
This is the author’s version of the work. It is posted for your personal use. Not for redistribution. The definitive version was published in Proceedings of the
IEEE 22nd International Conference on Software Quality, Reliability, and Security, 2022.

MiSim: A Simulator for Resilience Assessment of
Microservice-based Architectures

Sebastian Frank1,2, Lion Wagner2, Alireza Hakamian2, Martin Straesser3, André van Hoorn1
1University of Hamburg, Hamburg, Germany
2University of Stuttgart, Stuttgart, Germany

3University of Würzburg, Würzburg, Germany
{sebastian.frank, andre.van.hoorn}@uni-hamburg.de, mir-alireza.hakamian@iste.uni-stuttgart.de,

martin.straesser@uni-wuerzburg.de

Abstract—Increased resilience compared to monolithic archi-
tectures is both one of the key promises of microservice-based
architectures and a big challenge, e.g., due to the systems’
distributed nature. Resilience assessment through simulation
requires fewer resources than the measurement-based techniques
used in practice. However, there is no existing simulation ap-
proach that is suitable for a holistic resilience assessment of
microservices comprised of (i) representative fault injections,
(ii) common resilience mechanisms, and (iii) time-varying work-
loads. This paper presents MiSim — an extensible simulator for
resilience assessment of microservice-based architectures. It over-
comes the stated limitations of related work. MiSim fits resilience
engineering practices by supporting scenario-based experiments
and requiring only lightweight input models. We demonstrate
how MiSim simulates (1) common resilience mechanisms — i.e.,
circuit breaker, connection limiter, retry, load balancer, and au-
toscaler — and (2) fault injections — i.e., instance/service killing
and latency injections. In addition, we use TeaStore, a reference
microservice-based architecture, aiming to reproduce scaling be-
havior from an experiment by using simulation. Our results show
that MiSim allows for quantitative insights into microservice-
based systems’ complex transient behavior by providing up to
25 metrics.
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I. INTRODUCTION

With the growing popularity of the microservice-based
architectural style [1], there is a need for an effective resilience
assessment of such systems. Laprie [2] defines resilience
as “the persistence of service delivery that can justifiably
be trusted when facing changes”. Resilience assessment in
microservice-based architectures is crucial as configurations
of such architectures constantly change, e.g., due to frequent
(re-)deployments facilitated by modern DevOps processes.

Resilience assessment is often done in a production environ-
ment using so-called chaos experiments by injecting faultloads
and observing the behavior of the system quality [3]. While
producing representative results, chaos experiments often re-
quire (1) a significant investment of time and effort in exper-
iment set-up, (2) a significant amount of execution costs, and
(3) in-depth knowledge regarding the underlying technology
stack. Simulating chaos experiments is an alternative approach
to running experiments in a real cloud environment. Today,
many simulators for distributed and service-oriented architec-
tures exist. Popular examples are SimuLizar [4], DRACeo [5],
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Figure 1: MiSim overview

BigHouse [6], µqsim [7], PacketStorm [8], iFogSim [9] and
GreenCloud [10]. Most of these focus on performance analysis
using simulation or solving queuing models (analytically).
However, none satisfies the following requirements for re-
silience assessment: (1) supporting common resilience mecha-
nisms, which enable architectures to handle failures gracefully
and recover from them, and (2) simulating multiple typical
failure injections such as killing a service instance.

We present MiSim — a simulator specialized in the simula-
tion of resilience mechanisms and chaos experiments. Figure 1
shows the workflow, inputs, and outputs of MiSim. Resilience
engineers must provide experiments in the generic description
format or, more intuitively, as scenarios. Scenarios are means
for requirements specification and evaluation, which have been
used by qualitative architecture evaluation methods such as
the Architecture Tradeoff Analysis Method [11]. The experi-
ment descriptions contain information about the workload and
faultload. MiSim also requires an architecture description of
the system under test, which contains information about the
services, interdependencies, and the implemented resilience
mechanisms. MiSim implements resilience mechanisms based
on existing pattern descriptions in literature [11] [12] and prac-
tice [13] but can also use custom extensions and modifications.
Furthermore, it has no external dependencies, such as Platform
as a Service (PaaS), submodules, or libraries. MiSim provides
metrics, simulation traces, and visualization scripts that enable
further processing and inspection of the results.

While MiSim may be used to simulate other types of
distributed systems, we explicitly focus on microservice-based
systems. Due to their high degree of independence regarding
development and technologies, microservice-based systems



must be carefully designed to be resilient. However, they can
also reach a high degree of resilience when designed correctly,
making resilience simulation of microservice-based systems
particularly relevant. Therefore, MiSim implements common
resilience mechanisms for microservice-based systems, e.g., as
provided by the resilience library Resilience4j [14]. Further,
MiSim can simulate mechanisms like autoscaling, a key benefit
of microservice-based systems according to Newman [15].

We simulate three scenario-based experiments on an archi-
tecture description obtained from an industry system [16] to
evaluate the simulator. The scenarios require and trigger most
of the implemented resilience mechanisms. In a further ex-
periment, we partially replicate an experimental setting using
the benchmarking application TeaStore [17] to compare the
actual scaling behavior against the scaling behavior simulated
by MiSim. All results are reproducible, and we provide both
the simulator code [18] and the evaluation data [19].

In the scenario-based experiments, we show that the simu-
lator is able to mirror the behavior of (1) common resilience
mechanisms — i.e., circuit breaker, retry, and autoscaler — and
(2) chaos injections — i.e., instance/service killing and latency
injections. The TeaStore experiment shows that the actual and
the simulated scaling behaviors are similar.

We summarize our contributions as follows:
• The extensible MiSim simulator for resilience assessment

of microservice-based architectures.
• Default implementations for common resilience mecha-

nisms and strategies used in microservice-based systems.
• A lightweight architecture description for resilience as-

sessment.
• A demonstration of MiSim’s usefulness and applicability.
The remainder of this paper is structured as follows. In

Sections 2 and 3, we summarize the foundations of this
work and compare MiSim to other microservice simulators.
Section 4 provides an overview of MiSim’s general simulation
process. Sections 5 and 6 elaborate on the input models and
potential simulation results of MiSim supported by a running
example. Section 7 evaluates MiSim’s capabilities to simulate
different resilience mechanisms in three selected scenarios and
its usefulness in predicting actual scaling behavior. Conclu-
sions are drawn in Section 8.

II. BACKGROUND

This section explains essential concepts regarding resilience
patterns, chaos engineering, and scenario-based quality re-
quirements specification.

A. Resilience Mechanisms

Cataloging architectural patterns has been discussed in both
academic literature [11] [12] and practice [13]. According to
Bass et al. [11], patterns (1) exist to achieve a particular quality
attribute, and (2) comprise tactics to augment the patterns. We
use the notion of resilience mechanism to refer to both patterns
and tactics used in the context of fault tolerance and the design
of resilient systems. The main reason for choosing the name
resilience mechanism is that sometimes tactics and patterns

have been used interchangeably in existing pattern collections.
For example, retry is listed as a pattern in the Microsoft
Collection [13], but as a tactic by Bass et al. [11]. In the
following, we describe the resilience mechanisms supported
by MiSim.

Circuit Breaker [13]. In distributed environments, service
calls can fail, e.g., due to network issues. The caller’s resources
get wasted on a non-responding service, which impacts the ser-
vice’s quality. The circuit breaker pattern solves the problem
of cascading failures by disallowing further calls to the target
service if a failure threshold is reached.

Retry [13]. Transient failures are common in a distributed
environment. Retrying a failed operation ensures continued
operations despite such transient failures.

Autoscaling [11]. In cloud-based distributed systems, it is
common to design the system to use additional resources
autonomously. Automatic scaling can be vertical, meaning the
addition/removal of resources to physical units, and horizontal,
meaning the addition/removal of resources to logical units.

Load Balancing [11]. As an application of resource schedul-
ing, load balancing ensures that one resource is not overloaded
while the other is idle.

Connection Limiter [13]. The bulkhead pattern suggests
grouping application elements into pools so that when one
group fails, the other stays unaffected. We implemented thread
pooling such that the number of possible requests to be sent
by a service is limited. Because we do not implement the
grouping of all application elements, we use connection limiter
as the pattern’s name throughout the paper.

B. Chaos Engineering

Chaos Engineering is a set of disciplines for evaluating a
system’s capability to withstand disturbances in production [3].
The core idea is to design and execute experiments. The
experiments describe injecting failures and monitoring system
behavior regarding, e.g., a performance or availability quality
metric. Based on an initial hypothesis, the test team assesses
system resilience based on collected measurements of the par-
ticular metrics from failure injection time until the distribution
of measurements reaches a steady state. The experiments can
be executed manually or automated by frameworks like Chaos
Toolkit [20] or Gremlin [21].

C. Scenario-based Quality Requirements Specification

In software engineering, scenarios describe quality require-
ments in an unambiguous and testable way [11]. In this work,
we focus on resilience scenarios, which are scenarios that
concentrate on resilience metrics.

Chaos experiments provide a means to describe and exe-
cute resilience scenarios against the system implementation.
Figure 2 shows the mapping from elements of the scenario
description to the chaos experiment description. For exam-
ple, stimulus in the scenario description is mapped to the
specification of workload and faultload in chaos experiments.
Moreover, the response measure is mapped to hypothesis and
steady-state metrics in chaos experiments. In our preceding
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Figure 2: Transposing resilience scenarios to chaos experi-
ments [16]

industrial case study [16], we showed that scenarios are
suitable for specifying and quantitatively evaluating resilience
requirements in microservice-based applications. It is shown
that the hypotheses in chaos experiments and the response
measure both describe the system’s expected behavior with
dedicated steady-state metrics. Moreover, a combination of
stimulus, environment, and artifact describes the expected
system execution context.

III. RELATED WORK

We used the statement simulator AND (microservice OR
microservices) in Google Scholar, Google Search, and CORE
to collect simulators tailored for resilience assessment of
microservice-based architectures. The simulators we found are
DRACeo [5], iFogSim [9], µqsim [7], and MuSim [22]. In
addition, we added SimuLizar [4] to the list of simulators for
comparison. SimuLizar has been proposed for the performance
evaluation of self-adaptive software systems. SimuLizar inter-
prets the Palladio Component Model (PCM) [23], a state-of-
the-art model-driven approach for predicting quality attributes.
We found and included SimuLizar as PCM is seminal work in
architecture-based quality prediction.

In further search, we found various simulators for dis-
tributed or service-oriented architectures, e.g., BigHouse [6]
and GreenCloud [10] for the simulation of data center systems,
and PacketStorm [8] for the simulation of networks. As these
simulators are not designed for resilience assessment and focus
primarily on cloud infrastructure, we excluded them from the
comparison. We also excluded iFogSim [9], as it focuses on
the internet of things (IoT) and mobility simulation.

Each simulator has unique characteristics, as visualized in
Table I, based on a list of features that simulators shall support
for resilience assessment of microservice-based architectures.
We considered technical, domain-specific, and compatibility
viewpoints. Microservice-based architectures can be complex
regarding size, and an analytical solution for the underlying
performance model either does not scale well or may not exist.
Therefore, most simulators (including MiSim) are based on
Discrete Event Simulation (F1).

Chaos Experiments are commonly used to assess resilience.
Therefore, a simulator for resilience assessment should allow
for the simulation of faultloads (F4) as available in state-
of-the-art chaos engineering tools, e.g., Chaos Toolkit [20].
However, besides MiSim, only DRACeo partially supports
faultloads like killing instances and injecting delays. More

TABLE I: A comparison of MiSim to similar simulators ([4],
[5], [7], [22]) for features relevant in the context of
resilience simulation
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F1 Discrete Event Simulation Y Y Y N Y
F2 Headless Mode N N Y N Y
F3 Output Metrics

F3.1 Response Times Y Y Y Y Y
F3.2 Error Rates N N N N N
F3.3 Throughput Y N Y N N
F3.4 Queue Lengths Y N Y N Y
F3.5 Execution Traces N N N N Y

F4 Chaos Toolkit Faultloads N ∼3 N N Y
F5 Varying Workload Y1 N N Y2 Y
F6 Resilience Mechanisms

F6.1 Self-Healing (Restart) N Y N Y2 N
F6.2 Autoscaling Y1 Y N Y2 Y
F6.3 Load Balancing Y1 Y Y Y Y
F6.4 Retry Y1 N N N Y
F6.5 Circuit Breaker N N N N Y
F6.6 Rate Limiter Y1 N N N N
F6.6 Connection Limiter N N N N Y
F6.7 Caching Y1 N N N N

F7 Scenarios N N N N Y

1 Supported as part of the Palladio Component Model (PCM).
2 Supported due to the usage of a PaaS/Docker.
3 Supports instance/service/device killing.

complex and realistic scenarios also require support for dy-
namic workloads (F5), e.g., load spikes. To our knowledge,
DRACeo and MuSim do not have this capability. Furthermore,
to assess the influence of resilience mechanisms (F6) on the
system’s resilience, the simulator must be capable of simulat-
ing these mechanisms. In that regard, SimuLizar and MiSim are
similarly powerful but consider different mechanisms. Circuit
breakers and connection limiters are only available in MiSim.

A headless mode (F2), i.e., availability of a CLI or API,
eases the automation of experiments and the integration into
resilience assessment workflows. However, only MiSim and
MuSim have a headless mode, while SimuLizar is coupled to
the Eclipse Platform and DRACeo just provides a graphical
user interface. Furthermore, the available output metrics (F3)
determine what requirements can be verified. MiSim provides
a broad range of up to 25 metrics (see Section VI), even
containing full execution traces, which are not provided by the
other simulators. MiSim is also the only simulator supporting
scenarios (F7) for the description of experiments.

In conclusion, MiSim’s capabilities to simulate multiple
resilience mechanisms, support typical chaos injections, and
its low overhead in simulation and modeling are unique among
the investigated simulators.

IV. MISIM ARCHITECTURE: PROCESS VIEW

This section presents the process view of the MiSim archi-
tecture, which supports the features introduced in Section III.
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Figure 3: Interaction between conceptual objects in MiSim

Our architecture follows an event-driven style as we rely on
the discrete-event simulation framework DESMO-J [24].

Figure 3 visualizes the interaction between conceptual ob-
jects in the MiSim architecture in a UML communication
diagram. Note that this is just a simplified representation
of the actual implementation. The LoadGenerator sends a
request to the RequestSendingProcess, which can be repeated
by an unspecified number shown as ∗. The RequestSend-
ingProcess looks for the instance that handles the request
by sending a message to a Microservice. The Microservice
uses the LoadBalancer to choose the responsible instance
to handle the user request. After that, the RequestSending-
Process has the handling instance, and the object sends the
user request to the RequestHandlingProcess, shown by the
message submit_to_instance_handler. The RequestHandling-
Process executes the request by passing it to the Central
Processing Unit (CPU).

For the CPU, by default, we simulate the Round Robin
scheduling algorithm, where each process is cyclically as-
signed a time slot. Round Robin scheduling is commonly
used in multi-tasking environments for fair execution of pro-
cesses. Furthermore, MiSim supports First Come First Serve,
Multi Level Queue, Shortest Job Next scheduling algorithms.
Further extension is possible through strategy patterns. The
RequestSendingProcess is notified after the execution of the
user request. The RequestSendingProcess notifies registered
listeners, e.g., a CircuitBreaker or Retry, when handling a
request. During the process, faults can be injected by Chaos-
Monkey and NetworkDelay. Furthermore, the Autoscaler can
automatically scale the system based on the current situation,
while Spawning allows manually creating new instances.

V. SCENARIO AND SYSTEM UNDER TEST DESCRIPTIONS

In the following, we introduce a particular system under
test as a running example for this paper. Next, we describe
MiSim’s two required types of input models. The first input is
an architecture model that describes the structure and perfor-
mance properties of the system under test. The second input

gateway service1 service2

Figure 4: The running example’s architecture: The gateway-
service1-dependency is equipped with a retry and
service1 with a utilization-based autoscaler.

is an experiment model that describes workloads, faultloads,
and metadata for the respective run. Finally, we briefly discuss
the available extension points of MiSim.

A. Running Example

To demonstrate the capabilities of MiSim, we use a running
example throughout this paper. We based the running example
on a proxy system for an existing industry system in an early
stage of development [16]. The original microservice-based
system’s purpose is to support use cases in the domain of
payment accounting. It is developed to replace a legacy system
that handles up to 13 million calculation requests in peak
times. The investigated part of the microservice-based system
currently consists of seven different services. The proxy sys-
tem is a real implementation with the same technology stack
as the actual system, with reduced complexity regarding the
number of services. It is provided by the company developing
the actual system and being used to evaluate the system’s
quality. We converted the proxy’s architecture and resilience
characteristics into a description that is interpretable by MiSim.

As depicted in Figure 4, the running example system
consists of three services: gateway, service1, and service2. The
gateway has a single instance, and the dependency on service1
is equipped with a retry pattern. By default, service1 has
two instances and a utilization-based autoscaler to start new
instances on demand. service2 only has a single instance and
no resilience mechanisms. The services are linearly dependent
on each other. A single request to the gateway causes a single
request to service1, which sends another request to service2.

B. Modeling System Architectures

MiSim architecture models describe mostly static properties
of a system’s architecture. They offer the opportunity to define
the network latency in the system and services with up to five
properties. These properties are listed in Table II and contain
predominantly technical information, such as the number of
default instances and implemented resilience mechanisms.

Further, a service definition requires a description of
the supported service endpoints. This is done within an
operations array and requires the properties listed in
Table III for each description. In particular, each operation
requires the specification of a unique name and a compu-
tational demand for executing the operation. Each operation
can also describe dependencies on other operations. Each
of these dependencies can be probabilistic to account for
behavior that is not executed every time. Such probabilities can



TABLE II: Supported service properties

Property Name Description

name Name of the service.
loadbalancer Load balancing strategy for incoming requests.
instances Number of default instances
capacity Calculation capacity that each service instance has.
service_patterns List of resilience mechanisms of the whole service

(e.g. a load balancer).
instance_patterns List of resilience mechanisms that will be created for

each instance (e.g. circuit breaker).
operations List of operations/endpoint that a service provides.

TABLE III: Supported operation properties

Property Name Description

name Name of the operation.
demand Computational demand for processing the operation

call.
dependencies List of dependencies that this operation needs to com-

plete before it is considered completed itself. A depen-
dency description defines a target endpoint and can set
an activation probability.

easily be computed from measurements of existing software
systems. However, probabilistic dependencies alone are not
sufficient to model actual system behavior. For example, the
SAGA pattern [25] requires an operation only to perform
compensation actions when it fails to execute its normal
behavior. To support such cases, MiSim allows the nesting of
dependencies with (probabilistic) alternative and loop depen-
dencies as intermediate dependency types.

Listing 1 shows the architecture description of the gateway
service, which was introduced earlier as part of the running
example. As described earlier, this gateway only has one
instance and a single endpoint called API_Endpoint by default.
This operation has a computational demand of 1 and a
non-nested, non-probabilistic dependency on the dependent-
Calculation endpoint of service1. Combining this with the
set instance capacity of 10000 results in a throughput of
10000 requests per simulation time unit (STU). Further, the
description defines the properties of the used retry pattern. In
this case, it configures an exponential back-off with the delay
formula d(t) = min(0.1 · 3(t−1), 7), with t being the number
of failed tries. The exponential back-off strategy is a common
approach to avoid retry storms and has been implemented in
retry pattern implementations such as Resilience4j [14]. The
mentioned exponential back-off delay and its importance are
further detailed in the Amazon Web Services blog [26].

As shown in Table II, a service in MiSim can support
two categories of resilience mechanisms: service patterns and
instance patterns. Service patterns act on all service instances
and modify the owning service itself. By default, MiSim only
supports a simple utilization-based autoscaler as a service pat-
tern. Instance-owned patterns are instantiated for each instance
separately. A concrete list of all currently available patterns is
shown in Table IV. The properties of each supported pattern

1 {
2 "name": "gateway",
3 "instances": 1,
4 "capacity": 10000,
5 "loadbalancer_strategy": "even",
6 "operations": [
7 {
8 "name": "API_Endpoint",
9 "demand": 1,

10 "dependencies": [
11 {
12 "service": "service1",
13 "operation": "dependentCalculation"
14 }
15 ]
16 }
17 ],
18 "patterns": [
19 {
20 "type": "retry",
21 "strategy": {
22 "type": "exponential",
23 "config": {
24 "baseBackoff": 0.1,
25 "maxBackoff": 7,
26 "base": 3
27 }
28 }
29 }
30 ]
31 }

Listing 1: Architecture description of the gateway service

TABLE IV: Supported resilience mechanisms

Pattern Category Purpose

Retry Instance
Pattern

Resends failed internal requests after a
configurable delay.

Circuit Breaker Instance
Pattern

Cleanly breaks a connection if it becomes
unhealthy. Automatically reopens it peri-
odically for status checks.

Connection
Limiter

Instance
Pattern

Restrict the maximum number of
open connections between two
instances/services.

Load Balancer Instance
Pattern

Handles the distribution of outgoing mes-
sages.

Autoscaler Service
Pattern

Increases or decreases the instances count
of a service.

can be configured as shown in the retry definition in Listing 1.

C. Modeling Experiments
MiSim experiment descriptions are input files that describe

the actual simulation process. They always contain metadata
such as a name, description, and output location. Further, they
define what events the simulator should schedule during the
simulation. These events are called stimuli and can be the
generation of arriving messages, forced starting of instances,
or injection of chaotic behavior.

MiSim supports five stimuli by default, outlined in Table V.
Two create workloads, two create faultloads, and one allows
spawning instances. The two types of workload generators
support periodic and varying load profiles. The first type
is the interval generator, which can be configured to send
requests in spikes or evenly distributed over a time interval.



TABLE V: Supported stimuli

Type Name Description

Workload
Interval Gen. Loads the system with a periodic workload.

Time Series Gen. Can create a varying workload.

Faultload
Chaos Monkey Shuts down instances of a service.

Delay Injects a latency into a service connection.
Misc Summoner Can create new instances of a service.

1 {
2 "name": "Minimal Scenario",
3 "duration": 180,
4 "artifact": "gateway",
5 "component": "GET",
6 "stimulus": "LOAD~

./Examples/PaperExample/paper_limbo.csv AND KILL
service1 2@40"

7 }

Listing 2: Example for a minimal scenario-based experiment
description loading a load profile (repeating as in-
dicated by ∼) and killing two instances of service1

The second type is the time series generator, which can create
varying workloads, e.g., using LIMBO models [27], [28].
Chaos monkeys and summoners can be used to manipulate a
service’s number of active instances. They allow the simulation
of unexpected shutdowns or manual restarts of services. Lastly,
a latency injection (delay) can be used to simulate a slow
network connection. It acts similarly to the tc command1

by slowing down incoming messages of the target service or
endpoint.

There are two formats of experiment descriptions that MiSim
accepts. The first one is scenario-based and relates closely to
the aforementioned scenario. The second and more powerful
way to describe an experiment is using a generic experiment
description. It is less compact but allows for more details.

1) Scenario-based Experiment Description: In addition to
the mandatory metadata information, a scenario-based exper-
iment description of MiSim has a fixed format containing
up to seven properties that mirror a scenario description.
Three of them are required for a simulation. These are the
artifact, component, and stimulus. The remaining four scenario
components are optional since MiSim cannot interpret them
yet. The artifact provides the simulator with the name of the
microservice that should be stimulated during the experiment.
The component indicates which of the artifact’s endpoints
should be targeted if the experiment description contains a
workload definition. Lastly, the stimulus property offers a way
to define multiple stimuli. It uses keywords such as AND,
KILL, and LOAD to build events for the experiment.

Listing Listing 2 shows a minimal scenario-based experi-
ment description for the running example. The experiment uses
a linked load profile to load the GET endpoint of the gateway
service and kills two instances of service1 at 40 STU. The
simulation takes 180 STU (default: seconds).

1https://man7.org/linux/man-pages/man8/tc.8.html

1 {
2 "simulation_metadata": {
3 "name": "Minimal Scenario",
4 "duration": 180,
5 "seed": 42
6 },
7 "generators": [
8 {
9 "type": "limbo",

10 "config": {
11 "model":

"./Examples/PaperExample/paper_limbo.csv",
12 "target_operation": "gateway.GET",
13 "repeating": true
14 }
15 }
16 ],
17 "Monkey#1": {
18 "type": "chaos_monkey",
19 "config": {
20 "killed_instance_count": 2,
21 "arrival_time": 40,
22 "microservice": "service1"
23 }
24 }
25 }

Listing 3: The minimal example from Listing 2 as generic
experiment description

2) Generic Experiment Description: Besides the scenario-
based description, MiSim offers a more in-detail description
variant for experiments. This generic form is also a JSON
document but gives the creator more control over each com-
ponent, i.e., more properties and features of the stimuli are
exposed. Features that are otherwise not configurable are, for
example, the event names of stimuli, generating workloads
against more than one service, or the arrival times of workload
generators. Listing 3 shows the same experiment as Listing 2
in the generic form. Note that the generic description is almost
three times longer but allows for more complex features, e.g.,
naming of the fault injections.

D. Extension Points of MiSim

To allow for the simulation of various (implementations of)
resilience mechanisms and scenarios, we designed MiSim to be
easily extensible regarding resilience mechanisms, workload
generators, and faultloads. MiSim employs a smart parsing and
class system, which allows a user to extend a set of base
classes and interfaces that automatically get parsed, integrated,
and called during the simulation. Our provided basic and more
complex implementations of common resilience mechanisms
can be seen as proof of concept for our extension mechanisms.
As shown in Figure 3, our implementations of the autoscaler,
retry, and load balancer also use the strategy design pattern
to create variations of these resilience mechanisms easily. The
exact process of extension is explained in MiSim’s wiki [18].

VI. SIMULATION RESULTS

A. Available Metrics

MiSim can output up to 25 metrics, including response
times, queue lengths, instance counts, and circuit breaker

https://man7.org/linux/man-pages/man8/tc.8.html


TABLE VI: Outputs of MiSim

Name Format Description

Raw Data Folder Contains all measured data points in .csv form.
Experiment
Copy

JSON Copy of the experiment file and some additional
Metadata.

DESMO-J
Trace

HTML Simulation traces generated by DESMO-J.

Analysis
Scripts

Python
Script

Python scripts that visualize key metrics for a
quick analysis of the experiment.

states2. Further, it generates several supporting metadata files
and scripts upon a simulation execution. A list of possible
outputs can be found in Table VI. These first contain the
raw data collected during the simulation, which are the data
points written into a collection of .csv files and can then
easily be read for analysis. Next, MiSim provides a copy
of the experiment input files and a metadata file containing
some execution information. Lastly, multiple output artifacts
help to understand and debug an experiment. A DESMO-J
trace presents a human-readable format of the simulation log.
Additionally, some analysis scripts can give a diagram-based
visual overview of key metrics, such as instance counts or
CPU utilization.

B. Results Visualization

Using the metrics and provided analysis scripts, up to five
different types of diagrams can be generated to inspect the
results visually. Diagrams can be generated for (i) instance
counts, (ii) response times, (iii) CPU usage, (iv) queue length,
and (v) arriving load during the experiment. The diagrams can
be used in two ways. First, they help to understand whether
the simulation does what it is supposed to do, and second,
whether the simulated system satisfies a given requirement.

Executing the scenario shown in Listing 2 on the running
example shows how the system could react if it experiences
a linear load spike that reoccurs three times within 180 STU
while two instances of service1 crash. In the following, we
present and interpret two of the five diagram types that can
be generated3. These diagrams show the instance count of
service1 (Figure 5) and the overall system’s response time
(Figure 6). The first of these diagrams shows that the chaos
monkey is executed as specified at the 40 STU mark. Addition-
ally, we can see that the autoscaler takes effect. The service is
scaled up after the injection and is scaled down and up around
the 170 STU mark. The results shown in Figure 6 reveal that
response times never exceed 3 and very rarely 2.5 STU.

VII. EVALUATION

Our evaluation is divided into two parts. In the first part,
we demonstrate MiSim’s functional capabilities regarding the
simulation of resilience mechanisms and faultloads using the
running example. In the second part, we compare simulation

2See https://github.com/Cambio-Project/MiSim/wiki/OutputMetrics
3The same diagrams can be obtained with the provided scripts. We did

some additional post-processing steps to match the format for this paper.
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results against the actual scaling behavior of the more com-
plex and established benchmarking application TeaStore [17].
Finally, we discuss the threats to validity of our evaluation.

A. Simulating Resilience Mechanisms and Faultloads

To demonstrate the functional capabilities of the simula-
tor, we execute and analyze three scenarios that specifically
investigate the behavior of five features: autoscaling, retry,
circuit breaker, delay injection, and chaos monkey. Table VII
describes the scenarios in detail, and Table VIII lists which
features of MiSim are used in the respective experiments.
The system used for these simulations is the running example
introduced in Section V-A.

1) Scenario: Autoscaler and Load Balancer (A&L): In the
first scenario, the system is expected to scale appropriately
under a varying workload and keep the utilization of service1
between 30% and 75%. We investigate which load balancing
strategy is the best for the given scenario.

a) Experiment Description: The respective experiment
demonstrates properties of three of the four current types of
load balancing MiSim can employ, i.e., randomized, round-
robin, and utilization-based load balancing. The fourth im-
plementation, a more performant but less accurate variant of
round-robin load balancing, is not evaluated. Furthermore,
this experiment uses the autoscaler implementing a reactive
strategy that checks the current average relative utilization u
of all instances of a service once per STU. If the autoscaler
detects overutilization (in this case: over 75%), it spawns as

https://github.com/Cambio-Project/MiSim/wiki/OutputMetrics


TABLE VII: Description of evaluation scenarios

Scenario
Name

Source Stimulus Artifact Response Response Measure Environment

A&L Users Linear and Exponential
Load Spikes

Whole
System

Adjust instance counts
for efficient utilization.

See Equation (1)
below.

Normal operation

R&D Networking
Hardware

Network Saturation Whole
System

All requests should
complete successfully.

See Equation (2)
below.

Normal operation

C&C Administrator Service Restart service1 Breach of the error
threshold is detected.

All requests during
downtime fail fast.

Maintenance

∀i ∈ Instances : 30% ≤ Util(i) ≤ 75% (1)
∀t ∈ T ime : SuccessRate(t) = 100% (2)

TABLE VIII: Enabled features in each of the experiments

Experiment
Name

Related
Scenario

Workload
Type

Resilience Mechanisms Faultloads
Load

Balancing Autoscaling Retry Circuit Breaker Delay Injection Chaos Monkey

E1 A&L Varying X X

E2 R&D Varying X X X

E3 C&C Constant X X X

many instances as necessary to keep the utilization below the
upscale threshold, assuming an utterly even load distribution.
Underutilization is handled alike. We calculate the utilization
of a single service instance based on Equation 3.

u = RemainingActiveDemand + TotalQueuedDemand
CPUCapacity (3)

The experiment starts with one instance per service, and
the stimulus is realized by a workload profile that starts with
an exponential load spike and then keeps a high arrival rate.
A drop to a very low load follows, and lastly, a linear rising
load spike. In a previous work [16], we elicited linear and
exponential load peaks as two stimuli in resilience scenarios,
which are the basis for this experiment.

b) Expected Results: To assess the effectiveness of the
load balancing strategies, we analyze how evenly they dis-
tribute requests over the active instances in terms of the created
workload. For an optimal load balancer, the standard deviation
of the utilization of all instances should be close to 0.

c) Experiment Results: In MiSim’s case, the random
load balancer reaches an average standard deviation of ap-
proximately 19%, the round-robin approach 14%, and the
utilization-based approach 29%. Only considering these val-
ues, the round-robin balancer performs best and the utilization-
based approach worst. However, as visualized in Figure 7, the
autoscaler behaves more stable and predictably and uses the
least number of instances (22 vs. 24 and 37) when using the
randomized strategy. On average, the autoscaler starts 1.3±0.7
instances per out-scale with the randomized strategy, whereas
the round-robin approach starts slightly more unstable 1.6± 1
instances. Again, the utilization-based approach performs the
worst with 2.7 ± 2.7 average instance starts. This metric is
also directly affected by the measured relative utilization.

These results show that even though MiSim only supports

a mostly reactive and slightly predictive autoscaler, it is
sufficient to simulate elastic and effective scaling. However,
the accuracy of the autoscalers and load balancers still needs
to be evaluated on measurements from real systems.

2) Scenario: Retry and Delay (R&D): The second scenario
describes the case of network saturation, where a circuit
breaker is expected to keep the request success rate at 100%.
We investigate the effect of the retry pattern in this scenario.

a) Experiment Description: This experiment runs two
system versions with the same load profile as Scenario A&L.
One version does utilize a retry pattern, while the other does
not. A normally distributed delay of 7 ± 1.1 STU is injected
at the 60 STU mark to simulate the network saturation. The
delay is chosen close to the default timeout of 8 STU, which
occasionally causes requests to time out.

b) Expected Results: Since the delay is mostly below the
timeout, almost all requests with the retry pattern are expected
to succeed. Without the retry pattern, the probability density
function in Equation (4) suggests that approximately 18.2%
of requests time out.∫ ∞

8

1

1.1 ·
√
2π
e−

1
2 (

x−7
1.1 )2dx ≈ 0.181651 (4)

c) Experiment Results: Without the retry, the failure rate
averages to approximately 18.6 ± 0.5% of requests failing,
which is slightly above the expected amount of 18.2% due to
the increased calculation effort for higher workloads. However,
this can still be considered an accurate simulation of the
delay. As shown in Figure 8a, the experiment version with
the enabled retry drops the failure rate of requests to a flat 0%
and therefore conforms with the expectations. Thus, using a
retry would be a reasonable design decision for this scenario.
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(a) Randomized Load Balancer —
Mean Service Utilization
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(b) Round-Robin Load Balancer —
Mean Service Utilization
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Figure 7: Results for Scenario A&L
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Figure 8: Results for Scenario R&D (1 STU sized bins)

TABLE IX: Circuit breaker states during the maintenance
period in Scenario C&C

State Total Duration
in State [STU]

Time
Share

Times
Entered

Open 75.38860 ≈ 83% 126
Half-Open 0.21865 < 1% 126

Closed 15.39275 ≈ 17% 2

3) Scenario: Chaos Monkey and Circuit Breaker (C&C):
Lastly, this scenario describes the case that service1 is taken
down for maintenance. We investigate the behavior of a circuit
breaker with a given configuration in that scenario.

a) Experiment Description: This experiment demon-
strates the behavior of the simulated chaos monkey, summoner
monkey, and circuit breaker. It uses a constant workload profile

with requests arriving at the system every 0.1 STU.
The start of the maintenance period at 30 STU is simulated

by using a chaos monkey, which kills all active instances of
service1. A summoner monkey spawns a new instance at the
120 STU mark to simulate a manual restart.

The circuit breaker is configured to open at a failure rate
of 75%. The rolling window over which it calculates the
failure rate threshold is set to 20 STU and its sleep window to
0.5 STU. The connection limiter is not covert in any scenario
since it is a side product of the circuit breaker and much less
complex than the other resilience mechanisms.

b) Expected Results: In this experiment, the system is
expected to detect the failing requests to the disabled service
around the 45 STU mark and let requests fail fast until the
service recovered. It periodically checks the connection in the
half-open state by letting a single request through. Over the
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Figure 9: Detected failure percentage of the circuit breaker in
Scenario C&C. Arrows indicate short duration in
half-open states.

75 STU of downtime, the theoretical maximum of 151 state
changes to the (half-)open state can be reached.

c) Experiment Results: The failure rate curve detected
by the circuit breaker is shown in Figure 9. At the 45.4 STU
mark, the detected failure threshold reaches 75%, and the
circuit breaker opens. Afterward, the half-open state is entered
periodically. Table IX shows that during this phase, both the
open and half-open states were entered equally often (126
times). This number is lower than the theoretical maximum
of 151 state changes since the change from half-open to open
is only triggered by a failing request, which does not happen
immediately after entering the open state. The portion of time
spent in the half-open state is minimal, less than 1% of the total
time. This is due to the relatively high-frequency workload that
triggers the transition to open relatively quickly. Again, the
experiment demonstrates successfully that the circuit breaker
behaves according to the expectations and is a possible design
for the investigated scenario.

B. Simulating the TeaStore Scaling Behavior

We aim to investigate whether MiSim can handle more com-
plex architectures and workloads. Therefore, we partially repli-
cate and simulate a setting described by Kistowski et al. [17]
using the benchmarking application TeaStore [17]. In the
experiment, we investigate the autoscaling behavior of the
system without any further resilience mechanisms involved.
In the following, we detail the experiment setting, describe
the expected results, and present the results.

1) Experiment Description: Figure 10 displays the archi-
tecture of TeaStore [17] as used in the experiment. Designed
as a reference application of a microservice-based system for
benchmarking and used in many scientific studies, we assume
TeaStore to be a representative example of real microservice-
based software systems.

As the actual TeaStore system, the architecture description
contains six services: webui, image, auth, persistence, recom-
mender, and registry. The webui provides 13 different oper-
ations to the users and depends on image, auth, persistence,
and recommender. In total, we modeled 37 operations and 40
operation dependencies. In contrast to the original TeaStore
system, we do not actively use the registry. Furthermore, we

auth

image

persistence

recommender

registry

webui

Figure 10: Architecture description of TeaStore [17]. All ser-
vices are equipped with reactive autoscalers.

equip each service with a reactive autoscaler and initially
spawn a single instance of each service.

We assume that an ordinary user of the TeaStore system
visits the store, logs into their account, searches for categories
and products, eventually buys the product, and finally logs
out. This behavior is represented in operation calls to webui
in Figure 11. Since this usage behavior does not contain any
decision points, we model 11 load generators (one for each
of these operations) that are executed by MiSim in the same
order as depicted in Figure 11. Note that this experiment does
not use four of webui’s available operations.

To apply a representative workload, we use the same
workload profile as Kistowski et al. [17], which is based on
data from the FIFA World Cup 1998 Website [29]. All 11
load generators use this identical workload profile visualized
in Figure 12. The requests are distributed equally over all load
generators. Additionally, we scaled the number of requests and
capacities down by 10 to reduce the computational demand
and memory consumption required for the simulation.

The autoscaler used by Kistowski et al. [17] scales between
nine predetermined configurations with fixed instance counts.
MiSim is currently not capable of simulating such config-
urations. To make the results comparable, we utilize three
properties of the configurations in order to map the state of the
simulated system. (1) The total number of instances between
configurations is linearly and strictly increasing, allowing for
a linear mapping. (2) In relation to each other, the simulated
services should scale similarly to the actual services so that
we can relate system sizes. (3) Since Configuration 9 is never
used, it shall not be considered. Using these properties, we
create the mapping shown in Equation (5).

#config(nactive) =

⌊
8 · (nactive − 5)

(nmax − 5)
+ 1

⌋
(5)

2) Expected Results: Since we (partially) replicate the
setting for the scaling behavior in the TeaStore [17] paper,
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Figure 11: Usage behavior of the users in the TeaStore [17] simulation. Every step is an operation call to the webui service.

0

1000

2000

3000

0 10 20 30 40 50 60
Time [min]

To
ta

l W
or

kl
oa

d 
[R

eq
ue

st
s]

Figure 12: Fifa World Cup ’98 based workload [29] used for
the TeaStore evaluation

we expect to see similar scaling behavior in the simulation
as for the real system. We do not expect similar instance
counts as we could not calibrate the resource demands — due
to necessary data not being publicly available — and used a
less sophisticated autoscaling mechanism. However, we expect
upscaling and downscaling at similar points in time, i.e., the
overall shape of the curve should look similar.

Figure 13 depicts the demanded configurations of the real
TeaStore system, and four phases are visible. From 0 to
20 minutes, the configuration stays at relatively constant and
low levels. Next, there is a medium-sized peak from 20 to
30 minutes. Finally, there are two high peaks from 30 to
45 minutes and 45 to 60 minutes, respectively. Similarly, we
expect the mapped configurations to show the same trend in
system size as the actual configurations in the experiment by
Kistowski et al. [17].

3) Experiment Results: Figure 13 shows the results of the
experiment. The scaling behavior in the simulation is similar
to the behavior in the real system. From 0 to 20 min, the
configuration stays low and relatively constant. From 20 to 30
min, a small peak up to configuration level three can be seen,
although this peak is less apparent than for the real system.

In contrast to the actual system, there is a huge spike at
around 30 minutes. Here, MiSim seems more sensitive to the
simultaneously occurring short spike in the workload profile.
The different approaches regarding autoscaling can very likely
explain this deviation. The reactive autoscaler in the simulation
evaluates utilization and queue length at the current time, while
TeaStore’s autoscaler acts based on many metrics trends. In a
big enough time window, such a short spike does not influence
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Figure 13: Comparison of simulation results against real sys-
tem measurements by Kistowski et al. [17]

the trend enough to stimulate the autoscaler.
The expected two high peaks in the last two phases are also

visible in the simulated results, although the first peak is less
high and a bit delayed. Since the real system starts to scale
roughly 5 minutes before the workload peak arrives (~40 min),
we assume that the trend analysis of the real autoscaler kicked
in based on the second phase. As we just mentioned, MiSim
only scales once the load arrives, hence the delay. The real
autoscaler corrects its overprovisioning at roughly 43 min, and
both autoscalers meet at configuration #4 for the remainder of
the peak. For the rest of the simulation, the scaling behavior
matches the real TeaStore system closely.

Although the setup and results of the real and the simulated
system do not match perfectly, the simulation is able to predict
the overall trend of the scaling behavior correctly.

C. Threats to validity

To demonstrate the functional capabilities of MiSim, we
use the architecture description of the proxy system, which
contains selected services of the actual microservice-based
application. In addition, the reflected industry system was still
in an early stage of development.

The scenarios in the evaluation are synthetic. There is a
threat that the scenarios may not represent actual resilience
requirements. However, the scenarios are loosely based on
representative resilience scenarios we elicited for the corre-
sponding system in previous work [16].

We did not conduct a quantitative evaluation of MiSim’s
accuracy in predicting autoscaling behavior. We did not rig-
orously validate the accuracy of MiSim’s other resilience
mechanisms against measurements. However, along with the



development, we conducted basic validation showing MiSim’s
ability to accurately predict the system’s transient behavior.
The focus of this paper is to demonstrate MiSim’s architecture
and features as well as the results from simulating typical
resilience scenarios.

We were unable to replicate the original TeaStore setting
with MiSim completely. In particular, we use independent
autoscalers for each service, while the TeaStore setting uses a
central autoscaler with predefined system configurations. Fur-
thermore, we did not calibrate the services’ operation demands
based on measurements. However, since the operation calls
are equally distributed, these factors are unlikely to strongly
influence the overall shape of the scaling behavior on which
we base our comparison.

VIII. CONCLUSION AND FUTURE WORK

We presented the simulator MiSim for resilience assessment
of microservice-based architectures. It simulates common re-
silience mechanisms and faultloads and is easily extensible
with new mechanisms and implementations. In three scenarios,
we demonstrated how autoscaling, retries, circuit breakers,
delay injections, and instance killing are simulated. In an-
other experiment, MiSim closely predicts TeaStore’s up/down
scaling behavior obtained from real measurements. However,
more comparisons to measurements on real systems are still
necessary to quantify the accuracy of the simulation for the
other supported resilience mechanisms.

In future work, we plan to evaluate the accuracy of the simu-
lation based on measurements from real software systems. We
will complement MiSim with a software architecture extraction
tool to ease the provision of architecture descriptions. Further-
more, we aim to support more sophisticated scenarios, e.g., by
adding capabilities to interpret temporal logic formulas.
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