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Abstract—A core selling point of application containers is their
fast start times compared to other virtualization approaches
like virtual machines. Predictable and fast container start times
are crucial for improving and guaranteeing the performance of
containerized cloud, serverless, and edge applications. While pre-
vious work has investigated container starts, there remains a lack
of understanding of how start times may vary across container
configurations. We address this shortcoming by presenting and
analyzing a dataset of approximately 200,000 open-source Docker
Hub images featuring different image configurations (e.g., image
size and exposed ports). Leveraging this dataset, we investigate
the start times of containers in two environments and identify the
most influential features. Our experiments show that container
start times can vary between hundreds of milliseconds and tens of
seconds in the same environment. Moreover, we conclude that no
single dominant configuration feature determines a container’s
start time, and hardware and software parameters must be
considered together for an accurate assessment.

Index Terms—container, start time, docker, empirical study

I. INTRODUCTION

Containers have become the predominant deployment
method for modern cloud applications and a key enabler
of the wide adoption of microservice architectures [1], [2].
They are now used in all areas of distributed computing,
from traditional cloud to edge and serverless computing. A
leading solution for containerization is Docker containers;
the popular image repository Docker Hub, with over nine
million accounts, has around 42 billion image downloads
every quarter [3]. The container ecosystem gets even bigger
if we include other registries like GitHub Packages1 or other
container management frameworks like Podman.2

One regularly mentioned advantage of containers over
other virtualization technologies like virtual machines, and
an important driver of adoption, is their faster start times.
Understanding start times is essential for many application
areas. For example, the fact that containers permit start times
of a few seconds enabled the broad usage of serverless
computing. However, start times remain an active research
field in this domain as they are critical factors for desired
rapid scale-ups [4], [5]. Likewise, the optimization of container
deployment processes also plays an important role in edge

1https://github.com/features/packages
2https://podman.io/

computing [6], [7]. Furthermore, accurate knowledge of start
times can also be helpful when planning autoscaling and
resilience of microservice applications [8]. While the fact that
containers have faster start times than virtual machines is well-
established in the scientific literature [9]–[11], relatively little
is known about variations in start times between different
containers. Understanding the factors that influence container
start times may help developers build containers with fast
start times and define rules and best practices for creating
such lightweight containers. In summary, start times are a
critical performance factor for cloud, serverless, and edge
applications. No prior work has examined start time variations
across a wide variety of containers to make statements about
influencing factors based on a large number of measurements.

We present here an analysis of how various container
characteristics (e.g., image size, number of volumes) influence
a container’s start time. In this work, we consider the start
time as a part of the container’s readiness time. The latter
includes the image download time and the application-specific
setup time in addition. In contrast to the readiness time,
the start time can be evaluated without knowledge about the
container’s file system and start command and independently
of network parameters. For this analysis, we use about 200,000
open-source images retrieved from Docker Hub by a web
crawler. This dataset is a mix of the most popular and recent
Linux amd64 images queried in April 2022. We determine
various properties of these images, determine the empirical
distributions of those properties, and analyze their variance
using principal component analysis. We then measure start
times for a subset of these images in two test environments:
a public cloud and a local testbed. We apply regression
analysis techniques to determine the relevance of each image
configuration parameter in predicting start time. We find that
start times can vary between hundreds of milliseconds and
tens of seconds in the same environment. However, we also
show that these variations cannot be explained by looking at
single configuration parameters and that hardware and soft-
ware parameters must be considered together for an accurate
assessment.

The goal of this paper is to raise awareness among re-
searchers and operators of the significant differences in con-
tainer start times and to provide a starting point for future
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Fig. 1. Container readiness process and performance metrics.

investigations and predictions of start times. In summary, this
paper makes two primary contributions:

• We present a large dataset3 of open-source Docker Hub
images and characterize the dataset;

• We analyze influencing factors for start times with mea-
surements of more than 1000 container images taken from
two different computing environments.

The remainder of this paper is structured as follows: In
Section II, we provide background information on container
start times and clarify the scope of this paper. Section III
focuses on our image dataset, its characteristics, and how it
has been acquired. Section IV features our methodology for
the start time analysis, while Section V presents our results.
In Section VI, we discuss the overall findings and limitations
of our work. Section VII identifies related work and the
differences to this paper, while Section VIII draws conclusions.

II. FOUNDATIONS

This section presents the foundations of this work and
defines our scope. Since we analyze start times based on
image configurations, it is essential to understand container
images and their components. The standard format for con-
tainer images is the image format specification of the Open
Container Initiative (OCI) [12]. According to this specification,
a container image consists of a manifest, the file system
layers, and a configuration. In this work, the configuration
plays a major role, which contains information about exposed
ports, volumes, the start command, and more. The default
configuration of an image is the configuration that the creator
of the image has set. A more detailed discussion of the relevant
configuration entries is given in Section III.

Container managers are responsible for managing, modify-
ing, and starting these OCI images. We focus on Docker as
it is the most widely used container manager [13]. Docker
can display the image configuration by the inspect command.
The container manager uses an OCI runtime [14] to execute
containers. The container runtime interacts with the operating
system and uses control groups and namespaces to build an
isolated execution environment for the container. We focus

3https://doi.org/10.5281/zenodo.7602500

here on Docker’s default runtime, runc. Section VII discusses
related work, including with other container managers and
runtimes.

In the following, we focus on container start times. The
start time is a part of the container readiness time, as shown
in Figure 1. The readiness time is the time taken from when
the container is transferred from a registry until it can execute
production workload; for web applications, this usually means
processing user requests. This state of readiness is checked
on container orchestration platforms like Kubernetes by so-
called readiness probes. The total readiness time consists of
three main components. Pull time, the time required to transfer
the image from a registry to the host, depends mainly on
network parameters. Note that no image transfer is necessary
if the required image is already present on the host. Start
time, the focus of this paper, is the time required to create
a running container from an image. The user usually sends
the start command to the container manager, which checks all
requirements for the container to start and passes the infor-
mation to the container runtime. The start process is further
specified in the OCI runtime specification [14]. Essentially, a
namespace is created, and the root file system for the container
is provided. Potential factors influencing start time are, on the
one hand, the underlying hardware and software stack and, on
the other hand, image configuration parameters. We focus here
on the latter. With our large dataset, we can test many different
images and thus make statements about image parameters.
Such a comprehensive test is not possible with the hardware
and software parameters due to the vast number of possible
variants. We use two test environments: Google Cloud VMs
and bare-metal servers.

The start time is the timespan from receiving the start
command to when the container starts running its entrypoint
executable. This time can be evaluated without knowing the
container’s content and function, and indeed can be determined
even for containers that cannot actually perform their intended
function. Consider an example container that tries to connect
to a database at an unreachable IP address. This container
would never reach the ready state and would, instead, probably
crash after a certain timeout. However, its start time can still
be determined because the start process ends immediately



TABLE I
OVERVIEW OF FEATURES IN THE EXTRACTED DATASET.

Category Feature Type Description
Metadata meta repo digest String A SHA-256 hash which is used to uniquely identify and download the image from Docker Hub

meta architecture String The CPU architecture which the binaries in the image are built to run on
meta os String The name of the operating system which the image is built to run on
meta docker version String The Docker version used to built this image

I/O Streams io attach stdin Boolean Determines whether the console should be attached to the container process stdin stream
io attach stdout Boolean Determines whether the console should be attached to the container process stdout stream
io attach stderr Boolean Determines whether the console should be attached to the container process stderr stream
io tty Boolean Determines whether the console should pretend to be a TTY when attached
io open std in Boolean Determines whether the container process stdin stream should be kept open even if console

not attached
io std in once Boolean Determines whether the container process received input from stdin stream at least once

Start Command cmd args Integer Length of list of arguments to use as the command to execute when the container starts
cmd envvars Integer Number of environment variables set per default when the container starts
cmd additional args Integer Length of list for additional arguments to the containers entrypoint

File System fs volumes Integer Number of volumes to create/use by default
fs size Integer Size of the image in bytes
fs virtual size Integer Virtual size of the image in bytes
fs graph driver name String Name of the image’s graph driver
fs root fs type String Name of the file system type used in the image
fs layers Integer Number of root file system layers

Networking net ports Integer Number of ports to expose by default

when the entrypoint command is executed. Therefore, the only
condition for examining the start time is that the container is
startable. We discuss exceptional cases for when a container
is not startable in Section III.

The start time is followed by the setup time, i.e., the
time taken for a started container to reach the ready state.
This timespan depends mainly on the entrypoint command
and the actual use case of the container. In the example of
the preceding paragraph, a connection to a database must
be established. In many application areas (e.g., serverless
computing), a programming language runtime (e.g., Python)
has to be initialized. Analysis of setup time, and thus the total
readiness time, requires knowledge of container internals and
external dependencies. Consequently, a generalization of start
times to readiness times and a broad-based automated analysis
of those is not possible.

III. DATASET

We now present the dataset used in this paper, describing
first how we acquired the data and then various characteristics
of the data. The dataset and further information are included
in our replication package.4

A. Dataset acquisition

To investigate variation in image configuration parameters
and the influence of those parameters on start times, we first
created a dataset containing a broad selection of container
images. We choose Docker Hub as a widely used container
image repository [13] and use a web crawler (based on the
Docker Hub Explore function5) to extract a large number of
image names from this repository. Specifically, we first did
a substring search on the Docker Hub “most popular” and

4https://doi.org/10.24433/CO.4595026.v2
5https://hub.docker.com/explore

“recently updated” categories with search strings up to a length
of three characters with all letter combinations in the range a–z
(i.e., from a to zzz). Then, we included the images displayed
on the start page. In this way, we obtained a selection of
both the most popular images (the most downloaded) and
an unbiased set of less popular images. We included only
Linux amd64 architecture images in our dataset to ensure
compatibility with our test machines. Both the Linux operating
system and amd64 architecture are widely used in modern
public clouds. We queried the image data in April 2022.

After removing duplicates, we were left with 286,294 image
names. The number of images we could crawl is limited by the
fact that the Docker Hub Explore function limits the number of
results per search request to 500. Next, we attempted to down-
load the associated image for each of these names, capture its
configuration data (including unique identifier hash), and run
it once. We eliminated from further consideration images that
could not be downloaded (e.g., because further authentication
was required) or that were not runnable (e.g., because a lack of
a default start command or an invalid root file system meant
that the start command is not executable). A more detailed
description of the error types we encountered can be found
in our replication package4. These filtering steps left us with
200,986 valid and pullable images.

B. Dataset characterization

We characterize each image in the dataset with 20 features
extracted from its default configuration. We downloaded all
images and analyzed their OCI configuration properties to
decide which features to include for our analysis. The OCI
image configuration specification [12] defines required and
optional configuration properties. The 20 resulting dataset
features include required properties (e.g., fs root fs type) and
optional properties (e.g., net ports) where a value has been



TABLE II
FREQUENCIES OF DIFFERENT DOCKER VERSIONS IN DATASET.

Version (M/Y) # Images Version (M/Y) # Images
20.10 (12/2020) 19,647 1.7.x (06/2015) 78
19.03 (07/2019) 42,479 1.6.x (04/2015) 158
18.x (01/2018) 53,697 1.5.x (02/2015) 51
17.x (03/2017) 34,886 1.4.x (12/2014) 18

1.13.x (01/2017) 4821 1.3.x (10/2014) 31
1.12.x (07/2016) 14,089 1.2.x (08/2014) 11
1.11.x (04/2016) 3440 1.1.x (07/2014) 10
1.10.x (02/2016) 1196 1.0.x (06/2014) 19
1.9.x (11/2015) 340 0.x (03/2013) 7
1.8.x (08/2015) 205 N/A 25,803

set for all 200,986 images. Note that this study does not
consider other optional properties set for only a few images.
We provide a complete list and description of the extracted
features in Table I and our replication package4. The features’
meaning was taken from the OCI image specification and
the Docker documentation [15]. We consider five feature
categories: metadata, I/O streams, networking, file system, and
information about the start command. Selected features are
further described in Section V if they were found to affect
start time.

In the following, we present more detail about selected
features and their distributions. First, we focus on the Docker
version, as it indicates when the images were built/published
most likely. Table II shows the number of times different
Docker versions appear in our dataset. We also labeled each
version with its release date.6 Images for which no Docker
version is specified or cannot be unambiguously assigned are
marked as N/A. We see that while most images are likely from
the last five years, some older images are also included in the
dataset.

Figure 2 shows, with a logarithmic scale, the distributions
of 10 other features in the dataset. The first four features in
the upper row are the boolean settings mentioned in Table I,
considering the I/O settings of the container. We see that
these features are all similarly distributed and that, in most
cases, no streams are attached by default. In the upper right
corner, we see the exposed ports as a networking feature. As
expected, many containers expose only a few ports by default.
However, the dataset also contains two containers that expose
the maximum number of 65,536 ports. In the bottom row of
Figure 2, we see on the left side the number of environment
variables and the size of the list of arguments to use as
the command to execute when the container starts. Like the
exposed ports, we see the highest frequency at the value of
zero but again with a relatively large value range in total.

The three features shown in the bottom right give quan-
titative information about the container file system. For the
number of volumes (fs volumes), we see a distribution with
a maximum at zero and a sharply decreasing frequency.
However, the dataset also contains two outliers with 21 and
32 volumes. We observe more complex distributions regarding

6https://docs.docker.com/engine/release-notes/

the number of file system layers (fs layers) and the image size
(fs size). The containers in our dataset have a minimum of
1, an average of 10.84, a median of 9, and a maximum of
125 root file system layers. The observed maximum is equal
to the technical maximum [16], which means that our dataset
represents the largest range possible. The image sizes show an
even higher scatter. The minimum image size in our dataset is
45 bytes, the mean is 837.3 MB, and the median is 398.6 MB.
The largest image has a size of about 90.4 GB.

In summary, the dataset has a good diversity across many
features. In the following, we examine the total variance of the
dataset in more detail using Principal Component Analysis
(PCA) [17]. PCA can be used to reduce the number of
features in a dataset, for example, to apply machine learning
algorithms more efficiently. In particular, constant and (nearly)
linearly dependent features are identified. PCA calculates the
eigenvectors of the covariance matrix, the so-called principal
components. The principal components are linear combina-
tions of the original features. By looking at the proportion
of the variance of each principal component in the sum of
the variances of all principal components (often referred to
as explained variance ratio), one gets an idea of how many
principal components are needed to represent a certain share
of the total dataset variance. If only a few components are
needed to capture a large proportion of the variance, the dataset
contains many linearly dependent or constant features.

Figure 3 shows a cumulative view of the explained vari-
ance ratio. As preprocessing steps, we removed the metadata
features and scaled the remaining data using z-score normal-
ization. We see that the first principal component covers about
31% of the total variance and that, with ten components,
about 99.9% of the total variance can be described. These
numbers show that our dataset contains about six features
with a negligible variance or that are linearly dependent on
other features. All other features make some non-negligible
contribution to the total variance, and their influence on the
start time can be investigated meaningfully.

IV. METHODOLOGY

This section explains our methodology for using data from
the presented dataset to determine the factors influencing
container start times.

A. Study overview

As explained in Section III, we analyzed 200,986 distinct
images in this study. Our goal is to measure the container start
time and then investigate the impact of the image parameters.
To this end, we studied how start times vary for different
containers as well as for repeated starts of a given container
image. We assume that besides the image parameters, the
hardware and software of the deployment environment play
a role. To account for this, we measure the start times in two
test environments: on bare-metal servers in a self-hosted cloud
and on Google Cloud VM instances. Time, cost, and technical
limitations prevented us from testing all 200,986 images mul-
tiple times. The main limitations are image download limits
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enforced by Docker Hub and the induced costs for the virtual
machines. Consequently, we tested a sample of images from
the entire dataset. In the following sections, we describe our
sampling and measurement processes.

B. Sample selection

There are different sampling techniques that can be applied
to draw a sample from our dataset. We aim to select a sample
that, on the one hand, reflects well the typical configurations
(i.e., the most frequent image parameter combinations) but, on
the other hand, also takes outliers into account (e.g., images of

enormous size). As shown in Section III, our dataset contains
many image and parameter combinations. To cope with this
heterogeneity, we applied stratified sampling [18] instead of
simple random sampling because the latter may fail to capture
outliers and extreme values properly.

Figure 4 shows our sampling process. In stratified sampling,
data is divided into so-called strata. The idea is to divide
a dataset into subpopulations that are as homogeneous as
possible. Random sampling is then used to draw a sample
from each stratum. The combined strata samples form the
total dataset sample. Accordingly, the first step in our sampling
process is to divide the dataset into strata. For this, we evaluate
different clustering algorithms and perform a hyperparameter
study. An overview of the evaluated algorithms and param-
eter combinations is given in our replication package4. The
clustering algorithms can be applied to the dataset directly;
the only feature modified for clustering is the Docker version
number which we reduced to the major version and then
applied one-hot encoding. The best clustering algorithm in
our hyperparameter study was k-means clustering with 13
resulting strata. We used the silhouette coefficient [19] to
evaluate the resulting clusters, obtaining a value of 0.93 for
the final clustering. After clustering, we used a decision tree
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to capture the feature importance of the individual image
parameters for the clustering. As expected, the image size
is the most important parameter in the clustering (because
it has the highest value range), followed by the number of
file system layers. A quantitative breakdown of the feature
importance can be found in our replication package4. The
largest stratum contains 52,574 images, while the smallest
contains 351 images.

In the next step, we need to determine how many images
to take from each stratum. For this, we use disproportionate
allocation [18], meaning that the stratum’s size and variance
play a role in deciding how many images to take. The number
of images ni taken from a stratum i is given by

ni =

⌈
N · di/D · si∑M−1

j=0 dj/D · sj

⌉
, (1)

where N is the target sample size from the dataset, M is
the number of strata, di is the number of images in stratum
i, D is the total number of images, and si is the standard
deviation in stratum i; we use the square root of the total
variance to measure the standard deviation of a stratum.
The total variance is a generalization of the variance for
multidimensional datasets and is defined as the trace of the
covariance matrix [20]. We set the target sample size N to
1000; the number of strata M is 13. As a result, the number
of images selected from each stratum varies between 3 and
238, and the total number of images in the dataset sample
is 1008; the ceil operation explains the difference of eight
to the parameter N in the formula. In summary, through
our sampling process, we reflect the diversity of the entire
dataset in our sample. Visualizations of the resulting sample
composition can be found in our replication package4.

C. Test environments

We use two test environments in this paper. The first
environment consists of three bare-metal servers with iden-
tical hardware. The servers are HP ProLiant DL360 Gen9
with Intel(R) Xeon(R) CPU E5-2640, 2x16 GiB HP 752369-
081 DDR4 RAM, and a 500 GB HDD disk of type HP
MB0500GCEHE. The second test environment consists of
three Google Cloud VMs of type e2-medium running in the
us-central1-c zone with a 100 GB zonal balanced persistent

disk. All test machines use Ubuntu 22.04 LTS as the operating
system and Docker v20.10.21, containerd v1.6.10, and runc
v1.1.4.

D. Measurement process

In addition to the three test machines, we deployed a
master VM in each environment to host the image and result
databases. The master VM sends jobs, each defined by a
specific image hash and a desired number of repetitions, to the
test machine that is to execute them. The execution of a job
consists of three steps. First, the required image is downloaded
from Docker Hub using the docker pull command. Then, the
container is started with its default configuration using the
docker run command. We extract the time when the Docker
daemon received the run command from its logs and the time
when the container finished the start process from the output
of the docker inspect command. The start time is the difference
between these two timestamps. Note that we only use data that
Docker collects and do not manually generate any timestamps.
The pull time is not recorded and does not play a role in the
tests. Once the timestamps have been recorded, and the job
has finished, the container and image are removed from the
test machine.

For the 1008 sampled images from Section IV-B, we run 30
repetitions for each image, resulting in 30,240 container starts
per environment. We use the randomized multiple interleaved
trials methodology [21] to account for the variability of the
cloud environment and reduce caching effects. This results in
the order of repetitions being random. Moreover, the master
VM randomly distributes jobs to test machines. Besides the
Docker daemon, only a tiny web service runs during the
measurements on the test machines. It communicates with the
master VM and is executed as an ordinary process, not in a
container.

V. RESULTS

We use a three-step zoom-out approach for the description
of our results. Each step is associated with a research question.
In the first step, we investigate how the start time of one
particular container varies between repeated starts. In this
step, we assess the start time variance for one fixed feature
combination in our dataset. In the second step, we analyze
the impact of the image configuration on the start time. Here,
we consider the measurements from the Google Cloud test
environment. This means we look at the start times of different
image configurations in one environment. The last step deals
with the generalizability of the results. We investigate whether
the results from the Google Cloud environment are transferable
to our self-hosted environment. Here, our focus lies on the
impact of the hosts, including their hardware and software.
In other words, we evaluate the start times of different image
configurations in different environments.

Before we present a detailed analysis of the start times,
it is worth looking at the overall statistics to understand the
magnitude of the start times. In the Google Cloud environment,
the minimum start time is 277 ms, the mean is 1886 ms, the



TABLE III
COV FOR START TIMES OF ONE IMAGE CONFIGURATION.

Environment Coefficient of Variation
Min Median Mean 95th Percentile Max

Google Cloud 0.023 0.153 0.179 0.389 0.966
Self-hosted 0.051 0.177 0.270 0.788 3.069

median is 1689 ms, and the maximum is 17,605 ms. In the self-
hosted cloud, the minimum is 1241 ms, the mean is 8417 ms,
the median is 6470 ms, and the maximum is 426,687 ms.

A. What is the start time variation for one image?

As described in Section IV, we start each image config-
uration 30 times. We consider the coefficient of variation
(CoV) as a metric to quantify the variability of the start time.
Consequently, we obtain a CoV for each of our 1008 sampled
images. Table III shows the minimum, mean, median, 95th
percentile, and maximum CoV for the two test environments.

We see that the self-hosted environment exhibits a larger
variation than the Google Cloud, as evidenced by all statistical
values, although the median for both environments is about
the same at 15.3% and 17.7%, respectively. The cause of the
higher variation in the self-hosted environment can be ex-
plained by the storage technology used. While SSDs back the
Google Cloud VMs, the self-hosted servers have conventional
HDDs. We conducted I/O benchmarking runs [22] that indicate
that the CoV of submission and completion latency in read-
intensive scenarios is about 2-11 times higher in the self-hosted
environment than in the Google Cloud.

In our analysis, we had a particular focus on the outliers
that have a high CoV. The 95th percentile shows that there
are only a few outliers in both environments. We analyzed the
5% images with the highest CoV from both environments, in
total 51 per environment. Only four images were outliers in
both test environments. We further analyzed the configurations
of these images but found no clear relationship to any single
dataset feature. This is also in line with the results of the next
section.

B. How do image configuration parameters impact start time?

In the following, we perform a regression analysis to
determine factors that influence the container start time. First,
we focus on the results in the Google Cloud environment,
as this environment is representative and widely used in
practice. The results of our second test environment are then
discussed in Section V-C. Out of our initial 20 features,
we eliminated the six textual features from Table I along
with two features that are linearly dependent on other fea-
tures (fs virtual size and io attach stderr). Another set of
three features has constant values for all sample elements
(io std in once, io open std in, cmd additional args). From
the definition of these features (see Table I), it is clear that
their values are expected to be zero/false by default and only
change if the container starts in a non-default configuration.
After these exclusion steps, we have a set of nine features for
further evaluation.

TABLE IV
UNIVARIATE AND MULTIVARIATE LINEAR REGRESSION COEFFICIENTS

AND p-VALUES.

Feature Univariate Regression Multivariate Regression
β1 p β1 p

io attach stdin -2.388e+02 5.422e-08 -3.360e+03 ∼ 0
io attach stdout 6.461e-01 9.879e-01 6.049e+02 4.399e-05

io tty 8.930 8.321e-01 2.250e+03 1.038e-39
cmd envvars 2.471e+01 1.561e-84 7.063 3.284e-07

cmd args -7.068e+01 4.092e-23 -7.686e+01 4.904e-28
fs volumes 8.365e+01 6.614e-17 7.892e+01 1.886e-15

fs size 7.012e-08 ∼ 0 3.571e-08 2.261e-27
fs layers 3.109e+01 ∼ 0 2.576e+01 ∼ 0
net ports 1.915e+01 2.027e-05 -1.843e+01 4.323e-05

We start our analysis with linear regression techniques, as
these give us explainable results about which image factors
influence the start times [23]. Note that we do not aim to find
the best start time prediction model in this paper; we instead
investigate which parameters impact the start time. We first
consider the influence of our image configuration parameters
on the start time individually; that is, we consider a univariate
regression problem. Therefore, we train a linear regression
model in the form

y = β0 + β1x. (2)

Here, y denotes the start time, our dependent variable, and
x the considered feature, as the independent variable, while
β0 and β1 are the linear regression coefficients. In addition,
we consider the p-value, which indicates the probability of
observing similar results, under the assumption that the null
hypothesis is correct. Table IV shows the β1 and p-values
of different features from our dataset. In the table, p-values
smaller than 1e-100 were rounded to zero.

The values in Table IV for the univariate regression show
that all factors considered, except io attach stdout and io tty,
yield results with a low p-value in the linear regression. The
values’ units play a role in the interpretation of β1. The start
time in our dataset is given in milliseconds, and the size is
in bytes. Consequently, the small absolute value of β1 for
the image size is explained. However, a deeper interpretation
of the coefficients is unnecessary because the error for the
univariate regression is very high for all features. The lowest
mean absolute error (MAE) is 777 ms for the feature fs layers.
To calculate the MAE, we used a five-fold cross-validation. For
comparison, the MAE of a baseline model that predicts the
mean of all measurements is 806 ms. This shows that the data
do not have a simple linear dependence. This is also confirmed
by Figure 5, which shows the scatter plots for the two features
with the lowest p-values, fs size and fs layers. Intuitively, one
could assume a clear relationship between those features and
the start time. However, the figure clearly shows that none
of the two factors can explain the variance in the start time
individually.

We deduce that no single dominant feature determines the
start time; it is instead a multivariate problem. For this rea-
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Fig. 5. Dependence between two selected features and the start time.

son, we extend our analysis to multivariate linear regression.
Table IV also shows the β1 coefficients and the p-values
of multivariate linear regression. The p-values show that all
features individually contribute to the start time prediction in
the multivariate regression. Further, we performed an F -test
to evaluate whether the features taken together contribute to
the start time prediction [23]. The result is a p-value of 2.2e-
16, indicating that feature interactions also contribute to the
start time prediction and that the model cannot be reduced to
a naive intercept-only model. However, the MAE of 772 ms
also shows that the multivariate linear model cannot describe
the data well, performing just slightly better than the baseline.
We conclude that there is no linear relationship between our
features and start time.

Due to the complex relationships in the data, we next
apply a random forest model as an example of a non-linear
explainable regression approach. We build the random forest
with 500 trees, having each three randomly sampled features
and allowing unlimited depth. Table V shows the feature
importance values for the Google Cloud environment retrieved
from the random forest in the second column. We see that size
is the most important feature, followed by the number of root
file system layers. The MAE of the model based on a five-fold
cross-validation is 329 ms, which is less than half the error of
the linear models and the baseline. This shows that non-linear
models can better describe the data. However, searching for
the best prediction model is out of the scope of this paper and
left as future work as it requires a broader analysis.

C. Can the results be confirmed in a second test environment?

The results from the previous section captured our mea-
surement results in the Google Cloud environment. In the
following, we analyze to what extent our findings apply in
the self-hosted environment. As stated in Section V-A, the
start times measured in our self-hosted environment have a
higher variance than those measured on Google Cloud VMs.
Furthermore, we note that of the 1008 images tested, 1007

TABLE V
RANDOM FOREST FEATURE IMPORTANCE VALUES FOR BOTH TEST

ENVIRONMENTS.

Feature Feature Importance
Google Cloud Self-hosted

io attach stdin 0.007 0.008
io attach stdout 0.009 0.011

io tty 0.008 0.010
cmd envvars 0.123 0.155

cmd args 0.048 0.032
fs volumes 0.040 0.032

fs size 0.527 0.554
fs layers 0.176 0.165
net ports 0.062 0.033

start faster in the Google Cloud environment, as measured by
median start times, than in the self-hosted environment. On
average, an image starts 6.1 seconds faster in the Google Cloud
than in the self-hosted environment. From this, we conclude
that the environment significantly influences the absolute start
time values.

In the following, we investigate whether our statements
about the impacts of different features on start time are
confirmed in our second environment. Figure 6 shows, for
the same nine features, the median start time for all sample
images in both environments as a function of feature value. We
see that the absolute numbers of start times differ. However,
the distribution of data points is clearly similar in both test
environments, indicating that each of the nine features has a
similar impact in both environments. Apart from a few outliers,
similar trends are visible for nearly all of the selected features.

To compare the results quantitatively, Table VI shows dif-
ferent error measures for all evaluated models in our two test
environments. All error measures have been derived using
five-fold cross-validation. The baseline model is a model
that always predicts the mean of the training data. For the
univariate linear models, the error depends on the feature
selected for the regression; we report the best score achieved.
As the MAE is an absolute measure and differs significantly
for the two environments, we also present the mean absolute
percentage error (MAPE) as a relative measure to eliminate
the scale of the start time. As the MAPE shows, the prediction
quality is roughly the same considering the pairwise compar-
ison in both environments. We conclude that the environment
determines the absolute values of the start time. However, from
Figure 6 and the comparable prediction quality of the models,
we conclude that the influence of the image configuration
parameters is comparable in both environments. This is also
confirmed by the feature importance of the random forest
model shown in the third column of Table V. We see that size,
layers, and the number of environment variables were the most
relevant features in both environments, while all other features
were significantly less important for the prediction.

D. Summary

In the following, we summarize our main findings. First, we
found that container start times vary significantly in the same
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Fig. 6. Measured start times, in ms, as a function of nine different features in each of the Google and self-hosted test environments.

TABLE VI
ERROR MEASURES FOR ALL MODELS AND TEST ENVIRONMENTS.

Model Google Cloud Self-hosted
MAE [ms] MAPE MAE [ms] MAPE

Baseline 806 0.607 4513 0.748
Univariate LinReg ≥ 777 ≥ 0.565 ≥ 3751 ≥ 0.569

Multivariate LinReg 772 0.559 3661 0.541
Random Forest 327 0.215 1816 0.205

environment. For example, in Google Cloud, the start time
between different image configurations varies between 277 ms
and 17.6 s. Furthermore, we could quantify the variance
when starting a container image. The median coefficient of
variation was 15.3% in the Google Cloud and 17.7% in the
self-hosted environment. Only a few outliers had significantly
larger CoVs. We showed that modeling of start times cannot
be reduced to the examination of one single feature and that
a multivariate approach is necessary. We also showed that the
relationship between image configuration parameters and the

start time is not linear. Using the random forest as a non-linear
regressor, we achieved significantly better prediction results
than with linear models.

We confirmed all of these statements in both test environ-
ments. From the similar feature importance of the random
forest models and the comparison of the start times mapped to
the features, we infer that image configuration parameters have
a comparable influence on start times in each environment.
However, absolute start time values are strongly influenced
by host hardware. Thus hardware and software stacks must
be modeled to build an accurate start time prediction model
for different environments. Moreover, our results indicate that,
for example, the storage technology influences the start times’
variability.

VI. DISCUSSION

We next discuss the limitations and open challenges of this
work. Our dataset reflects only a subset of all container images
and has been collected from one registry. Furthermore, we
limit our study to Linux images with amd64 target architecture



and start them using one specific version of Docker; we did not
investigate whether these results generalize to other operating
systems, architectures, and container engines. Nevertheless,
we argue that our results remain valuable, as the selected
technologies are common in modern cloud environments. For
technical, time, and cost reasons, we tested only a subset of
the more than 200,000 images in our dataset and used their
default configuration only. Through our stratified sampling
strategy, we aim to reflect the diversity of the dataset in the
evaluated sample, but further measurements of other image
configurations may provide additional insights.

Previous work has shown that measurements in cloud
environments can exhibit considerable variability [24], [25].
To reduce the impact of such variability on our results, we
repeated each measurement 30 times for each image, using
the randomized multiple interleaved trials methodology, as
suggested by state-of-the-art benchmarking guidelines [21],
[26]. However, further measurements in the Google Cloud
(e.g., in other compute regions) may lead to different results.
Furthermore, our measurements were designed in a way that
only one container was active on one machine at a time. In
practice, several containers usually run in parallel on a VM
or server. This and other factors are out of the scope of this
work.

As introduced in Section II, the start time, as considered
in this paper, cannot be equated with the readiness time. A
generalization is impossible due to the application-specific
setup and network-specific pull times. In particular, analyzing
setup time requires knowledge about the content and pur-
pose of the container image. In this work, we maintained a
black-box view on the container’s file system. Nonetheless,
we showed that the start time has to be considered, as it
varies significantly for different container images. Moreover,
one has to regard that some image features, especially size,
might also influence the pull and setup times. In summary,
this paper is a starting point for further measurement-driven
investigations of container start times. Some of the limitations
in the measurement setup can be eliminated in future work if
more resources are available.

VII. RELATED WORK

Faster start times have always been a goal for developers of
container technologies. Several studies compare container start
times and further performance metrics with other virtualization
technologies. Tesfatsion et al. [10] examine VM startup times
compared to Docker and Linux containers. Another virtual-
ization technique often used for comparison is unikernels [9],
[11], [27], [28]. In summary, all studies conclude that contain-
ers have faster start times than VMs. Regarding unikernels, the
results are less clear, but the use cases of unikernels are usually
limited to single-process applications.

Another group of papers deals with certain characteristics
of the nodes used for container deployment and their impact
on start times. In general, container start times in different
technology stacks can differ significantly. De Velp et al. [29]
find that the used storage driver, in particular, significantly

impacts the start times. This result is also confirmed by Harter
et al. [30], who investigate I/O patterns during startups and
propose a specialized storage driver. Lingayat et al. [31] and
Mavridis and Karatza [32] quantify overheads introduced by
starting containers on virtual machines instead of bare-metal
servers. Wei et al. [33] investigate the start times of Kubernetes
pods and show the dependency on the overall system load.

Another research area looks at start times concerning dif-
ferent container runtimes, often in combination with security
and isolation properties. Kumar et al. [34] compare runc, the
default Docker runtime, with Kata, a runtime with increased
isolation and security mechanisms. Others compare different
combinations of container managers and runtimes [35], [36].
All works find a clear trade-off between performance and
increased security.

Due to the observed start time variabilities, researchers
found early optimization potential for start times. Thereby,
the optimization approaches focus on specific domains and
workloads. One major use case is serverless computing, where
optimization approaches include caching techniques, faster
installation of dependencies, and container reuse [37], [38].
Ahmed and Pierre [7] find that pull times have an essential
impact in edge computing use cases and propose optimization
through better download schemes and layer decompressing.
Littley et al. [39] find optimization potential in container
registries intending to reduce pull times.

There are few prior empirical studies of large sets of
container images. Zhao et al. [40] use a large Docker Hub
dataset to explore the properties of layers, image popularity,
compressed and uncompressed image sizes, and what type
of files the analyzed containers include. In contrast to our
work, start times are not investigated. Cito et al. [41] analyze
over 70,000 Dockerfiles from GitHub and identify common
base images, primary programming languages, and more. The
ImageJockey framework of Yoshimura et al. [42] enables per-
formance testing of multiple container images. The uniqueness
and novelty of our study lie in the interconnection of a large
container dataset with start times. Furthermore, in contrast
to related work, we maintain a black-box view of container
execution and content, relying only on data available before
starting the container.

VIII. CONCLUSION

Modern containerized cloud, serverless, and edge applica-
tions require high performance, scalability, and resilience. All
these characteristics are inevitably tied to low container start
times. We have reported the most extensive empirical study to
date on how container image configurations impact start times.
We analyzed the configuration parameters of over 200,000
open-source Docker Hub images and showed the high diversity
of the dataset. On a sample of this dataset, we ran a total of
60,480 container starts in two test environments and analyzed
the impact of image configuration parameters on the start time.

The main finding of our study is that no single configuration
parameter determines the start time of a container; the start
time rather depends on many variables. Our results show that



different image configurations have significantly different start
times in one environment. We could confirm the findings on
a second test environment to a certain extent. However, we
found that the environment strongly influences the absolute
values of the start times.

This work offers numerous starting points for future work.
One important question is to what extent we can predict the
start time of a container for a specific environment without
having started it before. This question builds directly on
this work since the image configuration parameters that we
discussed here and hope to use in making such predictions
can be obtained before a container is launched. We showed
that hardware parameters have to be modeled for an ac-
curate prediction; however, as these parameters are known
and relatively stable for one environment, creating a suitable
model is feasible. Another promising research topic is the
relationship between start and readiness times. Both research
directions promise to benefit real cloud, serverless, and edge
environments and to provide valuable inputs for simulations
and models.
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SUPPLEMENTARY ARTIFACTS

We provide two peer-reviewed artifacts complementary to
this paper. The first artifact is the dataset containing 200,986
images with their configuration features. The artifact has been
uploaded as a standalone artifact on Zenodo to facilitate further
studies in the area of application containers. The second
artifact reproduces the results, tables, and figures from this
paper. For this purpose, we provide a CodeOcean capsule
that processes our measurement results and reproduces all
quantitative results in this paper. Both artifacts contain detailed
descriptions and documentation on their respective platforms.

A. Image Dataset

The image dataset described in Section III of this paper is
available on Zenodo as a standalone artifact:

https://doi.org/10.5281/zenodo.7602500

Similar to Table I of the paper, we explain the features of
the 200,986 images in the dataset and provide information
about the acquisition of the dataset on the website. The
dataset is compressed and in CSV format and can therefore be
easily analyzed in any programming language. In the future,
the dataset could be used for further studies on open-source
container images.

B. Processing Scripts

The processing scripts and measurement results from all test
environments are available in a CodeOcean capsule with the
following link:

https://doi.org/10.24433/CO.4595026.v2

The scripts are a mix of Python and R scripts. The CodeO-
cean capsule offers a pre-configured execution environment
with all required libraries installed. The scripts use the image
dataset (same as uploaded on Zenodo) and the start time
measurement results from the self-hosted and Google Cloud
environments as inputs. Documentation on the processing
steps can be found in the script files. A complete run takes
about 13 minutes, where most of the time is spent creating

the Random Forest regression models. If the reproducible run
feature of CodeOcean is used, Tables III, IV, V, and VI are
obtained in text form. Moreover, Figures 2, 3, 5, and 6 from
the paper are created.

As referenced in Section IV-B, we provide additional in-
formation on the sampling process. We list the algorithms
and hyperparameters used for the dataset clustering as part
of the stratified sampling process. We report a quantitative
breakdown of the feature importance for the final clustering.
Last, we provide a visualization of the feature set for the tested
sample.


