
Self-Tuning Resource Demand Estimation
Johannes Grohmann∗, Nikolas Herbst∗, Simon Spinner∗ and Samuel Kounev∗

∗University of Würzburg, Email:[first name].[last name]@uni-wuerzburg.de

Abstract—The average time a resource needs to process incom-
ing requests in a monitored workload mix is a key parameter
of stochastic performance models. Direct measurement of these
resource demands is usually infeasible due to instrumentation
overheads causing measurement interferences and perturbation
in production environments.

Thus, a number of statistical estimation approaches (e.g.,
based on optimization, regression or Kalman filters) have been
proposed in the literature each coming with different strengths
and run-time overheads. Most approaches offer parameters in
order to customize the behavior of the estimator influencing the
estimation quality and the required computation time. However,
their configuration usually requires exhaustive testing, as default
parameters normally do not provide optimal performance.

In this paper, we propose a self-tuning approach based on
discrete optimization that can be used to automatically tune the
parameters of resource demand estimation methods, tailoring
them to the specific application scenario and thus improving
their accuracy. We apply and compare different techniques on
a representative data set with varying load levels and number
of workload classes. We show that our selected approach for
parameter tuning can automatically improve the estimation
quality of certain estimators by up to 25%.

I. INTRODUCTION

Performance models can be used to answer performance-
related questions for a software system during system de-
sign, capacity planning at deployment time or during sys-
tem operation. Different performance modeling formalisms
exist, e.g., stochastic performance models such as Queueing
Networks (QN) [1] or Queueing Petri Nets (QPN) [2], or
architecture-level performance models such as the Palladio
Component Model (PCM) [3] or the Descartes Modeling
Language (DML) [4].

A key parameter of stochastic performance models are re-
source demands (also known as service demands). A resource
demand is the average time a unit of work (e.g., request or
transaction) spends obtaining service from a resource (e.g.,
CPU or hard disk) in a system over all visits excluding any
waiting times [5], [6]. Different requests can be grouped into
different workload classes. Requests from the same workload
class normally have similar resource demands.

Timely and precise resource demand estimates are a crucial
input to proactive auto-scaling mechanisms used for elastic
resource provisioning. Besides the standard threshold-based
auto-scalers, more sophisticated auto-scaling mechanisms (that
leverage queueing theory, control theory or time series anal-
ysis) require as input, in addition to average CPU-utilization
measurements, the resource demands of the different workload
classes [7].

However, the direct measurement of resource demands is
not feasible during operation in most realistic systems [8]

due to instrumentation overheads and possibly measurement
interferences. Furthermore, Willneker et al. [9] showed that
statistical estimation approaches can provide a comparable
accuracy to direct measurements. We therefore focus on sta-
tistical approaches to resource demand estimation.

The advantage of estimation approaches compared to direct
measurement techniques is their general applicability and
low overheads. Estimation approaches typically rely only on
coarse-grained measurements from the system (e.g., CPU
utilization, and end-to-end average response times) which can
be monitored easily with state-of-the-art tools without the need
for fine-grained code instrumentation. These measurements are
routinely collected for many applications (e.g., in data centers).
Therefore, approaches to resource demand estimation are also
applicable on systems serving production workloads.

Over the years, a number of approaches to resource demand
estimation have been proposed using different statistical esti-
mation techniques (e.g., linear regression [10], [11] or Kalman
filters [12], [13]) and based on different laws from queueing
theory. When selecting an appropriate approach for a given
scenario, a user has to consider different characteristics of the
estimation approach, such as the expected input parameters,
its accuracy and its robustness to measurement anomalies.
Depending on the constraints of the application context, only
a subset of the estimation approaches may be applicable.

To the best of our knowledge, the only publicly available
tool providing different ready-to-use approaches to resource
demand estimation is LibReDE (Library for Resource Demand
Estimation) [14].1 The latter currently supports implementa-
tions of the following estimation approaches:

• Service Demand Law [11]
• Least Squares (LSQ) regression using queue-lengths and

response times (Response Time Regression) [15]
• LSQ regression using utilization law (Utilization Regres-

sion) [10]
• Approximation with response times (Response Time Ap-

proximation) [11]
• Recursive optimization using response times (Menascé

Optimization) [16]
• Recursive optimization using response times and utiliza-

tion (Liu Optimization) [17]
• Kalman Filter (KF) using utilization law (Wang Kalman

Filter) [12], [18]
• KF using response times and utilization (Kumar Kalman

Filter) [13], [19]

1LibReDE: Available for download at http://descartes.tools/librede.

http://descartes.tools/librede


LibReDE implements features, such as configuring the Step
Size or the Window Size allowing to refine the input processing
for all approaches. Additionally, some approaches like the ones
based on Kalman Filters (KFs) offer specific parameters in
order to customize their behavior for optimal performance.
However, it is not trivial to determine how the various pa-
rameters should be configured for optimal performance. A
poor choice of parameter values can drastically decrease the
estimation accuracy of some approaches, while others may
remain relatively unaffected. However, finding sufficient or
good configurations for a given scenario requires exhaustive
testing and/or expert knowledge and is usually not feasible
by hand. Therefore, most approaches offer standard parameter
configurations based on experience and/or rules of thumb.

However, in case sample measurement traces from the given
application domain are available, we can use them in order
to optimize the parameter settings and adapt the estimators
for the specific domain. Therefore, we propose a self-tuning
approach based on discrete optimization that can be used
to automatically tune the parameters of resource demand
estimation methods, tailoring them to the specific application
scenario and thus improving their accuracy.

This self-tuning approach automatically optimizes the pa-
rameter settings of the different resource demand estima-
tion techniques mentioned above without requiring any prior
knowledge from the user. We extend LibReDE to autonom-
ically optimize generic parameters of black-box estimation
approaches during system operation. The evaluation is con-
ducted with representative measurement traces from exhaus-
tive micro-benchmark experiments on a real system. Due to
the lack of space, we limit ourselves to the most interesting
parameters, the ones based on KFs. Tweaking those can
improve the estimation accuracy by up to 25%.

However, note that the proposed approach is of a general
nature and supports all available approaches for resource
demand estimation. Although not mentioned in this work, we
also applied some different algorithms on all of the above
mentioned estimators. More detailed evaluations can be found
in the work of Grohmann [20].

The remainder of the paper is structured as follows. In Sec-
tion II, we describe the related work. Section III describes our
idea and our approach introducing the parameters to be tuned
in Section III-A and the algorithm for parameter self-tuning
in Section III-B. We evaluate our approach in Section IV and
summarize and conclude our work in Section V.

II. RELATED WORK

There are several works on the evaluation of resource
demand estimation approaches. However, most of them only
cover one or two approaches.

Rolia and Vetland [10], [21] first did some experiments
for Linear Regression (LR) techniques. Pacifini et al. [22],
Casale et al. [23], [24] and Stewart et al. [25] extend this by
investigating limitations of LR in resource demand estimation
and the impact of different factors. The performance of KFs
for resource demand estimation is researched by Zheng et

al. [13], [26] and Kumar et al. [19]. Kraft et al. [15] and
Sharma et al. [27] both compare LSQ regression with their
Maximum Likelihood Estimation (MLE) [15] and Independent
Component Analysis (ICA) [27] approach, respectively.

Spinner et al. [8] integrated many different approaches into
one common implementation and evaluated them. The publicly
available tool LibReDE [14] offers open source implementa-
tions of currently eight different estimators.

However, the user still has to manually configure the dif-
ferent approaches when using LibReDE. There exist no works
on automatic and systematic evaluation of the best parameter
settings for a given test set, since previous approaches only do
manual testing and develop rules of thumb for a chosen small
set of parameters (see [8], [13], [19], [23], [24], [26]).

III. APPROACH

The general idea of this work is to combine the resource
demand estimation approaches with general optimization tech-
niques executed in an automated manner in order to improve
the performance of existing resource demand estimation. To
this end, we use a set of training traces on which the config-
uration parameters of different approaches can be optimized
in dependence of different input features. These traces usually
contain standard information like the average resource utiliza-
tion for a certain period of time or the arrival and response time
per request (broken down according to the different workload
classes). They can be collected using historical data from the
System Under Study (SUS) or other similar systems.

Since most estimation approaches have multiple configura-
tion parameters, we can try to optimize their result by tuning
these parameters. By studying scenarios with known resource
demands as a reference or by performing cross-validation, we
can tune the parameters in order to minimize the estimation
error. In the case of cross-validation, the estimation error can
be calculated using the utilization error EU or the response
time error ER, as defined in Section IV-A. Depending on the
considered use case, either one or the other or a combination of
both error values can be optimized. The calculated error values
are used to rate the quality of each parameter configuration and
the one with minimal errors is preferred.

We a heuristic to systematically search and find satisfactory
parameter configurations specialized on the given training set.
Depending on the size of the training set and the complexity of
the algorithm, this usually leads to a very high computational
overhead. Nevertheless, this can significantly improve the
performance of the estimators, since it is adapting specially
to the required target scenario.

Furthermore, in the context of DevOps, the deployment
and/or the software version might be subject to change.
Additionally, the workload mix or the load level are generally
variable. All of these factors influence the resource demands
and/or the optimal parameter configuration of the resource
demand estimators. Therefore, the self-tuning process can be
periodically repeated in order to re-tune the parameters based
on historic data. Depending on the frequency of expected



changes and the computational demand of the optimization,
this re-tuning might be applied more or less often.

A. Configurable Parameters

Generally, any parameters can be tuned by our self-tuning
approach. All parameters should define a minimum and a
maximum value, as our proposed algorithm needs that in order
to work. Additionally, a default value should be set, both as a
guideline for the algorithm and as a baseline configuration to
estimate the achieved gain.

As we want to focus on Kalman Filter (KF) specific
parameters in this work, we give a short explanation of the
two considered approaches and the configuration options. We
use the notation defined by Spinner et al [8].

KFs are a generally applicable statistical estimation method
capable of estimating the hidden state of a dynamic system.
Zheng et al. [13] and Kumar et al. [19] apply KFs for resource
demand estimation, where the hidden states to be estimated are
the resource demands of the system. The approach uses the
utilization of the resources, the response time and the arrival
rate of requests to build the models. We refer to this approach
as Kumar Kalman Filter (KKF).

Wang et al. [12], [18] propose a different approach based
on the utilization law, which we also include in this work and
referring to it as Wang Kalman Filter (WKF).

For lack of space, we omit any further details on both
approaches and refer to the original papers or the works of
Spinner et al. [8] or Grohmann [20] for elaborate descriptions
and implementation details.

The implementation in LibReDE requires five parameters:
Three parameters are based on the nature of KFs and parame-
terize the state model and the noise covariances. We call them
state noise covariance, state noise coupling and observe noise
covariance.

The other two parameters bounds factor and initial bounds
distance have to do with the bounds of the estimates. They
are necessary, as the general description of KFs allows any
kind of state variables, but resource demands can be restricted
to certain interval (e.g., just postive quantities). They are used
to control estimates, when the actual estimates of the KFs get
out of bounds [13].

However, due to the abstract nature of our optimization
algorithms, no deeper understanding of the parameters is
required.

B. Algorithm for Parameter Self-Tuning

The proposed self-tuning algorithm is generally abstract and
works for any generic parameter providing a minimum and a
maximum value. Optionally, a reasonable start value can be
defined.

The Stepwise Sampling Search (S3) or Iterative Parameter
Optimizer (IPO) [28] was developed as part of our previous
work in the context of regression model optimization [29].
Here, we use a version of this algorithm adapted for self-tuning
the parameters of resource demand estimation techniques.
However, due to the lack of space, we can not go into detail

~ν 1
(1)

~ν 2
(1)

~ν 2
(2)

~ν 3
(1)

~ν 3
(2)

Iteration 1

Iteration 2

Iteration 3

k = 3, n = 2

Figure 1. The first three iterations of S3 [28].

about the algorithm and refer to the original source for more
detail [28].

Each evaluation of a point in the parameter space normally
takes a considerably long time (around 10 - 30 seconds,
depending on the used estimation algorithm and the size of
the training set). Hence, we want to keep the number of
points to evaluate as low as possible. Multiple dimensions, i.e.,
multiple different parameters and their interactions are covered
by the algorithm although this results in higher computational
demand.

S3 can be configured by three parameters: The number
of splits per parameter k, the number of exploration points
considered per iteration n and the maximum number of
iterations jmax.

Figure 1 illustrates an example for the first three iterations
of S3. Depicted is an example with two parameters, a splitting
factor k of three and two exploration points n. Starting at the
first exploration point ~ν 1

(1) (top layer), 25 evaluation points
(including the initial value) are created. Every crossing of the
lines represents one evaluation point. i.e. a parameter combi-
nation to be evaluated. All evaluated points are illustrated by
a small circle at the corresponding crossing.

For the second iteration, let’s assume the marked points
~ν 2
(1) and ~ν 2

(2) are the most promising of the evaluated points.
They are therefore chosen as exploration points with the next
iteration considering a new set of points between their lower
and their upper neighbour. As shown in the picture, the sets
do not necessarily need to be disjoint.



From the new set of evaluated points, the new exploration
points are determined, which explore their own subspace and
so forth until the maximum number of iterations jmax is
reached. In our example jmax = 3 and the execution returns
the best point found so far after ~ν 3

(1) and ~ν 3
(2) finish their

exploration.
Noorshams et al. [28] show that the total complexity of

the algorithm is given by O(jmax · n · (k + 2)l). Hence, it
can be controlled by tuning the parameters. However, it has
to be noted that the number of parameters to be optimized
simultaneously heavily influences the computational complex-
ity. Therefore, the number of parameters should be kept at a
reasonable size. The other parameters can be tuned as desired
in order to face the trade-off between run-time and solution
quality.

Note that S3 requires another set of parameters in order
to configure its behavior due to the generic nature of the
algorithm. We will define and set default values after our
analysis in Section IV. This prevents the user from being faced
with another set of parameters.

Additionally, S3 does not depend on initial values and is
hence not negatively influenced by a poor choice of default
values. However, our self-tuning algorithms always evaluate
the error for the default values just in case. If a parameter is
found to perform better with its default value rather than the
computed tuned value, the default value is chosen.

IV. EXPERIMENTAL ANALYSIS

In this section, we evaluate the impact of applying the
presented self-tuning algorithm for optimizing the parameters
of resource demand estimation techniques. We compare the
estimation error when using default values with the estimation
error after self-tuning on a representative data set. We distin-
guish between the utilization error EU and the response time
error ER as defined in the following section, since different
use cases stress both errors differently.

A. Setup

Our training set consists of measurements obtained from
running micro-benchmarks on a real system. The micro-
benchmarks generate a closed workload with exponentially
distributed think times and resource demands. As mean values
for the resource demands, we selected 14 different subsets
of the base set [0.02s; 0.25s; 0.5s; 0.125s; 0.13s] with num-
ber of workload classes C = {1; 2; 3}. The subsets were
arbitrarily chosen from the base set so that the resource
demands are not linearly growing across workload classes.
The subsets intentionally also contained cases where two or
three workload classes had the same mean value as resource
demand. The mean think times were determined according
to the targeted load level of an experiment. We varied the
number of workload classes C = {1; 2; 3} and the load level
U = {20%; 50%; 80%} between experiments. The traces were
already used by Spinner et al. [8], where a more detailed
description of the test environment can be found.

In total, 210 traces of approximately one hour run time
were collected: They were randomly split into training and
validation set, resulting in a total of 168 training traces and
42 validation traces. The optimizations were performed on a
virtual machine hosted on a XenServer hypervisor equipped
with an Intel R© Xeon R© E5-2640 v3 (6 Cores) @ 2,6 GHz
processor and 32 GB of RAM running Windows 10.

For error analysis we separate between the relative response
time error ER and the absolute utilization error EU shown in
Equation 1:

ER =
1

C

C∑
c=1

∣∣∣∣∣ R̃c −Rc

Rc

∣∣∣∣∣ ,
EU =

∣∣∣∣∣
C∑

c=1

(Xc · D̃c)− U

∣∣∣∣∣
(1)

with C being the number of workload classes, Rc the
average measured response time of workload class c over all
resources, R̃c the predicted average response time based on
the estimated resource demands, Xc the measured throughput
of workload class c, D̃c the estimated resource demand of
workload class c and U the average measured utilization over
all resources.

B. Results

Table I shows the five configurable parameters for KFs with
their default value as well as with the minimum and maximum
values chosen by us.

Table I
PARAMETERS FOR KALMAN FILTERS (KFS) WITH DEFAULT VALUE,

LOWER AND UPPER BOUNDS.

Parameter name Lower bound Upper bound Default
Initial bounds distance 0.0 0.1 0.0001

Bounds factor 0.0 1.0 0.9
State noise covariance 0.0 2.0 1.0

Observe noise covariance 0.0 0.1 0.0001
State noise coupling 0.0 2.0 1.0

Table II shows the performance of different runs of S3
optimizing the KKF in terms of response time error. We used
three configurations of S3: The first one tunes all parameters
with one split point per parameter, three exploration points per
iteration, and three iterations in total. (5.1-3-3)

As tuning all parameters at once takes a lot of time, we run
two alternative approaches splitting the parameters into two
groups: The parameters concerning the bounds, i.e., the initial
bounds distance and the bounds factor, and the parameters
dealing with the coupling and covariances, i.e., the state noise
covariance, the state noise coupling, and the observe noise
covariance.

We use two different configurations to solve them. The
second (2.4-5-5) configuration denotes the S3 run optimizing
the initial bounds distance and the bounds factor. It uses
four splits per evaluation and five exploration points over five
iterations. The third (3.3-3-3) iteration optimized the coupling
and covariance parameters and runs with k = 3, n = 3 and



jmax = 3. Note that, we performed a lot more tests than
shown here, in order to pick the shown configurations. We
aimed for roughly comparable runtimes in order to keep the
results comparable.

Table II
COMPARISON OF DIFFERENT CONFIGURED RUNS OF S3 FOR THE KKF

OPTIMIZING RESPONSE TIME. THE BOLD PARAMETERS MARK THE VALUES
THAT HAVE BEEN OPTIMIZED.

Algorithm Default 5.1-3-3 2.4-5-5 3.3-3-3
Opt. time (hh:mm:ss) – 05:05:45 04:05:08 03:17:44
Avg. est. time (ms) 141.571 119.238 181.595 139.238
Rel. improvement – 15.775% −28.271% 1.648%

Avg. ER 0.229 0.177 0.171 0.176
Rel. improvement – 22.760% 25.257% 22.954%

Avg. EU 0.034 0.040 0.034 0.039

Init. bounds dist. 0.0001 0.0 0.1 0.0001
Bounds factor 0.9 1.0 1.0 0.9

State noise cov. 1.0 0.0 1.0 0.0
Observe noise cov. 0.0001 0.1 0.0001 0.1
State noise coupl. 1.0 0.0 1.0 0.0

We see the benefit of self-tuning in Table II. All config-
urations of S3 found significant improvements of over 20%.
However, the runs themselves do not differ as much as one
might expect. Interestingly, the 2.4-5-5 optimizing only the
initial bounds and the bounds factor of KKF performs best
with an improvement of over 25%. This is due to the fact that a
focus on less parameters reduces the computational complexity
allowing to consider more iterations and evaluation points. If
we assume independent parameters, we should always split
up the parameters and optimize them separately. This matches
our expectations from Section III-B. However, 5.1-3-3 still
performs surprisingly well, although we had to prune its search
space to only 1 split per parameter (k = 1) in order to keep
the tuning time acceptable.

Table III
COMPARISON OF DIFFERENT CONFIGURED RUNS OF S3 FOR THE WKF

OPTIMIZING RESPONSE TIME. THE BOLD PARAMETERS MARK THE VALUES
THAT HAVE BEEN OPTIMIZED.

Algorithm Default 5.1-3-3 2.4-5-5 3.3-3-3
Opt. time (hh:mm:ss) – 04:50:06 02:57:20 02:50:32
Avg. est. time (ms) 155.310 111.143 75.571 161.190
Rel. improvement – 28.438% 51.341% −3.787%

Avg. ER 1.056 1.030 1.030 1.034
Rel. improvement – 2.423% 2.404% 2.042%

Avg. EU 0.021 0.021 0.021 0.021

Init. bounds dist. 0.0001 0.1 0.1 0.0001
Bounds factor 0.9 1.0 1.0 0.9

State noise cov. 1.0 0.75 1.0 0.125
Observe noise cov. 0.0001 0.0 0.0001 0.0015625

State noise coupling 1.0 0.75 1.0 0.125

Table III shows even less variance than Table II. Although
all algorithms find different values for the given parameters,
they all manage to achieve a gain between two and three
percent in terms of estimation error. Even though this gain
is not quite as notable as for KKF in Table II, we still note

that the given default configurations are far from optimal, since
all algorithms can find a comparable improvement.

Additionally, we added the average absolute utilization error
EU as metric to Tables II and III in order to monitor the
change in EU although we are optimizing ER. We can see in
Table II that the bounds factor does not seem to influence EU

very much. Hence, we can optimize the bounds with 2.4-5-5
and achieve a gain of over 25% for ER, while non-negatively
influencing EU . The other two approaches show an increase
of ER. However, we argue that this impact is still acceptable,
while optimizing ER.

Table III shows no negative impact at all. We can therefore
tune ER of WKF without major influences on EU .

Note that while the estimation error is deterministic for a
fixed test set, the repeatabilty in terms of estimation time is
generally quite low in our experiments, as the execution times
varied in each experiment. Therefore, despite the promising
results in Table III, we cannot say that the average estimation
time is significantly affected by the parameter tuning, given
that the variance between individual runs is bigger than the
variance of the different configurations. Furthermore, estima-
tion times are not in the focus of this work as we aim to
optimize the estimation error and are therefore do not consider
the estimation time in the self-tuning algorithms. However, we
plan to extend our work in this direction in the future.

We repeated the same experiments optimizing the utiliza-
tion error EU . Although results and optimization times were
similar, the overall gain was below 1% for all runs. This is due
to the fact that the utilization error is already quite small for
both KFs. We therefore do not cover the results and just note
that all runs behaved comparable, matching our expectations
from the observations above.

C. Limitations

We included only one individual optimization run in this
work. We repeated the experiments several times with shuffled
training and validation data sets in order to validate their
repeatability. The relative improvements in the estimation error
varied not more than by 10% over three repetitions. However,
the random shuffling of training and validation data set made
it impractical to add different runs to our evaluation.

We compared the results of the S3 algorithm with other
heuristics like local-search or brute-force. Due to the lack of
space, we are not able to include this in our work, but like
to note that the results proved S3 to be optimal in terms of
solution gain vs optimization time.

We ignore estimation times for analysis and optimization in
this work. However, we plan to tackle this problem in future
work.

V. CONCLUSION

We proposed an approach to automatically tune the pa-
rameters of resource demand estimation approaches. In the
evaluation, we focused on the step size as well as five
specific parameters. Our test set consisted of 210 represen-
tative measurement traces from exhaustive micro-benchmark



experiments on a real system. The results show optimization
of the Kalman Filter specific parameters can decrease the
response time error of the Kumar Kalman Filter by over 25%.

As the Kalman Filter are generally more efficient (around
150ms on avg.) than comparable estimators (see e.g., [8],
[20]), their ability to be automatically fine-tuned to a given
scenario with significant impact increases their applicability
during system run-time.

Note that even small improvements in the estimation quality
might have significant impact. Since we estimate the resource
demand on a per request basis, the estimated resource demands
are multiplied by a factor in dependence of the system size.
Hence, a big system will still profit quite notably from small
relative improvements.

Challenges and Future Work: We did not consider the
Pareto optimization between estimation time and estimation er-
ror in this work. However, the estimation time is an important
factor especially in online scenarios. Self-tuning parameters
could also aim to minimize the estimation time, while keeping
the estimation error constant. This work can be seen as a
starting point towards improving resource demand estimation
for autonomic online optimization during system operation.

During our work, we noticed some interesting clustering
effects while optimizing the KFs. Some traces reacted con-
tradictory to the rest when changing certain parameter values.
We plan to investigate the root causes for this effect in order
to be able to optimize the parameters more precisely.

ACKNOWLEDGMENT

This work was co-funded by the German Research Founda-
tion (DFG) under grant No. (KO 3445/11-1) and by Google
Inc. (Faculty Research Award). Arif Merchant, Google Inc.,
contributed with helpful feedback.

REFERENCES

[1] G. Bolch, S. Greiner, H. de Meer, and K. S. Trivedi, Queueing Net-
works and Markov Chains: Modeling and Performance Evaluation with
Computer Science Applications. New York: Wiley-Interscience, 1998.

[2] F. Bause, “Queueing petri nets-a formalism for the combined qualitative
and quantitative analysis of systems,” in Proceedings of the 5th Interna-
tional Workshop on Petri Nets and Performance Models, oct 1993, pp.
14 – 23.

[3] S. Becker, H. Koziolek, and R. Reussner, “The palladio component
model for model-driven performance prediction,” J. Syst. Software,
vol. 82, no. 1, pp. 3 – 22, 2009, special Issue: Software Performance -
Modeling and Analysis.

[4] S. Kounev, N. Huber, F. Brosig, and X. Zhu, “A Model-Based
Approach to Designing Self-Aware IT Systems and Infrastructures,”
IEEE Computer, vol. 49, no. 7, pp. 53–61, July 2016. [Online].
Available: http://dx.doi.org/10.1109/MC.2016.198

[5] E. D. Lazowska, J. Zahorjan, G. S. Graham, and K. C. Sevcik, Quan-
titative system performance: computer system analysis using queueing
network models. Upper Saddle River, NJ, USA: Prentice-Hall, Inc.,
1984.

[6] D. A. Menascé, L. W. Dowdy, and V. A. F. Almeida, Performance by
Design: Computer Capacity Planning By Example. Upper Saddle River,
NJ, USA: Prentice Hall PTR, 2004.

[7] A. Bauer, N. Herbst, and S. Kounev, “Design and Evaluation of a
Proactive, Application-Aware Auto-Scaler,” in ACM/SPEC ICPE 2017,
April 2017.

[8] S. Spinner, G. Casale, F. Brosig, and S. Kounev, “Evaluating
Approaches to Resource Demand Estimation,” Perform. Evaluation,
vol. 92, pp. 51 – 71, October 2015. [Online]. Available: http:
//www.sciencedirect.com/science/article/pii/S0166531615000711

[9] F. Willnecker, M. Dlugi, A. Brunnert, S. Spinner, S. Kounev, and H. Kr-
cmar, “Comparing the Accuracy of Resource Demand Measurement and
Estimation Techniques,” in EPEW 2015, ser. Lecture Notes in Computer
Science, M. Beltrán, W. Knottenbelt, and J. Bradley, Eds., vol. 9272.
Springer, August 2015, pp. 115–129.

[10] J. Rolia and V. Vetland, “Parameter estimation for performance models
of distributed application systems,” in CASCON ’95. IBM Press, 1995,
p. 54.

[11] F. Brosig, S. Kounev, and K. Krogmann, “Automated Extraction of Pal-
ladio Component Models from Running Enterprise Java Applications,”
in VALUETOOLS ’09, 2009, pp. 1–10.

[12] W. Wang, X. Huang, X. Qin, W. Zhang, J. Wei, and H. Zhong,
“Application-Level CPU Consumption Estimation: Towards Perfor-
mance Isolation of Multi-tenancy Web Applications,” in IEEE CLOUD
2012, Jun. 2012, pp. 439 –446.

[13] T. Zheng, C. Woodside, and M. Litoiu, “Performance Model Estimation
and Tracking Using Optimal Filters,” IEEE TSE, vol. 34, no. 3, pp.
391–406, May 2008.

[14] S. Spinner, G. Casale, X. Zhu, and S. Kounev, “Librede: A library for
resource demand estimation,” in ACM/SPEC ICPE 2014, ser. ICPE ’14.
New York, NY, USA: ACM, 2014, pp. 227–228.

[15] S. Kraft, S. Pacheco-Sanchez, G. Casale, and S. Dawson, “Estimating
service resource consumption from response time measurements,” in
VALUETOOLS ’09, 2009, pp. 1–10.

[16] D. Menascé, “Computing missing service demand parameters for perfor-
mance models,” in CMG Conference Proceedings, 2008, pp. 241–248.

[17] Z. Liu, L. Wynter, C. H. Xia, and F. Zhang, “Parameter inference
of queueing models for IT systems using end-to-end measurements,”
Perform. Evaluation, vol. 63, no. 1, pp. 36–60, 2006.

[18] W. Wang, X. Huang, Y. Song, W. Zhang, J. Wei, H. Zhong, and
T. Huang, “A statistical approach for estimating cpu consumption in
shared java middleware server,” in IEEE COMPSAC, 2011. IEEE,
2011, pp. 541–546.

[19] D. Kumar, A. Tantawi, and L. Zhang, “Real-time performance modeling
for adaptive software systems,” in VALUETOOLS ’09, 2009, pp. 1–10.

[20] J. Grohmann, “Reliable Resource Demand Estimation,” Master Thesis,
University of Würzburg, Am Hubland, Informatikgebäude, 97074
Würzburg, Germany, October 2016. [Online]. Available: http://se2.
informatik.uni-wuerzburg.de/pa/publications/download/paper/1159.pdf

[21] J. Rolia and V. Vetland, “Correlating resource demand information
with ARM data for application services,” in Proceedings of the 1st
international workshop on Software and performance. ACM, 1998,
pp. 219–230.

[22] G. Pacifici, W. Segmuller, M. Spreitzer, and A. Tantawi, “CPU demand
for web serving: Measurement analysis and dynamic estimation,” Per-
form. Evaluation, vol. 65, no. 6-7, pp. 531–553, 2008.

[23] G. Casale, P. Cremonesi, and R. Turrin, “Robust Workload Estimation
in Queueing Network Performance Models,” in Euromicro PDP 2018,
Feb. 2008, pp. 183–187.

[24] ——, “How to Select Significant Workloads in Performance Models,”
in CMG Conference Proceedings, 2007.

[25] C. Stewart, T. Kelly, and A. Zhang, “Exploiting nonstationarity for
performance prediction,” SIGOPS Oper. Syst. Rev., vol. 41, pp. 31–44,
Mar. 2007.

[26] T. Zheng, J. Yang, M. Woodside, M. Litoiu, and G. Iszlai, “Tracking
time-varying parameters in software systems with extended Kalman
filters,” in CASCON ’05. IBM Press, 2005, pp. 334–345.

[27] A. B. Sharma, R. Bhagwan, M. Choudhury, L. Golubchik, R. Govin-
dan, and G. M. Voelker, “Automatic request categorization in internet
services,” SIGMETRICS Perform. Eval. Rev., vol. 36, pp. 16–25, Aug.
2008.

[28] Q. Noorshams, D. Bruhn, S. Kounev, and R. Reussner, “Predictive
performance modeling of virtualized storage systems using optimized
statistical regression techniques,” in ACM/SPEC ICPE 2013, ser. ICPE
’13. New York, NY, USA: ACM, 2013, pp. 283–294.

[29] Q. Noorshams, “Modeling and prediction of i/o performance in
virtualized environments,” Ph.D. dissertation, Karlsruhe Institute
of Technology (KIT), 2015. [Online]. Available: http://digbib.ubka.
uni-karlsruhe.de/volltexte/1000046750

http://dx.doi.org/10.1109/MC.2016.198
http://www.sciencedirect.com/science/article/pii/S0166531615000711
http://www.sciencedirect.com/science/article/pii/S0166531615000711
http://se2.informatik.uni-wuerzburg.de/pa/publications/download/paper/1159.pdf
http://se2.informatik.uni-wuerzburg.de/pa/publications/download/paper/1159.pdf
http://digbib.ubka.uni-karlsruhe.de/volltexte/1000046750
http://digbib.ubka.uni-karlsruhe.de/volltexte/1000046750

	Introduction
	Related Work
	Approach
	Configurable Parameters
	Algorithm for Parameter Self-Tuning

	Experimental Analysis
	Setup
	Results
	Limitations

	Conclusion
	References

