
Optimizing Parametric Dependencies for
Incremental Performance Model Extraction

Sonya Voneva1, Manar Mazkatli1, Johannes Grohmann2, and Anne Koziolek1

1 Karlsruhe Institute of Technology, Karlsruhe, Germany
uzeci@student.kit.edu, manar.mazkatli@kit.edu, koziolek@kit.edu

2 University of Würzburg, Würzburg, Germany
johannes.grohmann@uni-wuerzburg.de

Abstract. Model-based performance prediction in agile software de-
velopment promises to evaluate design alternatives and to reduce the
cost of performance tests. To minimize the differences between a real
software and its performance model, parametric dependencies are intro-
duced. They express how the performance model parameters (such as
loop iteration count, branch transition probabilities, resource demands,
and external service call arguments) depend on impacting factors like
the input data.

The approaches that perform model-based performance prediction in ag-
ile software development have two major shortcomings: they are either
costly because they do not update the performance models automati-
cally after each commit, or do not consider more complex parametric
dependencies than linear.

This work extends an approach for continuous integration of performance
model during agile development. Our extension aims to optimize the
learning of parametric dependencies with a genetic programming algo-
rithm to be able to detect non-linear dependencies.

The case study results show that using genetic programming enables
detecting more complex dependencies and improves the accuracy of the
updated performance model.

Keywords: Performance Model (PM) · parametric dependencies · Ge-
netic Programming (GP) · agile development

1 Introduction

When software performance does not meet the predefined requirements, delays,
higher costs, and failures on deployment may occur [26]. Thus, the approach of
Software Performance Engineering (SPE) is crucial in today’s software develop-
ment process. Model-based Performance Prediction (MbPP), first introduced by
Smith [22] under the name SPE, aims to avoid potential performance issues us-
ing a performance model of the considered system. This allows the reproduction
of the time-critical behaviour of a system based on a simulation [19]. PMs allow
the developers to judge the quality of their software components and the design



2 S.Voneva et al.

alternatives without investing the effort of actually implementing and testing
them.

To describe the specific implementation of the components better, paramet-
ric dependencies are introduced. They express the relation between input argu-
ments of a service and the Performance Model Parameters (PMPs). The PMPs
are represented by abstract source code characterisations like loop iterations
count, branch transition probabilities, resource demands, and arguments of ex-
ternal service calls. The parameterization allows answering “what-if”- questions,
like MbPP for unseen usage profiles or design alternatives. For example, if we
detected that the resource demand of a specific service equals its input argument
* 5, we can easily simulate the system under new conditions (new input).

One disadvantage of MbPP is that creating a PM and keeping it consistent
with the source code during agile software development is a time-consuming
task. Until recently, researchers have focused on automating the extraction of
PMs, but two main flaws are found in existing works [25,4,15,13,3,23].

– in order to extract the PM after some update in the code, the whole system
must be instrumented and run, which causes high monitoring overhead and
discards the manual changes that may be applied to the extracted PMs (e.g.,
refinements to PMs architecture or to PMPs).

– they don’t examine how the PMPs depend on input data, i.e. the parametric
dependencies, except [13,7].

In the approach, proposed by Mazkatli et al. [17], Continuous Integration of
Performance Model (CIPM), both issues are addressed by incremental extraction
and calibration of PMs with parametric dependencies.

The incremental calibration of CIPM [18] covers, however, only linear de-
pendencies. This work extends CIPM by (1) advanced estimation of the external
calls’ arguments, considering the parametric dependencies and (2) by optimizing
all the detected dependencies using a genetic algorithm. For goal (1), we filter
the dependency candidates by applying feature selection. We furthermore search
for a dependency not only to the input arguments of a service, but, considering
the data flow, to the return values of the previous external calls.

This paper is structured as follows: section 2 gives an overview of the back-
grounds of our work, section 3 presents a code example to clarify the definition
of parametric dependencies. In section 4 we elaborate on the specific steps of
our approach. Section 5 covers the evaluation part of the work. In section 6 the
related work in the scientific field is discussed. Finally, section 7 concludes the
paper and suggests some future work.

2 Foundations

This chapter contains the foundations of our approach. We discuss the different
tools, libraries and algorithms, involved in the process.



Title Suppressed Due to Excessive Length 3

2.1 Palladio

Palladio is an approach to model and simulate architecture-level PMs. Within
Palladio, the Palladio Component Model (PCM) defines a language for describ-
ing PMs: the static structure of the software (e.g. components and interfaces),
the behavior, the required resource environment, the allocation of software com-
ponents, and the usage profile.

The PCM Service Effect Specification (SEFF) [20] describes the behavior of
a component service on an abstract level using different control flow elements:
internal actions (a combination of internal computations that do not include calls
to required services), external call actions (calls to required services), loops, and
branch actions. SEFF loops and branch actions include at least one external
call, otherwise they are merged into the internal actions to increase the level
of abstraction. To predict the performance measures (response times, central
processing unit (CPU) utilization, and throughput) the architects have to enrich
the SEFFs with PMPs. Examples of PMPs are resource demands (processing
amount that internal action requests from a certain active resource, such as a
CPU or hard disk), the probability of selecting a branch, the number of loop
iterations, and the arguments of external calls.

Palladio uses the stochastic expression (StoEx) language to define PMPs as
expressions that contain random variables or empirical distributions. StoEx al-
lows to refer to variable properties (e.g. NUMBER_OF_ELEMENTS, VALUE, BYTESIZE,
and TYPE). StoEx also supports calculations (e.g. 5*file.BYTESIZE) and com-
parisons (e.g. (x.VALUE > 8) ? 1 : 2) [20].

2.2 Kieker

Kieker [9] is an extensible open-source application performance management
tool, which allows capturing, analyzing and visualizing execution traces of source
code. Monitoring probes are inserted into the source code without modifying it.
They can be predefined and customized or dynamic and adaptive. We use Kieker
with manually instrumented code to store monitoring records. For defining the
structure of the records we use the Instrumentation Record Language (IRL) [10].

2.3 Algorithms

For detecting initial parametric dependencies we integrated two Machine Learn-
ing (ML) algorithms from the Java library Weka [8]. Linear regression is used
for estimating dependencies which consists only of numeric values. Decision tree
is adopted for all dependencies which contain numeric and nominal values.

For refining the initial dependencies we applied Genetic Programming (GP) [12].
It is a meta-heuristic machine learning technique which, inspired by the Dar-
winian principle of survival and evolution of the fittest, finds an optimal solution
to a search problem. The definition of optimal is according to a predefined fitness



4 S.Voneva et al.

function. Each potential solution is referred to as an individual. Furthermore, in-
dividuals consist of genes. GP is a special kind of genetic algorithm with genes,
forming a tree structure.

In the following, the most important elements of GP will be described. A
gene repository stores the genes, which itself is a base for creating a chromosome
repository. The chromosome repository keeps all chromosomes. A chromosome
is a potential solution of the problem, whereas the genes are the particles, of
which that solution is composed. A set of chromosomes is called a generation.

A typical GP approach consists of multiple steps, which are repeated in many
iterations. In the first iteration an initial generation is created from individuals
in the chromosome repository. Next, the crossover and mutation take place. The
process of crossover is analogous to biological crossover in human reproduction
- parent chromosomes are recombined to form new children. Mutation is simply
changing one or multiple genes of a chromosome to ensure genetic diversity.

The fitness function determines how ”good” / ”fit” an individual is. In order
to define the fitness of an individual, domain expertise on properties of the
expected optimal solution is required.

2.4 Continuous Integration of Performance Model

Continuous Integration of Performance Model (CIPM) is an approach to auto-
matically keep the architectural PM consistent during the agile software devel-
opment [17]. Its idea is to respond to the changes in source code by updating
and calibrating the PM incrementally.

CIPM uses predefined consistency rules [14] that propagate the changes in
source code to the PM using model-based transformations. Additionally, CIPM
applies model-based instrumentation that instruments only the changed parts of
source code to provide the required monitoring data for calibrating the new/up-
dated parts of PMs.

After executing the source code, CIPM analyses the generated monitoring
data to calibrate PMs incrementally [11,18]. The incremental calibration esti-
mates the missing PMPs considering the (linear) parametric dependencies. For
the detection of the parametric dependencies, CIPM uses ML algorithms like
linear regression and decision tree, which may result in inaccurate parametrized
PMPs if more complex dependencies exist.

CIPM updates also the deployment and usage parts of PMs to respond to the
potential changes in deployment or usage profile. To validate the accuracy of the
updated PM, CIPM starts the simulation and calculates the variation between
the monitoring data and the simulation results to show the estimation error.

3 Parametric Dependencies Example

To illustrate the meaning of a parametric dependency, listing 1.1 will be ex-
amined. In this code piece, we have two components - A and B. The presented
method from component A - serviceA() calls three services from its external



Title Suppressed Due to Excessive Length 5

component - B. This means that component A is the requiring component and
component B is the providing component. As one can notice, the branch transi-
tion and the arguments of the external service calls depend on the arguments of
serviceA().

The external calls in this scenario are the calls to serviceB1(), serviceB2()

and serviceB3(). We try to estimate the dependency between each argument
of an external call and the corresponding candidates for a dependency from the
arguments of serviceA() or the data flow like the list result. The candidates
for a dependency can be arguments from the same data type (as the exter-
nal call argument) or arguments which have a characteristic from the same data
type. For example, the candidates for the integer argument of the serviceB2 are
the x.VALUE, y.VALUE and result.NUMBER_OF_ELEMENTS. These candidates are
used to build a dataset which is the training set of our ML algorithms, which
try to detect the dependencies. In PCM the dependencies can be represented
as a StoEx (see section 2.1). So, if the dependencies in this example are suc-
cessfully detected the StoEx s would be: 4 * y.VALUE for the argument of the
serviceB1(), x.VALUE ^ 2 + y.VALUE for the argument of the serviceB2()

and result.NUMBER_OF_ELEMENTS for the argument of the serviceB3().

public class A {

2

private B componentB;

4

public void serviceA(int x, int y, boolean b){

6 /* Some internal action */

if(b){

8 /* Some internal action */

List<Integer> result = componentB.serviceB1(4*y);

10 componentB.serviceB2(Math.pow(x,2) + y);

componentB.serviceB3(result.size());

12 }

...

14 }

}

Listing 1.1. Example of a service (serviceA()) calling external services (serviceB1()
and serviceB2() or serviceB3())

4 Approach

The proposed approach is part of the vision described by Mazkatli and Koziolek
[17], see section section 2.4. They describe a tool which automatically updates a
PM, represented as PCM, from iterative source code changes. The incremental
calibration [18] enriches the extracted PM with parametric dependencies of the
form:

Di(P ) = (a ∗ p0 + b ∗ p1 + ... + z ∗ pn + C) (1)



6 S.Voneva et al.

where p0, p1..pn are numeric service arguments or numeric attributes of the
caller’s arguments. a..z are the weights of the input arguments and C is a con-
stant. This work aims to additionally detect non-linear parametric dependencies
for external call arguments and for all types of PMPs and to refine the linear
dependencies.

In the following, we present an overview of our workflow (cf. fig. 1).

Instrumentation of
source code

Feature
selection

Loop 
iterations

Branch 
transition

Resource 
demand

PCM
Parametric

dependencies
StoEx 

construction

Artefact

Process Related Work

Contribution

External call
argumens

(A)

(A) identifying dependencies
(B) optimizing dependencies

Genetic 
Programming

(B)

Estimation

Applying 
heuristics Monitoring data

Fig. 1. Workflow of our approach

Preprocessing We begin by applying some heuristics, similarly to [13], before
monitoring the source code. The point is to reduce the monitoring overhead
by recording only performance-relevant information. For example, if we have
an input argument which has the type List<T>, we may not be interested in
its specific elements. Therefore, we monitor only its size. In our approach, we
defined which characteristics should be monitored for every data type which is
handled.

Afterwards, the source code is instrumented using the framework Kieker, see
section 2.2, similarly to [18].

The collected monitoring data is one of the inputs needed for our dependency
estimation approach. The other input is the PCM of the system. We can easily
differentiate between the records of the PMPs, because Kieker stores them as
separate types. We have monitoring record types for loop, branch, internal action
demanding a resource, and an external call action. For example, a monitoring
record for the latter contains information like external action id, service execution
id, caller id, caller execution id, input parameters, return value, entry and exit
timestamps. More information on this can be found in this Bachelor’s thesis [24].

Feature Selection and ML Models The monitoring records are then converted to
datasets (for each PMP a separate one), which are valid as inputs for the algo-
rithms of Weka [8]. We use this library for feature selection and then creating an
estimation model for each PMP. We filter the dataset to remove all attributes



Title Suppressed Due to Excessive Length 7

which do not have an impact on the prediction quality. For judging this, the
ClassifierSubsetEval class was chosen, which evaluates attribute subsets on
training data. It uses a classifier to estimate the ’merit’ of a set of attributes.
In our case the classifiers are LinearRegression - for numeric values only, and
J48 - a decision tree, implementing the C4.5 algorithm ([21]), for both nominal
and numeric values. The evaluator also needs a specified search technique. Our
choice - BestFirst performs greedy hill climbing with backtracking; one can
specify how many consecutive non-improving nodes must be encountered before
the system backtracks. We defined the search to be bidirectional. After reduc-
ing the datasets, we can instantiate our classifiers. As the workflow shows, the
construction of estimation models for the loops, branches and internal actions,
demanding some resource, was already implemented. To generate the StoEx, we
parse the classifier output (coefficients) and build a string from it.

Optimizing The major part of our approach is improving the linear dependencies
from [18], which are detected with the ML algorithms in Weka, see section 2.3.
By detecting more complex dependencies and updating the PM accordingly, the
accuracy of the model is increased. The dependencies are refined only if the
mean squared error, that they produce, is bigger than 0.1. The optimization is
conducted according to the GP algorithm presented in section 2.3. In order to
reduce the time needed by the algorithm to produce a solution, we set the out-
put of the above-mentioned ML algorithms as an initial parametric dependency
(starting point of the genetic evolution).

Similarly to the approach of Krogmann et al. [13], we model genes as math-
ematical functions to express more complex dependencies. Figure 2 depicts an
example of a gene. This is very beneficial for our approach since both, the Ab-
stract Syntax Tree (AST) of the StoEx language and the genes of GP have tree
structures and we are able to easily transform the initial StoEx into a starting
individual for the GP.

Power
^

Variable
"x.VALUE"

Variable
"y.VALUE"

Addition
+

Constant
"2"

Fig. 2. Tree representation of the individual x2 + y

Another worth-mentioning feature of the GP is the fitness function. In our im-
plementation the fitness of an individual (mathematical expression) is judged ac-
cording to its complexity (depth of AST) and prediction accuracy (mean squared



8 S.Voneva et al.

error). Moreover, each algorithm run (evolution) is restricted by a maximum run
time and a maximum number of generations - these limits are implemented as
parameters of the algorithm.

In our work, we used the Jenetics library3, written in Java, which provides
a GP implementation. In contrast to other GP implementations, Jenetics uses
the concept of an evolution stream for executing the evolution steps. Therefore,
it is no longer necessary to perform the evolution steps in an imperative way.

The final step of the workflow is constructing the StoEx - this involves some
string processing. Then, the StoEx is inserted in the PCM at the right place and
as an output of our approach we deliver the PCM, enriched with the optimized
parametric dependencies.

5 Case Study

Our evaluation is twofold. First, we judge the importance of feature selection
and the accuracy of the initial estimated dependencies. Second, we evaluate the
optimization technique GP. In the first part, we compare the accuracy and the
complexity of the estimated dependencies when feature selection is used and
when not. The results do not show a significant impact of using the feature
selection for numerical variables in contrast to using it for nominal ones [24].
Therefore, due to lack of space in this paper we focus on the second part of the
evaluation to show the most representative results.

5.1 Goal and Scenario

Our main research question is: which PM is more accurate - with GP optimiza-
tion or without? To answer this question, we calibrate three different PMs: one
with our approach, one considering only linear dependencies and the last one -
without any parametric dependencies. For the calibration, we use a monitoring
data generated by a usage profile P1. Then, we use the three models to pre-
dict the performance for unforeseen usage profile P2. To compare the prediction
power of these PMs, we compare the predicted response times by the simulations
with the actual response times that we can measure for P2. Both response times
are distributions, therefore we use the following metrics to compare the simi-
larity: Kolmogorov-Smirnov-Test (KS-Test) [6] that tests whether two empirical
distributions come from the same underlying distribution, the Wasserstein met-
ric [16] that quantifies the effort needed to transfer one distribution into the
other, and conventional statistical measures. For both KS-Test and Wasserstein,
the lower the value is, the higher is the accuracy of PM.

5.2 Setup

To answer the research question above we implemented an artificial example - a
small application with focus on the external service calls with complex depen-
dencies. The most important components of the micro-system are:

3 https://jenetics.io/manual/manual-5.1.0.pdf

https://jenetics.io/manual/manual-5.1.0.pdf


Title Suppressed Due to Excessive Length 9

class A contains our target method for incremental calibration of the PCM -
serviceA(). Its first part is shown in listing 1.1. The rest of the method consists
of a loop and some other external service calls. This method has three arguments
- int x, int y, and boolean b. The component class A has the PCM role of
a requiring component - this means it requires some external services.

class B encapsulates six methods which are called by class A.So class B

has the PCM role of a providing component. Each of these six methods has only
one input argument and contains an internal action, which does some computa-
tions like calculating prime numbers or square root of 1000 numbers in an array.
The arguments of the called methods in class B each have a different depen-
dency to the service argument(s) of class A. To ensure variety we set different
dependencies: linear, qudratic, cubic, negation, etc.

First, we apply a fine-grained monitoring using the following usage profile
P1 to generate the required monitoring data for the calibration. For this, we
ran serviceA() 500 times with ten simulated concurrent users. We chose the
arguments x, y and b as follows: random integer from the set [0..9], random
integer from the set [1, ..10], and random boolean. With the described setup the
monitoring itself took around 20 minutes. After this, we calibrated three different
PMs - one only with distribution functions of the estimated PMPs (manually
calibrated), one after learning the linear dependencies as described in [18] and
one with more complex (optimized) dependencies as described in this paper.

Then, we start the simulation using the three PMs to predict the response
time of serviceA() for the unforeseen usage profile (P2): i.e., changing the x

parameter to a random integer from the set [0..19], y parameter to random
integer from the set [1..20], and b to random boolean. We repeat the simulation
50 times for each PM to make the results more representative.

As a reference, we monitor serviceA() coarse-grained for the usage profile
(P2), to create a validation set for the evaluation. Coarse-grained monitoring
records the entry and exit times without the unnecessary monitoring overhead,
like service id or arguments. Finally, we compare the simulation results with the
actual monitoring data using the metrics defined in section 5.1.

5.3 Results

First, we want to discuss the time aspect of calibrating a PMs with our approach
and the benefits of doing this iteratively. We measured that identifying and op-
timizing all six dependencies between arguments of serviceA() and arguments
of the external calls from class B takes around 35 seconds on average. A linear
dependency is detected for around 4 seconds (with the ML algorithms) and a
quadratic, for example, takes around 10 seconds, as it involves the optimization
process. In a scenario, where only one input argument of an external service call
is changed the iterative update of the PM, i.e. considering only the modified
parts of the code, could save us a serious percentage of the optimization time.

Table 1 presents a comparison between the response times of serviceA()

over 50 iterations according to the monitoring data and to the three PMs simu-
lations. From each distribution, the quartiles, as well as the minimum, maximum,



10 S.Voneva et al.

and average values are calculated. As the table shows, the performance predic-
tion of the PM that is calibrated with our approach - optimizing parametric
dependencies, is the closest prediction to the actual monitoring response time
in comparison to the prediction of other PMs: PM that is calibrated with linear
dependencies and PM that is distribution functions, where parametric depen-
dencies for external service calls are not handled at all.

Table 1. Response times (in seconds) of the three PMs: first - parameterized only
with distribution functions for the external call arguments, then - only with linear
dependencies for all PMPs and finally - with more complex dependencies for all PMPs.

Distribution Min Q1 Q2 Q3 Max Avg

Monitoring 0.009 0.217 0.59 1.318 2.589 0.825

Distribution functions 0.021 1.576 2.857 4.369 7.151 3.045
Linear functions 0.025 1.643 2.904 4.546 7.082 3.078

Optimized 0.111 0.676 1.222 1.676 2.232 1.199

In table 2, again the simulations of the PMs are compared, but this time
with different metrics - KS-Test [6] and Wasserstein [16]. As the numbers from
table 2 indicate, the Optimized PM improves the KS-Test value by 0.302 and
the Wasserstein value by 1.255 on average. This improvement is roughly two
times for the KS-Test value and five times for the Wasserstein value. These
results confirm that the Optimized PM has the highest similarity to the actual
system.

Table 2. Comparison of the metrics KS-Test and Wasserstein of the three models:
first - parameterized only with distribution functions for the external call arguments,
then - only with linear dependencies for all PMPs and finally - with more complex
dependencies for all PMPs.

Metric
Distribution
functions

Linear
functions

Optimized

KS Q1 0.585 0.581 0.278
KS Avg. 0.595 0.592 0.293
KS Q3 0.608 0.601 0.306

WS Q1 1.527 1.535 0.292
WS Avg. 1.568 1.56 0.313
WS Q3 1.609 1.591 0.339

6 Related Work

Various approaches for extracting an architectural model based on static (e.g.
[2,14]), dynamic (e.g. [4,23,3]), or hybrid analysis (e.g. [13]) exist. In comparison



Title Suppressed Due to Excessive Length 11

to our approach, the aforementioned approaches require monitoring overhead
to extract consistent PMs during agile software development and do not keep
the previous potential manual changes to PMs. Similarly to the approach of
Krogmann et al. [13], we use GP to detect the parametric dependencies. In
contrast to their work, we use the GP during an incremental calibration of PMs.
This reduces the required overhead by GP to learn the dependencies, because
our approach uses GP only to optimize the PMPs that have been changed in
the recent development iteration and have a high cross-validation error by the
used initial ML algorithms.

The following works also consider parametric dependencies. Grohmann et
al. [7] introduce an approach to identify and to characterize [1] parametric depen-
dencies for PMs using monitoring data from a running system. This monitoring
data is then analyzed and correlations between different parameters are identi-
fied with the use of different feature selection approaches from the area of the
ML. This approach does not represent the parametric dependencies as StoEx or
support the iterative updates to PM. Courtois et al. [5] use multivariate adaptive
regression splines to extract parametric dependencies. They perform dedicated
performance tests to obtain the data on which they fit the regression splines.
This approach also lacks the incremental fashion of PM construction.

7 Conclusion and Future Work

The contribution of this work is twofold. First, we presented an approach for
the incremental estimation of external calls’ arguments for CIPM, considering
parametric dependencies. For this, we apply some feature selection algorithms to
reduce the number of candidates for the proposed ML algorithms that identify
(initial) dependencies.

The second part of our work is the optimization of the parametric dependen-
cies for all types of PMPs using a GP algorithm, which refines the outputs of
the ML algorithms (PMPs as StoEx ) and eventually finds more complex depen-
dencies than linear. To sum up, the implemented mechanism needs two inputs -
a PCM and monitoring data from instrumented source code. The output of our
algorithms are the optimized PMPs as StoEx, which are inserted in the PCM,
so that at the end we enriched a PCM with parametric dependencies.

To evaluate the implemented technique, we ran the simulation for the arti-
ficial micro-system using three different PMs, parameterized in different ways,
and compared between the response time of our target service according to the
monitoring records and the simulated response times. The results show that
the PM with optimized parametric dependencies has an accuracy of two times
(Kolmogorov-Smirnov-Test value) and five times (Wasserstein metric) higher
than a PM with linear or distribution functions only. This confirms that the
optimization improves the accuracy of the PM.

Our approach promises to detect more complex dependencies during the in-
cremental calibration to improve the accuracy of the iteratively updated PMs.



12 S.Voneva et al.

Therefore, we plan to integrate our implementation with the implemented pipeline,
proposed in [18], and to perform further evaluation using different case studies.

In future works we aim to develop an optimization mechanism which han-
dles the dependencies of the nominal arguments as well, as our implementation
lacks this feature. Additionally, we aim to extend our approach to detect the
dependencies to the service arguments of composite data types. One idea in
this direction is traversing all fields of the composite argument until reaching
primitive ones.

References

1. Ackermann, V.: Blackbox learning of parametric dependencies for performance-
models from monitoring data (2018)

2. Becker, S., Hauck, M., Trifu, M., Krogmann, K., Kofron, J.: Reverse engineering
component models for quality predictions. pp. 194–197 (03 2010)

3. Brosig, F., Huber, N., Kounev, S.: Automated extraction of architecture-level per-
formance models of distributed component-based systems. In: Proceedings of the
2011 26th IEEE/ACM Intl. Conference on Automated Software Engineering. p.
183–192. IEEE Computer Society (2011)

4. Brunnert, A., Vögele, C., Krcmar, H.: Automatic performance model gen-
eration for java enterprise edition (ee) applications. pp. 74–88 (09 2013).
https://doi.org/10.1007/978-3-642-40725-3-7

5. Courtois, M., Woodside, M.: Using regression splines for software performance
analysis. In: Proceedings of the 2nd Intl. Workshop on Software and Performance.
pp. 105–114 (2000)

6. Dodge, Y.: The Concise Encyclopedia of Statistics, chap. Kolmogorov–Smirnov
Test, pp. 283–287. Springer New York (2008)

7. Grohmann, J., Eismann, S., Elflein, S., von Kistowski, J., Kounev, S., Mazkatli, M.:
Detecting parametric dependencies for performance models using feature selection
techniques (2019)

8. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The
weka data mining software: An update. SIGKDD Explor. Newsl. 11(1) (2009)

9. van Hoorn, A., Waller, J., Hasselbring, W.: Kieker: A framework for application
performance monitoring and dynamic software analysis. In: Proceedings of the 3rd
ACM/SPEC Intl. Conference on Performance Engineering. ICPE ’12 (2012)

10. Jung, R.: An instrumentation record language for kieker. Tech. rep., Tech. rep.
Kiel University (2013). https://doi.org/10.13140/RG.2.1.3655.5689

11. Jägers, J.P.: Iterative performance model parameter estimation considering para-
metric dependencies (2018)

12. Koza, J.R.: Genetic Programming: On the Programming of Computers by Means
of Natural Selection. MIT Press, Cambridge, MA, USA (1992)

13. Krogmann, K., Kuperberg, M., Reussner, R.: Using genetic search for reverse en-
gineering of parametric behavior models for performance prediction. IEEE Trans.
Software Eng. 36, 865–877 (2010). https://doi.org/10.1109/TSE.2010.69

14. Langhammer, M.: Automated Coevolution of Source Code and Software Architec-
ture Models. Ph.D. thesis, Karlsruhe Institute of Technology, Karlsruhe, Germany
(2017)

https://doi.org/10.1007/978-3-642-40725-3-7
https://doi.org/10.13140/RG.2.1.3655.5689
https://doi.org/10.1109/TSE.2010.69


Title Suppressed Due to Excessive Length 13

15. Langhammer, M., Shahbazian, A., Medvidovic, N., Reussner, R.H.: Automated
extraction of rich software models from limited system information. In: 2016 13th
Working IEEE/IFIP Conference on Software Architecture (WICSA). IEEE (2016)

16. Majewski, S., Ciach, M., Startek, M., Niemyska, W., Miasojedow, B., Gambin, A.:
The wasserstein distance as a dissimilarity measure for mass spectra with applica-
tion to spectral deconvolution (2018)

17. Mazkatli, M., Koziolek, A.: Continuous integration of performance model. pp. 153–
158 (04 2018). https://doi.org/10.1145/3185768.3186285

18. Mazkatli, M., Monschein, D., Grohmann, J., Koziolek, A.: Incremental calibration
of architectural performance models with parametric dependencies. In: IEEE Intl.
Conference on Software Architecture (ICSA 2020) (2020)

19. Pooley, R.: Software Engineering and Performance: A Road-map. ICSE-Future of
SE Track pp. 189–199 (2000)

20. Reussner, R.H., Becker, S., Happe, J., Heinrich, R., Koziolek, A., Koziolek, H.,
Kramer, M., Krogmann, K.: Modeling and Simulating Software Architectures –
The Palladio Approach. MIT Press (2016)

21. Ruggieri, S.: Efficient c4.5. IEEE Trans. on Knowl. and Data Eng. 14(2), 438–444
(2002). https://doi.org/10.1109/69.991727

22. Smith, C.U.: Performance Engineering of Software Systems. Addison-Wesley Long-
man Publishing Co., Inc., Boston, MA, USA, 1st edn. (1990)

23. Spinner, S., Walter, J., Kounev, S.: A reference architecture for online perfor-
mance model extraction in virtualized environments. In: Companion Publication
for ACM/SPEC on Intl. Conference on Performance Engineering. p. 57–62. Asso-
ciation for Computing Machinery, New York, NY, USA (2016)

24. Voneva, S.: Optimizing parametric dependencies for performance model extrac-
tion. bachelor’s thesis (2020), https://sdqweb.ipd.kit.edu/publications/pdfs/
Voneva20a.pdf

25. Walter, J., Stier, C., Koziolek, H., Kounev, S.: An expandable extraction framework
for architectural performance models. In: Proceedings of the 8th ACM/SPEC on
Intl. Conference on Performance Engineering Companion. pp. 165–170. ICPE ’17
Companion, ACM, New York, NY, USA (2017)

26. Woodside, M., Franks, G., Petriu, D.: The future of software performance engi-
neering. pp. 171–187 (06 2007). https://doi.org/10.1109/FOSE.2007.32

https://doi.org/10.1145/3185768.3186285
https://doi.org/10.1109/69.991727
https://sdqweb.ipd.kit.edu/publications/pdfs/Voneva20a.pdf
https://sdqweb.ipd.kit.edu/publications/pdfs/Voneva20a.pdf
https://doi.org/10.1109/FOSE.2007.32

	Optimizing Parametric Dependencies for Incremental Performance Model Extraction

