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Abstract—With the continuing rise of cloud technology hy-
pervisors play a vital role in the performance and reliability
of current services. As long-running applications, they are
susceptible to software aging. Hypervisors offer so-called hy-
percall interfaces for communication with the hosted virtual
machines. These interfaces require thorough testing to ensure
their long-term reliability. Existing research deals with the
aging properties of hypervisors in general without considering
the hypercalls. In this work, we share our experience that
we collected during trying to understand hypercalls and their
parameters and use them to construct test cases for hypervisor
aging of Microsoft Hyper-V. We present a bug that we detected,
which was reported and acknowledged by Microsoft. Further,
based on our manual binary code analysis, we propose the idea
of automating the analysis process to detect valid parameter
ranges and execution conditions of hypercalls without manual
effort.

Index Terms—software aging, hypervisor, hypercalls, Hyper-V

1. Introduction

Today, hypervisors are virtually omnipresent. They are
widespread throughout data centers, functioning as the back-
bone of cloud computing [1] because they allow for server
consolidation with huge benefits in efficiency and flexibility.
Hypervisors are also prevalent in the modern desktop and
workstation infrastructure [2]. This extends to Microsoft
shipping their Hyper-V hypervisor directly with many ver-
sions of the Windows operating system, and in some cases,
even activating it by default [3]. Furthermore, virtualization
applies to embedded computing systems, as well. Amongst
other examples, the automotive and aerospace domains take
advantage of abstracting computing resources [4], [5].

Virtualization allows the creation of virtual instances of
physical devices called Virtual Machines (VMs). In a virtu-

alized environment, governed by a hypervisor, VMs share
resources. Hypervisors implement interfaces providing call-
based connectivity to hosted VMs that are aware of being
virtual. One of them is the hypercall interface, allowing for
VMs to request services from the hypervisor. Hypercalls are
software traps from a VM to the hypervisor. Before intro-
ducing x86 hardware virtualization in 2006, hypercalls were
one solution to run virtualized operating systems. Nowadays,
while technically not required, hypercalls are still a common
utility to improve efficiency or offer additional features.
Microsoft’s hypervisor Hyper-V requires an identifying call
code and often additional parameters. After processing a
hypercall, the hypervisor returns a result value and possibly
output values to the caller. Other hypervisors behave very
similarly.

The crucial role that hypervisor play in today’s infras-
tructure requires robustness, dependability, insusceptibility
to software aging, and high performance. Despite that, there
is a gap in the research community concerned with test-
ing these properties, which is necessary for enabling well-
informed and unbiased decision-making regarding comput-
ing system deployment, configuration, and use.

For now, we chose to focus on the Hyper-V hypervi-
sor for multiple reasons. Hyper-V is relevant due to its
widespread use. It is the hypervisor used in the Azure Cloud
and shipped with many editions of Windows 10, the Oper-
ating System (OS) running on more than 58% of desktop
computers as of April 2021 [6], [7]. Also, it is the basis of
Microsoft’s Virtualization-Based Security (VBS), which is
using virtualization to isolate critical data, e.g., credentials
or encryption secrets, from the Windows OS, such that
even an attacker with administrator privileges cannot access
them. Communication between the regular OS and the se-
cure kernel is realized with hypercalls. Further, Hyper-V is
proprietary software with limited public documentation. We
share our experience testing this hypervisor, demonstrating
challenges not present with open-source hypervisors and
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how we overcome them. The contributions of this paper
are:

• Discussing strategies to build hypervisor aging test-
ing scenarios consisting of hypercalls

• Sharing our experience of learning how to use Hy-
per-V hypercalls, especially which values have to be
passed for their parameters

• Presenting results of our work, namely a hypervi-
sor crash caused by a software aging-inspired test
scenario.

• Proposing the idea of automated code analysis of
hypercall handlers to learn about valid parameter
ranges and environmental executing conditions more
quickly.

The remainder of this paper is structured as follows:
Section 2 provides background information about virtualiza-
tion, Hyper-V, hypercalls, and operating system/hypervisor
debugging. Next, Section 3 discusses the strategies for con-
structing aging tests; Section 4 presents the hypercall-related
crashing bug; Section 5 proposes the automated hypercall
handler code analysis; Section 6 discusses related work, and
Section 7 concludes the paper.

2. Background

In a non-virtualized scenario, physical hardware (i.e.,
processor, memory, and IO devices) is managed by an
operating system, which provides and schedules physical
resource accesses to applications running on top. Virtual-
ization describes the concept of introducing an abstraction
layer above the hardware. That layer, called the hypervisor
or Virtual Machine Monitor (VMM), provides a set of
virtual resources, which can form multiple virtual machines
and can be managed by independent operating systems.
This abstraction provides several advantages [8]: Running
services in virtual machines rather than directly on hardware
allows for higher availability, as in the case of hardware
maintenance, VMs are migratable to another hypervisor
with little downtime [9]. Dynamically scaling services is
possible by starting or stopping VMs running instances of
the application. Because VMs are isolated from each other,
damage by compromised machines is limited. This isolation
allows running any services alongside each other, improving
the flexibility of deployment, hardware utilization, and thus
operating costs.

One way to classify hypervisors is by whether they have
direct control over the hardware or whether they are running
on top of an operating system [10]. The former approach is
called a Type-1 or bare-metal hypervisor and can utilize
its full control for increased performance. Type-2 or hosted
hypervisors, on the other hand, can reduce their complexity
by relying on the operating system to take care of most of
the hardware management.

Virtualization solutions differ by their implementation
type. Generally, to virtualize a processor architecture, it
is required that all control sensitive instructions affecting
the processor state in a way that prevents the hypervisor

from functioning correctly are privileged instructions. These
instructions generate a trap event when executed in non-
privileged mode [11], allowing the hypervisor to emulate
these instructions safely. The x86 architecture did, however,
not comply with this requirement, as there were several
non-privileged, sensitive instructions [12]. Thus, initial vir-
tualization approaches had to make efforts to prevent their
execution at all. Full virtualization allowed VMs to run
the same unmodified operating systems used on physical
hardware by patching out critical instructions on the fly
using binary translation [13].

In contrast, para-virtualization applied changes to the
source code of operating systems themselves. These modi-
fications also allowed hypervisor and VMs to interact more
efficiently, e.g., by using abstract IO interfaces instead of
emulating existing, physical devices, leading to reduced
overhead and improved performance [14]. Starting in 2005,
Intel and AMD added virtualization extensions to their
hardware [15], with features including an instruction set that
supported trap-and-emulate wholly, an additional privilege
mode for the hypervisor, and hardware implementations for
Second Level Address Translation (SLAT).

Nested virtualization describes the situation when a hy-
pervisor is running inside a guest VM of another hyper-
visor. This nesting is useful for specific scenarios, e.g.,
when hypervisors have to be migratable together with their
VMs or to assess virtual systems regarding performance
or security [16]. Even though privileged instructions of
the virtualized hypervisor have to be trapped and emulated
and MMU hardware does not provide support for the third
memory paging layer. Ben-Yehuda et al. [16] found a nested
VM to have less than 15% overhead compared to a regular
VM.

Hyper-V is an x86 64 hypervisor developed by Mi-
crosoft [17]. It is a Type-1 hypervisor. Thus, it directly
controls the hardware. However, to avoid limiting it to
specific hardware configurations or bloat the code base with
countless device drivers, Hyper-V uses a microkernel-based
architecture. A specialized VM called the root partition
always runs an instance of Windows on top of Hyper-V to
provide management features and device drivers. Guest VMs
(also called guest partitions) can run para-virtualized if they
support it but also can use unmodified operating systems, in
which case Hyper-V provides emulated devices.

Hyper-V offers various interfaces for VM-Hypervisor
and VM-VM communication [18].These range from the hy-
pervisor taking over control to handle faults accesses to priv-
ileged registers and memory addresses over the emulation
of privileged instructions, IO ports, and memory-mapped
IO to the VMBUS, which is a memory-based communica-
tion channel for inter-VM communication, and hypercalls.
Similar to how applications can request services from the
operating system by issuing system calls, guest operating
systems can call into the hypervisor with hypercalls.

Hypercalls are triggered by special processor instruc-
tions. Because Intel and AMD processors have different
virtualization extensions to the x86 architecture, the hyper-
call instructions also vary. Hyper-V prevents the operating
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systems in its VMs from dealing with this by overlaying a
memory page into the VM, where the correct instructions
to perform a hypercall are stored.

A huge advantage when experimenting with hypercalls
in Hyper-V is the possibility to debug the hypervisor or
Windows instances running as virtual machines. Logically, a
machine cannot debug itself. Therefore, a debugger system
is required, which can debug the debuggee system. It is
possible to use two physical machines for this, but utiliz-
ing nested virtualization allows for debugging the nested
Hyper-V hypervisor and its partitions. This nested setup
is displayed in Figure 1. Two instances of WinDbg, the
Windows debugger, run on a virtual machine and wait for
the debuggees to connect. Windows and Hyper-V can be
configured to connect to a debugger on startup, either via
serial or Ethernet connection. Once connected, the debugger
can stop the execution of the debuggee, set breakpoints,
inspect registers and memory, identical to how usually single
applications are debugged.

3. Testing Strategies

One way to utilize hypercalls for testing the software
aging behavior of hypervisors is to replicate hypercall work-
loads that happen at a slow pace during normal operation. If
such a workload is susceptible to software aging, artificially
replaying it at a considerably higher speed yields chances
to detect the aging effects in a reasonable time frame. It
is important to note that not all anomalies detected during
“accelerated aging” testing are necessarily related to aging.
The hypervisor might be in a different state than when a
hypercall scenario occurs in regular operation. E.g., repli-
cating hypercalls that send messages or signal events to
another virtual machine will likely show differing behavior
due to the recipient not anticipating the input. Also, the
rapid repetitions of certain hypercalls might be stressful and
problematic for the hypervisor, even though at a slower ex-
ecution pace, no issues may appear. The results in Section 4
highlight a finding that is most probably of this nature.

So, the testing scenarios should be well defined and
understood. Specifically, this requires knowledge of the
individual hypercalls, their behavior, and parameters. The
remainder of this section discusses different techniques to

find suitable hypercalls and determine how to perform them
properly. First off, monitoring hypercalls is a promising
technique to find both, 1) hypercalls that happen during
normal operation and are potential aging scenario candi-
dates, and 2) the parameters that have to be passed to them.
There are multiple locations where hypercall execution can
be intercepted, both in the OS of a VM as well as di-
rectly hypervisor. So far, we have tried to use automated
kernel debugging to log hypercalls of a VM. While we
were able to log some hypercalls, the active measurement
caused performance counters to show an increased rate of
hypercalls, which also did not match with our capture rate.
Considering all the uncertainties, it is unreasonable to treat
the results as representative hypercall loads, and further
research regarding hypercall monitoring is a part of future
research. However, even with perfectly functional monitor-
ing, scenario identification is not a trivial task. As mentioned
before, previously working calls might not succeed with a
different state of the hypervisor. An example is the creation
of a new VM. Among other calls, for every virtual processor,
HvCreateVirtualProcessor is executed. Here, the
partition ID of the new VM has to be specified. Thus,
repeatedly creating new virtual machines requires adjusting
the partition ID to the current VM every time.

A further approach is the manual construction of testing
campaigns with the help of documented information. While
the majority of all Hyper-V hypercalls are not documented
in detail, at least all their names are public and usually
descriptive of their functionality. A review of the 101 hy-
percalls presents some clear candidates for aging testing.
There are several hypercall pairs that deal with the creation
and deletion of certain entities, e.g., of partitions and virtual
processors (mentioned already), but also event log buffers
and buffer groups. Surely it is possible to construct aging
scenarios from other hypercalls; however, with these calls,
the testing campaign is straightforward: Repeatedly issue the
creation and deletion calls. This call selection also provides
a high probability of the scenario occurring during regular
operation since the calls are likely to be executed at least
from time to time. What remains is the determination of the
parameters to pass for successful execution. Very helpful is
a detailed explanation provided by Microsoft’s documenta-
tion [18]. For some calls, there exist detailed information,
including descriptions of their parameters. Unfortunately,
our aging-suitable designated calls are not mentioned. It
can be beneficial to take a look at the revisions of Hy-
per-V documentation for older versions. They can contain
information that was dropped for the more recent revisions.
So, while there is no mention of the hypervisor’s event
logging interfaces in the Top-Level Functional Specification
(TLFS) from 2016 or 2019, the one from 2012 provides
an explanation, including descriptions of the hypercalls that
create and destroy event log buffers and buffer groups. Such
information is certainly very useful in getting a grasp of
the functionality of calls. It has to be taken with a grain
of salt, though. It is possible that implementation details
changed over the years. We encountered this with the call
HvInitializeEventLogBufferGroup. The TLFS

50

Authorized licensed use limited to: Julius-Maximilians-Universitaet Wuerzburg. Downloaded on September 29,2022 at 19:29:30 UTC from IEEE Xplore.  Restrictions apply. 



specifies four bytes to be the parameter BufferPages,
which specifies how many memory pages each buffer of the
group is supposed to have. We found that the recent Hyper-V
builds instead require the number of bytes to be passed (has
to be a multiple of the page size, 4096 bytes). This is a
small yet significant difference, and it is not impossible for
more drastic changes to have occurred over time.

Most hypercalls that have no mention anywhere in some
documentation, the parameter names and sizes can be looked
up in an old, published Hyper-V header file that defines
structs for the input and output of calls [20]. Naturally,
the details might have changed since its publication. The
aforementioned BufferPages parameter is here called
BufferSizeInPages, which does not reflect the current
implementation (it should be BufferSizeInBytes).

Understanding what parameters describe is certainly
helpful, but in the end, it is important to know which
values have to be passed. Blindly testing all parameters
and checking the returned result value is a theoretically
possible approach. However, in practice, there are signifi-
cant drawbacks. First of all, the parameter space is usually
vast. Hypercalls usually have multiple input values, which
sometimes are 4-byte values, most of the time 8-byte values.
Our performance measurements showed that it is possible
to inject more than one million hypercalls per second, but
no matter the speed, exploring even a single 8-byte value’s
possibilities takes too long. We have noticed that many valid
values are rather small, but sometimes flags are bit-wise
encoded into a parameter, resulting in large integer values
if one of the higher bits is set. In any way, again, knowledge
about the calls and parameters can aid in shrinking the
exploration space into something manageable. Still, some
hypercalls might have significant effects on the system,
preventing the exploration campaign from continuing and
causing incomplete results. Especially privileged calls are
likely to cause such issues.

One way to identify the correct parameter values is to
intercept hypercalls performed by the operating system and
inspect their parameter values. This is a little bit different
from the previously described hypercall logging, where we
were interested in seeing which different calls are hap-
pening. Now, we are interested in a singular call. Using
a generic breakpoint on the hypercall page and manually
debugging is a tedious task because even during idle, hun-
dreds of hypercalls happen per second, each triggering this
breakpoint. Automating the debugging to restart execution
until it sees the correct hypercall code is a viable solution,
which we have not tested yet. Instead, we set breakpoints
into functions of the winhv.sys driver. These functions are
essentially wrappers that take parameters like normal C
functions, then prepare the registers and memory for the hy-
percall, and finally call into the hypercall page. A breakpoint
set here is only triggered when the OS calls the hypercall
using the winhv wrapper function.

To intercept the hypercall, it is, of course, necessary
that the call is issued at some point. When research-
ing the parameters of HvCreateVp, a significant advan-
tage was that we could trigger calls on demand. Start-

ing a virtual machine using the default Hyper-V user in-
terface causes HvCreateVp to be called for each vir-
tual processor of the VM. Thus, we could quickly un-
derstand the numbering scheme of partition and processor
IDs, and learn that the other two parameters (Flags and
ProximityDomainInfo) are always set to 0, in our case.
Unfortunately, this is not the case for all calls. In the case
of HvCreateEventLogBuffer, we were not able to
intercept this hypercall in any condition.

Finally, the method that is very likely to provide a lot of
insight, but is also the most tedious, is reverse engineering
of the hypervisor executable. Our reverse engineering ef-
forts of the hypercall handling process in Hyper-V showed
that at first, general preprocessing happens, e.g., checking
that the partition has correct access rights to the memory
pages it designated for the input and output values. Then,
a hypercall-specific handler routine is called before some
general post-processing happens and execution control is
given back to the virtual machine. In this case, the call-
specific handler is of interest since there the parameter
checks are performed. Fortunately, the memory location of a
call handler is easy to find. In the CONST memory section
of the Hyper-V executable exists a table containing hypercall
information, e.g., call code, number of parameters, and most
importantly here: address of the handler routine.

We illustrate the structure of these handlers by
explaining what is happening in the handler of
HvCreateEventLogBuffer. At first, some stack
memory is initialized for local variables. Then, the registers
are prepared for a function call. The function retrieves
a pointer to the memory structure with information
about the current partition (that issued the call). At
a certain offset, a bit is checked - to test if it is the
root partition. If not, the function returns with value 6
(HV_STATUS_ACCESS_DENIED). In case of success,
the first parameter of the call is inspected. It is called
EventLogType, and according to hvgdk.h, 0, 1, and
2 are valid values [20]. On the contrary, the assembly
code clearly shows that only 0 and 1 are allowed;
all values above result in the function returning 5
(HV_STATUS_INVALID_PARAMETER). Depending on
the EventLogType, a memory address is calculated and
written to a pointer that was passed as a parameter; the
rest of the handler indicates that this is a struct storing
information about the EventLogBufferGroup, of
which one exists for each EventLogType.

The function returns with either 6, 5, or 0
(HV STATUS SUCCESS. The handler checks for the
return value to be 0; otherwise, it terminates and forwards
the function return value as the result value of the
hypercall. This is followed up by many more checks of
the parameters; some against static values, where it is
straightforward to retrieve the possible ranges, and some
against dynamic values in memory. As mentioned before,
the function called at the start calculated the address of
the corresponding EventLogBufferGroup. Now, it
is looked up if the index of the new buffer is free or if
there already exists a buffer with the same index in the
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TABLE 1. PARAMETERS OF HVCREATEVP

Parameter Name Size [byte]

PartitionId 8
VpIndex 4
Padding 4
ProximityDomainInfo 8
Flags 8

current buffer group. In such cases, it is very beneficial to
utilize hypervisor debugging for injecting the hypercall,
breaking at its handler, stepping through the instructions,
and inspecting which values the memory locations take on
during execution. Using the IDA Pro disassembler together
with hypervisor debugging allowed us to understand the
event log buffer- and buffer group-related hypercalls enough
to successfully execute them and construct scenarios with
them.

4. Results

In this section, we present our results of creating and
running a software aging campaign using the hypercalls
HvCreateVp and HvDeleteVp, which create and delete
virtual processors of guest partitions.

Table 1 lists the parameters of HvCreateVp, as
given by [20]. It is intuitive that PartitionId
should be an identifier of the VM which the proces-
sor should be created for. Another reasonable assump-
tion is that the processors of a partition are numerated,
and VpIndex specifies which Virtual Processor (VP) to
create. ProximityDomainInfo is a common term in
multiprocessor systems with Non-Uniform Memory Access
(NUMA). Setting bits in flags probably corresponds to
specifying additional options on how to create the VP.

The parameters of the corresponding deletion call are
even simpler; only PartitionId and VpIndex have to
be passed.

The calls can only be successfully performed by the
privileged root partition. It is unknown and difficult to find
out whether the root partition uses these calls to manage
its own VPs. Thus, we planned the following testing sce-
nario: Launch a VM (normally, using the official Hyper-V
manager), and then continuously create and delete additional
processors. There are multiple potential issues. Maybe, there
cannot be more cores created than configured. If it is pos-
sible, the operating system might behave unexpectedly due
to the hot-plug of another processor (the TLFS states this
will not occur [18]).

As already mentioned in Section 3, using the de-
bugger and breakpoints while starting a virtual ma-
chine allowed for the interception and inspection of real
HvCreateVp calls. We learned that in our configuration,
ProximityDomainInfo and Flags, were always set to
zero. Regarding the partition’s identifier, we noticed that the
first VM started after a reboot of the hypervisor receives
an ID of 2, the next an ID of 3, and so on. Similarly, if

a partition with n virtual processors is started, there are n
HvCreateVp calls with VpIndex ranging from 0 to n−1.

The next step was the verification that more processors
could actually be created. We rebooted the whole system,
launched a VM with four VPs. Thus, the new partition
received the ID 2, and cores 0 to 3 are created.

Listing 1. Virtual Processor Aging Campaign

p roc main ( ) {
h c a l l ( [ ” name” −> ”HvCreateVp ” ,

” P a r t i t i o n I d ” −> 2 ,” VpIndex ” −> 4 ] ) ;
}

Listing 1 shows the campaign used for verification. It is
written in a custom hypercall description language, but even
without knowledge, it should be understandable which calls
should be executed. All non-specified parameters are set to
0 by default. Executing the verification campaign in the
root partition and logging the result value confirms that
VP 4 can be successfully created. Also, the OS running
in the virtual machine is not affected. Executing the cam-
paign again lets the call fail with a result value of 14
(HV_STATUS_INVALID_VP_INDEX). Now executing the
corresponding deletion campaign succeeds on the first try,
and also fails with code 14 upon the second invocation.
Further testing reveals that only one additional core can
be added. All following creation calls fail with code 11
(HV_STATUS_INSUFFICIENT_MEMORY). The index is
however choosable, e.g., it is possible to create VP 7,
skipping cores 4 to 6.

With the ability to repeatedly create and delete a sin-
gle additional virtual processor, we created the campaign
displayed in Listing 2.

Listing 2. Virtual Processor Aging Campaign

PID = 2 ;
VPI = 4 ;

p roc main ( ) {
f o r ( i : r ange ( 0 , 10000 ) ) {

h c a l l ( [ ” name” −> ”HvCreateVp ” ,
” P a r t i t i o n I d ” −> PID , ” VpIndex ” −> VPI ] ) ;

h c a l l ( [ ” name” −> ”HvDeleteVp ” ,
” P a r t i t i o n I d ” −> PID , ” VpIndex ” −> VPI ] ) ;

}
}

This campaign is then executed repeatedly, such that
there is a constant load of VP-related hypercalls.

So, we observed that there is just enough memory to
allocate one further virtual processor, which is an indicator
for static memory management, which is by design less
susceptible to problems arising when aging. Despite that, we
executed the campaign repeatedly and actually discovered a
problem rather quickly. After some time, the whole system
crashed, displaying a bluescreen that indicated an error has
occurred in the hypervisor.

We reproduced the problems numerous times. In one
case, the crash happened in the 49. campaign execution,
meaning there have between 490,000 and 500,000 creations
and deletion performed. However, another time, the problem
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did only occur after 20,747 successfully finished iterations,
after more than 200 billion creations and deletions.

Further testing included increasing the campaign to now
perform 100,000 repetitions. This resulted in the bluescreen
appearing very quickly, typically within the first execu-
tion of the campaign. It is reasonable to assume that the
higher, more stressful hypercall load caused by less frequent
campaign restarting overhead increases the likelihood of
crashing. This evidence suggests that we are not dealing
with an aging-related problem but rather discovered a flaw
in the robustness of Hyper-V.

This issue has also been reported to Microsoft, who
could reproduce and confirm the issue, stating the behavior
will be corrected.

5. Automated Analysis

Reverse engineering hypercall handlers to understand
their functionality and learn their valid parameter ranges is
a very general and powerful approach. There is no risk of
depending on the availability or correctness of information
as there is with documentation since all of the information
is necessarily contained in the binary code that implements
the call handlers.

Unfortunately, it is not trivial to extract and under-
stand the contained information. Starting off, it is unclear
where anything is located in the memory of the hypervi-
sor executable. Manually reverse-engineering the execution
path that a hypercall takes through the hypervisor showed
us which instructions are part of general pre-and post-
processing and where to find the call-specific handler rou-
tines.

With this, it is feasible to determine parameters for a
given hypercall. Using the call code, the memory address
of the handler routine is looked up. Then, going through
the handler instruction by instruction can build an under-
standing of the parameter checks occurring. Depending on
the researcher’s assembly experience, this process is usually
tedious and takes considerable time. Also, a human reverse
engineer is prone to misinterpret instructions and draw false
conclusions.

We propose the idea of using automated code analysis
for this task. This should be feasible, as the hypercall
handlers are very constrained environments. At the start
of the handler, the ECX register holds a memory address
where the parameters are located. Then, the usual process
is that the handler retrieves the parameters and compares
them to either static values or values retrieved from other
memory locations. This is where the execution branches.
On the one branch (success), more checks happen; on the
other branch (failure), the handlers usually only set the EAX
register to an error status code and return back to the general
post-processing. This is how a human determines which
parameter values lead to which errors, and following the
same algorithm, an automated analysis tool can as well.

Comparisons with dynamic values from memory pose a
problem, as the values are only known at runtime, not during
static analysis of a binary. Theoretically, the automated

analysis tool could also use a live system, a debugger,
inject hypercalls, intercept with breakpoints and inspect
the memory locations’ values at runtime. However, it is
crucial to keep in mind that these values may be different
when performing calls at a different time or on a different
machine.

Apart from the parameter values, other conditions can
be found. In the case of HvCreateEventLogBuffer we
saw that it checked at a specific memory location whether
the partition executing the call was the root partition. In-
vesting in manual reverse engineering and labeling such
common memory locations can be beneficial for the amount
of information the automated analysis can obtain.

The result of the analysis can be a compact report of the
conditions found for executing the hypercall, including valid
parameter ranges and environmental conditions (e.g., caller
is root partition, caller has this or that privilege flag). As a
benefit, less time has to be spent on reverse engineering
hypercall handlers, and more time can be dedicated to
constructing and running software aging testing campaigns.

6. Related Work

One of the first works that brought software aging and
rejuvenation to a greater audience was a report on the Patriot
missile defense system. A bug in its software required
frequent reboots to keep accuracy [21].

A multitude of works deals with the basics of software
aging and rejuvenation [22], [23], [24], [25], [26], [27], [28],
[29], [30], [31], [32], [33], [34], [35], [36].

Related works more specific to this paper take a look
at hypervisors regarding software aging. Multiple papers
address the combination of virtualized environments and
software aging as well as the required rejuvenation cycles.
Additionally, some of these works explicitly focus on soft-
ware aging related to hypervisors.

In [37], Machida et al. present analytic models for
virtual machine monitor (VMM) - their term for hypervisor -
rejuvenation approaches. They model Cold-VM rejuvenation
(shutting down VMs for the process), Warm-VM rejuvena-
tion (suspending VMs for the process), and Migrate-VM re-
juvenation (migrating VMs to another host for the process).
Furthermore, the paper gives insight into the aging-related
trigger intervals for hypervisor rejuvenation. The authors
evaluate these approaches regarding steady-state availability.
The findings include that Warm-VM rejuvenation is not
always superior to Cold-VM rejuvenation. If the target host
has enough capacity, Migrate-VM rejuvenation outperforms
the other approaches.

Matos et al. characterize software aging effects in elastic
storage mechanisms in [38]. The elastic block storage (EBS)
framework Eucalyptus interacts with various components.
One of them is the KVM hypervisor, while the other is the
Eucalyptus Node Controller. The authors find that memory
leaks in the node controller due to software aging-related
bugs are strongly correlated to a high CPU utilization by the
KVM process. Furthermore, they show that the aging effects
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directly impact the performance of a webserver running on
the virtualized infrastructure.

Machida et al. investigate bug reports of five major open-
source projects regarding software aging in [39]. One of
these projects is the Xen hypervisor. They find that Xen
has a surprisingly high number of unresolved issues. Users
should be alerted to the immaturity of this software.

Pietrantuono and Russo perform a literature review on
software aging in virtualized environments in [40]. There-
fore, the paper summarizes the past effort conducted by the
community in the cloud domain. The authors investigate
model-based, measurement-based, and hybrid analysis ap-
proaches. Additionally, they present different rejuvenation
techniques extracted from the reviewed material. These
include Cold-VM rejuvenation, Warm-VM rejuvenation,
Migrate-VM rejuvenation, VI Micro-reboot, VI Resource
Management, VM Failover, and VM Restart.

Barada and Swain give a survey on software aging and
rejuvenation studies in virtualized environments in [41].
From the collected information, the authors propose an algo-
rithm to choose the correct rejuvenation technique according
to the observed aging effect.

While the papers mentioned above target hypervisors or
their application environments, these papers do not explore
the software aging-related issues of the hypercall interfaces.

7. Conclusion

In this work, we shared our experience regarding the
construction of hypervisor aging test cases consisting of
hypercalls. Due to issues with hypercall monitoring and no
possibility to get a representative overview of hypercalls
happening during normal execution, we suggested the con-
struction of scenarios using create-delete pairs. Information
about the calls and their parameters can be retrieved from
official documentation, older versions of the documentation,
a published old header file. Blindly testing out hypercall pa-
rameters is impractical, but with previously gathered knowl-
edge, the parameter exploration space can be significantly
reduced. We described the use of debugging and static code
analysis to find valid parameter ranges and environmental
execution conditions.

After the testing strategy, we discussed the results we
discovered testing with HvCreateVp and HvDeleteVp,
and displayed the scenario that resulted in crashing the
hypervisor, which was later confirmed and acknowledged
by Microsoft.

Finally, based on our manual reverse engineering expe-
rience and the recognition of how limited of an execution
environment the hypercall handlers are, we proposed the
idea of using automated analysis to retrieve valid parameter
ranges and environmental execution conditions automati-
cally. Dynamic analysis using a live system and debugger
can help get insight into values retrieve dynamically from
memory. In the future, we plan to follow this idea and create
an implementation.
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