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Abstract— Performance predictions enable software archi-
tects to optimize the performance of a software system early in
the development cycle. Architectural performance models and
statistical response time models are commonly used to derive
these performance predictions. However, both methods have
significant downsides: Statistical response time models can only
predict scenarios for which training data is available, making
the prediction of previously unseen system configurations infea-
sible. In contrast, the time required to simulate an architectural
performance model increases exponentially with both system
size and level of modeling detail, making the analysis of large,
detailed models challenging. Existing approaches use statistical
response time models in architectural performance models to
avoid modeling subsystems that are difficult or time-consuming
to model, yet they do not consider simulation time.

In this paper, we propose to model software systems using
classical queuing theory and statistical response time models
in parallel. This approach allows users to tailor the model for
each analysis run, based on the performed adaptations and
the requested performance metrics. Our approach enables
faster model solution compared to traditional performance
models while retaining their ability to predict previously unseen
scenarios. In our experiments we observed speedups of up to
94.8%, making the analysis of much larger and more detailed
systems feasible.

Keywords-Component-based systems, Architectural perfor-
mance models, Statistical response time models

I. INTRODUCTION

Performance predictions of software systems allow soft-

ware architects to evaluate the performance of different

architecture alternatives [1]. A common approach to predict

the performance of software systems are architectural perfor-

mance models [2]. These models describe the architecture

of a system, its control flow and its performance relevant

parameters. Discrete event simulation of these models allows

predicting performance metrics for the modeled system, such

as resource utilizations or response times.

The time required to simulate a model is an important

factor for performance models. Nambiar et al. [3] iden-

tify faster model solution as a criterion for performance

modeling success, Woodside et al. [4] find that reduced

run-time would increase the adoption of simulation-based

solvers and Koziolek et al. [5] state that the time required

to solve a model is a limiting factor for the level of detail a

performance model can contain.

Existing approaches for the simplification of performance

models either focus on making the model more understand-

able for users or are limited to analytical solvers [6, 7, 8, 9,

10]. A number of approaches have been proposed to build

statistical response time models that predict the performance

of a software system by training machine learning models on

observations of the system’s performance [11, 12, 13, 14].

These statistical response time models provide fast pre-

dictions for the impact of changes in workload intensity

and workload parameterization but struggle to predict the

impact of changes to the underlying system architecture or

its deployment accurately. However, no existing approach

enables faster solution of architectural performance models

while retaining the prediction accuracy and capability to

predict previously unseen scenarios.

In this paper, we introduce a generic modeling approach

that enables a parallel and integrated description of subsys-

tems as statistical response time models and as traditional

queuing models in order to speed up model simulation.

The proposed approach allows users to dynamically select

the appropriate modeling composition of statistical and

queuing sub-models for each analysis run. We provide a

transformation of the integrated queuing/statistical model to

Queueing Petri Net (QPN) [15] and extend an existing

discrete event simulation solver for QPNs to support sta-

tistical response time models. Additionally, we investigate

the impact of replacing components or full subsystems

by statistical response time models on the architectural

performance model’s accuracy and simulation time.

The approach presented in this paper enables faster so-

lution of architectural performance models while retaining

the prediction accuracy and capability to predict previ-

ously unseen scenarios of traditional, queuing theory-based

performance models. This enables software architects to

analyze larger systems, performance engineers benefit from

the ability to build more detailed models and self-adaptive

systems can explore additional adaptation options within

the same time period due to the faster model solution. The

approach presented in this paper represents a step towards

solving a problem that impedes widespread adoption of

performance models in practice: models that are either too

large or too detailed cannot be simulated within a reasonable

time frame [3, 4, 5].

In our evaluation, we apply the proposed approach to a

distributed, component-based system of medium size. Our

experiments show that the approach maintains sufficient

prediction accuracy and achieves speedups of up to 94.8%.
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II. APPROACH

In this paper, we propose a generic meta-modeling ap-

proach to extend component-based performance models with

the ability to describe a component or subsystems as a

statistical response time model in parallel to the traditional

description (Section II-A). We develop an algorithm to

extract statistical response time models from monitoring data

(Section II-B) and introduce an approach to transform archi-

tectural performance models containing statistical response

time models to an extended QPN (Section II-C).

A. Modeling
In general, our modeling approach can be applied to any

architectural software performance model which uses a com-

ponent notation. Examples for software performance models

which could be extended using our approach include the

Palladio Component Model (PCM) [16], Component-Based

Modeling Language (CBML) [17], Prediction-Enabled

Component Technology (PECT) [18], or Components with

Quantitative properties and Adaptivity (COMQUAD) [19]

as all of these models rely on the notion of repository com-

ponents with some kind of performance description which

are instantiated as assembly components. The meta-model

proposed in this paper would not be directly applicable to

performance models, such as ROBOCOP [20], which do

not differentiate between repository and assembly compo-

nents. However, the general concept of including statistical

response time models in architectural performance models

is also applicable to these performance models, but would

require a different modeling approach.
We show how our approach can be applied to the

Descartes Modeling Language (DML) [21], a performance

model for component-based systems in data centers. It is

representative for component-based performance models and

was already evaluated in a number of case studies [22,

23, 24, 25]. The meta-model of DML is separated into six

submodels as shown in Figure 1:

• Application architecture
The application architecture meta-model consists of

a component repository and a component assembly.

The repository specifies the interfaces and components

of a system. For each component the performance-

relevant properties can be specified via resource de-

mands, control flow operations (loops, branches, etc.)

and calls to interface providing roles. In the assembly,

these components are instantiated and connected to

each other according to their interface providing and

requiring roles.

• Resource landscape The physical resources in a data

center such as compute or storage nodes, are con-

tained in the resource landscape meta-model. The DML

provides support for virtualized environments, such

as Virtual Machiness (VMs) or containers as nested

resources.

Application Architecture Meta-Model

Adaptation Points Meta-Model

Adaptation Process Meta-Model

B
A

C

Degrees of Freedom

Resource Landscape Meta-Model

<<Container>>
Node1

<<Container>>
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Number of vCPUs of VMz

Allocation of VMx

Figure 1: Structure of the DML meta-model (source: [22])

• Deployment The deployment meta-model maps the

instantiated assembly components from the application

architecture meta-model to the physical resources de-

fined in the resource landscape meta-model.

• Usage profile The workload is specified in the usage

profile meta-model, similar to UML use cases and

UML activities. Here, DML supports open and closed

workloads, as well as detailed user sessions.

• Adaptation points The possible adaptations to a sys-

tem at run-time are limited, as not everything can

be changed during system operation. Therefore, the

adaptation points meta-model describes which elements

of the resource landscape and application architecture

can be adapted at run-time.

• Adaptation process The adaptation process meta-

model describes how a dynamic system reacts if its

environment changes during operation. The DML sup-

ports three granularities which allow building compos-

ite adaptation processes: strategies, tactics, and actions.

Component assembly in DML is modeled similarly to

Unified Modeling Language (UML), as shown in Figure 2.

Every RepositoryComponent is either a Basic-
Component, a CompositeComponent or a Sub-
System. Every RepositoryComponent specifies a

number of InterfaceProviding- and Interface-
RequiringRoles, which describe the functionality a

component provides and what functionality should be

provided by external components. Any Repository-
Component can be instantiated multiple times as

AssemblyContexts. These component/subsystem in-

stances are connected with each other by Assembly-
Connectors, which connect InterfaceProviding-
Roles to InterfaceRequiringRoles.

Traditionally, performance descriptions are modeled on

the level of repository components to enable reuse of the

performance descriptions [16, 17, 18, 19]. However, sta-
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Figure 3: Meta-model for response time models

tistical response time models describe the response time

of a specific component instance and the response time

of a component is influenced by its required services and

deployment [5]. Therefore, we propose to enrich compo-

nent instances in the form of AssemblyContexts with

StatisticalModels describing its response time. This

allows replacing component instances, composite component

instances, and subsystem instances with statistical response

time models during model solution.

Every response time model describes the response time

for a specific workload class, as shown in Figure 3.

In DML, a workload class can be uniquely identified

by an InterfaceProvidingRole and a correspond-

ing Signature. Therefore, every Responsetime-
Model references an InterfaceProvidingRole and a

Signature. Every ResponsetimeModel has a number

of InputParameters based on which the response time

for a specific request is calculated. Currently, the only

supported InputParameter is RequestsInSystem.

Upon arrival of a new request for which a response time

has to be calculated, this parameters counts how many

requests of a workload class (specified by an Interface-
ProvidingRole and a Signature) are currently be-

ing processed by the component/subsystem. The Input-
Parameter interface provides an extension point to in-

clude further parameters that influence the response time of

a component/subsystem, e.g., workload parameters such as

the size of an input file. Response time models can either

be a white-box, i.e., a human readable function or a black-

box, i.e., a machine learning model. We model one of each,

in order to showcase how they can be integrated into the

model. As a black-box approach, we use a trained Random-
Forest model. Every RandomForest references a file

containing the machine learning model. This model predicts

the response time of a component/subsystem by using the

InputParameters as features. MARS is a regression

technique that results in a human-readable function, which

can therefore be modeled explicitly. Every MARS model

consists of a sum of BasisFunctions, which are either

a static Constant or a Hinge. A Hinge H(i, k, c, s) is

a function over an InputParameter i with the following

form:

H(i, k, c, s) =

{
c ∗max(0, k − i) for s = LEFT,

c ∗max(0, i− k) else
(1)

with a constant c, a knot k and a side s. For further

information on random forests or MARS see [26] and [27],

respectively.

Our modeling approach provides three key characteristics:

(i) It provides an extension point to include any regression or

machine learning model. Although deep learning approaches

might often be unfeasible due to the required quantity of

training data, including them would be possible. (ii) Our

approach annotates component/subsystem instances with re-

sponse time models. The response time of a component/sub-

system depends on the deployment platform and the required

services, which means the response time, unlike resource

demands, cannot be specified for generic components. (iii)

The presented meta-model enables parallel modeling of a
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component/subsystem as a traditional queuing system and as

a response model. As the appropriate modeling granularity

depends on the predicted performance metrics and model

adaptations, this enables adapting the model for each indi-

vidual request.

B. Extraction

Response time models can be extracted from either run-

time monitoring or via dedicated measurements. There is a

large body of work on the construction of response time

models using dedicated measurements, e.g., [12, 13, 14].

This research usually focuses on the intelligent selection of

measurement points.

In the following, we present an approach to extract

response time models from run-time monitoring. We assume

generic monitoring data that consists of a set monitoring

records rec = (wc, st, cp), where wc denotes the request’s

workload class, st and cp represent the absolute start and

completion time of the request. Training regression or ma-

chine learning models requires a set of observations of a

target variable and a number of features which will be used

to predict the target variable. In our case, the target variable

is the response time of a single request and the features

are the number of requests of each workload class that are

currently being processed within the component/subsystem.

Therefore, an observation obs = (rt, wc, reqwc1 , reqwc2 , ...)
consists of the observed response time rt, the workload class

of the processed request wc and the number of requests

being processed in the component/subsystem upon arrival

of the request for every workload class reqwci .

Algorithm 1 shows how we extract the training data for

the regression and machine learning approaches based on

run-time monitoring data. The algorithm receives a list of

records recordList as input and returns a list of obser-

vations observations. It maintains a list of requests that

are currently being processed in the component/subsystem

requestsInSystem and a map wcToCount that counts

the number of requests currently being processed for each

workload class in order to speed up the computation. In

line 5, the algorithm iterates over the list of monitoring

records (we assume that this list is ordered by request arrival

time). For every monitoring record, an observation is created

in lines 12-16. The observation consists of the response time

of the request record.cp− record.st, the workload class of

the request record.wc and the number of requests already in

the system for each workload class wcToCount.get(wci).
Afterwards, the request is added to the list of requests cur-

rently in the system requestsInSystem and the counter for

the number of requests currently in the system wcToCount
is increased for the workload class of the request.

Prior to this, the algorithm checks if any of the requests

currently in the system has departed prior to the arrival of the

current request in lines 6-11. It iterates over every request

currently in the system and evaluates if the completion

Algorithm 1 Training data extraction algorithm

1: function EXTRACTTRAININGDATA(recordList)
2: observations = {}
3: requestsInSystem = {}
4: wcToCount = {wc1 → 0, wc2 → 0, ...}
5: for record in recordList do
6: for request in requestsInSystem do
7: if request.cp < record.st then
8: requestsInSystem.remove(request)
9: wcToCount.decrease(request.wc)

10: end if
11: end for
12: observations.add(new Observation(

13: record.cp− record.st,
14: record.wc,
15: wcToCount.get(wc1),

16: wcToCount.get(wc2), ...))

17: requestsInSystem.add(request)
18: wcToCount.increase(request.wc)
19: end for
20: return observations
21: end function

timestamp of the request request.cp is smaller and therefore

prior to the start time stamp of the new record record.st.
Every request that finishes is removed from the list of

requests currently in the system requestsInSystem and the

counter for the number of requests currently in the system

wcToCount is decreased for the corresponding workload

class.

The presented algorithm converts common run-time moni-

toring data that consists only of start and completion time for

each request and its request class (which in case of a REST

interface would be the queried URL) to a format which

enables training of most machine learning approaches and

the fitting of stochastic models. The corresponding processes

to train a Multivariate Adaptive Regression Splines (MARS)

or random forest model on this data is described in [26] and

[27], respectively.

C. Model solution

Traditionally, architectural performance models are trans-

formed into a solution formalism such as a Queueing Net-

work (QN), Layered Queueing Network (LQN) or Queueing

Petri Net (QPN). DML, the modeling formalism used in

this work, derives performance predictions by transforming

the model to a QPN that is subsequently simulated using

simQPN [15]. For detailed information on the transformation

to QPN we refer to [28].

We extend the existing formalism by introducing a new

distribution for the processing time, where the processing

time is calculated by a statistical response time model based

on the number of requests already being served. As the
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Figure 4: Example for the integration of statistical response

time models in queuing models.

statistical response time model already considers queuing

time, the corresponding queuing place has infinite servers

to avoid duplicating the queuing time. It is important to

note that each statistical response time model only describes

the response time for a single request class. Therefore, a

queuing place that serves two request classes has to contain

two response time models.

Figure 4 shows an example how a subsystem can be

replaced by a statistical response time model. In Figure 4a

the original queuing model is depicted. It consists of two

queues, which represent two components and a place with

five initial tokens, that is used to model a limited software

thread pool of five for the second component. Figure 4b

shows the system if the second component is replaced by

a statistical response time model. The full representation of

the component (the queuing place and the ordinary place for

the software thread pool) is replaced by a single queuing

place with infinite servers and a processing rate which is

described by a statistical response time model. This example

describes the replacement of a single, coarsely modeled

component. For more complex components or subsystems,

the full model describing the component/subsystem is still

replaced by a single queue with infinite servers and a

statistical response time model. Assuming the statistical

response time model perfectly predicts the response time

of the subsystem/component, we can assume that the model

with the statistical response time model predicts the same

values for the following performance indices as the original

model:

• Throughput of the model

• Overall response time of the model

• Utilization of all remaining queues

As the derivation of a single value from a response time

model is significantly faster than the simulation of a request

through a subsystem, the overall model solution time is

greatly reduced.

A
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Figure 5: System consisting of components A-Z with their

performance properties and the different models sections S1-

S7 that can be replaced by statistical response time models.

III. CASE STUDY

We design our case study in order to answer the following

three research questions:

• RQ1: Does replacing parts of the performance model

with statistical response time models decrease predic-

tion accuracy?

• RQ2: What are limiting factors for applying statistical

response time models?

• RQ3: How much can the integration of statistical

models decrease the time required to simulate a system?

Based on these research questions, we analyze a medium

sized, distributed system with seven components featuring

diverse performance properties. We construct a traditional

performance model for this system and extract statistical

response time models as described in Section II-B. Next,

we compare the prediction accuracy of the traditional per-

formance model to using different statistical response time

models. Finally, we analyze how much applying different

statistical response time models speeds up model solution.

Experiment Setup: For this case study, we deploy a

system composed of components with synthetic resource

demands on seven virtual machines with two 2.6 GHz cores

and 4 GB memory, each. The virtual machines are deployed

in a CloudStack cluster (version 4.9 with KVM) consisting

of eight HPE ProLiant DL160 Gen9 hosts with eight 2.6

GHz cores and 32 GB ram each. Hyper-threading was dis-

abled on all hosts to avoid race conditions. The architecture

of the system is shown in Figure 5. It consists of seven

components with constant, exponentially distributed and nor-

mal distributed resource demands. Additionally, component

C contains a loop that calls component D five times and

component F contains branches where its resource demand

is 20 ms 80% of the time and 100 ms otherwise. For our

experiments, we use the load driver introduced in [29].

Model Construction: First, we build a traditional per-

formance model using DML, based on the resource demands

shown in Figure 5. After some initial analysis, we added

network delays of about 3 ms to each external call, which
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Load Measured / Predicted Utilization [%]
[Req/s] A B C D E F G

10 11.4 / 9.9 11.3 / 10.0 6.6 / 5.0 25.7 / 25.0 4.0 / 2.5 18.0 / 18.0 15.3 / 15.0
15 15.9 / 15.0 16.0 / 14.9 9.6 / 7.5 37.3 / 37.4 5.4 / 3.7 26.2 / 26.9 22.2 / 22.5
20 20.7 / 20.1 21.2 / 20.1 12.8 / 10.1 48.9 / 50.2 6.7 / 5.1 34.7 / 36.2 28.6 / 30.1
25 25.6 / 25.1 25.8 / 25.1 15.3 / 12.6 60.6 / 62.8 7.9 / 6.3 42.9 / 45.3 36.1 / 37.6
30 30.2 / 29.9 30.4 / 29.9 11.7 / 15.0 72.7 / 74.7 9.4 / 7.5 50.9 / 54.1 42.8 / 42.5
35 35.3 / 35.0 35.3 / 35.0 20.8 / 17.5 88.5 / 87.8 10.9 / 8.8 60.0 / 63.0 50.5 / 52.4
40 38.5 / 40.0 39.1 / 40.0 24.2 / 20.0 96.7 / 99.9 12.2 / 10.0 67.9 / 72.0 55.3 / 59.9

Table I: Comparison of measured utilizations of components A-G and the predictions by the queuing theory model.

Load Measured / Predicted Responsetime [ms]
[Req/s] A B C D E F G

10 226 / 209 200 / 185 93 / 81 16 / 14 83 / 82 42 / 40 34 / 34
15 229 / 215 204 / 192 95 / 85 16 / 14 85 / 84 43 / 41 35 / 35
20 236 / 226 211 / 202 99 / 92 17 / 16 87 / 87 45 / 43 35 / 36
25 254 / 245 228 / 221 112 / 106 20 / 19 92 / 92 47 / 47 38 / 37
30 283 / 281 257 / 256 136 / 132 25 / 24 96 / 99 49 / 51 40 / 40
35 339 / 391 312 / 365 184 / 232 34 / 44 102 / 109 54 / 58 42 / 43
40 4805 / 21614 4778 / 21587 4632 / 21438 924 / 4287 120 / 124 68 / 68 45 / 47

Table II: Comparison of measured responsetimes of components A-G and the predictions by the queuing theory model.

Statistical Predicted Utilization [%]
Models A B C D E F G
None 25.1 25.1 12.6 62.8 6.3 45.3 37.6

S1 0 0 0 0 0 0 0
S2 25.0 0 0 0 0 0 0
S3 25.0 25.0 0 0 6.3 45.1 37.5
S4 25.0 25.0 12.5 0 6.2 44.9 37.5
S5 25.0 25.0 12.5 62.5 0 0 0
S6 25.0 25.0 12.5 62.5 6.3 0 37.5
S7 25.0 25.0 12.5 62.6 6.3 45.1 0

S3 + S5 25.0 25.0 0 0 0 0 0
S3 + S6 25.0 25.0 0 0 6.3 0 37.5
S3 + S7 24.9 25.0 0 0 6.2 45.0 0
S4 + S5 25.0 25.0 12.5 0 0 0 0

Measured 25.6 25.8 15.3 60.6 7.9 42.9 36.1

Table III: Predicted utilization at 25 req/s when applying

different statistical models (see Figure 5) and the measured

values as baseline.

we model as resource demands on a resource with infinite

servers, as the network delays appear to be static. In order to

collect monitoring data to construct the statistical response

time models, we put the system under varying loads, ranging

from 10 requests per second to 50 requests per second for

ten minutes. Next, we use the algorithm presented in Section

II-B to generate a set of training data to train a MARS

model on. For the MARS model we use the py-earth python

package1 with the following parameters:

• minspan alpha = 5

• endspan alpha = 5

• sample weight = 1 + 1/(concurrency + 1)

These parameters are derived based on systematic ex-

perimentation to optimize the internal GCV error score of

1https://contrib.scikit-learn.org/py-earth/content.html

Statistical Predicted Responsetime [ms]
Models A B C D E F G
None 245 221 106 19 92 47 37

S1 266 - - - - - -
S2 263 239 - - - - -
S3 265 240 131 - 86 42 36
S4 284 260 145 26 91 46 37
S5 253 228 105 18 99 - -
S6 252 227 105 18 98 55 35
S7 252 227 106 19 98 46 44

S3 + S5 270 245 130 - 95 - -
S3 + S6 269 244 131 - 90 48 34
S3 + S7 270 245 130 - 91 42 41
S4 + S5 295 267 145 26 99 - -

Measured 254 228 112 20 92 47 38

Table IV: Predicted responsetime at 25 req/s when applying

different statistical models (see Figure 5) and the measured

values as baseline.

the MARS model, which describes how well the model

fits the training data. The sample weights prioritize lower

concurrency levels in order to decrease the influence of mea-

surements during overload scenarios. Using this approach,

we extract a total of seven statistical response time models,

shown in Figure 5 as S1-S7. These response time models

have varying size. For example, S1 replaces the full system

with a statistical response time model whereas S4 only

replaces a single component. We integrate these response

time models into the DML model as described in Section

II-A.

Prediction accuracy: In a first step, we validate the

prediction accuracy of the traditional performance model

to ensure its validity. We ran seven experiments with a

constant load of 10-40 requests per second for three minutes

and measured the utilization and response time for every
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component. Table I compares the measured utilization to

the predictions of the traditional queuing theory model.

Most predictions are accurate with an error of less than

two percentage points. For components C, D, F, and G the

prediction is slightly off in the high load scenarios, but still

always less than five percentage points. Table II shows the

measured response times along the predicted values. Here,

the prediction error is ≤10% for the experiments with 10-

30 requests per second. For 35 requests per second, the

model overestimates the system response time but remains

below the 30% considered sufficient for capacity planning

[1]. At 40 requests per second, the response time predictions

are inaccurate, which is expected as the system is under

excess load, so there is no steady-state for the response time.

Overall, the accuracy of the model seems sufficient and will

be our comparison values for the following experiments.

Next, we apply the different statistical response time

models S1-S7 as well as some combinations of them (S3 +

S5, S3 + S6, S3 + S7, S4 + S5) and compare the resulting

prediction accuracy to the traditional performance model

without statistical response time models (”None”). Table III

shows the resulting utilization predictions. We performed

this analysis for all load levels, but show only the results

for 25 requests per second due to space constraints. The

full dataset is available online2. The first observation here

is that the model predicts a utilization of zero for any

component which is replaced by a statistical model. This

can be explained by the fact, that the statistical models

only predict a response time, but do not schedule any

resource demands. Therefore, the first limitation for the

integration of statistical models in performance models is

that we can not replace components or subsystems that are

deployed on physical resources of which we want to pre-

dict the utilization (RQ2). The average prediction accuracy

across all utilization predictions without statistical models is

9.2%±9.4, compared to 9.1%±9.4 for the average prediction

accuracy across all utilization predictions using models

containing statistical response time models. Therefore, we

conclude that the utilization predictions remain accurate

(RQ1). Table IV shows the same data for the response time

predictions. Here, when we replace a component with a

statistical model, we lose the ability to predict the response

time of any components called by this component as the

statistical response time model does not contain any notion

of external calls. This is a conceptual limitation for the use of

statistical response time models within performance models

(RQ2). The response time predictions are in some cases

more accurate than their queuing model counterparts and

worse in other cases. The average prediction accuracy across

all response time predictions without statistical models is

6.3%±6.4, compared to 12.6%±20.6 for the average pre-

diction accuracy across all response time predictions using

2https://github.com/SimonEismann/ICSA2019/blob/master/results.xlsx

Figure 6: Wall clock time required to simulate 200.000

seconds of simulated time when applying different statistical

models (see Figure 5).

models containing statistical response time models. While

the prediction accuracy deteriorates slightly, it remains over-

all satisfactory (RQ1).

It is interesting to note here, that the prediction accuracy

is not tied to the size of the system that is replaced by a

statistical response time model. For example, the S4 + S5

scenario replaces four components and achieves the worst

prediction accuracy, whereas S1 replaces seven components

but results in better prediction accuracy. Instead, the predic-

tion accuracy seems to be tied to how well the MARS model

is able to fit the response time data, i.e., the better the MARS

model predicts the monitoring data, the more accurate the

overall predictions become. Here, the investigation of other

machine learning approaches such as random forests would

be of interest. Overall, replacing parts of the performance

model seems to not invalidate the performance predictions,

but to make the prediction of some performance metrics

impossible (RQ1 & RQ2).

Simulation time analysis: The previous experiment

shows that replacing parts of the performance model makes

the prediction of some performance indices impossible, but

does not negatively impact the accuracy of the remaining

predictions. In the next step, we analyze the speedup that

can be gained in these scenarios. In order to measure

the simulation time, we measure the wall clock time [30]

required to simulate a total of 200 000 seconds for each

scenario from the previous experiment. The measurements

were performed on an out-of-the-box Lenovo X1 Yoga

Gen 2 Thinkpad with an i7-7600U CPU with up to 2.80

GHz. As there is some variation in the results, we repeat

the measurements 20 times each and calculate confidence

intervals.

Figure 6 shows the required wall clock time to simulate

200 000 seconds for load levels from 10 to 40 requests

per second. The required time increases linearly with the

number of requests per second. This behavior is expected,

as doubling the number of requests per second roughly
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doubles the number of events that need to be processed

within the event-based simulation. The model without any

statistical response time models is the slowest and takes up

to 178 seconds. The fastest is S1 with an average simulation

time of 9.1 seconds for 40 requests per second, resulting

in a speedup of 94.8%. On the other hand, S6 and S7

result in almost no speed up, as they only replace a single

component with a statistical response time model. Curiously,

S4 also replaces only a single component but still speeds the

simulation up by ∼60%. The difference here seems to be that

component D is called five times as often as components E/F.

So we can conclude that the speedup depends on the number

of calls to the replaced components. Based on S1-S7 we can

observe that the achieved speedup is also related to the size

of the system which is replaced by a statistical response time

model. Lastly, the results for models containing multiple

statistical response time models (S3+S5, S3+S6, S3+S7 and

S4+S5) indicate that applying multiple models increases the

speedup compared to their singular counterparts (S3, S4,

S5, S6, S7). Overall, this experiment shows that integrating

statistical response time models can significantly decrease

the time required to simulate a system (RQ3).

IV. LIMITATIONS & THREATS TO VALIDITY

While our approach shows significant benefits over the

current state of the art, there still are limitations and threats

to the validity to be discussed.

Currently, the statistical response time models are trained

based on the observed concurrency levels for each request

class. However, the literature suggests that the parameteriza-

tion of requests within a single request class can significantly

impact resource demands [5, 31]. Our approach could be

extended to take this into account by having these parameters

implement the InputParameter interface shown in Figure 3.

Most components are stateless, but for a stateful com-

ponent, the response time can be influenced by its internal

state [32]. The approach presented in this paper is currently

not able to capture this behavior accurately. In theory,

response time models could be able to accurately capture

such behavior if data on previous requests is included in

the training data and a machine learning technique which

can handle non-linear correlations is used. However, this is

outside the scope of this paper.

The experimentation in this paper considers a restricted

scenario as there is no co-location of components on the

same physical resources and the only investigated adaptation

is the load level. Further experimentation including scenarios

with co-located components, adaptations to the system archi-

tecture and changing component implementations is required

to derive a definitive rule set describing when statistical re-

sponse time models can safely be integrated in architectural

performance models. Overall, a case-study using a realistic

benchmarking application (i.e., TeaStore [33]) will be part

of our future work.

Lastly, the exact results for the attained speedups by the

integration of statistical response time models in architec-

tural performance models are limited to MARS models.

Further experimentation using different machine learning

algorithms to build statistical response time models could

provide additional insights. However, for most machine

learning algorithms the training time is the limiting factor

and deriving predictions from a previously trained model is

comparatively fast [34].

V. RELATED WORK

The existing work related to this paper can be divided into

three groups: Integration of measurement-based approaches

in performance models, statistical performance models, and

model reduction techniques.

Integration of measurement-based approaches in per-
formance models: Performance models are usually param-

eterized based on estimations from experts, dedicated per-

formance experiments or run-time monitoring data. How-

ever, few approaches provide an explicit integration of

measurement-based approaches in performance models.

The behavior of modern storage systems is difficult to

explicitly model. Therefore, Noorshams et al. [35] propose

a methodology to enrich software architecture modeling

approaches with statistical I/O performance models. This

approach enables accurate performance predictions for soft-

ware systems using dedicated storage systems, without hav-

ing to explicitly model them. This approach is limited to

storage systems and does not allow to dynamically switch

between the statistical model and a traditional queuing

model for the storage system.

Woodside et al. [36] propose the concept of performance-

related completions, where an abstract model element is

later replaced with a concrete model, once the information

is available. Happe et al. [37] extend this approach by

using platform independent model skeletons. The platform-

specific details are derived based on measurements from

automatically generated test drivers. This approach incor-

porates measurements in performance models in order to

improve the parameterization of the performance model and

therefore the performance prediction accuracy.

To the best of our knowledge, no existing approach

allows to dynamically switch between statistical response

time models and queuing model representations for generic

components or sub-systems.

Statistical performance models: Statistical performance

models are also known as software performance curves [14,

38], performance prediction functions [12], performance

predictions using machine learning [39] or performance pre-

dictions using statistical techniques [11]. These approaches

train machine learning/statistical models on measurement

data, which is usually collected during dedicated measure-

ments. These models are used to infer the performance of a

software system with different workloads or configurations.
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Thereska et al. [11] build a statistical performance model

to predict the performance of several Microsoft applications,

such as the Office suite or Visual Studio. By instrument-

ing the applications, the authors collect data from several

hundred thousand real users. Classification and Regression

Trees (CART) is used to filter relevant features, followed by

a similarity search to derive performance predictions.

Kwon et al. [39] use a regression model to predict the

performance of Android applications to determine whether

the task can be efficiently offloaded. The authors train the

regression model not only on the input parameters and the

current hardware utilization but also on values calculated

during the program execution.

Westermann et al. [12] compare four techniques for

the construction of statistical performance models: MARS,

CART, Genetic programming, and Kriging. In their case

studies, MARS significantly outperformed the other three

approaches.

Noorshams et al. [13] evaluate the accuracy of regres-

sion techniques for the performance prediction of storage

systems: linear regression, MARS, CART, M5 Trees and

Cubist Forests. The authors propose an approach to optimize

the parameterization of the individual algorithms. With pa-

rameter optimization MARS and Cubist outperform CART,

M5 Trees and the linear regression in their case study.

Faber et al. [14] use genetic programming to derive

software performance curves. They introduce parameter op-

timization approaches and a technique to prevent overfitting

for genetic programming. In their evaluation, the optimized

genetic programming approach outperforms an unoptimized

MARS model.

Summarizing, we can say that statistical performance

models can predict the impact of changes in workload inten-

sity and workload parameterization well, but are unreliable

when predicting the impact of changes to the system or its

deployment. Based on the results reported in these previous

studies, we use MARS in our approach as a representative

for statistical performance models.

Performance model reduction: Various techniques to

reduce or simplify performance models have been proposed.

Some techniques aim to improve the model solution speed

whereas others attempt to make the model easier to under-

stand for human users.

Queuing networks can be simplified by replacing a

number of nodes with a so-called Flow-Equivalent Server

(FES) [6, 7]. A FES is a load-dependent queue, which

perfectly emulates the delay caused by a subsystem. The

resulting network can be solved faster using analytical

approaches, such as convolution or Mean Value Analysis

(MVA). However, FES come with two drawbacks: i) the

representation as a load-dependent queue is cumbersome for

discrete-event-simulation and ii) in order to construct a FES

the short-circuited network needs to be solved once for every

possible number of concurrent users, so in order to construct

a FES for a system with 1000 users, the model needs to be

solved a thousand times.

The method of surrogate delays by Jacobson et al. [8]

enables an analytical solution for models with simultaneous

resource possession. The approach requires a model, where

the primary resource is estimated by a delay and another

one where the secondary resource is estimated by a delay.

While this method does reduce the initial model, it requires

an additional model and does not provide any advantages

when solved using simulation.

A recent approach by Islam et al. [9] reduces the size

of LQNs by aggregating activities, tasks, and entries of

non-bottleneck resources. This approach is extended by an

improved approach for the identification of tasks that can

be safely aggregated in [10]. As this approach permanently

reduces the model, it is no longer possible to accurately an-

alyze the impact of reconfigurations or deployment changes

for non-bottleneck resources.

To the best of our knowledge, there is no existing model

reduction approach for simulation-based solvers that enables

faster model solution while retaining the full flexibility and

accuracy of the initial model.

VI. CONCLUSION

Architectural performance models provide a potent tool

for software architects to evaluate and improve the perfor-

mance of a software system and its architecture. However,

the time required to simulate large or detailed models has

been identified as a limiting factor by many researchers [3,

4, 5]. This paper aims to solve this by integrating statistical

response time models into architectural performance models.

The appropriate model composition depends on the perfor-

mance metrics of interest. Therefore, our approach enables

modeling of each component and subsystem as a queuing

network and a statistical response time model in parallel.

This allows to dynamically tailor the system description for

each analysis run.

Our approach enables software architects to analyze larger

systems, performance engineers can explore more detailed

models and self-adaptive systems can explore additional

adaptation options within the same time period due to

the faster model solution. For a mid-sized system with

a distributed, component-based architecture, our approach

achieves speedups of up to 94.8% while maintaining suffi-

cient prediction accuracy. As future work, we are looking to

automate the model tailoring step to integrate this approach

in our vision for self-aware performance models [40].
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