
Automated Transformation of Descartes Modeling
Language to Palladio Component Model

Jürgen Walter
University Würzburg Chair for

Computer Science II
Am Hubland

D-97074 Würzburg, Germany
juergen.walter@uni-

wuerzburg.de

Simon Eismann
University Würzburg Chair for

Computer Science II
Am Hubland

D-97074 Würzburg, Germany
adrian.hildebrandt@stud-

mail.uni-wuerzburg.de

Adrian Hildebrandt
University Würzburg Chair for

Computer Science II
Am Hubland

D-97074 Würzburg, Germany
adrian.hildebrandt@stud-

mail.uni-wuerzburg.de

ABSTRACT
Model-based performance predictions and reconfigurations
enable optimizing resource efficiency while ensuring that
Quality-of-Service demands are met in today’s complex IT-
systems. The Descartes Modeling Language (DML) and the
Palladio Component Model (PCM) are two architectural
performance modeling formalisms applied in this context.
This paper compares DML to PCM concerning similarities,
differences and semantic gaps. Based on this, we propose a
mapping from DML to PCM for which we implemented a
tool realizing an automated transformation.

Categories and Subject Descriptors
C.4 [Computer Systems Organization]: Performance of
Systems—Modeling techniques; D.2 [Software Engineer-
ing]

Keywords
Descartes modeling language, Palladio component model,
Model-to-model transformation, Performance modeling, Per-
formance prediction

1. INTRODUCTION
Todays IT service providers are driven by the pressure to
improve the efficiency of their systems, e.g., by sharing re-
sources, and to reduce their operating costs while ensuring
Quality-of-Service demands. Model-based performance pre-
dictions and reconfigurations enable to detect and prevent
performance problems and remain resource efficient at the
same time. Existing formalisms range from analytical mod-
els (e.g. queueing networks) to more complex architectural
performance models which capture architecture and resource
landscape as well. Automated transformations from archi-
tectural to analytical models offer multiple was to analyze
the system. DML and PCM are both architectural per-
formance modeling formalisms to describe component-based

systems. Both formalisms can be applied at design time and
runtime scenarios. However, from the historic perspective,
PCM initially has been designed for design time scenarios
whereas DML targets reconfiguration at runtime. While the
general approach is similar, the formalisms differ in a lot of
details. For a practitioner it is a huge effort to understand
those differences. Not knowing the different features at the
beginning of a project, the current approach is to choose
either PCM or DML. A transformation enables the use the
strengths of both formalisms. In this paper, we explain a
mapping from DML to PCM which we use for an automated
model-to-model transformation.

2. COMPARISON OF DML TO PCM
The high-level architectures of DML and PCM —opposed
in Figure 1— have a lot in common. Both include meta-
models for resource environment, components and their be-
havior, deployment, and usage profile. From this high-level

Usage

System

Component

Behaviour

Resourcelandscape

Resource 
Container

User Call

Allocation

Allocation 
Context

Usage

System

Component

Behavior

Resourceenvironment

Container

User Call

Deployment

Deployment 
Context

m
ap

s 
co

m
p

o
n

e
n

t 
to

 c
o

n
ta

in
er

m
ap

s co
m

po
nent to co

ntainer

Figure 1: Comparison between DML and PCM Ar-
chitectures

perspective, their submodels can be matched directly. How-
ever, on the sub-level there are the conceptual differences.
According to Kounev et al. [2], the main advantages of DML
compared to PCM can be summarized as follows:

• Service Behavior Modeling In contrast to PCM,



DML supports modeling multiple service behavior ab-
stractions of different granularity for the same service.
This allows for flexible performance predictions, rang-
ing from quick bounds analysis to detailed model sim-
ulations.

– Empirical Parameter Characterizations PCM
utilizes explicit specifications (i.e., explicit math-
ematical functions) to describe dependencies be-
tween model parameters. DML additionally sup-
ports characterization of parameter dependencies
based on monitoring data that is collected at run-
time.

– Empirical Behaviour DML supports to model
parameter characterizations that are dependent
on the component assembly, i.e., flexible charac-
terizations for different component instances of
the same component type. In PCM, parame-
ter characterizations are fixed for the surrounding
component type. Differences between component
instances are intended to be captured by explicit
parameterizations. Thus, in run-time scenarios
where representative monitoring data is available,
only DML offers a convenient approach to make
use of such monitoring data for parameter char-
acterization.

– Indirect Parameter Dependencies PCM sup-
ports modeling service behavior depending on ser-
vice input parameters passed upon service invo-
cation. However, the behavior of software compo-
nents is often dependent on parameters that are
not available as direct service input parameters.
DML provides means to pass such influencing pa-
rameters to the service models whose behavior is
influenced.

• Resource Landscape DML supports the modeling
of complex multi-layered resource landscapes. Fur-
thermore, it provides a template modeling mechanism
that eases the re-use of resource specifications among
several resource containers. This is particularly use-
ful to model virtualization layers, to specify Virtual
Machines (VMs) that stem from the same VM image.

• Adaption Points DML provides means to specify
adaptation points as well as adaptation processes. There
is no representation for this in PCM so far.

Moreover, there are semantic gaps. Some are introduced
through the difference of American English used in DML
and British English used in PCM. Furthermore, the wording
differs at some points. For example, a DML Container, is a
PCM ResourceContainer. Deployment corresponds to Al-

location in PCM. ServiceEffectSpecification (SEFF)
is named FineGrainedBehavior in DML. These gaps are a
minor challenge for transformation, however necessary to
understand it. More details about the formalisms can be
found in the respective technical reports for DML [2] and
PCM [3].

3. TRANSFORMATION
In the following we describe a mapping from DML to PCM.
In this paper, we focus on service behavior and resource
modeling. A more detailed view on the transformation is
provided in [1].

3.1 Service Behavior Modeling
In DML, the services of a component can be expressed us-
ing three abstraction levels: fine-grained behavior, coarse-
grained behavior and black-box behavior. Fine-grained be-
havior is the most detailed, describing external calls, inter-
nal resource consumption and control flow. Coarse-grained
behavior describes external calls and internal resource con-
sumption but does not model control flow. Black box behav-
ior only describes how much time a component takes for the
specified behavior. In contrast, PCM provides only a single
level of behavior abstraction, the Service Effect Specifica-
tion (SEFF), which is similar to the fine-grained behavior.
For a transformation all three abstraction levels of behav-
ior in DML need to be mapped to the single abstraction
level of a ResourceDemandingSEFF in PCM. In case service
descriptions are available on multiple levels, the most de-
tailed behavior description shall be used for transformation.
The transformation first searches for fine-grained behavior
description. In case there is no fine-grained behavior we use
the coarse-grained behavior. The black-box behavior is used
when no other behavior description is available.

The current transformation is limited to explicit relation-
ships, we do not transform empirical parameter dependen-
cies to PCM. A preceding step would be the extraction of
explicit StoEX from measured data which was out of scope.
Besides that, the transformation of the fine-grained behavior
to a ResourceDemandingSEFF is straight forward. For most
elements in the fine-grained behavior there exists a similar
concept in the SEFF of PCM.

Figure 2: Fine Grained Behavior Transformation

A CoarseGrained-Behavior is also transformed into a Re-
sourceDemandingSEFF. Each ExternalCallFrequency is trans-
formed into one BranchAction with two branches of the
type ProbabilisticBranchTransition. One branch contains
nothing but the ExternalCall, while the other branch is
empty. This way the probability of the ExternalCalls ex-
ecution depends solely on the BranchProbailities. The Ex-
ternalCallAction of DML uses the same meta-model to de-
scribe the ExternalCall as the ExternalCallFrequency and
therefore the transformation yields identical behavior.



Figure 3: Coarse Grained Behavior Transformation

While black box behavior of DML does not require a re-
source specification, this is necessary for SEFF specification.
For the PCM model this means: The ResourceContainer

which hosts the component requires an artificial delay Re-

sourceType. The transformation creates only one shared
delay resource per host which is reused.

Figure 4: Black Box Behavior Transformation

3.2 Resource Landscape and Deployment
In contrast to PCM, the resource landscape model of DML
uses hierarchical resource containers. Consequently, hier-
archical information gets lost at the transformation, as de-
picted in Figure 5. Besides hardware resources, DML en-

Figure 5: Resource Landscape Transformation

ables to model virtual resources which again have no rep-
resentation in the PCM formalism. The transformed model

loses the information whether a component is deployed on a
virtual machine or not. The transformed PCM model only
holds a mapping to the VM-holding hardware.

The DeploymentContext maps an AssemblyContext (instan-
tiation of a software component) to a hardware Container.
The container can be either a ComputingInfrastructure or
a RuntimeEnvironment. In case a component is mapped to
a ComputingInfrastructure the mapping is identical. If
the DeploymentContext contains a reference to a virtual re-
source specified as RuntimeEnvironment, the mapping has
to be adapted to the ComputingInfrastructure the origi-
nal virtual resource is part of.

4. CONCLUSIONS
This paper presents an automated model-to-model transfor-
mation of DML to PCM. While the majority of DML can
be transformed preserving equal behavior, some information
stored in DML models have no representation in PCM. Com-
pared to a manual transformation an automated transfor-
mation is more convenient, faster and less error prone. The
ability to quickly transform models enables a better compar-
ison between models and may cause vice-versa stimulation of
formalism and tool development. Ideas for future work are a
transformation from PCM to DML and the investigation of
a shared core functionality of both formalisms. The trans-
formation code is available at https://se3.informatik.uni-
wuerzburg.de/descartes/dml2pcm.

5. REFERENCES
[1] A. Hildebrandt. Automated transformation of descartes

modeling language to palladio component models.
BachelorThesis, University of Würzburg, Am Hubland,
Informatikgebäude, 97074 Würzburg, Germany, 2015.

[2] S. Kounev, F. Brosig, and N. Huber. The Descartes
Modeling Language. Technical report, Department of
Computer Science, University of Wuerzburg, October
2014.

[3] R. Reussner, S. Becker, E. Burger, J. Happe, M. Hauck,
A. Koziolek, H. Koziolek, K. Krogmann, and
M. Kuperberg. The Palladio Component Model.
Technical report, KIT, Fakultät für Informatik,
Karlsruhe, 2011.


