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ABSTRACT
Due to the fast-paced and changing demands of their users, com-
puting systems require autonomic resource management. To enable
proactive and accurate decision-making for changes causing a par-
ticular overhead, reliable forecasts are needed. In fact, choosing the
best performing forecasting method for a given time series scenario
is a crucial task. Taking the "No-Free-Lunch Theorem" into account,
there exists no forecasting method that performs best on all types
of time series. To this end, we propose an automated approach that
(i) extracts characteristics from a given time series, (ii) selects the
best-suited machine learning method based on recommendation,
and finally, (iii) performs the forecast. Our approach offers the ben-
efit of not relying on a single method with its possibly inaccurate
forecasts. In an extensive evaluation, our approach achieves the
best forecasting accuracy.
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1 INTRODUCTION
Nowadays, computing systems are pushed to their limits by the
fast living and changing requirements of their users. To this end,
the autonomic management of these systems is needed. Based on
the collected information, these systems can only react to changing
requirements with an inherent delay. Thus, integrating time series
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forecasting into the decision-making process allows to proactively
face those changes that cause overheads for their execution.

Indeed, there are different methods, such as statistical methods
or machine learning approaches, that support accurate forecasting
results. Due to the variety of methods in question, the choice and
configuration of the best performing method for a given time series
remain to be a mandatory expert task to avoid trial and error. Thus,
the question arises if there is a single method that forecasts best
for all time series. The "No-Free-Lunch Theorem" [19], initially
formulated for optimization problems, denies the possibility of
such a method. It states that improving the performance of one
aspect leads typically to a degradation in performance for some
other aspect.

In fact, various types of hybrid methods have been introduced in
recent years to tackle the "No-Free-Lunch Theorem". While statisti-
cal models have their difficulties with complex patterns, machine-
learning-basedmethods struggle with non-stationary data (i.e., high
variance and trend). To face theseweaknesses, we pose ourselves the
research question RQ1: How to build a generic and hybrid forecasting
framework for seasonal time series that dynamically minimizes the
disadvantages of each component?". The core idea is to decompose
the time series into multiple parts. The trend is forecast separately
by a statistical method while a machine learning method predicts
the complex pattern and then assembles the time series. While
developing the generic and hybrid forecasting method, we limit
ourselves to univariate time series. In fact, correlated/external data
can be used for each time series to improve the forecast. However,
the selection and preprocessing of such additional information re-
quires domain knowledge. Also, this knowledge of domain-specific
feature engineering cannot yet be fully automated. Consequently,
our method would have to be tailored to a particular domain and
contradict the goal of a more generic approach.

Keeping the "No-Free-Lunch Theorem" in mind, it is not rec-
ommended relying on a specific method. Thus, we target a recom-
mendation system that suggests the best-suited machine learning
approach for a given time series. Therefore, we pose ourselves the
question RQ2: "What are suitable time series characteristics for the
recommendation?". Consequently, the question arises RQ3: "What
are suitable approaches for the recommendation system?"

Towards addressing the questions above, our contribution in
this paper is four-fold: (i) We propose an automated forecasting
framework for seasonal time series that decomposes a given time
series and extracts characteristics (see Section 3.3), recommends
the best-suited machine learning method, which is selected on dy-
namically learned rules, and finally, assembles the components and
performs the forecast (see Section 3.1). (ii) To build the recommen-
dation rules dynamically, a knowledge base is built upon a set of
historical time series. (iii) For the recommendation, we introduce
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three different approaches and propose our own time series charac-
teristics (see Section 3.2.1). (iv) In a broad evaluation (see Section 4),
we analyze the different approaches, investigate the impact of the
time series generation, and compare our forecast framework with
state-of-the-art forecasting methods.

Without our framework, a simple and straight-forward approach
for choosing the best-suited method for a given time series would be
based on trial and error, or the consultation of an expert. However,
both possibilities are expensive, time-consuming, or error-prone.
That is, through the automation of choosing the best method in
conjunction with the hybrid approaches leads to good forecasting
results and helps saving time and costs.

2 BACKGROUND
Before explaining our approach in detail, we outline some back-
ground concepts. Thus, Section 2.1 gives a short introduction to
time series. Afterward, the time series decomposition is explained.
Finally, the frequency detection and Fourier terms are outlined.

2.1 Time Series
A univariate time series is an ordered collection of values of a quan-
tity obtained over a specific period or from a certain point in time.
In general, observations are recorded in successive and equidistant
time steps (e.g., hours). Typically, internal patterns exist, such as
autocorrelation, trend, or seasonal variation.

One of the essential characteristics of a time series is the station-
arity. Hence, most statistical forecasting methods have the assump-
tion that the time series is either stationary or can be “stationar-
ized” through a transformation. The statistical properties (such as
mean, variance, auto-correlation) of a stationary time series do not
change over time. Therefore, a stationary time series is easier to
model and forecast. In practice, however, time series are usually
showing a mix of trend or/and seasonal patterns and are thus non-
stationary [1]. To this end, time series are transformed, seasonally
adjusted, made trend-stationary by removing the trend, or made
difference-stationary by possibly repeated differencing .

2.2 Time Series Decomposition
As a time series consists of different components, a common ap-
proach is to break down the time series into its components. These
parts can either be used for modifying the data (e.g., removing the
trend or the seasonality), or they can be used as intrinsic features
(e.g., modeling different recurring patterns).

A common method for decomposing a time series is STL (Sea-
sonal and Trend decomposition using Loess) [5]. STL can handle
any type of seasonality, allows the seasonal pattern to change over
time, and disassembles the given time series into the components
trend T , season S , and irregular I (also called remainder). The long-
term development in a time series (i.e., upwards, downwards, or
stagnate) is called trend. Usually, the trend is a monotone function
unless external events trigger a break and cause a change in the di-
rection. The presence of recurring patterns within a regular period
in the time series is called seasonality. These patterns are caused
by climate, customs, or traditional habits. The unpredictable part
of a time series is called irregular component, possibly following

a specific statistical noise distribution. It is also considered as the
residual time series after all other components have been removed.

2.3 Fourier Terms & Frequency Detection
In many fields, especially for forecasting, it is helpful to know the
frequencies, i.e., the lengths of the seasonal patterns. For instance,
if the most dominant frequency is unknown for a given time series,
the time series cannot be decomposed by the method explained
above. By dominant, we mean the most common period, i.e., the
seasonal pattern such as days in a year. An established approach
for frequency analysis is the Fourier transform, which allows to
determine the distribution of frequencies or the spectral density of
the time series. As a time series can be represented as a weighted
sum of sinusoidal components, the found frequencies can be used
to retrieves these components, also referred to as Fourier terms.

3 APPROACH
As our approach is two-fold, we first introduce the automatic de-
composition, feature extraction, and forecasting of a time series. In
Section 3.2, we explain the recommendation system for selecting
the most suitable machine learning approach. Afterward, the con-
sidered time series characteristics are presented. Finally, the used
machine learning methods are highlighted.

3.1 Automatic Time Series Forecasting
The assumption of data stationarity is an inherent limitation for
time series forecasting. Any time series property that eludes station-
arity, such as non-constant mean (trend), seasonality, non-constant
variance, or multiplicative effect, poses a challenge for the proper
model building. Consequently, we design an automated time series
forecasting method that addresses these issues. Figure 1 shows
the work-flow of the automatic time series forecasting part. The
blue rectangle boxes reflect actions, the green trapezoids machine
learning features, the grey rounded boxes the target for the ma-
chine learning, and the rounded white boxes everything else. The
functioning can be grouped into four steps (dashed red boxes):
(i) preprocessing, (ii) recommendation, (iii) forecasting, and (iv)
postprocessing. Each part is described in the following.

3.1.1 Preprocessing. This step is responsible for preparing the time
series and extracting the intrinsic features for the machine learning
algorithm. The first step consists of the frequency estimation. If
the time series has a certain frequency, this frequency is chosen.
Otherwise, the most dominant frequency is estimated . Next, if
the time series has multiplicative effects, the logarithm is used to
transform the time series. The Fourier terms (the sine and cosine
pair) for the most dominant frequency are determined and used
as intrinsic features later on. Although most forecasting methods
assume stationary time series, many time series exhibit trend or/and
seasonal patterns. To tackle the non-stationarity, our approach
decomposes the time series and then handles each part separately.
To this end, the time series is decomposed by STL (see Section 2.2)
into season, trend, and remainder. The seasonal component is used
as an intrinsic feature later on. The remainder is ignored since it is
irregular and hard to predict and therefore correlated with a high
error rate. Finally, the trend is removed from the time series to
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Figure 1: Overview of forecasting process of our framework.

make the time series trend-stationary. The detrended time series is
the target value for model building.

3.1.2 Recommendation. The detrended time series is passed from
the preprocessing step and is the basis for the recommendation.
The recommendation selects which machine learning algorithm is
best suited to model the detrended time series. Thus, time series
characteristics are extracted from the detrended time series. Based
on these characteristics, a suitable machine learning method is
selected. The detailed recommendation is explained in Section 3.2.

3.1.3 Forecasting. To build a suitable forecast model that takes the
features derived in the previous step into account, we use the ma-
chine learning algorithm recommended by the last step. To reduce
the model error and later the forecast error, we exclude the trend
and the remainder as features. The trend was removed during the
first step to make the time series trend-stationary. The remainder
of the time series is not explicitly considered a feature. That is, the
machine learning method notices a difference that is missing to
fully recreate the target value. In other words, this difference is
the remainder and is learned implicitly as the machine learning
method tries to explain this difference. Consequently, the consid-
ered features include the season and the Fourier terms, and the
target value corresponds to the detrended time series. Although
seasonality can also violate stationarity, time series models usually
explicitly take seasonality into account. Also, machine learning
methods are suitable for pattern recognition. To this end, we keep
the seasonality as a feature.

To forecast the time series, each feature and the trend has to be
forecast separately. As the season and the Fourier terms are recur-
ring patterns per definition, these features can merely be continued.
Based on the trend component, an ARIMA1 model [11] without
seasonality is determined that forecasts the future trend of the
time series. Simultaneously, the forecast patterns of the season and
Fourier terms, in combination with the model, are used to predict
the detrended time series.

1We select ARIMA as it is able to estimate the trend even from a few points, and we
use an automatic version that selects the most suited model [10].

3.1.4 Postprocessing. In this last step, the forecast trend is ap-
pended to the forecast detrended time series to assemble the fore-
cast time series. Moreover, if the the time series was multiplicative,
the forecast time series is re-transformed with the exponential
function. Finally, the forecast time series is returned.

3.2 Machine Learning Recommendation
To tackle the problem that arises with the "No-Free-Lunch Theo-
rem", we employ a recommendation system for machine learning
approaches. The idea is to choose the best suitable method based on
the time series characteristics. Figure 2 shows the recommendation
work-flow. The blue rectangle boxes reflect actions, the green trape-
zoids reflect machine learning features, the grey rounded boxes the
machine learning target, and the rounded white boxes everything
else. The functioning can be grouped into two phases (dashed red
boxes): (i) an offline phase and (ii) an online phase. Both phases are
described in the following.

3.2.1 Offline Phase. The offline phase learns the rules for recom-
mendation a specific method based on time series characteristics,
during the start or if no forecast is currently conducted. To this end,
our approach requires an initial set of time series that are stored in
the associated storage. To have a broad training set independent
of the amount of original time series, the first step in this phase is
to create new time series based on the original time series in the
storage. For this purpose, three different methods are used:

(i) The first method splits time series into smaller parts to have
a more diverse set of time series with different lengths. The length
of a split is the maximum between a freely configurable length and
10% of the original length. (ii) The core idea of the second method is
to decompose the time series, modify one component, and assemble
the modified component and the two remaining parts to a new time
series. More precisely, this method modifies each component one
after the other and creates, therefore, three new time series. For the
modification, the divisors of the frequency of the time series are
determined. For each divisor, the components are modified with the
proportion of the frequency and the divisor differently: The trend
is getting steeper; the season is compressed, i.e., the period length
becomes shorter; the remainder is stretched. (iii) The third method
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Figure 2: Overview of the recommendation process of our forecasting framework.

also decomposes the time series. More precisely, it combines each
component of each time series with each component of the other
time series. The length of the resulting time series is equal to the
shortest component that was used.

Due to the limitations of STL, which requires at least two full
periods, only new time series with a length greater than two times
the period plus one are considered valid. Created time series that do
not fulfill this requirement are considered invalid and are discarded.
This method is able to create a huge training set (including the orig-
inal time series) with a high diversity of time series characteristics.
The rough number of the training set is the number of original time
series to the power of three.

After the training set is generated, the time series characteristics
(see Section 3.3) of each time series are extracted. As the machine
learning methods have to handle the detrended time series, the char-
acteristics are also calculated on the detrended time series. At the
same time, the machine learning method evaluation is conducted.
During the evaluation, each method (see Section 3.4) performs a
forecast for each time series. To this end, the time series is split into
history (the first 80% of the time series) and in future (the remaining
20%). For the forecasting, each method gets, as explained in Section
3.1, the Fourier terms, and the season as input while the detrended
time series is the target. Then, for each time series and each method,
the forecast error, in this case, the mean absolute error (MAPE), is
calculated:

MAPE :=
100%
n

n∑
t=1

|
yt − ft
yt

|. (1)

In this equation, n is the forecast horizon,yt the actual value, and ft
the forecast value. To have a comparable forecast measure among
all time series, we normalize for each time series the forecast error
with the lowest error. This normalization results in values ≥ 1 for
each time series. Further, the best method has a value of 1. We
define these values as forecast accuracy degradation ϑ showing how
much worse the forecast accuracy is compared to the best method.
For instance, a forecast accuracy degradation of 1.05 means that the
method is 5% worse. Based on the forecast accuracy degradation,
the best method for each time series is determined.

Based on the time series characteristics and the best method for
each time series, the recommendation rules can be learned. For this
purpose, we envision three different approaches:

(i) The first approachAC is a classification task. That is, a random
forest is used to map the time series characteristics for the given
time series to the machine learning method with the lowest forecast

error. (ii) The core idea of the second approach AR is to learn how
much each method is worse than the best method. In more detail,
the approach calculates for each method how much worse this
method is compared to the method with the lowest forecast error
for given time series characteristics. Then, a random forest is used
as a regressor for each machine learning method in question for the
selection. In other words, the random forest tries to find a function
that learns how much worse the method is in comparison to the
best method based on the time series characteristics. After each
method has estimated how worse the forecast will be for a new
time series, the method with the lowest value is chosen. (iii) The
third method is a hybrid approach AH that combines the first two
approaches. More specifically, a random forest regressor is used
for each machine learning method available to estimate how much
worse the method is in comparison to the method with the lowest
error. Then, another random forest is used as a classifier to map the
estimation of howworse the forecast will be to the best method. The
idea is tominimize the regression error of eachmethod. For example,
if one method always claims to have the lowest degradation, but it
does not perform as well, the classification shall learn this behavior.

3.2.2 Online Phase. This phase takes place when a forecast for a
given time series is conducted. First, the characteristics of the time
series are extracted. Then, the recommendation rules are applied
to the characteristics, and a machine learning method is selected.
Afterward, the forecasting approach (see Section 3.1) performs the
forecast. Finally, the time series is saved within the time series
storage, and new time series can be generated, as explained in
Section 3.2.1.

3.3 Time Series Characteristics
To train a machine learning method for choosing the best method,
suitable features are required. Thus, we calculate for each time
series a set of characteristics. These characteristics contain infor-
mation about the time series, statistical measures, characteristics
proposed by Wang et al. [18], characteristics proposed by Lemke
and Gabrys [13], and characteristics we propose in this work. The
used time series characteristics and the associated calculation in-
structions are listed in Table 1. In contrast to the work of Wang et
al., we use the raw values of the characteristics to avoid arbitrary
normalization factors.



An Automated Forecasting Framework based on Method Recommendation for Seasonal Time Series ICPE ’20, April 20–24, 2020, Edmonton, AB, Canada

Table 1: Overview of the considered time series characteristics

Characteristic Description Formula

Frequency⋄ The frequency is the length of the most dominant recurring patterns within the time series. f = frequency(Y)
Length⋄ The total number of observations included in the time series. n = length(Y)
Standard deviation§ The standard deviations measures the amount of variations within the time series. σ =

√
var (Y )

Skewness§ The skewness measures the symmetry of the value distribution of the time series. 1
n · σ 3

∑n
k=1(Yt − Y )3

Kurtosis§ Kurtosis is a measure of the tailedness of the value distribution of the time series. 1
n · σ 4

∑n
k=1(Yt − Y )4

Remainder SD§ The stand deviation of the remainder. σR =
√
var (R)

Remainder skewness§ The skewness of the remainder.
1

n · σ 3
R

∑n
k=1(Rt − R)3

Remainder kurtosis§ The kurtosis of the remainder.
1

n · σ 4
R

∑n
k=1(Rt − R)4

Proportion remainder♯ This characteristic reflects how strongly the remainder is prominent in the time series.
QR(R)

QR(R) +QR(S)

Proportion season♯ This characteristic reflects how strongly the season is prominent in the time series.
QR(S)

QR(R) +QR(S)

Mean period entropy♯
This characteristic quantifies the regularity and unpredictability of fluctuations of the time series.
For this purpose, the approximate entropy of each period is calculated and then averaged. m =

1
n

∑ ⌊n/f ⌋
k=1 EA(pi )

Coefficient of entropy
variation♯

The coefficient measures the standardized entropy distribution over all periods.
√
var (EA(pi ))

m

Mean cosine similarity♯
This characteristic describes how similar all periods are. To this end, the cosine similarity of each
pair of periods is calculated. Then, the average similarity is determined.

2
∑ ⌈n/f ⌉
i=1

∑ ⌈n/f ⌉
j=1;j,i

pi · pj

| |pi | | · | |pj | |

(⌈n/f ⌉ − 1)2 + (⌈n/f ⌉ − 1)

Durbinwatson♯
This characteristic quantifies how well the seasonal pattern can be approximated by a sinus wave.
The Durbin-Watson test is used to check the auto-correlation of the fitter errors.

∑n
t=2(et − et−1)2∑T

t=1 e
2
t

Seasonality† This characteristic reflects the strength of the season within the time series. 1 −
var (R)

var (Y )

Serial correlation† This characteristic describes the correlation of the time series with itself to an earlier time. To
determine the serial correlation, the Box-Pierce statistics is used. n ·

∑f
k=1 rk (Y )

2

Remainder serial corr.† The serial correlation of the remainder. n ·
∑f
k=1 rk (R)

2

Non-linearity† This characteristic describes how badly the time series can be written as a linear combination of
unknown variables or functions. R.t. Wang et al. [18, p. 18](∗)

Remainder non-lin.† The non-linearity of the remainder. R.t. Wang et al. [18, p. 18](∗)

Self-Similarity† This characteristic describes how similar an object is to a part of itself by the Hurst exponent. R.t. Wang et al. [18, p. 20](∗)

Chaos† The chaos calculates the randomness within the time series via the Lyapunov exponent. R.t. Wang et al. [18, p. 20](∗)

2nd freq‡ The second dominant frequency of the time series. –
3rd freq‡ The third dominant frequency of the time series. –
Max spec‡ The maximal spectral value of the spectral density. –

Num peaks‡ This characteristic reflects how many strong recurring patterns the time series has. To this end,
the number of peaks in the spectral density that have at least 60% of the maximum value. –

Let Y be the time series without trend, S be the season component of the time series, R be the remainder of the time series, r (x)k be the auto-correlation
function with lag k , QR(x) := Q0.95(x) −Q0.05(x) be the range between the 95% percentile and 5% percentile, pi be the i-th period of Y , EA(x) be the
approximated entropy [14, p.3], et the fitting error at time t.
(∗) We modify the approach and use the time series without trend for the calculation.
⋄ time series information, § statistical measure, ♯ proposed by this work, † proposed by Wang et al. [18], ‡ proposed by Lemke and Gabrys [13]

3.4 Machine Learning Methods
For the forecasting task, we only consider machine learning meth-
ods in this paper as statistical methods such as ARIMA can typically
only process the time series without additional information. This
means that the extracted features (see Section 3.1) cannot be used
by such methods. In addition, ML methods can handle any num-
ber of features. That is, for a possible extension of our approach
with external information, these features can be added. The used
machine learning methods (see Section 3.1) are listed in in the fol-
lowing: (i) Catboost applies gradient boosting of decision trees [15].
(ii) Cubist is a regression model that combines the ideas of M5 with

additional corrections as described by Quinlan [16]. (iii) Evtree im-
plements an evolutionary algorithm for learning globally optimal
classification and regression trees [9]. (iv) NNetar is a feed-forward
neural network is trained with lagged values of the time series [10].
(v) Random Forest (RF) uses bagging for generating samples from
the data set used for learning [2]. (vi) Rpart trains a regression
tree using recursive partitioning, based on the CART algorithm
by Breiman et al. [3]. (vii) Support Vector Regression (SVR) uses the
same principles as SVM for classification [8]. (viii) XGBoost uses
gradient tree boosting where trees are generated sequentially. That
is, each tree is grown with knowledge from the last trained tree [4].
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4 EVALUATION
Before discussing the evaluation, we introduce the used data set
in Section 4.1. Then, we explain the methodology and the evalua-
tion metrics in Section 4.2. Afterwards, we analyze how well the
different machine learning methods perform on the data set. Based
on this information, we evaluate our recommendation approaches
in Section 4.4. In Section 4.5, we investigate how the diversity of
the data set is increased by the time series generation. Finally, we
compare our forecasting framework with state-of-the-art methods.

4.1 Data Set
To have a sound and broad evaluation of our approach, a highly
heterogeneous data set that covers different domains and charac-
teristics is required. Indeed, there are numerous data sets available
online: competitions (e.g., NN32, M33, and M4), kaggle, R packages,
and many more. Although, for instance, the M4 competition set
contains 100,000 time series, these time series have low frequencies
(1, 4, 12, and 24) and short forecasting horizons (6 to 48 data points).
Further, the median length of a time series is 106. That is, we assume
that if the data set is used alone, it is not suitable for benchmarking
forecasting methods for all kinds of domains.

To this end, our data set4 consists of 150 real-world and pub-
licly available time series. The time series are collected from vari-
ous sources including Wikipedia Project-Counts, Internet Traffic
Archive, R packages , Kaggle, Datamarket, and many more. Further,
the data set reflects different use cases, e.g., Internet accesses, sales
volume, etc. Moreover, our data set covers the same frequencies
as the M4 competition and additional frequencies (7, 48, 52, 60, 96,
144, 168, 365, 2160, and 6480). Further, our forecast horizons range
from 8 to 7,304 data points, and the median length is 595.

4.2 Evaluation Methodology
To evaluate our approach, we divide the original data set into 100
training time series and 50 validation time series. To avoid an ar-
bitrary split, we divide the data set in 100 unique splits. In other
words, we train and evaluate our approach on 100 different time
series train and test sets. We also made sure that all time series are
spread across all splits.

As described in Section 3.2.1, our approach expands for each
split the size of the training set to have a sound training set for the
recommendation. That is, our approach uses in each division the
100 time series for the generation of new time series. In contrast to
the description of the approach, we restrict the approach to use only
10,000 instead of the roughly 1,000,000 time series. More precisely,
the training data in each split contains the original 100 time series
and 9,900 new time series.

4.3 Machine Learning Method Analysis
For reference, we investigate how each of the chosen machine
learning methods performs in the forecasting process on the data
set, without recommendation, i.e., changing the method depending
on the input time series. To this end, we observe for each method
how often the method (i) is the best method in each split (best
2NN3 competition: http://www.neural-forecasting-competition.com/NN3/
3M3 competition: https://forecasters.org/resources/time-series-data/m3-competition/
4Time series data set available at https://zenodo.org/record/3508552

method in split), (ii) has on average the lowest forecast accuracy
degradation in each split (on avg. lowest error in split), and (iii)
is over all time series the best method (total best method). We
report the respective percentages in Table 2 showing these three
observations for the training data and test data for each method.
While the distribution of percentages of which method is the best
over all time series is almost similar for the training and test data,
the distributions per split differ considerably. While Nnetar was in
every split the method achieving the best training forecast accuracy
the most often, it reaches only in 73% of the test data splits the same
performance. Cubist had in 55% of the training splits on average the
lowest forecast accuracy degradation . In the test data, Cubist has
in only 17% of the splits on average the lowest forecast accuracy
degradation.

In a nutshell, we see from these results that the dynamic choice
of the best performing method is a crucial task with significant po-
tential. Even choosing a method based on straight-forward metrics
(for instance, choosing the method which was on average the best
method in the training data) based on the training data may lead to
a bad performance.

4.4 Evaluation of the Recommendation
As the recommendation of the best suitable method is an essential
pillar of our forecasting framework, we examine the recommenda-
tion performance of our envisioned approaches (see Section 3.2.1).
To have a ground truth for the competition, we define the following
three method selecting strategies: (i) Selecting the best method for
each time series a-posteriori S∗. (ii) Selecting the method which had
the lowest average forecast accuracy degradation in each training
split SL . (iii) Selecting the method, which was most often the best
method in each training split SB . Note that, based on our analysis
in Section 4.3, the method Nnetar will be chosen.

The results of the comparison between these six methods are
presented in Table 3. For each approach/strategy, this table lists the
median, average and standard deviation of the accuracy degradation
ϑ over all 100 splits.

The best values are shown by S∗. Indeed, this result is not surpris-
ing as this strategy has a-posteriori knowledge. Thus, this method
has the role of showing the theoretically best possible values. In
other words, S∗ is the base-line for the recommendation. Conse-
quently, only five methods remain for a fair competition. In terms
of the average forecast accuracy degradation, the regression-based
approaches (AH being on average 15.9% worse than always choos-
ing the best method and AR with a value of 1.172) outperform the
remaining approaches/strategies. While taking also the median and
the standard deviation of the forecast accuracy degradation into
account, it can be seen that the meta-learning layer of AH is able
to improve the performance of AR in all measures of the forecast
accuracy degradation. The worst forecast accuracy degradation
is shown SL followed by AC . In contrast, AC exhibits the lowest
median followed by the regression-based approaches. The worst
median is shown by SB . While observing the standard deviation of
the forecast accuracy degradation, SL , AC , AR exhibit high values.
The lowest value is shown by AH .

The median and mean values can be better understood if the
distribution of the ranking of the recommended methods is taken

http://www.neural-forecasting-competition.com/NN3/
https://forecasters.org/resources/time-series-data/m3-competition/
https://zenodo.org/record/3508552
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Table 2: Investigation of the forecast performance of the different machine learning methods.

Catboost Cubist Evtree Nnetar RF Rpart SVR XGBoost

(Train / Test)
Best method in split (0% / 21%) (0% / 3%) (0% / 0%) (100% / 73%) (0% / 0%) (0% / 0%) (0% / 3%) (0% / 0%)
On avg. lowest error in split (0% / 11%) (55% / 17%) (0% / 2%) (0% / 5%) (0% / 5%) (45% / 43%) (0% / 0%) (0% / 17%)
Total best method (7.2% / 18.3%) (13.5% / 13.1%) (5.9% / 9.2%) (38.1% / 23.9%) (4.5% / 4.2%) (12.3% / 8.1%) (9.2% /16.8%) (9.0% / 5.3%)

Table 3: Comparison of the recommendation methods.

S∗ SL SB AC AR AH

Avg. ϑ 1.000 1.409 1.235 1.249 1.172 1.159
Median ϑ 1.000 1.045 1.076 1.016 1.035 1.032
SD ϑ 0.000 3.674 0.427 2.458 1.382 0.382

into account. Figure 3 shows the distribution of the rankings. The
ranks of SL are almost equally distributed. SB selects almost either
the best or the worst method. More precisely, it recommends in
51.4% of the time series the worst method. For all recommenda-
tion approaches, the distribution of ranks two to five drops. The
regression-based approaches select in more than 30% the best or
second-best method. However, choosing the worst method is al-
most as likely as choosing the best method. In contrast to all other
methods, AC chooses with more than 50% the best, second, or third
best method, but also has almost 25% of choosing the worst method.
In fact, none of the methods show a proper distribution, which
decreases with increasing rank.
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Figure 3: Distribution of the rankings.

4.5 Evaluating the Time Series Generation
One central problem of machine learning is the inherent limitation
to predict only what has been learned during the training phase.
In other words, machine learning methods have a limited ability
for extrapolation. This also holds true for our recommendation.
Consequently, we try to consider as many time series with differ-
ent characteristics as possible to improve the recommendation for
unknown time series. Thus, we analyze in this section how the
new time series generation affects the diversity of the time series
characteristics. To this end, we collect for each time series charac-
teristic the values from the original data and the new generated

time series. Then, we normalize with a min-max-scaling for each
time series characteristic the data between 0 and 1 for a comparable
analysis. On top of this, we depict each characteristic in a spider
chart (see Figure 4). In this diagram, the maximal value of new data
(grey) and original data (purple), and the minimum values of the
new data (green) and original data (blue) are shown. Each edge of
this chart represents a time series characteristics. For almost all
characteristics, the new generated time series expand the spectrum
of the data both in terms of the maximum value and minimum
value.
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Figure 4: Time series generation result.

4.6 Evaluation of Forecast Accuracy
To investigate how well our forecasting framework performs, we
compare the forecasting error (i.e., MAPE) of our approach with
three state-of-the-art approaches that are briefly described in the
following: ETS [12] is a statistical method and builds an exponential
smoothing state space model consisting of trend, season, and error.
Each component can be combined in an additive or multiplicative
manner, or it may be skipped. tBATs [7] extends ETS using a trigono-
metric representation based on Fourier series for the season and an
ARMA model for the error. Further, the data is transformed with a
Box-Cox transformation. sARIMA [11] determines the orders of the
autoregressive model, the moving average model, and the differenti-
ation. sARIMA models one seasonal pattern, and each non-seasonal
component of the ARIMAmodel is extended with its seasonal coun-
terpart. Table 4 lists the average, median, standard deviation of the
forecast error for all 100 splits. Each of our approaches exhibits a
lower average MAPE and standard deviation than the state-of-the-
art methods. The worst average MAPE (56.96%) is achieved by ETS.



ICPE ’20, April 20–24, 2020, Edmonton, AB, Canada A. Bauer et al.

In contrast, tBATS has the lowest median MAPE (10.83%) followed
byAC (12.31%) while ETS again shows the highest median error. To
sum up, our approaches are equally accurate in terms of the median
forecast error, but having a lower average and standard deviation
forecast error than the state-of-the-art methods.

Table 4: Comparison of the forecast error.

MAPE AC AR AH ETS tBATS sARIMA

Avg. 24.40 23.26 23.68 56.96 36.28 28.12
Median 12.31 13.07 13.18 14.47 10.83 13.00
SD 50.31 40.41 38.52 136.22 98.68 64.72

5 RELATEDWORK
To face the "No-Free-Lunch Theorem", i.e., minimizing the variance
of monolithic forecasting methods, many hybrid mechanisms and
forecast recommendation systems have been developed. The first
idea of selecting a forecasting method based on rules was intro-
duced by Collopy and Armstrong in 1992 [6]. In their work, they
manually created an expert system. The rules based on 18 time
series characteristics and include four methods. However, this rule
set was created by human experts, and each modification requires
human interaction. In 2009, Wang et al. introduced two approaches
for forecasting method recommendation [18]. Firstly, they pro-
pose hierarchical clustering and self-organizing maps; secondly,
a decision tree technique is applied. The generate rules based on
13 time series characteristics and covers four methods. Unfortu-
nately, the proposed rules were not evaluated. In 2010, Lemke and
Gabrys investigated the applicability of different meta-learning
approaches [13]. In their work, they use 17 time series and six error
characteristics while using eighth methods and seven combina-
tion approaches. In 2018, Talagala et al. propose in a techpaper a
feature-based forecast-model selection [17]. To this end, they simu-
late time series that are generated by fitting exponential smoothing
and ARIMA models to the original data. A random forest classifier
is then used to map 25 to 30 time series characteristics (depending
on the time series) to the best forecast method. In their work, they
consider seven methods. As the work of Wang et al. [18] were not
evaluated, Züfle et al. investigate and compare these rules to two
proposed dynamic recommendation algorithms [20].

In contrast to the relatedwork that only introduce the selection of
the best forecasting method, we propose an overarching framework
that combines the selection of the best method and the forecast itself.
While the aforementioned works use solely statistical methods, the
focus in this work lies in machine learning-based regressor methods.
Further, for the evaluation, we use a highly diverse data set. Further,
our selection mechanism creates also new time series by combining
actual time series to increase the diversity of the data set.

6 CONCLUSION
In this work, we propose an automated forecasting framework that
(i) extracts characteristics from a given time series, (ii) selects the
best-suited machine learning method based on recommendation,
and finally, (iii) performs the forecast. Our approach offers the ben-
efit of not relying on a single method with its possibly inaccurate

forecasts. For the recommendation of the best-suited method, we
introduce three different approaches, and in addition to time series
characteristics from the literature, we propose our own character-
istics. In an extensive evaluation, we compare the three proposed
recommendation approaches, the impact of time series generation,
and compare the forecasting framework with state-of-the-art meth-
ods. Although the proposed recommendation approaches perform
equally good, our approach achieves the best forecasting accuracy
in comparison with the state-of-the-art techniques.
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