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ABSTRACT
Simplifying the task of resource management and scheduling for
customers, while still delivering complex Quality-of-Service (QoS),
is key to cloud computing. Many autoscaling policies have been
proposed in the past decade to decide on behalf of cloud customers
when and how to provision resources to a cloud application utilizing
cloud elasticity features. However, in prior work, when a new policy
is proposed, it is seldom compared to the state-of-the-art, and is
often compared only to static provisioning using a predefined QoS
target. This reduces the ability of cloud customers and of cloud
operators to choose and deploy an autoscaling policy. In our work,
we conduct an experimental performance evaluation of autoscaling
policies, using as application model workflows, a commonly used
formalism for automating resource management for applications
with well-defined yet complex structure. We present a detailed
comparative study of general state-of-the-art autoscaling policies,
along with two new workflow-specific policies. To understand the
performance differences between the 7 policies, we conduct various
forms of pairwise and group comparisons. We report both individual
and aggregated metrics. Our results highlight the trade-offs between
the suggested policies, and thus enable a better understanding of the
current state-of-the-art.

1. INTRODUCTION
Cloud computing is a model of outsourcing IT services on de-

mand, pay-per-use. To make this model useful for a variety of cus-
tomers, cloud operators have to simplify the process of obtaining and
managing a useful supply of services. To this end, cloud operators
make available to their customers various autoscaling policies (auto-
scalers, AS), which are essentially parametrized cloud-scheduling
algorithms that dynamically regulate the amount of resources al-
located to a cloud application based on the load demand and the
Quality-of-Service (QoS) requirements typically set by the customer.
Many autoscalers already exist, both general autoscalers for request-
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response applications [5, 9, 43, 16, 34] and autoscalers for more
task- and structure-oriented applications such as workflows [7, 14,
10, 37, 12]. The selection of an appropriate autoscaling policy is
crucial, as a good choice can lead to significant performance and
financial benefits for cloud customers, and to improved flexibility
and ability to meet QoS requirements for cloud operators. Selecting
among the proposed autoscalers is not easy, as no method currently
exists to systematically evaluate and compare autoscalers. To allevi-
ate this problem, in this work we propose and use the first systematic
method to evaluate and compare experimentally the performance of
autoscalers for workflow-based workloads running in cloud settings.

The lack of a method for comparing autoscalers derives in our
view from scientific and industry practice. For the past decade,
much academic work has focused on building basic mechanisms and
autoscalers for specific applications, and thus there was little related
work to compare to, and the threshold for publication has been kept
low to develop the community. In industry, much attention has
been put on building cloud infrastructures that enable autoscaling
as a mechanism, and relatively less on providing good libraries of
autoscalers for customers to choose from. (The authors’ own prior
work reflects this situation [21, 36].) However, for the past two years
a collaboration started within SPEC Research’s Cloud Group that
highlighted the need for deeper, systematic work in the evaluation
and comparison of autoscalers, raising questions such as How to
evaluate the performance of individual autoscalers?, and How to
compare autoscalers?

Among the many application types, our focus on workflow-based
workloads is motivated by two aspects. First, we are motivated
by the increasing popularity [39, 40] of workflows for science and
engineering [1, 25, 27], big data [28], and business applications [41],
and by the ability of workflows to express complex applications
whose interconnected tasks can be managed automatically on behalf
of cloud customers [24]. Second, although generic autoscalers focus
mainly on QoS aspects, such as throughput, response-time and cost
constraints, state-of-the-art autoscalers can also take into account
application structure [31]. How does the performance of generic
and of workflow-specific autoscalers differ?

Modern workflows have different structures, sizes, task types,
run-time properties, and performance requirements, and thus raise
specific and important challenges in assessing the performance of
autoscalers: How does the performance of generic and of workflow-
specific autoscalers depend on workflow-based workload character-
istics?



Towards addressing the aforementioned questions, our contribu-
tion is three-fold:

1. We design a comprehensive method for evaluating and com-
paring autoscalers (Sections 2–4). Our method includes a
model for elastic cloud platforms (Section 2), identifying a
set of relevant metrics for assessing autoscaler performance
(Section 3), and a taxonomy and survey of exemplary general
and workflow-specific autoscalers (Section 4).

2. Using the method, we comprehensively and experimentally
quantify the performance of 7 generic and workflow-specific
autoscalers, for more than 10 metrics (Section 5). We show
the differences between various policy types, analyze param-
etrization effects, evaluate the influence of workload charac-
teristics on individual performance metrics, and explain the
reasons for the performance variability we observe in practice.

3. We also compare the autoscalers systematically (Section 6),
through 3 main approaches: a pair-wise comparison specific
to round-robin tournaments, a comparison of fractional differ-
ences between each system and an ideal system derived from
the experimental results, and a head-to-head comparison of
several aggregated metrics.

2. A MODEL FOR ELASTIC
CLOUD PLATFORMS

The autoscaling problem is an incarnation of the dynamic pro-
visioning problem that has been studied in the literature for over a
decade [8]. While in essence trying to solve the problem of how
much capacity to provision given a certain QoS, most state-of-the-art
algorithms published make different assumptions on the underlying
environment, mode of operation, or workload used. It is thus impor-
tant to identify the key requirements of all algorithms, and establish
a fair cloud system for comparison.

2.1 Requirements
In order to improve the QoS and decrease costs of a running

application, an ideal autoscaler proactively predicts and provisions
resources such that: a) there is always enough capacity to handle the
workload with no under-provisioning; b) the cost is kept minimal by
reducing the number of resources not used at any given time, thus
reducing over-provisioning; and c) the autoscaler does not cause
consistency and/or stability issues in the running applications.

Since there are no perfect predictors, no ideal autoscaler exists.
There is thus a need to have better understanding of the capabilities
of the various available autoscalers in comparison to each other.
For our work, we classify the autoscaling algorithms in two major
groups: general and workflow-specific. Examples of general auto-
scalers include algorithms for allocating virtual machines (VMs) in
data-centers, or algorithms for spawning web-server instances, etc.
They are general because they mostly take their decisions using only
external properties of the controlled system, e.g., workload arrival
rates, or the output from the system, e.g., response time. In contrast,
workflow-specific autoscalers base their decisions on detailed knowl-
edge about the running workflow structure, job dependencies, and
expected runtimes of each task [32]. In most cases, the autoscaler is
integrated with the task scheduler [31].

While many autoscaling algorithms targeting different use case
scenarios have been proposed in the literature, they are rarely com-
pared to previously published work. In addition, they are usually
tested on a limited set of relatively short traces. Most autoscaling-
related papers seldom go beyond meeting some predefined metrics,
e.g., with respect to response time or throughput. While the per-
formance of most autoscalers is very dependent on how they are
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Figure 1: Elastic cloud platform.

configured, this configuration is rarely discussed. Thus, to the best of
our knowledge, there are no major comparative studies that analyse
the performance of various autoscalers in realistic environments with
complex applications. Our study aims to fill this gap by evaluating
a set of algorithms in realistic setting.

2.2 Architecture Overview
Keeping the diversity of used cloud applications and underlying

computing architectures in mind, we setup an elastic cloud platform
architecture (Figure 1) which allows for comparable experiments
by providing relatively equal conditions for different autoscaling
algorithms and different workloads. The equal size of the virtual
computing environment, which is agnostic to the used application
type, is the major common property of the system in our model. We
believe that the selected architecture of the proposed unified elastic
cloud platform properly reflects the approaches used in modern
commercial solutions.

The core of our system is the autoscaling service (Component 1
in Figure 1) that runs independently as a REST service. The experi-
mental testbed consists of a scheduler (2) and a virtual infrastructure
service (3) which maintains a set of computing resources. A re-
source manager (4) monitors the infrastructure and controls the
resource provisioning. Users submit their complex jobs directly to
the scheduler which maintains a single job queue (5). The tasks
from the queued jobs are mapped on the computing resources in
accordance to the task placement policy (6). The scheduler periodi-
cally calls the autoscaling service providing it with monitoring data
from the last time period. We refer to this period as the autoscaling
interval. In contrast, in event-based autoscaling the autoscaler is
invoked on every change in the demand curve. However, we do not
use the event-based autoscaling approach because it can be derived
from the interval-based autoscaling with rather short autoscaling
interval. Additionally, the event-based autoscaling would make the
experimental setup more complex and would require to incorporate
extra processing logic into the scheduler.

The autoscaling service implements an autoscaling policy (7) and
has a demand analyzer (8) which uses information about running and
queued jobs to compute the momentary demand value. The supply
analyzer (9) computes the momentary supply value by analyzing the
status of computing resources. The autoscaling service responds to
the scheduler with the predicted number of resources which should
be allocated or deallocated. Before applying the prediction, the
resource manager filters it trimming the obtained value by the max-
imal number of available resources. To avoid error accumulation,
the autoscaling interval is usually chosen so that the provisioning
actions made during the autoscaling interval has already taken effect.
Thus it is guaranteed that the provisioning time is always shorter
than the autoscaling interval. In case when the provisioning time is
longer than the autoscaling interval, the resource manager should
apply the prediction only partially considering the number of “strag-
gling” resources. In practice, it means that the resource manager
should consider booting VMs as fully provisioned resources.
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Figure 2: The supply and demand curves illustrating the under- and
over-provisioning periods (A and B) quantified in the number of
resources (areas U and O).

2.3 Workflows as Main Applications
For our experiments, we use complex workflows as a workload for

our system. A workflow is a set of tasks with precedence constraints
among them. Alternatively it can be represented in the form of a
Directed Acyclic Graph (DAG). Each workflow task can start its ex-
ecution when all of its input constraints are satisfied (e.g., when the
input files are ready). Each task can have multiple inputs and multi-
ple outputs. The precedence constraints make workflow scheduling
non-work-conserving as there may be idle processors in the system
while there are no waiting tasks with all their dependencies satisfied.
This property is one of the reasons we selected workflows for our
experiments, since it puts the considered autoscaling algorithms in
more stringent conditions. Additionally, depending on the DAG
structure, workflows can also reflect the behavior of other popular
jobs types such as web-requests, bags-of-tasks or parallel applica-
tions. One whole workflow in our setup is considered as a job. The
size of a workflow is defined as the number of tasks it has. We
focus on workflows which only consist of tasks requiring a single
processor core.

3. PERFORMANCE METRICS
FOR ASSESSING AUTOSCALERS

We use both system- and user-oriented evaluation metrics to as-
sess the performance of the autoscalers. The system-oriented metrics
quantify over-provisioning, under-provisioning, and stability of the
provisioning. Notably, some of these metrics have been endorsed by
the Research Group of the Standard Performance Evaluation Corpo-
ration (SPEC) [21]. The user-oriented metrics are aimed to assess
the impact of autoscaler usage on the speed of workflow execution.

3.1 Supply and Demand
All the considered system-oriented metrics are based on the analy-

sis of discrete supply and demand curves. The resource demand
induced by a load is understood as the minimal amount of resources
required for fulfilling a given performance-related service level ob-
jective (SLO). In the context of workflows, we define the momentary
demand as the number of eligible and running tasks in all the queued
workflows, as in our model a resource can only process one task
at a time. Accordingly, the supply is the monitored number of
provisioned resources that are either idle, booting or processing
tasks. Figure 2 shows an example of the two curves. If demand
exceeds supply, there is a shortage of available resources (under-
provisioning) denoted by intervals A and areas U in the figure. In
contrast, over-provisioning is denoted by intervals B and areas O.

3.2 Accuracy
Let the resource demand at a given time t be dt, and the resource

supply st. The under-provisioning accuracy metric aU is defined as

the average fraction by which the demand exceeds the supply:

aU :=
1

T ·R
T∑

t=1

(dt − st)
+Δt,

where T is the time horizon of the experiment expressed in time
steps, R is the total number of resources available in the current
experimental setup, (x)+ := max(x, 0) is the positive part of x,
and Δt is the time elapsed between two subsequent measurements.
Analogously, we define the over-provisioning accuracy aO as:

aO :=
1

T ·R
T∑

t=1

(st − dt)
+Δt.

Figure 2 shows an intuition of the meaning of the provided accuracy
metrics. Under-provisioning accuracy aU is equivalent to summing
the areas U where the resource demand exceeds the supply normal-
ized by the duration of the measurement period T . Similarly, the
over-provisioning accuracy metric aO is based on the sum of areas
O where the resource supply exceeds the demand.

It is also possible to normalize the metrics by the actual resource
demand, obtaining therefore a normalized, and more fair indicator.
In particular, the two metrics can be modified as:

aU :=
1

T

T∑

t=1

(dt − st)
+

max(dt, ε)
Δt,

aO :=
1

T

T∑

t=1

(st − dt)
+

max(dt, ε)
Δt,

with ε > 0; in our setting we selected ε = 1. The normalized
metrics are particularly useful when the resource demand has a large
variance over time, and it can assume both large and small values. In
fact, under-provisioning of 1 resource unit when 2 resource units are
requested is much more harmful than under-provisioning 1 resource
unit when 1000 resource units are requested. Therefore, this type
of normalization allows a more fair evaluation of the obtainable
performance.

Since under-provisioning results in violating SLOs, a customer
might want to use a platform that minimizes under-provisioning.
Thus, the challenge is to ensure that enough resources are provided
at any point in time, but at the same time distinguish themselves
from competitors by minimizing the amount of over-provisioned re-
sources. Considering this, the defined separate accuracy metrics for
over- and under-provisioning allow providers to better communicate
their autoscaling capabilities and customers to select the provider or
autoscaling algorithm that best matches their needs.

In the context of workflows, over-provisioning accuracy can also
be represented in the number of idle resources (i.e. the resources
which were excessively provisioned and currently are not utilized).
In ideal situation when an autoscaler perfectly follows the demand
curve, there should be no idle resources as the system will always
have enough eligible tasks to run. Thus we present an additional
over-provisioning accuracy metric mU which is equal to the average
number of idle resources during the experiment time:

mU :=
1

T ·R
T∑

t=1

utΔt,

where ut is the number of idle resources at time t.

3.3 Wrong-Provisioning Timeshare
The timing aspect of elasticity is characterized from the viewpoint

of the wrong-provisioning timeshare on the one hand, and from the



viewpoint of the induced instability accounting for superfluous or
missed adaptations on the other hand [20].

The accuracy metrics allow no reasoning as to whether the average
amount of under-/over-provisioned resources results from a few big
deviations between demand and supply or if it is rather caused by a
constant small deviation. To address this, the following two metrics
are designed to provide insights about the fraction of time in which
under- or over-provisioning occurs.

As visualized in Figure 2, the following metrics tU and tO are
computed by summing the total amount of time spent in an under-
A or over-provisioned B state normalized by the duration of the
measurement period. Letting sign (x) be the sign function of x, the
overall timeshare spent in under- or over-provisioned states can be
computed as:

tU :=
1

T

T∑

t=1

(sign (dt − st))
+Δt,

tO :=
1

T

T∑

t=1

(sign (st − dt))
+Δt.

3.4 Instability
Although the accuracy and timeshare metrics characterize im-

portant aspects of elasticity, platforms can still behave differently
while producing the same metric values for accuracy and wrong-
provisioning timeshare. The instability metric k captures this insta-
bility and inertia of elasticity mechanisms. A low stability increases
adaptation overheads and costs (e.g., in case of instance-hour-based
pricing), whereas a high level of inertia results in a decreased SLO
compliance.

Letting Δdt := dt − dt−1, and Δst := st − st−1, the instability
metric k which shows the fraction of time the supply and demand
curves move in opposite directions is defined as:

k :=
1

T − 1

T∑

t=2

min((sign (Δst)− sign (Δdt))
+, 1)Δt.

Similarly, we define a complementary metric k′ which captures the
moments when the curves move towards each other:

k′ :=
1

T − 1

T∑

t=2

min((sign (Δdt)− sign (Δst))
+, 1)Δt.

If supply follows demand perfectly then both instability metrics are
equal to zero.

3.5 User-Oriented Metrics
To assess the autoscaling policies from the user perspective, we

employ the (average) elastic slowdown, which is defined in steps in
the following way.
The wait time Tw of a workflow is the time between its arrival and
the start of its first task. The execution time Te of a workflow is the
sum of the runtimes of all its tasks. The makespan Tm of a workflow
is the time between the start of its first task until the completion of
its last task. The response time Tr of a workflow is the sum of its
wait time and its makespan: Tr = Tw + Tm. The slowdown
S of a workflow is its response time (in a busy system, when the
workflow runs simultaneously with other workflows) normalized by
its makespan T ′

m in an empty system of the same size (when the
workflow has exclusive access to all the resources): S = Tr / T ′

m.
The elastic slowdown Se of a workflow is its response time in a
system which uses an autoscaler (where the workflow runs simul-
taneously with other workflows) normalized by its response time
T ′
r in a system of the same size without an autoscaler (where the

Source of Information Timeliness of Information
Long-term Current/Recent

Server (General) Hist, Reg, ConPaaS React, Adapt

Job (WF-specific) Plan Token

Table 1: The two-dimensional taxonomy of the considered autosca-
lers.

workflow runs simultaneously with the same set of other workflows
and where a certain amount of resources is constantly allocated):
Se = Tr / T ′

r . In ideal situation, where jobs do not experience
slowdown due to the use of an autoscaler, the optimal value for Se

is 1. When Se is less than 1, then a workflow accelerates from the
use of an autoscaler. We define the average number of resources V
the system utilized during the experiment to compute the gain of
using an autoscaler. We also calculate the average task throughput
T which is defined as the number of tasks processed per time unit
(e.g., second, minute or hour).

4. AUTOSCALING POLICIES
For evaluation, we select five representative general autoscalers

and propose two workflow-specific autoscalers. We classify them
using a taxonomy along two dimensions and summarize the survey
of common autoscaling policies across these dimensions in Table 1.
The taxonomy allows us to ensure the proper coverage of the design
space. We identify four groups of autoscalers, which differ in the
way they treat the workload information. The first group consists of
general autoscalers Hist, Reg, and ConPaaS which require server-
specific information and use historical data to make their predictions.
The second group consists of React and Adapt autoscalers which
also require server-specific information for their operation but they
do not use history to make autoscaling decisions. The last two
groups use job-specific information (e.g., structure of a workflow)
and also differ in a way they deal with the historical data: Plan needs
detailed per-task information while Token needs far less historical
data and only requires a runtime estimate for the whole job. Further,
we present all the autoscalers in more detail. When introducing
each autoscaler we additionally indicate in the title of the section to
which dimensions of the taxonomy it belongs.

4.1 General Autoscaling Policies
As different autoscalers exhibit varying performance, five existing

general autoscalers have been selected. By a general autoscaler,
we refer to autoscalers that have been published for more general
workloads including multi-tier applications, but that are not designed
particularly for workflow applications. The five autoscalers can be
used on a wide range of scenarios with no human tuning. We
implement four state-of-the-art autoscalers that fall in this criteria.
In addition, we acquire the source codes of one open-source state-
of-the-art autoscaler. The selected methods have been published in
the following years 2008 [43] (with an earlier version published in
2005 [42]), 2009 [9], 2011 [23], 2012 [5, 3], and 2014 [16]. This is
a representative set of the development of cloud autoscalers design
across the past 10 years.

4.1.1 General Autoscalers for Workflows
All of the chosen general autoscalers have been designed to con-

trol performance metrics that are still less commonly used for work-
flow applications, namely, request response time, and throughput.
The reason is that historically, workflow applications were rather
big or were submitted in batches [40]. However, emerging work-
flow types which require quick system reaction and the usage of
workflows in the areas in which they were less popular, e.g., for
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Figure 3: The Plan autoscaling algorithm.

complex web requests, making the use of general autoscalers more
promising.

The autoscalers aimed to control the response time are designed
such that they try to infer a relationship between the response time,
request arrival rates, and the average number of requests that can
be served per VM per unit time. Then, based on the number of
request arrivals, infer a suitable amount of resources. This technique
is widely used in the literature [18, 29] due to the non-linearity in
the relationship between the response time and allocated resources.

A similarity does exist though between workflows and other cloud
workloads. A task in a workflow job can be considered as a long
running request. The number of tasks becoming eligible can be
considered as the request arrival rate for workflows. Therefore, we
have adapted the general autoscalers to perform the scaling based
on the number of task arrivals per unit time.

4.1.2 The React Policy (Server, Current)
Chieu et al. [9] present a dynamic scaling algorithm for automated

provisioning of VM resources based on the number of concurrent
users, the number of active connections, the number of requests
per second, and the average response time per request. The algo-
rithm first determines the current web application instances with
active sessions above or below a given utilization. If the number
of overloaded instances is greater than a predefined threshold, new
web application instances are provisioned, started, and then added
to the front-end load-balancer. If two instances are underutilized
with at least one instance having no active session, the idle instance
is removed from the load-balancer and shutdown from the system.
In each case the technique Reacts to the workload change. For the
rest of the paper, we refer to this technique as React. The authors
introduce the scaling algorithm but provide no experiments to show
the performance of the proposed autoscaler. The main reason we
are including this algorithm in the analysis is that this algorithm is
the baseline algorithm in our opinion since it is one of the simplest
possible workload predictors. We have implemented this autoscaler
for our experiments.

4.1.3 The Adapt Policy (Server, Recent)
Ali-Eldin et al. [5, 3] propose an autonomous elasticity controller

that changes the number of VMs allocated to a service based on both
monitored load changes and predictions of future load. We refer
to this technique as Adapt. The predictions are based on the rate
of change of the request arrival rate, i.e., the slope of the workload,
and aims at detecting the envelope of the workload. The designed
controller Adapts to sudden load changes and prevents premature
release of resources, reducing oscillations in the resource provision-
ing. Adapt tries to improve the performance in terms of number of
delayed requests, and the average number of queued requests, at the
cost of some resource over-provisioning. The algorithm was tested
using a simulated environment using a non-scaled version of the

FIFA 1998 worldcup server traces, traces from a Google cluster and
traces from Wikipedia.

4.1.4 The Hist Policy (Server, Long-term)
Urgaonkar et al. [43] propose a provisioning technique for multi-

tier Internet applications. The proposed methodology adopts a
queuing model to determine how many resources to allocate in each
tier of the application. A predictive technique based on building
Histograms of historical request arrival rates is used to determine the
amount of resources to provision at an hourly time scale. Reactive
provisioning is used to correct errors in the long-term predictions
or to react to unanticipated flash crowds. The authors also propose
a novel datacenter architecture that uses Virtual Machine (VM)
monitors to reduce provisioning overheads. The technique is shown
to be able to improve responsiveness of the system, also in the case
of a flash crowd. We refer to this technique as Hist. The authors test
their approach using two open source applications, RUBIS which
is an implementation of the core functionality of an auctioning site,
and Rubbos a bulletin-board application modeled after an online
news forum. The testing is performed using 13 VMs running on
Xen. Traces from the FIFA 1998 worldcup servers are scaled in time
and intensity and used in the experiments. We have implemented
this autoscaler for our experiments.

4.1.5 The Reg Policy (Server, Long-term)
Iqbal et al. propose a regression-based autoscaler (hereafter called

Reg) [23]. The autoscaler has a reactive component for scale-up de-
cisions and a predictive component for scale-down decisions. When
the capacity is less than the load, a scale-up decision is taken and
new VMs are added to the service in a way similar to React. For
scale-down, the predictive component uses a second order regression
to predict future load. The regression model is recomputed using
the complete history of the workload when a new measurement
is available. If current load is less than the provisioned capacity,
a scale-down decision is taken using the regression model. This
autoscaler was performing badly in our experiments due to two
factors; first, building a regression model for the full history of
measurements for every new monitoring data point is a time con-
suming task. Second, distant past history becomes less relevant as
time proceeds. After contacting the authors, we have modified the
algorithm such that the regression model is evaluated for only the
past 60 monitoring data points.

4.1.6 The ConPaaS Policy (Server, Long-term)
ConPaaS, proposed by Fernandez et al. [16]. The algorithm

scales a web application in response to changes in throughput at
fixed intervals of 10 minutes. The predictor forecasts the future
service demand using standard time series analysis techniques, e.g.,
Linear Regression, Auto Regressive Moving Average (ARMA), etc.
The code for this autoscaler is open source. We downloaded the
authors’ implementation.



4.2 Workflow-Specific Autoscaling Policies
In this section, we present two workflow-specific autoscalers

designed by us. Their designs are inspired by previous work in this
field and adapted to our situation. The presented autoscalers differ
in a way they use workflow structural information and task runtime
estimates.

4.2.1 The Plan Policy (Job, Long-term)
This autoscaler makes predictions by constructing and analyzing

a partial execution Plan of a workflow. Thus it uses the workflow
structure and workflow task runtime estimates. The idea is partially
based on static workflow schedulers [2]. On each call, the policy
constructs a partial execution plan considering both workflows with
running tasks and workflows waiting in the queue. The maximal
number of processors which are used by this plan is returned as a
prediction. The time duration of the plan is limited by the autoscal-
ing interval. The plan is two-dimensional, where one dimension is
time and another dimension is processors (VMs).

The policy employs the same task placement strategy as the sched-
uler. In our case, the jobs from the main job queue are processed in
first-come, first-served (FCFS) order and the tasks are prioritized
in ascending order of their identifier (each task of a workflow is
supposed to be assigned with a unique numeric identifier). For
already running tasks, the runtimes are calculated as a remaining
time to their completion. The algorithm operates as follows. On
each call it initializes an empty plan with start time 0. Then it
sequentially tries to add tasks in the plan in such as their starting
times are minimal. The algorithm adds a task to the plan only if it is
eligible or its parents are already in the plan. The plan construction
lasts until there are no tasks which can be added in the plan or until
the minimal possible task start time equals or exceeds the planning
threshold (which is equal to the autoscaling interval), or until the
processor limit is reached. If the processor limit is reached then this
is returned as the prediction. Otherwise, the prediction is calculated
as the maximal number of processors ever used by the plan within
the planning interval.

Figure 3 shows an example of the operation of the algorithm. In
Figure 3a we show the job queue at the moment when the autoscaler
is called. The queue contains two workflows A and B, where A is
at the head of the queue. Each workflow task is represented by a
circle with an identifier within it and runtime in time units on the
right. Tasks A:0 and A:1 are already running, finished tasks are not
shown. The autoscaling interval (a threshold) is equal to 15 time
units and is represented by a vertical red dashed line. Figure 3b
shows an example of an unlimited plan where the processor limit
is not reached. In this case the maximal number of processors used
within the 15 time units interval is 5 which equals to the number of
green rectangles in the figure (A:0, A:1, B:1, B:2, B:3). Figure 3c
shows a plan where the number of available processors is limited
by 4 (the horizontal red dashed line). In this case, the algorithm
stops constructing the plan after placing task B:2 and returns the
prediction, which simply equals to the maximal number of available
processors (i.e., 4).

4.2.2 The Token Policy (Job, Recent)
The Token policy uses structural information of a DAG and does

not directly consider task runtimes to make predictions and instead
requires an estimated execution time of the whole workflow. It uses
tokens to estimate the Level of Parallelism (LoP) of a workflow [22]
by simulating an execution “wave” through a DAG. The operation
of the algorithm is illustrated in Figure 4. The algorithm processes
the workflows in the queue in the FCFS order. In the beginning, the
algorithm picks a workflow from the queue and places tokens in all

(a) Token propagation steps. (b) Two real LoPs.

Figure 4: The token-based LoP approximation.

of its entry tasks. Then in successive steps it moves these tokens
to all the nodes all of whose parents already hold a token or were
earlier tokenized. After each step, the number of tokenized nodes
is recorded. For each workflow, the number of propagation steps is
limited by a certain depth δ, which is defined as δ = (Δt ·N)/L,
where Δt is the autoscaling interval, N is the number of tasks on
the critical path of the workflow, and L is the total duration of the
tasks on the critical path of the workflow. Thus, the intuition is to
evaluate the number of “waves” of tasks (future eligible sets) that
will finish during the autoscaling interval. When δ or the final task
of a workflow is reached, the largest recorded number of tokenized
nodes is the approximated LoP value. The algorithm stops when
the prediction value exceeds the maximal total number of available
processors or when the end of the queue is reached. The final
prediction is the sum of all of the separate approximated LoPs of
the considered workflows.

The token-based algorithm does not guarantee the correct estima-
tion of the LoP. The quality of the estimation depends on the DAG
structure. In Figure 4a the estimated LoP of 3 is lower than the
maximal possible LoP of 4 in Figure 4b. However, in our previous
work [22], we showed that this method provides meaningful results
for popular workflow structures.

5. EXPERIMENTAL EVALUATION
In this section, we present the workloads and the configuration

of the cloud infrastructure we use for the experimental evaluation
of the unified cloud system introduced in Section 2. To design
our workloads, we use a set of representative scientific workflows.
We take an experimental approach to evaluate chosen autoscaling
algorithms with an extensive set of experiments in a virtualized
environment deployed on our multi-cluster system.

5.1 Setup of Workflow-based Workloads
We choose three popular scientific workflows from different fields,

namely Montage, LIGO, and SIPHT. The main reason for our choice
is the existence of validated models for these workflow types. Mon-
tage [25] is used to build a mosaic image of the sky on the basis of
smaller images obtained from different telescopes. LIGO [1] is used
by the Laser Interferometer Gravitational-Wave Observatory (LIGO)
to detect gravitational waves. And SIPHT [27] is a bioinformatics
workflow used to discover bacterial regulatory RNAs.

We generate synthetic workflows using a workflow generator by
Bharathi et al. [26, 6]. Each workflow is represented by a set of
task executables and a set of input files. We use two workloads: a
primary Workload 1 and a secondary Workload 2 each consisted
of 200 workflows of different sizes in range from 30 to 600. Each
workload contains an equal mixture of all of the three considered
workflow types. As with many other workloads in computer systems,
in practice, workflows are usually small, but very large ones may
exist too [35]. Therefore, in our experiments we distinguish small,
medium, and large workflows, which constitute fractions of 75%,
20%, and 5% of the workload. The size of the small, the medium,
and the large workflows is uniformly distributed on the intervals [30,
39], [40, 199], and [200, 600], respectively. The distribution of the
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Figure 5: The distribution of job sizes in the workloads (histogram,
left vertical axis) and the dependency between the job size and its
execution time (glyphs, right vertical axis). The right vertical axis is
in log scale.
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Figure 6: The distribution of task runtimes in the workloads (the
horizontal axes have different scales, and the vertical axes are in log
scale).
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Figure 7: The distribution of job execution times in the workloads
(all the axes have different scales).

job sizes in the workloads is presented in Figure 5. Figure 6 shows
the distribution of task runtimes. Figure 7 shows the distribution of
job execution times Te in the workloads. For Workload 1, we use the
original job execution time distribution from the Bharathi generator.
For Workload 2, we keep the same job structures as in Workload 1
but change the job execution times using a two-stage hyper-Gamma
distribution derived from the model presented in [30]. The shape
and scale parameters (α, β) for each Gamma distribution are set
to (5.0, 323.73) and (45.0, 88.291), respectively. Their proportions
in the overall distribution are 0.7 and 0.3. Table 2 summarizes the
properties of both workloads.

5.2 Setup of the Private Cloud Deployment
To schedule and execute workflows, we use the experimental

setup in Figure 1 (Section 2). The KOALA scheduler is used for
scheduling workflow tasks [15] on the DAS-41 cluster deployed at
TU Delft. Our cluster consists of 32 nodes interconnected through
QDR InfiniBand with 8-core 2.4GHz CPU and 24GB of RAM
each. As a cloud middleware, OpenNebula is used to manage VM
deployment, and configuration.

1http://www.cs.vu.nl/das4

Property Workload 1 Workload 2

Mean task runtime 33.52 s 33.29 s
Median task runtime 2.15 s 2.65 s
SD of task runtime 65.40 s 87.19 s
Mean job execution time 2,325 s 2,309 s
Median job execution time 1,357 s 1,939 s
SD of job execution time 3,859 s 1,219 s
Total task runtime 465,095 s 461,921 s
Mean workflow size 69 tasks
Median workflow size 35 tasks
SD of workflow size 98 tasks
Total task number 13,876 tasks

Table 2: Statistical characteristics of the workloads. SD stands for
standard deviation.

The execution environment for a single workflow consists of a
single head VM and multiple worker VMs. The head VM uses a
single CPU core and 4GB of RAM, while each worker VM uses
a single core and 1GB of RAM. Tasks are then scheduled on the
VMs. The workload generator with the workflow runners run on
a dedicated node. The workflow runner coordinates the workflow
execution by following the task placement commands from the
scheduler. The runner is also responsible for copying files (task
executables, input and output files) to and from the VMs in the
virtual cluster. For data storage and transfer, we use a Network File
System (NFS). This implies that if the head VM and worker VM are
located on the same physical node, the data transfer time between
them is negligible. In other cases, data transfer delays occur.

Compared to the job execution time, file transfer delays and the
scheduling overhead are negligible. All tasks write their interme-
diate results directly to the shared storage to reduce data transfer
delays for all workflows. A task can then run as soon as all of
its dependencies are satisfied. Additionally, the runner copies all
input files for a workflow to the virtual cluster before starting the
execution. Thus, the impact from the file transfer delay between
tasks on the system performance is negligible. Tasks are scheduled
using greedy backfilling as it has been shown to perform well when
task execution times are unknown a priori [22]. During the experi-
ment only the autoscaler has the access to the information about job
execution times and task runtimes.

5.3 Experiment Configuration
To configure the general autoscalers we use the average number

of tasks a single resource (VM) is able to process per autoscaling
interval (hereafter called service rate). The autoscaling interval, or
the time between two autoscaling actions, is set to 30 seconds for
all of our experiments.

We test with three different configurations in our experiments,
where we change the value of the service rate parameter or the
VM provisioning latency. The service rate in a request-response
system is usually the average number of requests that can be served
per VM. This parameter is either estimated online, e.g., using an
analytical model to relate response time, as the one used in Hist [42],
or offline [18, 13]. For a task-based workload, there are multiple
options including using the mean task service time, the median task
service time, or something in between.

In the first configuration, we assume that a VM serves on average
1 task per autoscaling interval, i.e., 2 tasks per minute. We derive this
value by rounding to the nearest integer the service rate calculated
based on the mean task runtime in the workloads (Table 2). This
service rate allows us to perform additional comparison between
general and workflow-specific autoscalers as the demand curves



have the same dimension. In the second configuration, we use the
median task runtime of Workload 1 which gives a service rate equal
to 14 (also rounding to the nearest integer) tasks per autoscaling
interval, i.e., 28 tasks per minute. The general autoscalers using the
second configuration are marked with a star (�) symbol. While in the
first two configurations we guarantee that all the provisioned VMs
are booted at the moment when the autoscaler is invoked, in the third
configuration the VM booting time of 45 s exceeds the autoscaling
interval of 30 s. This configuration is also used to test workflow-
specific autoscalers. The autoscalers using the third configuration
are marked with a diamond (�).

For all the configurations and for both workloads the workload
player periodically submits workflows to KOALA to impose the
average load on the system about 40%. The workflows submitted
to the system arrive according to a Poisson process. The mean
inter-arrival interval is 117.77 s which results into arrival rate of
30.57 jobs per hour. Thus, the minimal duration of each experiment
is approximately 6.5 h. If the autoscaler tends to under-provision
resources or the provisioning time in the system is rather large
then the experiment can take longer. We choose this relatively low
utilization level on purpose to decrease the number of situations
when the demand exceeds the maximum possible supply ceiling.
Additionally, as workflow scheduling is non-work-conserving the
system can saturate even at low utilizations. Thus, low utilization
allows us to see better the dynamic behavior of the autoscalers by
minimizing the number of extreme cases.

5.4 Experimental Results
The main findings from our experiments are the following:

1. Workflow-specific autoscalers perform slightly better than
general-autoscalers but require more detailed job information.

2. General autoscalers show comparable performance but their
parametrization is crucial.

3. Autoscalers reduce operational costs but slow down the jobs.
4. Long VM booting times negatively affect the performance.
5. No autoscaler outperforms all other autoscalers with all con-

figurations and/or metrics.

5.4.1 Analysis of Elasticity Metrics
To better show the trade-offs between the autoscalers, we use

the metrics described in Section 3. While calculating the system-
oriented metrics, we excluded the periods where the demand curve
exceeds the maximal available resource limit of 50 VMs. Since
all the system-oriented metrics are normalized by the time of the
experiment this approach does not bias the results.

The aggregated metrics for all the experimental configurations
are presented in Table 3 and Table 4. Considering the cases where
VMs are booting faster than the autoscaling interval, Table 3 shows
that the autoscalers under-provision between 1% (using Hist) and
8% (using Adapt) less resources from the demand needs. Hist’s
superior under-provisioning with respect to others comes at the cost
of on average provisioning 7 times the actual demand, compared to
27% over-provisioning for Adapt.

The policies with longer booting VMs in Table 3 show slightly
different results compared to the runs with faster booting VMs.
Both React� and Plan� tend to under-provision more when the VM
provisioning time is longer. The job slowdowns are also higher.
We picked only these two policies to have one from each group of
autoscalers. Thus, we can conclude that longer provisioning times
decrease the number of available resources for the workload. We
can also notice that the average number of idle VMs decreases for
React� as the tasks more fully utilize provisioned VMs. mU does
not change for Plan� as it over-provisions less.
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Figure 8: The average number of used VMs during the experiment
and the average throughput degradation (compared with the no
autoscaler case). All results are given for Workload 1.

For the general policies configured with service rate 1.0 and
for workflow-specific policies in Table 3 and Table 4 job elastic
slowdowns show low variability. We can conclude that the resources
either significantly over-provisioned (Hist and ConPaaS) or already
provisioned resources are running at low utilization (React, Adapt,
Reg, Plan, and Token). The non-zero values of mU metric in these
cases confirm our assumption.

5.4.2 The Influence of Different Workloads
The difference is also visible between the workloads. While

Workload 1 has the majority of short jobs, Workload 2 has a more
equal distribution of job execution times and thus less bursty. Elastic
job slowdowns in both tables confirm this tendency. For Workload 2
they slightly increase (the Plan policy in Table 4 is an exception)
while going from small to large job sizes. We do not run Workload 2
with service rate different from 1.0 as we expect that the trend will
be the same as for Workload 1.

The system-oriented metrics do not vary much between the work-
loads. For example, compare React in Table 3 with React in Table 4.
Only Hist over-provisions less while running with Workload 2 as
can be explained by lower burstiness of the workload.

5.4.3 The Dynamics of Autoscaling
Figure 9 shows the system dynamics for each autoscaling pol-

icy while executing Workload 1. Some of the autoscalers have
a tendency to over-provision resources (Hist and ConPaaS). The
other policies appear to be following the demand curve more or less
closely. Note, that the demand curve has different shape for each
autoscaler as the autoscaling properties affect the order in which
workflow tasks become eligible.

The workflow-specific Plan policy follows the demand curve quite
good and shows results similar to general autoscalers React, Adapt,
and Reg running with service rate of 1.0. However, if policy follows
the demand too close that increases job slowdowns. The Token
policy, due to its specifics, needs to guess more while predicting the
future demand and thus tends to over-provision a bit more.

5.4.4 The Influence of Service Rate Parameter
on the Autoscaling Dynamics

The most noticeable differences in the results are between general
autoscalers running with service rate 1.0 and with service rate 14.0.
Figure 10 shows the selection of general autoscalers running with
the same workload as in Figure 9. The demand curves in these
two figures look very different, as well as the supply curve does
not follow the demand curve so close anymore. We do not show
ConPaaS in Figure 10 as it has similar supply pattern as for service



0

25

50 React

Demand (VMs)

Supply (idle and busy VMs)

Queue length (jobs)

0

25

50 Adapt

0

25

50 Hist

0

25

50

N
u
m
b
er

of
V
M
s
/
Q
u
eu
ed

jo
b
s

Reg

0

25

50 ConPaaS

0

25

50 Plan

0 1000 2000 3000 4000 5000 6000 7000

Wall clock time (s)

0

25

50 Token

Figure 9: The experimental dynamics of five general autoscaling
policies (Workload 1, service rate 1.0) and two workflow-specific
policies during the cropped period of 7,000 s. The horizontal dashed
line indicates the resource limit of 50 VMs.

rate 1.0, and Reg looks quite similar to React and Adapt. The k′

metric also increases for service rate 14.0 as the autoscalers need to
estimate more while computing the next predicted supply value and
thus the curves are not so well synchronized.

5.4.5 The Trade-off Between Operational Cost
and Performance

Here we study the influence of the number of used VMs on
the throughput. We evaluate only two user-oriented metrics: the
throughput degradation in tasks per hour compared with the no
autoscaler case and the number of used resources (VMs). The
values of these metrics are plotted in Figure 8. For example, for
React the throughput degradation of –24 tasks per hour contributes
only to 1.16% of the hourly throughput. In Figure 8, we can see that
T is definitely affected by the V . The variation of T depends on the
properties of the workload such as task durations, the total number
of tasks in the workload, and the number of tasks per job.

From these results we can conclude the following. Hist over-
provisions quite a lot and achieves low throughput degradation.
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Figure 10: The experimental dynamics of three selected autoscaling
policies (Workload 1, service rate 14.0) during the cropped interval
of 7,000 s. The horizontal dashed line indicates the resource limit
of 50 VMs.

ConPaaS also over-provisions but the throughput is not much af-
fected because its supply curve is very volatile. ConPaaS� over-
provisions less than ConPaaS as it “supposes” that the system needs
less active VMs to process the same workload. Accordingly, the
throughput degradation for ConPaaS� is also bigger. Reg, React,
Token, Plan, and Adapt show almost similar results for service rate
1.0. Plan and Token policies show good balance between the number
of used VMs and the throughput. Parametrization with the service
rate of 14.0 (based on the median task runtime) decreases the perfor-
mance by allocating less VMs. We can also see that longer booting
VMs (React� and Plan�) negatively affect the throughput.

6. WHICH POLICY IS THE BEST?
At first glance, considering all the computed metrics and all

the autoscalers it is hard to distinguish the winners. Comparing
only V and T metrics could be insufficient. Definitely, there is no
single best and the final choice of a policy depends on many factors:
application choice, optimization goals, etc. Thus, it is necessary
to establish a procedure to allow the comparison of autoscalers in
such a multilateral evaluation. For all the assessments presented
in this section we use the set of experiments with Workload 1 as
the most comprehensive. To include all the computed metrics into
consideration we utilize two raking methods based on pairwise
and fractional difference comparisons. Additionally, we aggregate
elasticity and user metrics using an approach from our previous
work.

6.1 Pairwise Comparison
In this section, we rank the autoscalers using the pairwise compar-

ison method [11]. In this method, for each algorithm we pairwise
compare the value of each metric with the value of the same met-
ric of all the other autoscalers. We consider system metrics (aU ,
aO), (tU , tO), (k, k′), and user metrics Se, V , and T . We do not
consider aU and aO , as well as mU due to redundancy with the
selected accuracy metrics. For all the metrics except T , smaller
value is better. In case when smaller value is better, for a pair of
two autoscalers A and B, autoscaler A accumulates one point if the
value of its certain metric is lower than the value of the same metric
of autoscaler B. In case when bigger is better, autoscaler B gets the



Type AS
aU aO aU aO tU tO k k′ mU Se Se (S) Se (M) Se (L) T V
% % % % % % % % % frac. frac. frac. frac. tasks/h VMs

General

React 2 6 5 50 15 84 20 32 7 1.23 1.24 1.20 1.21 2,071 23.89
React� 6 5 13 40 32 64 21 32 6 1.57 1.60 1.52 1.33 2,066 24.01
Adapt 4 4 8 27 23 51 21 34 5 1.28 1.32 1.20 1.15 2,071 22.86
Hist 1 60 1 737 2 97 17 43 60 1.05 1.05 1.04 1.02 2,076 44.81
Reg 3 8 6 51 17 51 20 31 8 1.29 1.32 1.20 1.11 2,071 24.42
ConPaaS 2 33 5 273 11 76 20 40 34 1.18 1.22 1.07 1.06 2,071 34.50

React� 0 19 0 179 2 98 19 64 0 17.32 20.69 8.76 4.06 2,011 20.13
Adapt� 0 16 1 150 4 96 19 63 0 20.06 23.25 12.26 6.08 2,026 20.49
Hist� 0 25 1 463 5 95 20 60 1 12.93 15.30 7.00 3.24 2,016 20.87
Reg� 0 12 1 78 5 94 20 62 0 25.57 30.04 14.38 7.22 1,997 20.11
ConPaaS� 0 44 1 1092 1 98 21 45 7 2.11 2.12 2.26 1.25 2,061 25.15

WF-specific
Plan 3 4 7 19 20 41 20 31 4 1.30 1.32 1.28 1.18 2,071 22.93
Plan� 8 3 17 16 38 35 21 32 4 1.64 1.72 1.44 1.38 2,066 23.31
Token 3 6 7 35 16 53 20 33 7 1.25 1.28 1.20 1.20 2,071 23.88

None No AS 0 73 0 869 0 100 17 43 73 1.00 1.00 1.00 1.00 2,076 50.00

Table 3: Calculated metrics for the main set of experiments with all the considered autoscalers and Workload 1. The diamond symbol (�)
marks the experiments where the VM booting time is longer than the autoscaling interval and service rate parameter is set to 1.0. The star
symbol (�) marks general autoscalers configured with service rate 14.0. All the other general autoscalers are configured with service rate 1.0.
The metric Se as well presented for small (S), medium (M), and large (L) job sizes. Best values in each column are highlighted in bold, except
the No AS case.

Type AS
aU aO aU aO tU tO k k′ mU Se Se (S) Se (M) Se (L) T V
% % % % % % % % % frac. frac. frac. frac. tasks/h VMs

General
React 2 7 4 36 17 81 21 32 7 1.11 1.08 1.19 1.21 1,905 22.83
Hist 1 46 1 338 5 94 19 41 46 1.05 1.03 1.10 1.16 1,905 40.82

WF-specific Plan 3 4 6 11 22 39 21 32 4 1.16 1.13 1.24 1.28 1,905 21.89
None No AS 0 66 0 563 0 100 19 41 66 1.00 1.00 1.00 1.00 1,910 50.00

Table 4: Calculated metrics for the additional set of experiments with selected autoscalers and Workload 2. The metric Se as well presented
for small (S), medium (M), and large (L) job sizes. Best values in each column are highlighted in bold, except the No AS case.

point. If both values are equal then both autoscalers get half point
each. The results of the comparison are given in Table 5. The bigger
the number of points the better.

6.2 Fractional Difference Comparison
In this section, we rank the autoscalers using the fractional dif-

ference method comparing all the autoscalers with an ideal case.
For ideal case we construct an empirical ideal system that achieves
the best performance for all the metrics we consider. Note, this
system does not exist in practice. Thus, the ideal system is a system
which compiles all the optimal values from Table 3 including the
No Autoscaler case. For each metric mi we compute its best value
bi which is either minimum or maximum value from the set of met-
ric’s values, depending on the metric (e.g., among our metrics only
for T the biggest value is the best). For each autoscaler the score p
for the metric j is computed as following:

pj :=

M∑

i=1

|mi − bi|
max(bi, ε)

,

where M is the total number of considered metrics, and ε > 0,
which is here set to ε = 1. The final score of an autoscaler is
the average of all the individual pj scores. The final score shows
the fraction by which the autoscaler differs from the empirically
established ideal system. Thus, the smaller the final score the better.
The results of the comparison are given in Table 5.

6.3 Aggregated Elasticity and User Metrics
In this section, we aggregate both elasticity and user metrics

as proposed by Fleming et al. [17]. As commonly done in the

benchmarking domain, we select a baseline as reference to compute
speedup ratios and then average the speedups using an unweighted
geometric mean. We choose as baseline the metric results with no ac-
tive autoscaler. We group the elasticity metrics based on the covered
aspects into three groups: accuracy (aU , aO), wrong provisioning
timeshare (tU , tO), and instability (k, k′). We do not consider aU

and aO , and mU metrics. In addition, we compute a ratio based on
the user metrics V (average number of VMs), the elastic slowdown
Se and the average throughput T to represent a balance between
user-experienced performance and resource consumption. An over-
all ratio combines the user and elasticity ratios with the geometric
mean. The resulting ranking is presented in Table 5. Using the
described metric aggregation approach, the workflow-specific au-
toscaler Plan outperforms the generic ones. The Token policy is
ranked on the same level as the generic Adapt and React policies.
Hist and ConPaaS perform slightly better than without an autoscaler
in this context. Strong impact on the autoscalers has the service rate
parameter, a smaller impact can be observed for the experiments
with longer provisioning time (�).

7. THREATS TO VALIDITY
The limitations of the study are mainly expressed in the con-

strained number of considered job types and autoscalers. Improve-
ments can be achieved by adding extra workloads with different
characteristics to ideally consider wider spectrum of major job types
that benefit from autoscaling. For example, data analytics work-
flows, streaming workflow applications, and workflows requiring
quick reaction time [44]. Additionally, it is possible to report the
job slowdown per workflow type. To make the study more appli-



AS
Pairwise Fractional Elasticity User Overall
points frac. frac. frac. frac.

React 73.5 2.23 2.20 1.19 1.62
React� 51.0 4.50 1.99 1.10 1.48
Adapt 66.0 3.17 2.38 1.19 1.69
Hist 70.0 2.83 1.07 1.02 1.04
Reg 69.5 2.53 2.26 1.17 1.62
ConPaaS 62.0 2.84 1.34 1.07 1.20
React� 57.0 2.96 1.41 0.52 0.85
Adapt� 60.0 3.37 1.49 0.49 0.86
Hist� 55.0 3.02 1.30 0.56 0.86
Reg� 56.0 3.94 1.65 0.45 0.87
ConPaaS� 44.5 2.06 1.15 0.98 1.06

Plan 78.5 2.68 2.72 1.19 1.80
Plan� 59.0 5.23 2.18 1.09 1.54
Token 71.0 2.36 2.37 1.19 1.68

No AS 72.0 3.01 1.00 1.00 1.00

Table 5: The pairwise and fractional comparison, the aggregated
elasticity and user metrics. The winners in each category (except
No AS) are highlighted in bold.

cable to cloud environments, one can extend the set of workflow-
related autoscalers with algorithms which consider job deadlines
and costs [32, 10].

One of the interesting aspects is related to possible meanings
of metric values. In fact our metrics are application-agnostic but
their interpretation is not. In this sense, they can be seen as a raw
metrics which, however, in a proper service-level agreement, can be
assigned with certain thresholds and interpretation.

The experimental setup used in this paper could also be improved.
Despite the fact that our private OpenNebula environment is rather
representative, the number of concurrent users in Amazon EC2
and Microsoft Azure is much higher than in our case. Thus, it
would be beneficial to consider public clouds to capture possible
performance effects which could arise there. In addition, avoiding
interval-based autoscaling in real setups could improve the quality of
predictions by reacting to changes in the demand more quickly. We
parametrize general autoscalers (computed service rate parameter)
using the statistical properties of the whole workload as we have an
access to this information. However, in the case when the workload
properties are unknown different demand estimation methods can be
used [38]. We do not analyze CPU utilization and RAM usage as for
the considered workloads CPU and RAM information has low value
as we primarily assign one task per VM and focus on performance
characteristics from the perspective of job execution times.

8. RELATED WORK
Our work provides the first comprehensive comparative exper-

imental study of autoscaling for workflows. We are unaware of
any similar study in terms of the methodology taken, the number
of policies compared, the number of performance metrics, and the
size of experiments run. The importance of comparing different
autoscaling algorithms has been recently discussed in the literature
but mostly from a theoretical point of view [29, 36]. One exception
is a tool that tries to utilise the differences between different au-
toscaling policies to achieve better QoS for customers by selecting
a policy based on the workload [4]. That work, nevertheless, does
not include any experimental comparison or deep analysis between
the performance of the autoscalers as we do in our work.

The problem of scaling workflows has been studied in the litera-
ture with a focus on designing new autoscaling policies. Malawski
et al. [31] discuss the scheduling problem of ensembles of sci-
entific workflows in clouds while considering cost- and deadline-

constraints. Mao et al. [33] optimize the performance of cloud
workflows within budget constraints. They propose two algorithms,
namely, scheduling-first and scaling-first. Cushing et al. [10] deal
with prediction-based autoscaling of scientific data-centric work-
flows. Buyn et al. [7] try to achieve cost-optimized provisioning of
elastic resources for workflow applications. They use the Balanced
Time Scheduling (BTS) algorithm to calculate the minimal required
number of resources which will allow to execute the workflow within
a given deadline. Dörnemann et al. [14] consider scheduling of Busi-
ness Process Execution Language (BPEL) workflows in Amazon’s
elastic computing cloud. Their main findings include the methods
to automatically schedule workflow tasks to underutilized hosts and
to provide additional hosts in peak situations. The proposed load
balancer uses the overall system load to take scaling decisions in
contrast to other systems where the throughput is more important.
Heinis et al. [19] propose a design and evaluate the performance
of a workflow execution engine with self-tuning capabilities. The
engine is purely reactive and does not employ workload prediction.
It has an autonomic controller to automatically reconfigure itself to
adjust to the changes in the resource demand.

9. CONCLUSION AND ONGOING WORK
The ability to select autoscalers is beneficial for customers and

operators of cloud computing, because it enables simple control
over cloud elasticity and thus facilitates an on-demand, pay-per-
view delivery of IT services. In this work, we have proposed a
comprehensive method for comparing autoscalers when running
workflow-based workloads in cloud environments. Our method in-
cludes a model for elastic cloud platforms, a set of over 10 relevant
metrics for evaluating autoscalers, a taxonomy and survey of exem-
plary general and workflow-specific autoscalers, and experimental
and analysis steps to conduct the comparison.

Using our method, we have evaluated 7 generic and workflow-
specific autoscalers, and several autoscaler variants, when used
to control the capacity for a workflow-based workload running
in a realistic cloud environment. Our results across the diverse
metrics highlight the trade-offs of using the different autoscalers.
At the best of our knowledge, the efficiency of general autoscalers
was previously unknown for workflows. We show that although
workflow-specific autoscalers have the privilege of knowing the
workflow structure in advance, it is possible for properly configured
general autoscalers to achieve similar performance. Our results
demonstrate that a correct parametrization of general autoscalers is
very important. In our case, the service rate parameter is not the only
one to affect the performance of general autoscalers. In particular,
VM booting times and the choice of the autoscaling interval are also
crucial, as many general autoscalers are designed to stably operate
when VM booting times do not exceed a certain threshold. Finding
optimal values for parameters could be even impossible (as they
could be implementation-related) and will probably require more
experiments.

Remarkably, our workflow-specific Plan autoscaler wins 4 out of
5 competitions while providing a good balance between operational
costs and performance. The correct choice of an autoscaler is im-
portant but significantly depends on the application type. Thus, no
single universal solution exists. In such a situation, the multilateral
ranking methods which we use gain more importance.

For the future, we plan to extend this work to consider other
application models, such as request-response services and media
streaming workloads, and to conduct through the SPEC Research
Group vendor-driven experiments.



10. REFERENCES
[1] B. Abbott et al. Search for Gravitational Waves from Binary

Inspirals in S3 and S4 LIGO Data. Physical Review D,
77:062002, 2008.

[2] S. Abrishami, M. Naghibzadeh, and D. H. J. Epema.
Cost-Driven Scheduling of Grid Workflows using Partial
Critical Paths. IEEE TPDS, 23:1400–1414, 2012.

[3] A. Ali-Eldin et al. Efficient Provisioning of Bursty Scientific
Workloads on the Cloud using Adaptive Elasticity Control. In
ScienceCloud Workshop, 2012.

[4] A. Ali-Eldin et al. Workload Classification for Efficient
Auto-Scaling of Cloud Resources. Technical report, Umeå
University, Lund University, 2013.

[5] A. Ali-Eldin, J. Tordsson, and E. Elmroth. An Adaptive
Hybrid Elasticity Controller for Cloud Infrastructures. In
IEEE NOMS, 2012.

[6] S. Bharathi et al. Characterization of Scientific Workflows. In
WORKS Workshop, 2008.

[7] E.-K. Byun et al. Cost Optimized Provisioning of Elastic
Resources for Application Workflows. FGCS, 27:1011–1026,
2011.

[8] J. S. Chase et al. Managing Energy and Server Resources in
Hosting Centers. In ACM SIGOPS, 2001.

[9] T. Chieu et al. Dynamic Scaling of Web Applications in a
Virtualized Cloud Computing Environment. In IEEE ICEBE,
2009.

[10] R. Cushing et al. Prediction-Based Auto-Scaling of Scientific
Workflows. In MGC Workshop, 2011.

[11] H. A. David. Ranking from Unbalanced Paired-Comparison
Data. Biometrika, 74:432–436, 1987.

[12] E. De Coninck et al. Dynamic Auto-Scaling and Scheduling
of Deadline Constrained Service Workloads on IaaS Clouds.
JSS, 118:101–114, 2016.

[13] C. Delimitrou and C. Kozyrakis. Quasar: Resource-Efficient
and QoS-Aware Cluster Management. ACM SIGPLAN
Notices, 49:127–144, 2014.

[14] T. Dornemann, E. Juhnke, and B. Freisleben. On-Demand
Resource Provisioning for BPEL Workflows using Amazon’s
Elastic Compute Cloud. In 9th IEEE/ACM CCGrid, 2009.

[15] L. Fei et al. KOALA-C: A Task Allocator for Integrated
Multicluster and Multicloud Environments. In IEEE Cluster,
2014.

[16] H. Fernandez, G. Pierre, and T. Kielmann. Autoscaling Web
Applications in Heterogeneous Cloud Infrastructures. In IEEE
IC2E, 2014.

[17] P. J. Fleming and J. J. Wallace. How Not to Lie with Statistics:
The Correct Way to Summarize Benchmark Results. ACM
Communications, 29:218–221, 1986.

[18] A. Gandhi et al. Autoscale: Dynamic, Robust Capacity
Management for Multi-Tier Data Centers. ACM TOCS, 30,
2012.

[19] T. Heinis et al. Design and Evaluation of an Autonomic
Workflow Engine. In IEEE ICAC, 2005.

[20] N. Herbst et al. BUNGEE: An Elasticity Benchmark for
Self-adaptive IaaS Cloud Environments. In SEAMS, 2015.

[21] N. Herbst et al. Ready for Rain? A View from SPEC Research
on the Future of Cloud Metrics. Technical report, SPEC
Research Group, Cloud Working Group, 2016.

[22] A. Ilyushkin, B. Ghit, and D. Epema. Scheduling Workloads

of Workflows with Unknown Task Runtimes. In IEEE/ACM
CCGrid, 2015.

[23] W. Iqbal et al. Adaptive Resource Provisioning for Read
Intensive Multi-Tier Applications in the Cloud. FGCS,
27:871–879, 2011.

[24] M. Islam et al. Oozie: Towards a Scalable Workflow
Management System for Hadoop. In ACM SIGMOD
Workshop SWEET, 2012.

[25] J. C. Jacob et al. Montage: An Astronomical Image
Mosaicking Toolkit. Astrophysics Source Code Library,
1:10036, 2010.

[26] G. Juve et al. Synthetic Workflow Generators.
https://github.com/pegasus-isi/WorkflowGenerator.

[27] J. Livny. Bioinformatic Discovery of Bacterial Regulatory
RNAs Using SIPHT. In Bacterial Regulatory RNA. 2012.

[28] D. Logothetis et al. Stateful Bulk Processing for Incremental
Analytics. In SoCC, 2010.

[29] T. Lorido-Botran et al. A Review of Auto-Scaling Techniques
for Elastic Applications in Cloud Environments. Journal of
Grid Computing, 12:559–592, 2014.

[30] U. Lublin and D. G. Feitelson. The Workload on Parallel
Supercomputers: Modeling the Characteristics of Rigid Jobs.
JPDC, 63:1105–1122, 2003.

[31] M. Malawski et al. Cost-and Deadline-Constrained
Provisioning for Scientific Workflow Ensembles in IaaS
Clouds. In IEEE SC, 2012.

[32] M. Mao and M. Humphrey. Auto-Scaling to Minimize Cost
and Meet Application Deadlines in Cloud Workflows. In SC,
2011.

[33] M. Mao and M. Humphrey. Scaling and Scheduling to
Maximize Application Performance within Budget
Constraints in Cloud Workflows. In IEEE IPDPS, 2013.

[34] A. Naskos et al. Dependable Horizontal Scaling Based on
Probabilistic Model Checking. In IEEE/ACM CCGrid, 2015.

[35] S. Ostermann et al. On the Characteristics of Grid Workflows.
In CoreGRID Integration Workshop, 2008.

[36] A. V. Papadopoulos et al. PEAS: A Performance Evaluation
Framework for Auto-Scaling Strategies in Cloud Applications.
Tail Response Time Modeling and Control for Interactive
Cloud Services. ACM TOMPECS, 2016.

[37] M. Pundir et al. Supporting On-demand Elasticity in
Distributed Graph Processing. In IEEE IC2E, 2016.

[38] S. Spinner et al. Evaluating Approaches to Resource Demand
Estimation. Performance Evaluation, 92:51 – 71, 2015.

[39] D. Talia. Toward Cloud-based Big-data Analytics. IEEE
Computer Science, pages 98–101, 2013.

[40] I. J. Taylor et al. Workflows for e-Science: Scientific
Workflows for Grids. Springer, 2014.

[41] S. Tilloo. Running Arbitrary DAG-based Workflows in the
Cloud. http://www.ebaytechblog.com/2016/04/05/running-
arbitrary-dag-based-workflows-in-the-cloud.

[42] B. Urgaonkar et al. An Analytical Model for Multi-Tier
Internet Services and its Applications. In ACM SIGMETRICS,
2005.

[43] B. Urgaonkar et al. Agile Dynamic Provisioning of Multi-Tier
Internet Applications. ACM TAAS, 3:1:1–1:39, 2008.

[44] N. Vydyanathan et al. A Duplication Based Algorithm for
Optimizing Latency under Throughput Constraints for
Streaming Workflows. In ICPP, 2008.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
  ]
  /NeverEmbed [ true
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Impact
    /LucidaConsole
    /Tahoma
    /Tahoma-Bold
    /TimesNewRomanMT-ExtraBold
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages false
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages false
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<


    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /DEU <>
    /ESP <>
    /ETI <>
    /FRA <>



    /HUN <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200036002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d0069002000730075006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c002000740069006e006b0061006d0075007300200076006500720073006c006f00200064006f006b0075006d0065006e00740061006d00730020006b006f006b0079006200690161006b006100690020007000650072017e0069016b007201170074006900200069007200200073007000610075007300640069006e00740069002e002000530075006b00750072007400750073002000500044004600200064006f006b0075006d0065006e007400750073002000670061006c0069006d006100200061007400690064006100720079007400690020007300750020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200036002e00300020006200650069002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
    /NOR <>
    /POL <FEFF004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e>
    /PTB <>


    /SKY <>

    /SUO <>
    /SVE <>
    /TUR <>

    /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents.  Created PDF documents can be opened with Acrobat and Adobe Reader 6.0 and later.)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


