CASPA:
A Platform for Comparability of Architecture-based
Software Performance Engineering Approaches

Thomas F. Diillmann!, Robert Heinrich?, André van Hoorn!, Teerat Pitakrat!, J tirgen Walter3, Felix Willnecker?

'University of Stuttgart, Germany
ZKarlsruhe Institute of Technology, Germany
3University of Wiirzburg, Germany
4fortiss GmbH, Germany

Abstract—Setting up an experimental evaluation for
architecture-based Software Performance Engineering (SPE)
approaches requires enormous efforts. This includes the selection
and installation of representative applications, usage profiles,
supporting tools, infrastructures, etc. Quantitative comparisons
with related approaches are hardly possible due to limited
repeatability of previous experiments by other researchers.

This paper presents CASPA, a ready-to-use and extensible
evaluation platform that already includes example applications
and state-of-the-art SPE components, such as monitoring and
model extraction. The platform explicitly provides interfaces to
replace applications and components by custom(ized) compo-
nents. The platform builds on state-of-the-art technologies such
as container-based virtualization.

I. INTRODUCTION

As in other fields of software engineering, meaningful
evaluations are required to investigate and quantify benefits
of newly proposed approaches for Software Performance En-
gineering (SPE) [1]. For instance, when proposing a new
approach for extracting architectural performance models from
execution traces [2], the evaluation should address several
aspects. These include the prediction accuracy of the ob-
tained model and the comparison to related model extractors.
Typically, an experimental evaluation is conducted in a lab
setting, including i) the selection of an Application Under Test
(AUT) for which a model is to be extracted, ii) a monitoring
infrastructure that collects and provides performance data from
the AUT, and iii) a load generator that produces synthetic
requests to the AUT.

In many cases, these experiments have major threats to
validity [3], e.g., because the selected AUTSs and corresponding
workloads are not representative. Moreover, the ability to
repeat and reproduce the experiments is limited. It needs
to be emphasized that setting up the experiments, requiring
the aforementioned steps, is extremely time-consuming and
error-prone. This is, for instance, caused by representative
AUTs and load profiles not being available, the complexity of
the infrastructure, as well as problems in the interoperability
between the involved tools including the implementation of
related approaches—if available at all.

To address these problems, we have developed an eval-
uation platform for SPE approaches, called CASPA.! It in-
cludes hooks for building blocks for typical SPE evaluations,
comprising an AUT, a workload generator, a monitoring tool,
and analysis approaches. Different implementations of the
building blocks are already available and custom ones can
be added easily. The platform comes with scripts allowing
to setup the platform and start the experiments with ease.
The platform is based on state-of-the-art technologies, such as
container-based virtualization, which has been proposed as a
promising approach for improving reproducibility in software
engineering [4].

The remainder of this paper is structured as follows. Sec-
tion II emphasizes the addressed problem by a representative
example from our experience. Section III provides a conceptual
overview of CASPA, technical details on the implementation,
and the currently available components. Section IV describes
a use case of the CASPA platform. Section V concludes the
paper. The platform is publicly available online.”

II. PROBLEM STATEMENT

Various performance concerns need to be addressed during
the life-cycle of a software system, e.g., whether it will satisfy
the requirements w.r.t. timeliness in terms of response times.
The SPE community has come up with various architecture-
based SPE approaches using models and measurements to
support the evaluation of these concerns in different stages
of system development and operations [1], [5], [6].

As mentioned before, this paper addresses a common
challenge in setting up lab experiments that aim to evaluate
the quality of SPE approaches. In order to emphasize selected
challenges, let us consider required steps based on an example,
namely an approach for automatically extracting architecture-
based performance models from monitoring data [7].

In addition to the implementation of the extractor to be
evaluated, the experimentation setup requires the availability
and integration of one or more case study application(s)
(AUTSs), workload generation [8], and an Application Perfor-
mance Management (APM) tool [9]. In general, the efforts

IComparability of Architecture-based Software Performance Engineering
Approaches (CASPA)
Zhttps://github.com/spec-rgdevops/CASPA-platform

To appear in Proceedings of IEEE International Conference on Software Architecture (ICSA 2017)

voorn
Schreibmaschinentext
To appear in Proceedings of IEEE International Conference on Software Architecture (ICSA 2017)

voorn
Schreibmaschinentext

voorn
Schreibmaschinentext

voorn
Schreibmaschinentext

voorn
Schreibmaschinentext

Workload Application Monitoring

Workload generator] (AUT) g (APM tools)

Analysis
(Performance model extraction) (Workload model extraction)

(Performance prediction) @nomaly detectiorD ()

| Infrastructure ‘

Figure 1. Overview of CASPA’s architectural layers

for the application or evaluation of performance engineering
approaches include:

o The AUT setup contains the preparation of the infras-
tructure (e.g., physical and/or virtual machines) and the
installation of the application, which may require a sepa-
rate deployment and integration with other services (e.g.,
a database management system).

e The workload generation involves the selection, config-
uration, and deployment of a load driver, as well as the
specification of a representative usage profile.

e The setup of the analysis chain includes the individ-
ual deployment of analysis tools (the extractor in this
case), as well as their integration. This is challenging,
as there are different monitoring log formats, monitoring
comprehensiveness levels (e.g., containment of resource
utilization information). Moreover, through potentially
different usage from what is intended, bugs or incomplete
implementations may be revealed.

e The integration of the AUT and the monitoring/analysis
chain poses additional challenges. Applications have to be
extended to cope with unforeseen scenarios like incom-
patible formats or high amounts of measurements. This
integration step often requires to identify and understand
side effects (e.g., anomalies, garbage collection) that may
require either to adapt or extend the initial analysis tooling
or to interpret results accordingly.

Owing to the complex evaluation setup, there are several
threats to validity that cannot be investigated due to very high
setup efforts. External reproducibility would enable extended
evaluation and reuse, and prevent reinventions. Hence, we
require an easy set up and standardized interfaces between
APM and SPE approaches.

III. CASPA PLATFORM

This section describes CASPA’s platform architecture,
comprising the contained components and their interaction on
a conceptual level, as well as selected implementations of the
components, realized as independently deployable containers.
The contributions in terms of tooling are i) the CASPA plat-
form implementation and reusable and interoperable containers
for different ii) AUTS, iii) APM tools, and iv) SPE tools
representing the state of the art.

A. Architecture Overview

CASPA’s high-level architecture is depicted in Figure 1.
First, it is structured into the following five layers. The applica-
tion layer comprises the AUT. The workload layer comprises
the workload generator that imposes the AUT to synthetic

Table 1. CURRENT TECHNOLOGIES AND TOOLS USED BY CASPA
Platform Layer [Technologies & tools
Workload Faban, JMeter, Locust
Application Netflix OSS RSS reader,

CoCoME,
SPEC;jEnterprise2010
Monitoring Kieker, inspectIT
Analysis
Model extraction: iObserve, PMX,
WESSBAS
Measurement-based analysis: | Kieker

Palladio, Descartes
Docker, Kubernetes

Performance prediction:
Infrastructure

workload based on a respective workload specification. The
monitoring layer provides the APM infrastructure to collect
performance measurements from the AUT and to provide this
data for further analyses. The analysis layer comprises com-
ponents for measurement-based and model-based performance
evaluation, including model extraction. As depicted by the
arrows in Figure 1, the analysis may provide feedback to the
other layers. The infrastructure layer provides the execution
environment for the other layers and components, e.g., in
terms of the hardware, operating system, and (container-based)
virtualization.

Apart from the infrastructure layer, each layer is explicitly
intended to be tailored based on the specific needs of the re-
spective evaluation that uses the platform. Particularly, custom
components can be added. The remainder of this section details
selected technical components for the implementation of the
layers, as summarized in Table I.

B. Infrastructure Layer

The platform uses container-based virtualization with
Docker, managed by the container orchestrator Kubernetes.

Docker? is a scriptable lightweight virtual machine. Its ease
of use and integration into build and deployment pipelines
support the goals of our platform [4]. All components of our
platform are based on the Docker infrastructure.

Kubernetes* is a container management system that pro-
vides mechanisms to manage Docker containers on distributed
environments at large scale. It allows various operations
such as deployment, scaling, load-balancing, service discov-
ery, rolling-update, and self-healing. Setting up these features
would require more effort in traditional setups.

3https://www.docker.com/
“https://kubernetes.io/

C. Application Layer

On the application layer, we currently provide the following
AUT containers:

The Netflix RSS Reader’ is a demonstration application
created by Netflix to show how their open-source components
interact. It provides a web page to users that allows them to
view, add, and delete RSS feeds. The RSS reader application
is composed of two microservices that can be scaled indepen-
dently; the edge microservice provides a user interface, the
middletier microservice stores feed URLs in the database and
retrieves the feed contents.

The Common Component Modeling Example (CoCoME)°
resembles a trading system of a supermarket chain. CoCoME
implements processes for sales, ordering products, and inven-
tory management. It is used as a platform for collaborative
empirical research on information system evolution [10], [11].

The SPECjEnterprise2010 benchmark is a Java Enterprise
Edition (EE) application that was designed to benchmark
application servers and their standardized Java EE interfaces.
The application mimics a car order and manufacturing system.

D. Workload Layer

We use and adapt multiple workload drivers based on
different base technologies. The load drivers are all packed in
individual containers as part of our platform. In the current
state, we use three open-source load testing tools, namely
JMeter, Locust, and Faban. However, depending on the AUT,
other drivers could be added to the platform.

JMeter’ supports a large number of protocols such as
HTTP, SOAP, FTP, JDBC. JMeter can run in a headless and in
a graphical mode, and provides analysis modules to interpret
the results of a stress or load test.

Locust® executes a workload profile written in Python. This
allows high capability and flexibility in defining user behavior.
Locust can run in two modes: standalone and distributed. In
the distributed mode, multiple instances of slave nodes can be
spawned and the master node delegates the load creation to
them to create a distributed workload.

Faban® is a benchmarking suite designed to conduct repro-
ducible benchmarks and load tests. Evaluating the performance
and scalability characteristics of server-based systems is the
core design principle of this tool. Faban is used, for instance,
as a load test driver for the SPECjEnterprise2010 industry-
standard benchmark.

E. Monitoring Layer

On the monitoring layer, the following APM tool containers
are currently available:

Kieker [12] is an extensible open-source APM tool. Par-
ticularly, it allows to capture and analyze execution traces
from distributed software systems. The AUT is instrumented

Shttps://github.com/Netflix/recipes-rss
Shttp://www.cocome.org/
7http://jmeter.apache.org/
8http://locust.io/

“http://faban.org/

and monitoring agents send their data to a central server
container that makes the data available via a REST API to
other components.

inspectIT' is an open-source solution for APM. As such,
inspectIT allows for monitoring the health of a productive soft-
ware application, get notified in cases of performance issues,
and provides comprehensive means to analyze root causes of
performance problems. Employing an instrumentation-based
approach for data gathering inspectIT gives a transactional
view into the internals of an application.

F. Analysis Layer—Model Extraction

For the analysis layer, we list selected approaches for
extracting performance and workload models from APM data.

Performance Model Extractor (PMX) [7] is a framework
for the extraction of architectural performance models general-
izing over the target modeling language. Currently, PMX sup-
ports the extraction of Palladio Component Model (PCM) [13]
and Descartes Modeling Language (DML) instances. The PMX
approach enables an easy comparison of architectural perfor-
mance modeling languages and access to different tool chains.
The container reads APM monitoring data to be processed via
a REST APL

WESSBAS [14] is an approach for extracting usage profiles
from operational monitoring logs into instances of a domain-
specific language, and transforming these instances into perfor-
mance models (e.g., PCM) or load test scripts (e.g., JMeter).

iObserve [15] is a run-time modeling approach based
on PCM that uses transformations to update architec-
tural models by operational observations (particularly, APM
data). iObserve considers changes in workload, compo-
nent migration, and component (de-)replication, as well as
(de-)allocation of resources in monitoring and model trans-
formation.

Manual or automatic analysis of the generated models
are, as of today, not part of our platform. However, this is
a potential extension point for other researchers and practi-
tioners. Architecture or deployment optimizations based on
the extracted models are just a few of potential examples of
complex SPE tasks that require a complete environment as
proposed here [16], [17].

IV. USE CASE

Our platform consists of a number of components that are
interoperable and can thus be easily exchanged. This allows
to assemble a customized setup for experimental evaluation of
SPE approaches.

The infrastructure layer, comprising a Docker and Kuber-
netes installation, needs to be set up only once and can be
used for different experiments. Kubernetes can be deployed
on both physical or virtual environments, such as bare-metal
machines or OpenStack.!' There is also an easy way to deploy
Kubernetes on a local machine which can be used as a platform
for application development and testing.

10nttp://www.inspectit.rocks/
htps://www.openstack.org/

http://www.inspectit.rocks/

Depending on the experiment goal, the set of components
for each layer needs to be selected and deployed to Kuber-
netes. As an example, let us consider the setting mentioned
in the problem statement, namely extraction of architectural
models. The approach analyzes the monitoring data obtained
from a running application. The components required for
this experiment include a workload generator, an AUT, a
monitoring framework, and an analysis tool. One possible
configuration for this experiment is using Locust for workload
generation, RSS reader as an AUT, Kieker for application
performance monitoring, and PMX for model extraction. Such
an experiment configuration can be specified in a single file
which allows an easy deployment of all components.

If a new configuration is needed, the configuration file can
be modified and re-deployed. For example, the RSS reader can
be replaced by CoCoME or SPECjEnterprise. In the same way,
the workload generator and monitoring tool can be replaced
by other existing ones. In order to use components that have
not been integrated into CASPA, they need to be provided as
a Docker image along with a corresponding configuration file.

V. CONCLUSION

CASPA provides a ready-to-use and extensible platform
for the quantitative evaluation of architecture-based SPE ap-
proaches. Particularly, we address the problem that, so far,
setting up these experiments was extremely time-consuming
and error-prone due to the complexity of the involved tools.
As a consequence, experiments have threats to validity, e.g.,
setting up the experiment already with only a single AUT is
costly in terms of effort.

We hope that our effort paves a way for efficiently setting
up experimental evaluations that provide a higher degree
of wvalidity, repeatability, reproducibility, and comparability.
Our goal is that other researchers use the platform for their
evaluation purposes—including new AUTs and SPE/APM
components, which are then made publicly available.

The presented work is still in progress. In the near future, in
particular, we want to extend the set of included AUTs and SPE
components, e.g., for detection, diagnosis, and prediction of
performance problems, and auto-scaling, which are currently
mainly limited to works from the research groups of the
authors. Apart from new components, our goal is to extend the
platform by concepts from DevOps and Continuous Software
Engineering [18], [19], e.g., a continuous deployment pipeline.
This allows to evaluate performance-related approaches for this
challenging and promising environment [5].

VI. ACKNOWLEDGMENT

This work is conducted as a joint activity of several re-
searchers as part of the Research Group of the Standard Perfor-
mance Evaluation Corporation (SPEC RG, http://research.spec.
org). This work is being supported by the German Research
Foundation (DFG) in the Priority Programme “DFG-SPP 1593:
Design For Future—Managed Software Evolution” (Declare:
HO 5721/1-1 and KO 3445/15-1; iObserve: RE 1674/6-1),
and the German Federal Ministry of Education and Research
(diagnoselT: 01IS15004).

(1]

(2]

(3]

(4]

(51

(6]

(71

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

REFERENCES

C. M. Woodside, G. Franks, and D. C. Petriu, “The future of software
performance engineering,” in Proc. Int. Conf. on Software Engineering
(ICSE 2007), Workshop on the Future of Software Engineering, (FOSE
2007), 2007, pp. 171-187.

D. Okanovié, A. van Hoorn, C. Heger, A. Wert, and S. Siegl, “Towards
performance tooling interoperability: An open format for representing
execution traces,” in Proc. 13th European Workshop on Performance
Engineering (EPEW ’16). Springer, 2016, pp. 94-108.

C. Wohlin, P. Runeson, M. Host, M. C. Ohlsson, and B. Regnell,
Experimentation in Software Engineering. Springer, 2012.

J. Cito and H. C. Gall, “Using Docker containers to improve repro-
ducibility in software engineering research,” in Comp. 38th Int. Conf.
on Software Engineering (ICSE ’16). ACM, 2016, pp. 906-907.

A. Brunnert, A. van Hoorn, F. Willnecker, A. Danciu, W. Hassel-
bring, C. Heger, N. Herbst, P. Jamshidi, R. Jung, J. von Kistowski,
A. Koziolek, J. KroB, S. Spinner, C. Vogele, J. Walter, and A. Wert,
“Performance-oriented DevOps: A research agenda,” SPEC Research
Group — DevOps Performance Working Group, Standard Performance
Evaluation Corporation (SPEC), Tech. Rep. SPEC-RG-2015-01, Aug.
2015.

H. Koziolek, “Performance evaluation of component-based software
systems: A survey,” Perform. Eval., vol. 67, no. 8, pp. 634-658, 2010.

J. Walter, C. Stier, H. Koziolek, and S. Kounev, “An expandable
extraction framework for architectural performance models,” in Proc.
3rd Int. Workshop on Quality-Aware DevOps (QUDOS’17). ACM,
April 2017.

Z. M. Jiang and A. E. Hassan, “A survey on load testing of large-
scale software systems,” IEEE Trans. Software Eng., vol. 41, no. 11,
pp. 1091-1118, 2015.

C. Heger, A. van Hoorn, D. Okanovi¢, and M. Mann, “Application
performance management: State of the art and challenges for the future,”
in Proc. 8th ACM/SPEC Int. Conf. on Performance Engineering (ICPE
'17). ACM, 2017.

S. Herold et al., “CoCoME - the common component modeling
example,” in The Common Component Modeling Example. Springer,
2008, pp. 16-53.

R. Heinrich, S. Girtner, T.-M. Hesse, T. Ruhroth, R. Reussner,
K. Schneider, B. Paech, and J. Jurjens, “A platform for empirical
research on information system evolution,” in Proc. 27th Int. Conf. on
Software Engineering and Knowledge Engineering (SEKE 2015), 2015,
pp. 415-420.

A. van Hoorn, J. Waller, and W. Hasselbring, “Kieker: A framework for
application performance monitoring and dynamic software analysis,”
in Proc. 3rd ACM/SPEC International Conference on Performance
Engineering (ICPE ’12). ACM, Apr. 2012, pp. 247-248.

R. H. Reussner et al., Modeling and Simulating Software Architectures
— The Palladio Approach. MIT Press, 2016.

C. Vogele, A. van Hoorn, E. Schulz, W. Hasselbring, and H. Krcmar,
“WESSBAS: Extraction of probabilistic workload specifications for
load testing and performance prediction—A model-driven approach for
session-based application systems,” Journal on Software and System
Modeling (SoSyM), 2016.

R. Heinrich, “Architectural run-time models for performance and pri-
vacy analysis in dynamic cloud applications,” Perform. Eval. Rev.,
vol. 43, no. 4, pp. 13-22, 2016.

A. Koziolek, H. Koziolek, and R. Reussner, “PerOpteryx: Automated
application of tactics in multi-objective software architecture optimiza-
tion,” in Proc. 7th Int. Conf. on the Quality of Software Architectures
(QoSA 2011) and 2nd Int. Symp. on Architecting Critical Systems
(ISARCS 2011). ACM, 2011, pp. 33-42.

F. Willnecker and H. Krcmar, “Optimization of deployment topologies
for distributed enterprise applications,” in Proc. 12th Int. ACM SIG-
SOFT Conf. on Quality of Software Architectures (QoSA 2016), 2016.

L. J. Bass, I. M. Weber, and L. Zhu, DevOps - A Software Architect’s
Perspective. Addison-Wesley, 2015.

J. Bosch, Ed., Continuous Software Engineering. Springer, 2014.

http://research.spec.org
http://research.spec.org

