

UN

Towards Simulation-Driven Optimization of Container Orchestration Mechanisms

14th Symposium on Software Performance (2023) Session 4: Quality

Timo Dittus, Martin Sträßer, Samuel Kounev – Descartes Research Group

08.11.2023

https://se.informatik.uni-wuerzburg.de

Introduction

Typical container orchestration tasks (definition by Google):

- Provisioning and deployment
- Scaling containers up or down and load balancing
- Allocating resources between containers
- Moving containers to another host to ensure availability if there's a shortage of resources or an unexpected outage
- Performance and health monitoring of the application
- Service discovery

Motivation

2

3

Δ

5

6

8

Container orchestration (CO) frameworks significantly impact performance

apiVersion: autoscaling/v2beta2

Towards Simulation-Driven Optimization of Container Orchestration Mechanisms

Motivation

- > Testing configurations for CO mechanisms is costly and time-consuming, because:
- > CO mechanisms have a (very) large variety of configuration parameters
- > ... where one mechanism's configuration can exert influence on another's

> Automatically optimizing configurations via a simulation strongly preferrable!

Towards Simulation-Driven Optimization of Container Orchestration Mechanisms

Recap: MiSim

MiSim: A Simulator for Resilience Assessment of Microservice-based Architectures

Sebastian Frank^{1,2}, Lion Wagner², Alireza Hakamian², Martin Straesser³, André van Hoorn¹ ¹University of Hamburg, Hamburg, Germany ²University of Stuttgart, Stuttgart, Germany ³University of Würzburg, Würzburg, Germany {sebastian.frank, andre.van.hoorn}@uni-hamburg.de, mir-alireza.hakamian@iste.uni-stuttgart.de, martin.straesser@uni-wuerzburg.de

- State-of-the-Art microservice simulator
- Based on discrete event simulation, uses CPU performance model
- Focus on resilience mechanisms

- Extend MiSim by simulating a Kubernetes environment
- Let MiSim communicate with
 real Kubernetes components,
 pretending to be in an actual
 cluster
- > ... to enable realistic behavior

Kubernetes-in-the-Loop: Enriching Microservice Simulation Through Authentic Container Orchestration

Martin Straesser¹, Patrick Haas¹, Sebastian Frank², Alireza Hakamian³, André van Hoorn², and Samuel Kounev¹

¹ University of Würzburg, Würzburg, Germany {martin.straesser, samuel.kounev}@uni-wuerzburg.de, patrick.haas@informatik.uni-wuerzburg.de ² University of Hamburg, Hamburg, Germany {sebastian.frank, andre.van.hoorn}@uni-hamburg.de ³ University of Stuttgart, Stuttgart, Germany mir-alireza.hakamian@iste.uni-stuttgart.de

Towards Simulation-Driven Optimization of Container Orchestration Mechanisms

Towards Simulation-Driven Optimization of Container Orchestration Mechanisms

UNI

WÜ

Simulation-driven Optimization

Key concept: Run simulation iteratively in an optimization loop

WÜ

Simulation-driven Optimization

Towards Simulation-Driven Optimization of Container Orchestration Mechanisms

UNI

WÜ

Simulation-driven Optimization

- Objectives can be opposing to each other e.g., costs vs. service quality
- > **Derivative-free optimization** a.k.a. black-box optimization
- > Unfeasible to try all configurations
 - Suppose we have 15 configuration parameters, each restricted to 5 possible values and an average simulation runtime of 10s (very optimistic!)
 - Can test 0.0102% of all possible combinations in a full year of running 24/7
 - Improvements in simulation time possible, however, unlikely to improve by many magnitudes
- > Therefore, a highly efficient and systematic optimization method is required

Potential Optimization Methods

	Probablistic Model-based	Evolutionary Algorithms	Bandit-based Methods	Combined Techniques
Description	Predict good solutions with learned probabilistic model	Mimic mechanisms from natural selection to optimize solutions iteratively	Dynamically allocate resources, apply early stops to unpromising trials	Combine strengths of two or more techniques
Strength / Weakness	Can be bad for very high-dimensional search space	Great for very high- dimensional search space	Highly efficient, but may lead to inaccurate optimization	May also transfer weaknesses of techniques
Examples	Bayesian Optimization, Tree-structured Parzen Estimators	Genetic Algorithm, Differential Evolution	Successive Halving, Hyperband	DEHB: Differential Evolution w/ Hyperband, BOHB: Bayesian Optimization w/ Hyperband

Evaluation

- > Ideally, real and fully known microservice architecture to replicate in simulation with recorded traces
- > ... then deploy in real cloud to measure unoptimized vs. optimized metrics
- > ... and see if they improve in similar magnitude to the simulated unoptimized vs. optimized metrics

Analysis and Interpretability

- Automatically find correlations
- ...maybe by simplifying with some constraints (e.g., binning values)
- Visualize results with techniques from hyperparameter tuning

HPA: minReplicas	HPA: maxReplicas	Node affinity: required label for "clock- speed"	Node affinity: preferred label for "location"	SLO violations	Operating costs
5	9	high	eu-west	0-20	233
5	12	high	eu-west	0-20	400
5	15	high	eu-west	0-20	418
9	24	medium	eu-west	0-20	190
5	12	high	eu-west	0-20	392
5	16	high	eu-east	21-40	456
4	15	high	eu-east	41-60	444

Towards Simulation-Driven Optimization of Container Orchestration Mechanisms

Summary

Build optimizer feature for simulation, perform lots of testing and analysis

Action

Towards Simulation-Driven Optimization of Container Orchestration Mechanisms

Thank you for listening!

Any questions?

Towards Simulation-Driven Optimization of Container Orchestration Mechanisms