBO Usability Questionnaire
	B.1 Questionnaire
	B.2 Responses

	Glossary

