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Abstract—Correctly configuring a distributed database manage-
ment system (DBMS) deployed in a cloud environment for max-
imizing performance poses many challenges to operators. Even
if the entire configuration spectrum could be measured directly,
which is often infeasible due to the multitude of parameters,
single measurements are subject to random variations and need
to be repeated multiple times.
In this work, we propose Baloo, a framework for systemat-
ically measuring and modeling different performance-relevant
configurations of distributed DBMS in cloud environments. Baloo
dynamically estimates the required number of measurement
configurations, as well as the number of required measurement
repetitions per configuration based on a desired target accuracy.
We evaluate Baloo based on a data set consisting of 900
DBMS configuration measurements conducted in our private
cloud setup. Our evaluation shows that the highly configurable
framework is able to achieve a prediction error of up to 12%,
while saving over 80% of the measurement effort. We also publish
all code and the acquired data set to foster future research.
Index Terms—Performance Modeling, Distributed Database
Management Systems, Parameter Optimization, Machine Learn-
ing, Cloud Computing

I. INTRODUCTION

Many software systems offer parameters to configure internal
workings. This allows performance engineers to influence non-
functional properties and with them application performance.
Yet, these configurations are not always easy to interpret and
interdependencies between different configuration options are
hard to oversee. In consequence, engineers traditionally rely
on rules of thumb and testing. Performance prediction of con-
figurable systems [1]–[4] aims at automating their modeling
and optimization and providing engineers with a scientifically
approved toolbox for taking configuration decisions.
Database Management Systems (DBMS) are particularly chal-
lenging configurable software systems: Relational DBMS offer
a wide range of configuration options that expose a multitude
of interdependent knobs to tweak the DBMS performance for
a specific workload. To address the complexity of such DBMS
optimization problems, many different approaches for finding
the best possible DBMS configuration exist [5]–[7].

Beyond relational DBMS, NoSQL and NewSQL DBMS ex-
ploit distributed architectures that provide more non-functional
properties including horizontal scalability, elasticity, and avail-
ability [8], [9], which are determined by additional configura-
tion options such as cluster size and replication factor.
For operating distributed DBMS cloud resources have become
the preferred infrastructure, as they provide scalability and
elasticity on resource level [10]. Alas, this operational model
further increases the configuration space adding cloud-related
dimensions such as resource type, storage backend, and others.
In addition to understanding the performance impact of each
individual configuration, it is necessary to also understand the
interdependencies between parameters in the overall configu-
ration space. This is extremely challenging even for experts
in the three domains and therefore demands for supportive
methods covering the entire configuration space. Due to its
size one cannot simply evaluate each and every configuration
option, but instead need to improve decision-making by pre-
dicting the performance of all configurations using a subset of
measurements and hence, decreasing overhead.
Related work on performance prediction of cloud-hosted
DBMS focuses on single-node DBMS ignoring distribu-
tion [11], [12]; targets only specific DBMS technologies
ignoring cloud resource characteristics [13]; or considers only
cloud resources without DBMS characteristics [14].
A core challenge when dealing with performance models
of distributed DBMS is the time-intensive and expensive
generation of the underlying data set: (1) Measurements of
single configuration points are costly, as it requires a cluster of
cloud resources that need to be reserved during the entire mea-
surement period. (2) Performance measurements of distributed
DBMS have a high variability [15] and therefore need to be
repeated multiple times to achieve statistical significance. (3)
The thorough evaluation of a performance prediction approach
for any configurable system requires measurements of every
possible configuration; an exponentially growing space.
Our contributions in this paper are as follows:

1) We present a novel framework for the measurement and



modeling of arbitrarily complex configuration spaces
of configurable software systems. The design of this
approach is specifically targeted at distributed DBMS:
Our approach (1) selects a suitable robust statistical
measure for the given scenario, (2) determines the min-
imal required number of measurement repetitions for a
given measurement point, (3) chooses the next required
measurement point, and (4) constructs a model of the
configured parameter space using Machine Learning.

2) We evaluate our approach using a data set with measure-
ments of a distributed DBMS with various configuration
options. We publish this reference data set1 comprising
a total of around 450 measurement hours and roughly
9,450 computing hours in a private cloud environment.

By modeling the whole configuration space, our approach
can quickly extrapolate expected performance results for a
given configuration without actually measuring it. This is a
strong benefit over a naive black-box optimization search.
Hence, the resulting DBMS performance configuration model
provides the foundation for selecting a performance-optimal
operations and deployment configuration of a configurable
system. Besides finding the most performant configuration, it
gives a better understanding of the entire configuration space,
providing valuable insights for operators and architects when
trading performance against other non-functional aspects such
as security, reliability, and costs.
The generic nature of the proposed framework enables re-
searchers and practitioners to configure, adapt, and modify
our approach as well as to transfer it to other domains. Our
publicly available data set supports other researchers analyzing
the performance behavior of the investigated DBMS in detail
and evaluate further approaches for performance prediction.
The rest of this paper is structured as follows. First, Section II
clarifies requirements before we introduce the Baloo approach
in Section III. Section IV presents an evaluation of Baloo
including a description of our data set. Finally, we list the
related work in Section V. Section VI concludes the paper.

II. PERFORMANCE ENGINEERING REQUIREMENTS

For operating a distributed DBMS in volatile, cloud-like
environments, operators can chose between multiple DBMS,
cloud providers, cloud resources, and several configuration
options of the DBMS including cluster size, replication factor,
and client consistency. A performance model takes as input
a possible configuration from that configuration space and
outputs the expected performance of this configuration. As
such, a performance model helps operators to answer various
questions on performance impact of changes to the configu-
rations (adding/removing resources, changing the consistency
model, changing the size of the resources), but also changes in
use as caused by, e.g., a changed read/write ratio. For DBMS,
performance is either measured in latency or throughput.
In an ideal world, the operator knew the performance of all
the different possible configurations, but in practice, this is

1https://doi.org/10.5281/zenodo.3854996

not the case. In consequence, an operator can estimate the
performance of a single configuration by benchmarking that
configuration with a workload as close as possible to the
expected workload. In the following, we refer to a single
configuration as a configuration point and to an execution of
a benchmark as a measurement run.
Requirement 1 (Comparability): In order to judge which
configuration points are better, it is necessary to compare the
outcomes of the measurement runs for different configuration
points. Yet, this comparison is difficult, as the raw results of
a measurement run is a time series of throughput and latency
values. Instead, a higher-level metric is required that captures
the quality of a measurement run for a configuration point.
Requirement 2 (Repeatability): Cloud-like environments are
characterized by volatility in performance so that multiple
independent measurement runs are required to conclude on
the actual performance of a configuration point.
Requirement 3 (Prediction): Being able to predict the per-
formance of unmeasured configuration points helps reducing
required time and costs for creating the performance model.
Requirement 4 (Trade-off between quality and cost): Obvi-
ously, the more measurement runs per configuration point and
the more configuration points are measured, the more precise
the performance model will be. Yet, the more measurements,
the higher the time and financial impact. Hence, an approach
like Baloo needs to offer the capability to flexibly decide on
the required quality and hence, costs.
Requirement 5 (Validation): In order to validate Baloo an
extensive data set with DBMS performance measurements
is required that needs to contain multiple measurements for
different configuration points. Due to the fact that such data
sets are hard to obtain from real-world applications such a data
set needs to be based on synthetic data, but still make use of
realistic configurations.

III. APPROACH

Figure 1 shows a graphical overview of our approach, Baloo.
The overall goal of Baloo is to run as few measurements as
possible for each configuration point and to use as few con-
figuration points as possible to train an accurate performance
model. This performance model then enables the performance
prediction of arbitrary configuration points without explicitly
measuring them.
The framework is initialized with the Robust Metric Selection
(offline phase) that provides the means to summarize the
results of individual measurement runs. The goal of this phase
is to determines the robust metric that—based on a large data
set of existing performance measurements—best reduces noise
in the measurement data. Once the robust metric has been
found, performance engineers can request the creation of a
performance model from Baloo. For creating the performance
model, Baloo generates a training data set in a workflow with
three steps: (i) Baloo selects crucial configuration points from
the configuration space; (ii) Baloo decides how often each
of the configuration points needs to be measured; (iii) Baloo
triggers the measurements using the Mowgli measurement
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Fig. 1. Overview of Baloo. The offline phase is executed once, the blue steps are executed whenever a performance model is requested.

framework [16]. For all of these steps, Baloo applies statistical
heuristics to decide how many measurements to conduct per
configuration point and further to decide which and how many
configuration points to chose.
In the following, we describe Robust Metric Selection, Dis-
tributed DBMS Performance Measurement, Measurement Rep-
etition Determination, Measurement Point Selection, and Per-
formance Model Construction in more detail.

A. Robust Metric Selection

This step addresses the Comparability Requirement (see Re-
quirement 1 in Setion II) by selecting a suitable metric for
summarizing the performance time series of one performance
measurement. This is required, since distributed DBMS op-
erated in volatile environments are subject to performance
variations and fluctuations in latency and throughput measure-
ments during one experiment run. We therefore need metrics
to summarize each run. Furthermore, those metrics need to
enable a robust comparability between different configuration
points. The most important characteristic of a metric in our
scenario is its robustness to the given fluctuations. Hence, the
name robust metric. The ”ideal” robust metric reports the same
values for two repetitions of the same configuration point.
For finding the best robust metric, we compare different robust
metrics candidates by analyzing their coefficient of variation
(CV), a measure of the standard deviation in relation to the
sample mean, over all measurement runs available. Based on
the resulting list of CVs for each individual measurement, we
rate each metric using the mean and the standard deviation of
their respective CV-scores. The metric observing the lowest
mean CV is then defined to be the most suitable robust metric
for the given scenario.
For potential robust metrics, we investigate common robust
measures of central tendency from literature [17]: mean,

median, different percentiles, trimmed mean, winsorized mean,
trimean, and the hodges-lehman estimator. A full analysis of
all robust metrics is presented in Section IV-B.

B. Distributed DBMS Performance Measurement

This step lays the basis for the following steps as it generates
the data for individual measurement runs (step 5 in Figure 1).
For doing so, Baloo builds on the open source and extensible
DBMS evaluation framework Mowgli2 [16] that supports the
design and execution of DBMS evaluations. Mowgli allows
to define relevant domain-specific properties and allow their
specification based on the supported technologies such as the
DBMS itself, cluster size, replication factor, cloud provider,
resource capacity, and workload type; Furthermore, it fully au-
tomates allocation of cloud resources, deployment and config-
uration, workload generation, calculation of performance data,
and processing of results. The resulting evaluation data (step 6)
sets contain the benchmark metrics, monitoring data, resource
metadata, and execution logs of the respective evaluation tasks.

C. Measurement Repetition Determination

This step addresses Requirement 2 and Requirement 4 of Sec-
tion II as it decides on the number of required measurements
for a specific configuration point P . Here, the overall number
of measurements is dependent on the desired confidence tc
and stability of the measurements, which is dependent on the
volatility of the environment.
Baloo requires at least two measurements in order to judge on
the stability of the results, and uses a configurable upper limit
nmax in order to control execution time and costs. Details are
presented in Algorithm 1.
First, the set M of performance measurements is filled by two
consecutive calls of triggerMeasurement(P)(step 4)

2https://omi-gitlab.e-technik.uni-ulm.de/mowgli



Algorithm 1: Measurement Repetition Determination.
Input: Desired configuration point P ,
target confidence threshold tc,
maximum number of measurements nmax.
Output: Obtained measurement value m

1 M = triggerMeasurement(P )
2 do
3 M = M ∪ triggerMeasurement(P )
4 M ′ = removeOutliers(M )
5 m = aggregate(M ′)
6 c = confidence(M ′)
7 while c > tc and |M | < nmax

8 return m

that wraps invocations to Mowgli as described in Section III-B.
In lines 4–7, the obtained measurement values are analyzed
and aggregated. If the calculated confidence c deceeds tc or
if nmax has been reached, the calculated aggregation m is
returned (step 7).
Baloo allows different implementations of outlier detection,
aggregation, and confidence estimations (cf. lines 4–7). Our
implementation used in Section IV applies outlier detection
based on isolation forests [18] through the Python version of
scikit-learn [19] with two isolation trees. We use the mean
as aggregation function and quantify confidence through the
coefficient of variation (CV). The confidence threshold tc is
set to 0.02. Hence, the loop stops if CV (M ′) <0.02. Note
that both median and CV are not calculated on M , but rather
on M ′ that does not contain outliers.

D. Configuration Point Selection

This step selects the next configuration point (step 3) that
needs to be added to the training set (cf. Requirement 4). This
process is commonly referred to as sampling [20], while the
underlying selection strategy is called sampling method.
While our framework supports any strategy for the selection of
the next configuration point, the implementation used in Sec-
tion IV is based on uniformly distributed random sampling that
was found leading to the most accurate performance models in
general [21], but not always [22]. Our random implementation
relies on enumerating the entire configuration space, which
does not pose a problem in our scenario. Otherwise, more
sophisticated solutions are required, e.g., based on binary
decision diagrams [23] or satisfiability solvers [24].

E. Performance Model Construction

This step is concerned with the construction of the actual
performance model for a configuration space S and, therefore,
addresses Requirements 3 and 4 of Section II. Its iterative
approach determines the minimal required number of mea-
surements for achieving a configurable target accuracy tS . A
configurable maximum ratio rmax of S is used as configurable
upper limit in order to control execution time and costs.
Here, S is the explorable part of the overall configuration
space, i.e. the Cartesian product of all available feature values,
while ts is the targeted score.

Algorithm 2: Performance model construction
Input: Configuration space definition S,
target score threshold ts,
maximum configurations ratio rmax.
Output: Performance model p

1 C = getInitMeasurements(S, i)
2 p = constructPerformanceModel(C)
3 s = scorePerformanceModel(C, p)
4 while s < ts and |C| < rmax · |S| do
5 C = C ∪ addMeasurements(S,C, r)
6 p = constructPerformanceModel(C)
7 s = scorePerformanceModel(C, p)

8 return p

Algorithm 2 shows that first a set of initial measurements is
conducted (line 1) based on the given configuration space
(step 2). All measurements (step 8) constitute the set of
available measurements C, from which a performance model
p is built and scored using an internal scoring function. The i
parameter to getInitMeasurements determines ratio of
S used.
The algorithm keeps adding measurement points in line 5
until s ≥ ts or |C|

|S| ≥ rmax. In each iteration, it re-
computes p (line 6) and s (line 7). The r parameter to
addMeasurements determines the ratio of S added in
each iteration. After termination it returns the last trained
performance model (step 9).
The algorithm is highly parameterizable by adapting ts and
the scoring function. For model construction, any regression
or other performance modeling technique can be applied. The
implementation used in Section IV applies a threefold cross-
validation score on C to determine model accuracy and uses
variance as score function. Furthermore, we compare and
evaluate different machine learning algorithms for the model
construction in Section IV-D.

IV. EVALUATION

In this section, we evaluate our approach following a four-step
method: in the first step, we use an external, third-party data
set to determine the robust metric (cf. Section IV-B); in the
second step, we use a newly generated data set to validate the
chosen metric (cf. Section IV-B). The very same data set is
then used to evaluate the quality of the measurement repetition
determination in Section IV-C and the performance model
construction in Section IV-D. The data sets are described in
Section IV-A. The Baloo framework as well as all evaluation
scripts are available for repetition as a CodeOcean capsule3.

A. Validation Data Sets

For validating Baloo we make use of two different data sets.
The configuration space they cover is depicted in Table I and
comprises eleven dimensions. The first data set is an existing
openly available data set [25], comprising 102 configuration
points for Apache Cassandra and Couchbase. The Apache

3https://doi.org/10.24433/CO.6929232.v2



TABLE I
EVALUATION CONFIGURATION SPACE

Parameter Seybold et al. [25] Baloo data set

Infrastructure public Amazon EC2,
private OpenStack

private OpenStack

VM Type small - t2.medium tiny - small - large
DBMS Apache Cassandra Apache Cassandra
Cluster size 3 - 5 - 7 - 9 3 - 5 - 7 - 9 - 11
Client consistency any - one - two one - two - three
Replication factor 3 1 - 2 - 3
Benchmark YCSB YCSB
Workload write-heavy write-heavy
Records 4,000,000 4,000,000
Record size 5KB 5 KB
Storage backend SSD, HDD, remote SSD

Cassandra configuration points serve as a reference data set
for determining the robust metric.
The second data set has been created for this work and is
published as OpenData1. For this data set, seven configuration
dimensions are static for the sake of this evaluation: We
select a private OpenStack-based cloud infrastructure as this
gives us control over OpenStack-specific configurations such
as the overcommitting factor and Virtual Machine placement.
We select Apache Cassandra as representative cloud-hosted
DBMS due to its widespread adoption4. Finally, we use
write-heavy workload issued from the Yahoo Cloud Serving
Benchmark (YCSB) [26] and four million records of a record
size of 5 KB for comparability to other work [16]. We use
SSD as storage as it is recommended for most DBMS.
For the remaining four dimensions we use three (VM type,
client consistency, replication factor) and five (cluster size)
different configuration options. Due to the fact that client
consistency and replication factor cannot be chosen fully
independently, this yields a total of 90 different configuration
points. The data set contains 10 measurements for each of
those and for each measurement a time series of performance
metrics, system metrics, and additional meta data.

B. Robust Metric Selection

Here, we evaluate the different statistical measures that are
robust metric candidates. We start with a publicly available
data set [25] and then evaluate the transferability by comparing
the results with our data set. Table II compares the average CV
score of the different robust metrics. The lower the score, the
less variation and hence the better the metric fits our needs.
Although the two data sets are different in regard to the
used cloud infrastructure, the VM-sizes, and the number of
measurement repetitions, we observe that the performance of
the different metrics is very comparable for both throughput
and latency. For throughput, the 95th percentile achieves the
best score across both data sets. When analyzing latency, we
observe that both data sets have one minimum at for the
trimmed mean of 30%. The first data set has an additional

4https://db-engines.com/en/ranking

TABLE II
COMPARING THE AVERAGE CV FOR EACH ROBUSTNESS METRICS FOR

THE EXTERNAL DATA SET (EXT) WITH OUR OWN DATA SET (OWN).

Metric Throughput CV Latency CV
Ext Own Ext Own

Mean 0.039 0.062 0.164 0.201
Median 0.044 0.063 0.036 0.051
95th percentile 0.028 0.039 0.138 0.174
90th percentile 0.029 0.042 0.079 0.107
80th percentile 0.032 0.047 0.052 0.076
Trimmed(5%) mean 0.039 0.062 0.046 0.076
Trimmed(10%) mean 0.039 0.062 0.038 0.056
Trimmed(30%) mean 0.042 0.062 0.035 0.051
Winsorized(5%) mean 0.039 0.062 0.057 0.090
Winsorized(10%) mean 0.039 0.062 0.043 0.059
Winsorized(30%) mean 0.041 0.063 0.035 0.052
Trimean 0.042 0.062 0.036 0.053
Hodges-Lehmann 0.039 0.063 0.036 0.054

minimum using the 30%-winsorized metric, while the second
data set performs slightly better using the median. However,
both the 30%-winsorized and the median are on the third place
for the respective other data set.
Summarizing, we can say that the results from the publicly
available data set transfer very well to our own data set.
Hence, we conclude that the 95%-percentile for throughput,
as well as the trimmed mean or the winsorized mean for
latency, are viable robust metrics that can be applied for
comparing DBMS cloud performance. As DBMS are usually
optimized for throughput, we concentrate on throughput for
the remainder of this work. Based on our insights, we use the
95th percentile as robust metric.

C. Measurement Repetition Determination

In this section, we evaluate the measurement repetition deter-
mination discussed in Section III-C. We do so by comparing
estimations obtained by Baloo with the median overall ten
measurement repetitions from the evaluation data set.
As the true mean of the underlying distribution is unknown, we
make the assumption that the median of all 10 measurements
approximates the true mean of the underlying distribution and
serves as a gold standard in this evaluation. We compare this
gold standard against randomly selected 1, 2, 3, and 5 points
as well as against the result obtained from Baloo.
As Baloo uses probabilistic elements and the selection of
the next measurement point is non-deterministic as well and
strongly influences the obtained results, we repeat the evalua-
tion 100 times. Table III reports the average results.
Table III shows the mean absolute percentage error (MAPE)
and the root mean squared error (RMSE) of Baloo and the five
baselines together with the average measurement repetitions
required. We observe that the error generally decreases as we
increase the number of measurement points. This is expected
as more measurement points reduce the impact of random
measurement noise. Baloo outperforms 1-point, 2-point, and
even 3-point in average MAPE and RMSE, while requiring
only 2.59 measurement points on average. This shows that



TABLE III
ACCURACY AND MEASUREMENT REPETITIONS FOR DIFFERENT

APPROACHES.

Approach MAPE (%) RMSE Average # points

Baloo 1.42 251.8 2.59
1-point 2.75 538.4 1.00
2-point 2.19 403.3 2.00
3-point 1.54 315.4 3.00
5-point 0.76 148.1 5.00
10-point 0.00 0.0 10.00

in most of the cases, two measurements are sufficient to
accurately describe a performance measurement.
In some cases, more measurements are required, though: This
insight can be supported by comparing the reported MAPEs
with the RMSEs. For MAPE our approach is only slightly
better than 3-point (∼ 8% decrease); the difference is larger
when analyzing RMSE (∼ 20% decrease). Since the RMSE
puts a stronger focus on outliers, we can conclude that our
approach is able to correctly determine ”critical” measure-
ment points, while keeping the requested measurement to the
minimum amount of two measurements, when not required.
The two baselines 5-point and 10-point consistently achieve
lower errors than our proposed approach; this is expected, as
they also conduct significantly more measurements. If a higher
accuracy is required, our approach could be tuned accordingly.
Summarizing, our approach successfully handles the trade-off
between required measurement repetitions and target accuracy.
It is worth noting that in this experiment, the average number
of required measurement points is comparatively low, as all
experiments were executed on a private cloud with relatively
low load (see Section IV-A). Therefore, the number of required
measurement repetitions as well as the gain achieved by our
approach might be even higher for other environments [27].

D. Performance Model Construction

In this section, we evaluate the performance model construc-
tion techniques and the corresponding performance models.
As our approach works with basically any regression tech-
nique, our analysis compares the performance of different
machine learning algorithms. For this, we analyze the required
amount of measurement configuration points together with the
achieved target accuracy on the remaining validation set for the
following algorithms: linear regression (LinReg), ridge regres-
sion (Ridge), elastic net regression (ElasticNet), bayesian ridge
regression (BayesianRidge), and huber regression (HuberRe-
gressor) as linear models, a gradient tree boosting regressor
(GBDT), a random forest regressor (RandomForest), and a
support vector machine (SVR). Additionally, to get a better
comparison, we add a baseline regressor (ZeroR) which always
predicts the mean of all seen samples.
In this experiment we vary the target accuracy threshold ts
of the internal MAPE score s based on a threefold cross-
validation between 0.1, 0.15, 0.2,0.25, and 0.3. The maximum
ratio rmax was set to 0.9, resulting in a cutoff at 81 (0.9·90
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target accuracies.

total) configuration points. As initial configuration measure-
ment set, we set a ratio of 0.05, resulting in at least 5
(d0.05 · 90e) configurations for each approach. We only add
one configuration per increment (i.e., r =0.01), as for our
comparatively small example set, the training time was signif-
icantly lower than the measurement time and could therefore
be neglected. Furthermore, this enables a better analysis of the
required configuration points. All algorithms implementations
are based on scikit-learn [19] and use the defined default
parameterization.
The comparison is shown in Figure 2. The x-axis depicts the
number of configuration points that were measured, before
the specific workflow terminated, i.e., ts was achieved. The
y-axis shows the MAPE on those configurations that were not
added to the training set. We repeat all experiments 25 times
and report the average value as these processes are highly
influenced by the random seed.
From Figure 2, we observe that multiple approaches perform
comparably in terms of required configuration points and the
achieved prediction error. However, SVR and ZeroR (baseline)
are not able to capture the performance structure very well
and, therefore, perform poorly in terms of prediction error
and required configuration points. The baseline even runs out
of measurement options and therefore retrieves the maximum
number of measurements for ts =0.1.
All other approaches perform similarly well, but we can still
identify small differences between them. Increasing the target
accuracy has the expected effect of generally reducing the
prediction error while increasing the measured configuration
points. While GBDT achieves the overall lowest prediction
error (11.63%), random forest is able to achieve slightly
worse results using considerably fewer configuration points
for ts =0.15 and ts =0.2. For bigger values of ts, GBDT
performs slightly better again.
Table IV shows more details on the performance of the
individual algorithms for ts =0.15. In addition to the average
achieved error (MAPE) and the required configurations (#



TABLE IV
DETAILED PERFORMANCE OF ALL ALGORITHMS FOR FIXED TARGET

ACCURACY ts OF 0.15.

Approach MAPE # Meas. # Conf. Time (s)

LinReg 21.87 44.72 17.08 0.44
Ridge 23.02 38.52 14.80 0.38
ElasticNet 23.28 88.48 34.84 0.93
BayesianRidge 20.08 65.12 25.84 0.77
HuberRegressor 19.50 51.16 20.56 0.96
GBDT 19.93 47.28 17.44 1.02
RandomForest 17.13 65.04 25.60 4.95
SVR 27.03 175.52 68.84 1.90
ZeroR 29.24 200.36 77.92 2.03

Conf.), we see the average number of total measurement runs
conducted (# Meas.) and the average time of the workflow
execution excluding measurements (Time).
We conclude that even un-optimized machine learning ap-
proaches are able to achieve prediction errors of around 20%
on a data set consisting of 90 configuration points, made up of
900 individual measurement series, while measuring just one
fifth (<20) configurations and conducting even less than 5%
(<45) of individual measurement runs.
Adding more measurement points increases the accuracy and
reduces the error to up to 12%. However, the accuracy gain per
added configuration decreases over time, which is consistent
with our expectations. The additional computation effort intro-
duced by our framework is negligible (run-times of less than
1s per training process), if we consider that one measurement
run takes minutes or even hours to complete. Therefore, the
achieved time savings are more than 95%, for an accuracy cost
of just 20%. Even by reducing the accuracy cost to 12%, we
can still achieve measurement time reductions of over 80%.
We believe this result to be very impressive, considering that
average performance in public clouds fluctuates by 5% [28].

V. RELATED WORK

Related approaches can be divided into the following three
research areas.

A. Performance measurement of distributed DBMS

DBMS benchmarking is a common process to determine
the optimal operational model for DBMS in general and as
well for cloud-hosted DBMS. This process is supported by a
multitude of benchmarks that support diverse workload models
and evaluation objectives [29], [30]. In consequence, there
are numerous supportive performance studies of cloud-hosted
DBMS available [26], [27], [31]. Yet, each of these studies
covers only a small part of the entire cloud resource and
distributed DBMS scope.

B. Performance optimization of DBMS

DBMS performance optimization approaches such as
ITuned [5], DBSherlock [6] and OtterTune [7] target single
instance relational DBMS that are operated on dedicated
resources. These approaches have a special focus on the
workload by considering trace-based workloads [5], [6]

or unknown workload types [7] Rafiki [11] targets the
performance optimization of single instance NoSQL DBMS
for different workload types by automatically determining
DBMS runtime parameters and deriving their optimal
configuration. Performance models for distributed DBMS
are presented by Farias et al. [32] and Dipietro et al. [33],
considering the performance prediction impact of different
cluster sizes [32] and DBMS-specific runtime parameters [33]
The URSA framework [12] targets the automated capacity
planning of a single node DBMS operated on cloud resources.
Thus, the focus of URSA lies on the resources, while the
aspects of distributed DBMS are not considered. In summary,
existing approaches provide comprehensive performance
prediction mechanisms for single node DBMS on dedicated
resources [5]–[7], [11], focus on distribution aspects [32],
[33] without considering cloud resources or consider only
cloud resources without considering DBMS distribution
aspects [12].

C. Performance prediction of configurable systems

Zhang et al. propose the application of Fourier learning to
predict the performance of configurable systems with theoret-
ical accuracy guarantees. [1]. Siegmund et al. combine ma-
chine learning and sampling heuristics to build performance-
influence models for highly configurable systems. [2]. Sarkar
et al. compare different sampling techniques for CART-based
performance models and introduce a novel heuristic for the
selection of the initial samples [34]. Guo et al. improve
CART-based performance model by resampling the training
data to determine the accuracy of the resulting model and
automated hyper-parameter tuning [35]. Ha et al. propose a
deep sparse neural network architecture and hyper-parameter
optimization approach for the performance prediction of con-
figurable systems [3]. Westermann et al. [36] compare the
accuracy of MARS, CART, Genetic programming, and Krig-
ing for the construction of software performance models.
Similarly, Noorshams et al. [37] evaluate the accuracy of
linear regression, MARS, CART, M5 Trees and Cubist Forests
for the performance modeling of storage systems. To the
best of our knowledge, no existing performance prediction
approach targets distributed DBMS or addresses measurement
variability in the sample generation.

VI. CONCLUSION

In this work, we presented Baloo, a framework for measur-
ing, modeling, and predicting the performance of distributed
database management systems (DBMS) in cloud environments
for different configurations. Our approach builds upon the
Mowgli framework and works by (1) measuring a performance
configuration, (2) determining the number of measurement
repetitions, (3) determining the next configuration point to
be measured, and (4) building a performance model using
all available measurement points to predict the remaining
unavailable measurement points of the configuration space.
To evaluate our framework, we measured the distributed
DBMS Apache Cassandra in our private cloud using 90 dif-



ferent configurations and ten repetitions each, resulting in 900
measurement runs comprising of roughly 450 measurement
hours and 9,450 compute hours. We also made this data set
publicly available to foster future research towards this area.
The evaluation shows that our highly configurable approach is
able to save between 80% and 95% of measurement time for
a respective accuracy cost of 12% to 20%.
In future work, we plan to include other DBMS and cloud
providers (including measurements from public clouds) in our
configuration model itself. This would enable to not only to
guide with the desired configuration parameters, but also the
best cloud environment or distributed DBMS system to select.
Furthermore, this could include the actual discovery of which
available configuration options are performance-relevant.
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