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Abstract—Serverless computing shows good promise for efficiency and ease-of-use. Yet, there
are only a few, scattered and sometimes conflicting reports on questions such as Why do so many
companies adopt serverless?, When are serverless applications well suited?, and How are serverless applications
currently implemented? To address these questions, we analyze 89 serverless applications from
open-source projects, industrial sources, academic literature, and scientific computing—the
most extensive study to date.

EASE-OF-USE AND EFFICIENCY are two
of the most desirable properties of software ser-
vices. Ease-of-use entices more people to try the
services and allows more to continue using them.
Efficiency allows increased and longer operation
of the service and, as the scale of software
services has already reached a significant frac-
tion of the world’s energy consumption, keeps

these services sustainable. But ease-of-use and
efficiency have been historically at odds with each
other: The easier the software is to use, the fewer
hints it can provide to the platform on which
it runs, leaving it to solve complex problems
of resource (in particular, of server) manage-
ment. Although not a universal remedy, serverless
computing aims to provide both ease-of-use and
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Figure 1. [SIDEBAR, page 3] Example serverless application: mobile backend for a social media app. In
this example application, a social media user wants to publish a status update, which should be seen by all the
user’s friends. In 2019, this happened over a billion times a day on social media platforms such as Facebook,
Twitter, and Instagram. Technology-wise, this would happen through a four-step process: (1) the user would
compose the status update using the mobile clients of the social media platform, then (2) the user would
send the status update using the mobile client, (3) the platform would orchestrate the operations needed to
propagate the update inside the social media platform and to the user’s friends, (4) each friend would receive
the update on their social media clients, for example, on their mobile phones. Step 3 is the “secret sauce” of
the social media platform – although the users and their friends never see it, the software, and the resources
(the servers) on which the software run, ensure the technical sustainability of the social media platform.

With conventional technology, for step 3 the platform operators would need not only to develop the logic
of routing the status update to each of the user’s friends, but also to carefully manage the resources (the
servers) on which the logic (the software) can run and to make sure the logic runs correctly. Resource
management, and in particular resource provisioning and allocation, is a long-lasting hard problem in
computing. Obstacles such as scaling the resources proportionally to the number of users (and their friends)
are exacerbated by the fine-grained nature of each operation. Running the logic is also challenging, when
subject to strict performance requirements—after all, the user expects all their friends to see the status update
immediately, and to reply to it in a matter of seconds.

With serverless technology, the cloud provider abstracts away the server management, provisioning servers with
fine granularity, on demand, and with a pay-per-use model. To benefit from this, the serverless software gets
transformed. Simplified, the process of posting updates proceeds as follows. The users post status updates
using their mobile clients as a HTTP request to the API Gateway (which operates as serverless request routing,
that is, a specialized function that only routes requests and runs very efficiently without further developer
intervention). Step 3 proceeds: the API Gateway triggers a lambda function (serverless compute), which queries
the user’s friends from a DynamoDB table (serverless storage) and publishes the status update to friends using
the Simple Notification Service (SNS) (serverless publish/subscribe). Finally, SNS generates push notifications
with the status update for the user’s friends. Tens of other serverless functions get invoked, to authenticate the
user, to authorize posting messages, to copy data between various locations, etc. All of these are orchestrated
on resources managed by the cloud operator. The serverless functions are fine grained, which leads to higher
scalability than the coarser conventional approaches, but at the cost of more complex orchestration. For further
examples of serverless applications, we refer to our technical report [7].

efficiency for common software services that run
on cloud resources. We investigate in this article
why?, when?, and how are serverless applications
useful?

Serverless computing is any computing plat-
form that hides server usage from developers

and runs code on-demand automatically scaled
and billed only for the time the code is run-
ning [2]. Sidebar 1 exemplifies how server-
less can be used to implement the mobile
backend for a social media app. More gener-
ally, serverless applications combine managed
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stateless ephemeral compute solutions such as
AWS Lambda, Azure Functions, or Google
Cloud Functions (Function-as-a-Service, FaaS),
and fully provider-managed services for messag-
ing, file storage, databases, streaming, or authen-
tication (Backend-as-a-Service, BaaS). Serverless
computing is increasingly adopted by indus-
try [1], [6] and studied by academics [12], [10].
One crucial reason is that serverless operations
empower developers to focus on implementing
business logic and letting the cloud providers han-
dle all operational concerns, such as deployment,
resource allocation, and autoscaling [2].

However, only a few, and sometimes conflict-
ing, reports address important questions such as
Why are practitioners choosing to build serverless
applications?, When are serverless applications
well suited?, or How are serverless applications
implemented in practice?. For example, there are
reports of significant cost savings by switching to
serverless applications [4], [3], but also articles
suggesting higher cost in some scenarios com-
pared to traditional hosting [8]. Having concrete
information on these topics would be valuable
for managers to guide decisions on whether a
serverless application can be a suitable solution
for a specific use case. The SPEC-RG Cloud
group suggests that surveys of real-world server-
less computing are needed to understand archi-
tectural, implementation, and deployment patterns
emerging in the “serverless soup” [12]. Leitner
et al. also discuss that empirical studies about
serverless use are required to guide software
developers with building serverless solutions [6].

Addressing the need for a comprehensive em-
pirical study of serverless applications, we collect
a total of 89 descriptions of existing serverless
applications. We focus on diverse sources, e.g.,
GitHub projects, blog posts, scientific publica-
tions, or talks at industry conferences. We analyze
every serverless application regarding 24 charac-
teristics (see Sidebar 2 for a description of our
methodology). Based on this data, we investi-
gate why are practitioners choosing to adopt the
serverless paradigm, when are serverless appli-
cations used, and how are they implemented in
practice. The percentage values for the character-
istics presented in the remainder of this article
exclude any serverless application for which we
could not determine the respective characteristic.

Why are practitioners choosing to adopt
serverless?
Pioneers and journalists seem to agree on sev-
eral potential benefits of serverless applications:
reduced operation effort, faster development due
to the heavy use of Backend-as-a-Service, and
near-infinite scalability of serverless applications.
Many also discuss significant cost savings from
switching to serverless. However, not all these
benefits hold in general. For example, cost sav-
ings have come under scrutiny [8]. To understand
why practitioners choose to adopt serverless, we
investigate the descriptions and documentation of
applications in our dataset.

For 27 of the applications in our dataset, we
cannot discern the motivation for going server-
less. Of the remaining 62 applications, 47%
choose serverless to save costs. Serverless holds
the promise to save costs due to its pay-per-use
model for irregular or bursty workloads, which
would have low resource utilization and thus
higher cost with traditional hosting options. This
concurs with our observation that 84% of the
serverless applications have bursty workloads.

Another reason for serverless adoption, which
applies for 34% of the applications in our dataset,
is that developers no longer need to bother with
operational concerns, such as deployment, scal-
ing, or monitoring, and instead can focus on de-
veloping new features. This was reported not only
for utility functionality, such as a CI/CD pipeline
or malware detection, where traditionally servers
need to be maintained for only few and irregular
executions. Interestingly, it was also reported for
user-facing APIs serving large-scale traffic, where
one would expect other concerns such as perfor-
mance or availability to take priority.

A third reason (also 34%) is the scalability
of serverless applications. Although traditional
applications can also be scalable, serverless ap-
plications offer near-infinite, out-of-the-box scal-
ability with minimal engineering effort. This is
because the FaaS implementation commonly used
for serverless computing is fine-grained and thus
conveniently parallel.

Based on our dataset, the most commonly
reported reasons for the adoption of serverless
are to save costs for irregular or bursty work-
loads, to avoid operational concerns, and for built-
in scalability. Other reasons, such as improved
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Figure 2. [SIDEBAR] Methodology for serverless application collection and characterization. We
collected descriptions of serverless application from four sources: open-source projects, academic literature,
industrial literature, and scientific computing. Next, we randomly assigned two out of the seven total reviewers
to review each serverless application based on a set of fixed characteristics. In the following discussion and
consolidation phase, we discussed and resolved any differences between the two resulting characteristics
reviews. For the scientific applications, a different approach was necessary, as many of them were not publicly
available yet. Therefore, these applications are reviewed by a single domain expert, which is either involved
in the development of the applications or in direct contact with the development team. If the information to
determine a characteristic for a serverless application was not available, we labeled the characteristic as
”Unknown” for this application. The percentage of ”Unknowns” ranges from 0–19% with two outliers at 25%
and 30% for the characteristics presented in this article. These ”Unknowns” were excluded for the percentage
values presented in this article. For a more detailed breakdown of our results and a more in-depth description
of our methodology, we refer to our technical report [7].

performance and faster time-to-market, are less
common (19% and 13%, respectively).

These findings are mostly in accordance with
a recent community survey where over 160 par-
ticipants [3] report that the positive impacts of
adopting a serverless architecture are the adoption
of an event-driven architecture (51%), cost of
resources (44%), speed of development (36%),
flexibility of scaling (31%) and application per-
formance (19%).

When are serverless applications
used?
When starting a project, managers need to decide
which technology stack is best suited. Currently,
managers are faced with the difficult question
if serverless is well suited for a specific appli-
cation. A common assumption is that serverless
applications are best suited for utility functional-
ity and less applicable for latency-critical, high-

volume core functionality. For example, Netflix
uses AWS Lambda for utility functionality, such
as video encoding, file backup, security audits of
EC2 instances, and monitoring. However, the core
functionality such as the website/app backend or
video delivery, is still running on traditional IaaS
cloud services [9].

Contrary to this popular belief, we found
that serverless applications are not limited to
utility functionality. Our data indicates that many
serverless applications implement utility func-
tionality (39%), but also that many serverless
applications implement core functionality (42%)
and scientific workloads (16%). This is consis-
tent with our finding that a substantial number
of serverless applications (39%) experience high
traffic intensity, a high proportion complemented
by on-demand applications experiencing a low
traffic intensity (47%), and by scheduled appli-
cations (17%).
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A common argument against serverless appli-
cations is that cold starts make them unsuitable
for applications with latency requirements. To
the contrary, we find that serverless applications
are used for latency critical tasks, despite the
cold starts affecting tail latencies. Concretely,
38% of the surveyed serverless applications have
no latency requirements. However, 32% of the
serverless applications have latency requirements
for all functionality, 28% have partial latency
requirements, and 2% even have real-time re-
quirements.

Another argument is that current serverless
platforms can be unsuited for long-running tasks
or tasks with large data volumes [10]. Our dataset
supports this hypothesis as 69% of the surveyed
serverless applications have a data volume of less
than 10 MB, and 75% have an execution time in
the range of seconds. To overcome this limitation,
the area needs further innovation.

To summarize, serverless applications are
most commonly used for short-running tasks with
low data volume and bursty workload. However,
contrary to popular belief, serverless applications
are also widely used for latency-critical, high-
volume core functionality. Overall, there are ex-
amples of serverless applications across all appli-
cation types, requirements, and workloads.

How are serverless applications
implemented in practice?
When implementing a serverless application,
engineers face several technology and archi-
tecture decisions, such as selecting the cloud
platform, serverless platform, programming lan-
guage, Backend-as-a-Service options, and appro-
priate granularity level for serverless functions.
Based on our collection of serverless applications,
we identify the most popular approaches to im-
plementing serverless applications.

Among the surveyed applications, AWS is by
far the most popular deployment platform chosen
by 80% of the applications. The other cloud
vendors are less represented, with Azure at 10%,
IBM at 7%, and Google Cloud at 3%. We see
two potential reasons for this vast lead: (a) AWS
introduced their FaaS platform (AWS Lambda)
two years before the other cloud vendors, so
their platform is likely to be the most mature,
and (b) AWS has the largest market share of

Motivators
47% Save Costs
34% Built-in scalability
34% No operations

Application Type
42% Core functionality
39% Utility functionality
16% Scientific workload

Deployment Platform
80% AWS
10% Microsoft Azure
  8% Private Cloud

Programming Languages
42% JavaScript
42% Python
12% Java

Integrated BaaS Solutions
61% Storage
48% Database
38% Messaging

Figure 3. Key findings. The results limited to the top
3 values and a single application can have multiple
values for motivators, programming languages, and
integrated backend-as-a-service solutions. For more
detailed results, we refer to our technical report [7].

general cloud computing [11], which gives it a
larger existing user base that can move appli-
cations to serverless. About 8% of the surveyed
serverless applications run in private clouds; how-
ever, these are mostly applications from academia
and scientific computing. The low adoption of
private clouds is in stark contrast to the large
number of existing open-source Function-as-a-
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Service frameworks [12]. Part of the appeal of
the serverless application model is the automa-
tion of operational concerns. We hypothesize that
the increase in such concerns that comes with
maintaining a fleet of servers and an open-source
Function-as-a-Service framework is deterring the
adoption of these frameworks. Additionally, most
serverless applications make use of managed
services (storage, databases, messaging, logging,
streaming, etc.), which are not available directly
in a private cloud environment.

Serverless platforms support popular pro-
gramming languages. In our study, we were able
to determine the programming language for 67
of the 89 serverless application. JavaScript (42%)
and Python (42%) were by far the most popu-
lar programming languages. Some applications
are also written in Java (12%), C/C++ (11%),
or C# (8%), while only few use Go (5%) or
Ruby (2%). Traditionally, interpreted languages
such as JavaScript and Python have lower cold-
start times, that is, time required to initialize a
new instance, than compiled languages. However,
as the technology matures, this difference seems
to level out [13] and there are multiple new
approaches for cold start mitigation. For example,
AWS introduced the reserved capacity feature,
which provides prewarmed function instances to
avoid cold starts. The adoption of such cold start
mitigation strategies could lead to an increased
usage of compiled languages.

Cloud providers offer managed services as
part of BaaS, such as messaging, file storage,
databases, streaming, logging, and machine learn-
ing. In our study, we found that the most popular
external services are cloud storage (e.g., S3) and
databases (e.g., Dynamo DB). As serverless func-
tions are ephemeral and stateless, they need to
rely on external services to persist data and man-
age state. Many serverless applications also use
some form of managed messaging (38%), such
as managed pub/sub (17%), streaming (11%),
or queues (10%). Messaging services are pop-
ular, because serverless functions rarely com-
municate via external calls, as this results in
double billing [14]. The popularity of messag-
ing services is consistent with our finding that
serverless applications mostly use event-based
architectures (60%) or workflow engines (38%)
to coordinate multiple functions. It is interesting

to note that only 12% of serverless applications
use no BaaS solutions, highlighting the symbiosis
between FaaS and BaaS.

The appropriate granularity of serverless func-
tions is currently debated [15]. Opinions range
from wrapping each program function as a server-
less function, or each API endpoint as a serverless
function, to the full-scale conversion of each
microservices into serverless functions. We find
that 82% of the surveyed serverless applications
consist of five functions or less and that 93% con-
sist of ten functions or less. With one exception,
the remaining applications consist of less than 20
functions. Therefore, the granularity of a server-
less function is more akin to a full microservice or
an API endpoint in our dataset. Consequently, the
term “serverless function” might be somewhat of
a misnomer as they are not related to the general
programming concept of functions.

To summarize, serverless applications are
mostly implemented on AWS, in either Python
or JavaScript, and commonly make use of cloud
storage, managed databases, and messaging
services. Also, serverless functions are not
comparable to programming functions in terms
of size according to our dataset.

Based on our analysis of 89 serverless
applications, we find that the most commonly
reported reasons for the adoption of serverless are
to save costs for irregular or bursty workloads,
to avoid operational concerns, and for the built-
in scalability. Serverless applications are most
commonly used for short-running tasks with low
data volume and bursty workloads but are also
frequently used for latency-critical, high-volume
core functionality. Serverless applications are
mostly implemented on AWS, in either Python or
JavaScript, and make heavy use of BaaS. We see
this study as a step towards a community-wide
policy of sharing and discussion of serverless
applications. Such a catalog of serverless appli-
cations could stimulate a new wave of serverless
designs, facilitate meaningful tuning and perfor-
mance benchmarking, and overall prove useful for
both industry and academia.
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