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Abstract—Auto-scaling is able to change the scale of an appli-
cation at runtime. Understanding the application characteristics,
scaling impact as well as the workload, an auto-scaler aligns
the acquired resources to match the current workload. For
distributed Database Management Systems (DBMS) forming the
backend of many large-scale cloud applications, it is currently an
open question to what extent they support scaling at run-time.
In particular, elasticity properties of existing distributed DBMS
are widely unknown and difficult to evaluate and compare. This
paper presents a comprehensive methodology for the evaluation
of the elasticity of distributed DBMS. On the basis of this
methodology, we introduce a framework that automates the
full evaluation process. We validate the framework by defining
significant elasticity scenarios for a case study that comprises two
DBMS for write-heavy and read-heavy workloads of different
intensities. The results show that scalable distributed DBMS are
not necessarily elastic and that adding more instances to a cluster
at run-time may even decrease the experienced performance.

Index Terms—elasticity, cloud, NoSQL, scalability, distributed
DBMS

I. INTRODUCTION

Auto-scaling exploits the cloud’s on-demand resources to
adapt application scale to the resource demands of the applica-
tion’s currently experienced workload [1]. Realising this kind
of elasticity requires a scalable application architecture and the
capability of the application to scale-out/-in at run-time [2].
For stateless applications, scaling at run-time is no issue
and research has focussed on auto-scalers that determine the
required application scale at a given time. For such scenarios,
the quality of the achieved elasticity is of high importance [3].

For stateful applications such as Database Management Sys-
tems (DBMS), the NoSQL movement is promising scalability
in return to giving up the ACID properties of relational DBMS,
favouring distributed DBMS [4]. For this kind of DBMS,
the capability to scale-out/-in at run-time is of importance:
(a) to provide client-side performance guarantees for changing
workload patterns; (b) with the growing amount of data
generated DBMS need to grow over time as well; (c) any
elastic application may reach a scale-out degree where the
storage back-end becomes a bottleneck if not scaled as well;
(d) when offering database-as-a-service (DBaaS) [5], cloud
operators benefit from the ability to adapt the scale of their
customers’ DBMS instances according to workload; (e) better
understanding of stateful applications will help to improve
auto-scalers in wide-spread orchestration platforms such as
Kubernetes.

While DBMS auto-scalers exist for very specific scenar-
ios [6], [7], it is an open question to what extent existing
DBMS support elasticity [8] for general workloads; similarly,
the metrics needed to determine the quality of elasticity
in different scenarios are widely undecided, but needed to
compare DBMS [9]. Consequently, elasticity evaluations of
cloud-hosted DBMS are strongly needed [4].

In accordance with established methods [10], [11], we claim
that cloud-based evaluations need to increase the availability
of data, the quality of data, and the flexibility and repeatability
of experiments to mitigate the current situation and improve
the understanding of the elasticity of distributed DBMS.
Considering the enormous design space, only an automation
framework is able to provide the necessary amount of data
and ensure repeatability.

In consequence, this paper provides the following contri-
butions: (i) a comprehensive methodology for the evaluation
of distributed DBMS elasticity that builds on established
metrics [12], [13]; (ii) an extension to our Mowgli evaluation
framework [14] capable to evaluate elasticity based on above
methodology. (iii) a validation of the framework by defining
significant elasticity scenarios for a case study with two DBMS
for write-heavy and read-heady workloads.

The remainder of this paper is structured as follows: Sec-
tion II introduces the background on distributed DBMS and
DBMS scalability and elasticity. Section III presents chal-
lenges with respect to DBMS elasticity evaluation, while in
Section IV we discusses our Kaa evaluation framework. In
Section V, we present a case study evaluating the elasticity
of two DBMS under two workloads. We discuss the results
in Section VI, before Section VII presents related work and
Section VIII concludes.

II. BACKGROUND AND TERMINOLOGY

This section summarises the background on distributed
DBMS and presents the terminology we use in this paper,
particularly with respect to scalability and elasticity.

A. Distributed Database Management Systems

The evolution of DBMS has led to an increasing hetero-
geneity in available DBMS. Currently they are separated into
three top-level categories: relational, NoSQL and NewSQL [4],
[15]. For being able to benefit from any type of horizontal
scale-out, the DBMS needs to operate as a distributed DBMS.
Distributed DBMS provide a logical DBMS instance to clients,
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Fig. 1: Steps of an elastic scale-out

but distribute the DBMS functionality across multiple physical
or virtual resource entities. These hosting DBMS nodes are
connected via network and form a DBMS cluster.

Distributed DBMS exploit sharding as a basic technique: the
full data set is separated such that each data-hosting DBMS
node manages only a local share of the overall data set.
With more nodes joining the cluster, the overall storage and
memory capacity increases and the system scales horizontally.
Ideally, with adding more nodes to the cluster, also the
compute capacity increases so that also the throughput scales
horizontally.

Due to the fact that an increased cluster size increases
the probability of failures, distributed DBMS also provide
means for replication. That means, a single data item is stored
by multiple cluster members so that in case of single-node
failures, one or more copies are still available. The consistency
level of the data defines how eagerly replicas of data items are
kept in sync with each other. Besides providing fault-tolerance
and increasing availability, the use of replicas also allows to
further increase the scaling of read operations, as multiple
nodes host the item.

B. DBMS Elastic Scale-out Process

Most distributed DBMS support elastic scale-out, i.e. in-
creasing the DBMS cluster at run-time without service in-
terruption [16]. Figure 1 illustrates these steps: In the first
step, a new resource is provided. In particular for cloud-hosted
DBMS, this means acquiring a new virtual machine. Step two
provisions the necessary software, including the installation of
DBMS binaries. Step four sets the configuration files.

Afterwards, the new DBMS node joins the DBMS cluster.
At that point, it is not able to handle client requests yet.
This can only be done after the data set managed by the
DBMS has been re-shareded and the new shards have been
distributed over all cluster members. During this transition,
additional compute and storage resources are used to exchange
data amongst all nodes of the cluster. The step completes once
the new node is able to answer client requests and hence,
from a client-side perspective, appears as a regular cluster
member. Internally, the DBMS may go through a stabilization
phase [12] once the data shuffling has been completed.

All of the steps except for the first one differ from DBMS
to DBMS. Among the remaining ones, software installation
and configuration need to be performed from outside the
DBMS. The distribution of data and the stabilization phase
run automatically and usually cannot be influenced externally.

C. DBMS Scalability and Elasticity Metrics

Here, we define scalability and elasticity as used in this
paper. By building upon established elasticity metrics [12], we
define metrics related to these two aspects that build upon the

traditional performance metrics storage capacity (gigabytes),
throughput (requests per second) as well as latency (response
time per request) [17].

Definition 1 (DBMS Horizontal Scalability). Horizontal scal-
ability denotes the capability of a distributed application to
increase its performance by increasing the cluster size.

The remainder of this paper focusses on scalability with re-
spect to throughput and latency. In particular, the performance
improvement achieved from increasing the DBMS cluster size
is defined by scale-out metrics:

Metric 1 (DBMS Scale-out). The Scale-out metric [12] cor-
relates the performance of the DBMS with the DBMS cluster
size for a given workload. Ideally, not only the cluster size,
but the overall available resources need to be considered.

Accordingly, the scale-out factor denotes the improvement
in latency and throughput when changing the size of a DBMS
cluster. A good scale-out property is indicated by a constant
latency and a throughput increasing proportionally with the
cluster sizes [12]. Yet, the Scale-up metric exclusively deter-
mines the performance difference between two cluster sizes. It
does not capture the impact of scaling out a cluster at run-time
and therefore ignores aspects related to elasticity.

Definition 2 (Elastic scale-out). An elastic scale-out is the
change of a DBMS cluster size at run-time. Its impact is mea-
sured through the DBMS elasticity metrics data distribution
impact, data distribution time, and provisioning time [12].

Metric 2 (Provisioning time). This metric captures the time
span required to provide a new computational resource, e.g. a
virtual machine, and to install software on that resource. As
such, it also reflects differences between cloud providers.

Metric 3 (Data distribution impact). This metric captures the
performance change during the data distribution phase of an
elastic scale-out.

Metric 4 (Data distribution time). This metric captures the
duration of the data distribution phase.

Conceptionally, similar metrics exist for the stabilisation
phase. Yet, we are currently not aware how they can be
precisely measured for any DBMS presented in this paper,
so that we do not consider them in the following.

III. DBMS ELASTICITY EVALUATION CHALLENGES

The analysis of established DBMS benchmarks [18] shows
that they only support client-side performance metrics, but
lack the required support on the DBMS operator side. Due
to that, we first define an elasticity evaluation process that
includes the DBMS operator related tasks. Secondly, we
identify requirements for enabling holistic DBMS elasticity
evaluations.

A. Elasticity Evaluation Process

Figure 2 depicts our elasticity evaluation process with
individual evaluation tasks (ET) defined in Table I. In contrast
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Fig. 2: Elasticity Evaluation Process

to DBMS workload tools, this process supports the operator-
side by managing cloud resources and the DBMS cluster [18],
[19]. In addition, the process handles workload issuing and
client-side evaluation metrics.

In the first step of the evaluation process, the necessary re-
sources are allocated (ET 1). ET 2 comprises the deployment
of the workload generators and DBMS cluster on the allocated
as well as the setup of the DBMS and workload monitoring
systems. The workload is executed in ET 3. While the system
is under test, adaptations can be applied for the DBMS cluster
(ET 4) and the workload (ET 5).

Adaptations to the cluster size (ET 4) are a requirement
for any type of elasticity evaluation. The DBMS adaptations
in ET 4 can either be time-based or metric-based. In the first
case, predefined timestamps are used as a trigger for executing
the DBMS adaptation. Time-based triggers enable isolated
elasticity evaluations for specific workload configurations,
ensuring reproducibility. In the latter case, system and DBMS
metrics are retrieved from the DBMS monitor (cf. ET 2.2) and
combined into DBMS scaling rules (DSR). DSR enable more
realistic evaluations, but they require a thorough understanding
of the DBMS utilization in order to apply reasonable metric
compositions. Consequently, DSR neglect reproducibility in
favour of realistic scenarios.

Adaptations to the workload (ET 5) are required to emulate
fluctuating workloads. The trigger for these adaptations can be
caused time-based, progress-based, and metric-based: Time-
based triggers use predefined timestamps, progress-based trig-
gers refer to the execution progress of ET 3, and composed
metric-based triggers are termed workload scaling rules (WSR)
and follow the same concept as DSR. If specified, DBMS and
workload adaptations can be repeated multiple times within an
elasticity evaluation to emulate realistic application scenarios
of increasing and decreasing DBMS workload patterns [20].

TABLE I: Elasticity Evaluation Tasks

ET Description
1 allocate new cloud resources for the evaluation
2.1 deploy and configure the DBMS cluster
2.2 setup system and DBMS monitoring
2.3 (optional) setup workload state monitoring
3 execute a baseline workload to measure the performance metrics
4 execute elastic scale-out/in based on predefined adaptation rules
5 (optional) adapt workload intensity
6 release the cloud resource
7 collect and process the elasticity results

B. Elasticity Evaluation Requirements

The evaluation process from Section III-A defines the
evaluation tasks, but also increases the complexity com-
pared to performance or even scalability evaluations, which
already depend on many impact factors including DBMS,
cloud resources, and workload domain [14]. For handling
this complexity, a framework supporting automated elasticity
evaluations needs to fulfil the following requirements:

An elasticity evaluation scenario specification (R1) that
comprises all technical aspects to ensure the reproducibility
and portability for adopters and subsequent evaluations. There-
fore, it needs to contain the cloud resource, DBMS runtime and
workload configurations and provide an executable scenario of
the full evaluation process (cf. Figure 2). The elasticity evalu-
ation scenario needs to support the definition of the adaptation
tasks (ET 4, ET 5) on a fine-grained level, yielding relevant
adaptations on operator side, realistic workload models, and
support for fluctuating workloads and overload situations [9].

An adaptation controller (R2) provides an external adapta-
tion mechanism for both the DBMS cluster, but also the adap-
tation of running workloads, and the scheduling of additional
workloads. The latter supports the emulation of fluctuating
workloads and overload situations.

A detailed evaluation data set (R3) is the basis for the
computation of the elasticity metrics defined in Section II-C.
It includes not only fine-grained performance metrics, but
also an extensive set of evaluation meta-data such as cloud
resource provisioning times, adaptation trigger timestamps,
system metrics, and DBMS metrics.

Evaluation automation support (R4) covering all ETs ensure
transparency and reproducibility that are key concepts in
DBMS and cloud service evaluations [10], [11]. Moreover,
portability support is required by a reasonable level of abstrac-
tion across the cloud, DBMS and workload domain [18], [21],
i.e. enabling the execution of evaluation scenario on different
cloud resources or for different DBMS.

IV. ELASTICITY EVALUATION FRAMEWORK: KAA

In earlier work we analysed established DBMS benchmarks
and evaluation frameworks with respect to their support of
elasticity evaluations [18]. The results show that a variety of
OLTP1 and HTAP2 partially fulfil R3, but none of them support
R1, R2 and R4. Here, we introduce Kaa to overcome these
limitations. It is based on our Mowgli scalability evaluation
framework [14]. We first give an overview on Mowgli before
introducing Kaa and it elasticity evaluation extensions.

A. Mowgli

Mowgli automates the performance and scalability evalua-
tion process, i.e. ET 1 – ET 3 and ET 6 – ET 7 (cf. Figure 2).
It enables the definition of portable and reproducible perfor-
mance and scalability evaluation templates and their execution
via a loosely coupled and extensible architecture (cf. Figure 3).

1online-transaction-processing (OLTP)
2hybrid-transaction-analytical-processing (HTAP)
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Mowgli exploits cloud orchestration tools (COTs) [22] and
combines them with extensible DBMS, auto-generated cloud
resource and workload catalogues. Evaluation scenario (ES)
templates define the required input structure of the Evaluation
API. The catalogues contain the technical implementation of
each ES. The evaluation orchestrator schedules the execution
of each ES via the Cloudiator COT [22] and the workload-
APIs (W-API). In addition, it collects extensive system and
DBMS metrics.

B. Kaa

In order to support elasticity evaluations, we enhance
Mowgli through Kaa (blue boxes in Figure 3). Kaa enables
the specification and automated execution of ET 4 and ET 5
to establish reproducible and portable elasticity ESs. Table II
summarises the parameters and supported parameter ranges for
the DBMS adaptation template. Workload adaptation param-
eters are listed in Table III. For illustration, we provide a set
of full-fledged elasticity scenario templates, including cloud
resource, DBMS and workload specifications [14]3.

TABLE II: DBMS Adaptation Template

Constraint Parameter Range Case Study
adaptation type {scale− out, scale− in} scale-out
trigger type {time,DSR} time
time trigger {1 . . . n} seconds 180
DSR (metric, threshold, duration) N/A

The DBMS adaptation specification comprises n DBMS
adaptation templates, defining the desired adaptation types and
adaptation triggers: Time-based triggers define a delay until
the adaptation is executed; DSRs define advanced triggers
by composing metrics, thresholds and validity durations. The
evaluation orchestrator sequentially processes the adaptation
steps. For DSRs, Kaa correlates the defined threshold and
the validity period with the runtime metrics collected by the
DBMS monitor (implemented through InfluxDB). Currently,

3https://omi-gitlab.e-technik.uni-ulm.de/mowgli/getting-started

Kaa supports triggers based on the system metrics CPU,
memory, disk, and network. The framework is extensible for
additional system metrics and DBMS-specific metrics.

The analogue approach is executed for the workload adap-
tation templates where the adaptation type increase either (i)
increases the number of threads for of a running workload via
the W-API or (ii) starts identical workloads on additional W-
API instances. The actual decision is workload-dependent. For
the integrated Yahoo Cloud Serving Benchmark (YCSB) [12],
only the latter option is supported. Time- and metric-based
triggers are processed in the similar way as for the DBMS
adaptation templates. Progress-based triggers correlate the
overall progress of the baseline workload (i.e. ET 3) with the
progress threshold.

By automating each evaluation task, Kaa is not only able to
provide performance metrics, but also extensive task-related
meta-information such as applied configurations and runtimes
that are provided in machine interpretable formats for ad-
vanced post processing.

TABLE III: Workload Adaptation Template

Constraint Parameter Range
adaptation type {increase, decrease}
worker threads {1 . . . n}
trigger type {time, progress,WSR}
time trigger {1 . . . n} minutes

progress trigger {0 . . . 1.0} % of total workload progress

WSR (metric, threshold, duration)

V. CASE STUDY

In order to validate Kaa against the identified evaluation
challenges (cf. Section III), we apply a case study evalu-
ating the elasticity of two distributed DBMS operated on
cloud resources. While Kaa supports multiple cloud providers,
DBMS and workloads [14], we address the following baseline
hypothesis which is relevant for each DBaaS provider:

Hypothesis: During an elastic scale-out, the DBMS contin-
uously serves requests while the throughput decreases due
to the data redistribution. With the completion of the data
redistribution, the throughput starts to increase and surpasses
the initial throughput.

In the following, first we introduce methodology and the
concrete ES specifications we use. Secondly, we analyse the
results. Due to space limitations we only analyse the results
with respect to throughput, while the complete Kaa data set
also contains latency-related evaluations. The 160 data sets are
archived and publicly available [23].

A. Methodology

For the evaluation, we apply a two-phase approach for
each of the DBMS: In the workload calibration phase, we
iteratively apply increasing intensive workloads to a fixed and
pre-defined cluster size (ET 1 – ET 3, ET 6, and ET 7).
For each workload intensity, we obtain the DBMS utilization.



From the (utilization, workload intensity) tuples, we identify
those workload intensities that lead to low, optimal or overload
DBMS utilization as specified in Table VII.

In the elastic scale-out phase, we apply the resulting three
tuples under a time-based adaptation trigger. This results in
the iterative execution of ET 1 – ET 4, ET 6, and ET 7.

B. Configuration

For the case study, we rely on fixed cloud resource configu-
rations: VM SMALL for DBMS nodes and VM LARGE for
the W-API instance (cf. Table IV). All physical servers hosting
VM SMALL types use a two SSDs Raid-0 configuration.

TABLE IV: Cloud Resource Specifications

Specification VM SMALL VM LARGE
Cloud private OpenStack Ulm, version Rocky
VM vCores 2 8
VM RAM 4GB 8GB
VM Disk 70GB 20GB
OS Ubuntu Server 16.04
network private, 10GbE

We select Apache Cassandra and Couchbase as both are
popular NoSQL DBMS4 that have already been subject to
scalability evaluations and achieved promising results [14],
[24]. Both provide a comparable multi-master architecture that
supports automated sharding and horizontal scalability. Due to
their architectural similarities, a comparable cluster size and
replication factor can be applied (cf. Table V). Yet, as they
differ with respect to their consistency mechanisms, client-side
consistency settings differ. Each DBMS node is configured to
use 50% of the available memory for its operation.

TABLE V: DBMS Runtime Specifications

Specification Apache Cassandra Couchbase
Version 3.11.2 5.0.1 community
Cluster size 3 3
Replication 3 3
Write consistency ONE P=0, R=0
Read consistency ONE default

For the evaluation, Kaa uses one W-API that provides
YCSB [12] in version 0.15.0. It is a widely adopted workload
to evaluate distributed DBMS. In order to demonstrate the flex-
ibility of our approach, we define typical DBMS workloads:
the write-heavy workload emulates volume spikes while the
read-heavy workload emulates data spikes [20].

C. Calibration Phase Results

The calibration phase is required to determine the DBMS
utilization by correlating the workload intensities (cf. Ta-
ble VI) with the resulting throughput of the write-heavy and
read-heavy workloads. By choosing these number of worker
threads, we ensure that the CPU load of the W-API does not
exceed 80% to avoid a bottleneck at W-API side. Figure 4

4https://db-engines.com/en/ranking

TABLE VI: Workload Specifications

Specification write-heavy read-heavy
Metric reporting interval 10 s
Initial Number of records 2.000.000
Record size 5KB
Operations 5.000.0000 writes. 5.000.0000 reads
Read distribution N/A zipfian
Calibration worker threads 1-2-4-8-16-32-64-128

1 2 4 8 16 32 64 12
8

workload intensities by YCSB client threads 
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Fig. 4: Calibration Results — 3 Node Cluster

presents the calibration scenario results. The y-axis displays
the average throughput and standard deviation of the five
executions per calibration scenario. The y-axis shows the
applied workload intensities. Based on the scale-out metric
(cf. Section II-C) and increasing standard deviation, we obtain
the six (utilization, workload intensity) tuples as shown in
Table VII.

TABLE VII: Calibration Tuples

Specification Cassandra Couchbase
low highest average throughput with

lowest standard deviation
4 4

optimal highest average throughput in
relation to the standard deviation

16 32

overload decreased average throughput
and growing standard deviation

64 128

D. Elastic Scale-out Phase Results

The elastic scale-out phase analyses the DBMS elasticity
by applying one elastic scale-out adaptation as specified in
the case study column of Table II. Each elasticity scenario
uses an initial cluster size of three nodes (cf. Table V) and
applies a time-based trigger after 180 seconds that starts the
elastic scale-out. We specify and execute the ESs for all
eight workload intensities used in the calibration phase, each
executed for five times, resulting in 80 evaluation data sets4.

We validate the introduced hypothesis in an explorative
manner by analysing the throughput development in correla-
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Fig. 5: Cassandra—elastic scale-out, read-heavy workload

tion to the applied evaluation task. The resulting graphs depict
on the x-axis the evaluation runtime in seconds, i.e. ET 1 to
ET 7. The y-axis depicts the average throughput including
the standard deviation per timestamp over the five scenario
execution. Each graph is workload-specific and groups the
three calibration tuples in one graph per DBMS. In order
to visualize the defined elasticity metrics (cf. Section II-C),
each graph contains the fixed scale-out trigger, the average
VM allocation time and the average scale-out end timestamp
per utilization as vertical lines. Consequently, provisioning
duration is visualized by the scale-out trigger to VM ready
states, the data distribution impact is visualized by throughput
development from the VM ready to scale-out complete state
and likewise the data distribution duration for the runtime. The
overall runtimes vary, as we apply the number of operations
as limiting factor.

1) Read-Heavy Results: The results of the read-heavy
workload are depicted in Figures 5 and 6. For Apache Cassan-
dra, they confirm the hypothesis. There even is no significant
data distribution impact during the scale-out phase. For Couch-
base, the results indicate a confirmation of the hypothesis,
yet with a significant data distribution impact. In comparison,
Couchbase achieves a drastically higher throughput for the
optimal and overload utilization (and consequently shorter
runtimes) than Apache Cassandra. This is probably due to
Couchbase’s weaker consistency mechanisms. In conclusion,
the read-heavy results confirm the initial hypothesis for both
DBMS.

2) Write-Heavy Results: Figure 7 and Figure 8 depict the
results for the write-heavy workload. Both graphs show a
similar data distribution impact over the evaluation runtime for
the applied calibration tuples: the scale-out for low utilization
results in minor data distribution impact, but after the scale-out
completion, no significant throughput increase is achieved. For
the optimal and overload states, the data distribution impact is
worse; throughput constantly decreases and the scale-out only
completes after the workload has finished. These results show
that an elastic scale-out imposes too much additional load due
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Fig. 7: Cassandra—elastic scale-out, write-heavy workload

to data redistribution and the constantly increasing number of
data that needs to be redistributed and the additional replicas
that need to be generated. Moreover, depending on the DBMS-
specific sharding mechanism, the data redistribution might be
constantly invoked due to incoming write request [4]. Conse-
quently, the write-heavy results disprove the initial hypothesis
for Cassandra and Couchbase.

E. Lessons Learned

While the applied case study only covers a small scope
of Kaa’s supported elasticity scenarios, it reveals a number
of relevant elasticity insights (EI): (EI-1) elastic scale-out
adaptations under read-heavy workloads behave as expected,
even under overload situations, i.e. reactive and pro-active
DSRs can be applied; (EI-2) elastic scale-out adaptations under
write-heavy workloads impose significant additional load on
the DBMS, especially for optimal and overload utilization,
resulting in negative outcome. Therefore, DSRs for write-
heavy workloads shall be proactive. (EI-3) Elastic scale-out
for low utilized DBMS results in low data distribution impact,
but in parallel, in low throughout increase. Hence, low utilized
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DBMS are suitable for proactive elastic scale-outs if increasing
workloads are expected. (EI-4) Defining DSRs requires the
consideration of essential impact factors, such as the workload
type and the DBMS utilization, and potential impact factors
like DBMS configurations and resource provisioning time.

VI. DISCUSSION

Here, we validate Kaa against the presented challenges on
a qualitative basis before we outline its potential adoptions.

A. Validation

Elasticity evaluation scenario specification (R1): Extend-
ing Mowgli’s ES with adaptations provides comprehensive
elasticity scenarios, comprising cloud resources, DBMS run-
time properties and composed adaptations scenarios, including
DBMS and workload adaptations. Ongoing work addresses
advanced adaptation specifications, including more complex
DSRs [1], [25] and workload specifications [20].

Adaptation controller (R2): Kaa realises DBMS and work-
load adaptions at runtime by two-level orchestration: the
evaluation orchestrator executes workload adaptations; a cloud
orchestrator manages cloud resources and DBMS adaptations.

Evaluation data (R3): Regarding the granularity of the
provided performance metrics, Kaa is dependent on the work-
load generator. Yet, due to its modular architecture, suitable
workloads can easily be integrated via W-API. Currently,
Kaa supports YCSB and two OLTP workloads. The produced
data sets contain all relevant cloud resources, DBMS runtime
settings, system metrics, DBMS metrics and the duration of
each elastic scale-out phase in machine interpretable formats
as well as visualized to support explorative analysis.

Evaluation automation support (R4): By building upon
Mowgli that has been validated for enabling automation and
reproducible performance and scalability results [14], Kaa
extends these capabilities for elasticity evaluations. This is also
verified by the applied case study that comprises the automated
execution of 80 calibration and 80 elasticity scenarios. In
addition, the portability of the elasticity scenario specification

has been validated for two DBMS and can easily be achieved
for different cloud providers as shown in [14].

B. Looking Ahead

The obtained elasticity insights lead to several remaining
challenges and potential adopters: (i) long running elastic-
ity ESs are required, including multiple elastic scale-out/-in
and adaptations to analyse more realistic DBMS operation
scenarios; (ii) DBMS elasticity needs to be analysed against
more complex workloads of the OLTP and HTAP domain; (iii)
an in-depth analysis of cloud providers and DBMS runtime
configurations is required to derive comprehensive elasticity
impact factors; (iv) the evaluation results of Kaa can be fed into
scaling rules of DBMS auto-scalers such as Tiramloa [6] and
MeT [7] or for building the foundation of DBMS adaptations
by cloud auto-scalers [1].

VII. RELATED WORK

Research on elasticity for cloud computing can be divided
into describing elasticity through metrics as well as approaches
to measure service elasticity. Auto-scaling is also a popular
research topic in cloud computing [1], but not considered here
as auto-scaling applies elasticity, but does not evaluate it.

Several metrics for elasticity have been proposed in litera-
ture: Early work focuses on mere (de)provisioning time [26],
[27]. However, these metrics cover only technical properties
and thus are independent of the timeliness and accuracy
of demand changes. The elastic speedup metric proposed
by SPEC OSG [27] does not capture the dynamic aspects
of elasticity and is regarded as a scalability metric. Other
approaches like [12], [13], [28], [29] characterise elasticity
indirectly by analysing latency and throughput.

To counter the drawbacks of aforementioned metrics, elas-
ticity metrics explicitly covering the timeliness, accuracy and
stability were proposed and used in different use cases [3],
[25], [30]. Yet, those metrics are mostly tied to the elasticity
of stateless cloud applications and thus, are not suitable for
DBMS for which elasticity is defined differently. The industry-
driven SPEC Cloud™IaaS 20185 partially covers DBMS
workloads, but still omits elasticity in the sense of automated
scaling under changing load. Approaches for evaluating the
elasticity in a stateless context include BUNGEE, a framework
for benchmarking the elasticity of cloud platforms [30].

The need for DBMS-centric elasticity evaluations is high-
lighted by [4], [9] due to the growing heterogeneity of cloud
resources and distributed DBMS. While there is a significant
number of DBMS workloads that measure the performance
metrics at client side, none of them supports the required
adaptions at operator side [18]. Consequently, supportive
frameworks are required to automate the evaluations and
enable reproducible results [17], [18], [21]. However, DBMS
frameworks that also support the operator side are limited [14],
[31] and none of them supports the specification and execution
of elasticity evaluations.

5https://www.spec.org/cloud iaas2018/



Consequently, the number and scope of existing DBMS
elasticity evaluations in the cloud is limited [8], [13], [24],
[32], as supportive frameworks are missing, which also im-
pedes their reproducibility. Our novel framework Kaa ad-
dresses these limitations by ensuring reproducible and portable
DBMS elasticity evaluations in the cloud, that also enables to
keep track with evolving cloud resources and DBMS.

VIII. CONCLUSION

Elasticity has become a key feature of cloud applications
and its comparative evaluation is a central topic for cloud
resources, stateless services and stateful components such
as distributed DBMS. While the elasticity evaluation of the
former is supported by specific evaluation frameworks, the
elasticity evaluation of distributed DBMS remains a challenge,
as supportive metrics exist, but evaluation frameworks are
missing. This hinders reproducible and portable evaluations,
which are key concepts of cloud service benchmarking. There-
fore, we present the novel elasticity evaluation framework Kaa
that automates the execution of DBMS elasticity evaluations
and ensures reproducibility. We validate our approach by ap-
plying an elasticity evaluation case study for two DBMS under
eight workload intensities and one elastic scale-out adaptation.
Kaa fully automates the benchmarking of the resulting 160
evaluation scenarios and the results provide valuable insights
into the elasticity and potential impact factors, such as the
workload type and DBMS utilization.

Future work will comprise extensive elasticity evaluations,
focusing on more complex workloads and adaptions. In ad-
dition, extensions of the metric processing capabilities will
enable the analysis of established elasticity metrics under
workload, cloud resource and DBMS-specific aspects.
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[5] S. Kächele, C. Spann, F. J. Hauck, and J. Domaschka, “Beyond iaas
and paas: An extended cloud taxonomy for computation, storage and
networking,” in IEEE/ACM 6th UCC. IEEE, 2013, pp. 75–82.

[6] D. Tsoumakos, I. Konstantinou, C. Boumpouka, S. Sioutas, and
N. Koziris, “Automated, elastic resource provisioning for nosql clusters
using tiramola,” in 2013 13th IEEE/ACM International Symposium on
Cluster, Cloud, and Grid Computing. IEEE, 2013, pp. 34–41.

[7] F. Cruz, F. A. F. M. A. Maia, M. Matos, R. C. M. d. Oliveira, J. Paulo,
J. Pereira, and R. M. P. Vilaça, “Met: workload aware elasticity for
nosql,” in 8th ACM EuroSys. ACM, 2013, pp. 183–196.

[8] D. Seybold, N. Wagner, B. Erb, and J. Domaschka, “Is elasticity of
scalable databases a myth?” in IEEE Big Data, 2016.

[9] S. Sakr, “Cloud-hosted databases: technologies, challenges and oppor-
tunities,” Cluster Computing, vol. 17, no. 2, pp. 487–502, 2014.

[10] D. Bermbach, E. Wittern, and S. Tai, Cloud service benchmarking.
Springer, 2017.

[11] A. V. Papadopoulos, L. Versluis, A. Bauer, N. Herbst, J. Von Kistowski,
A. Ali-eldin, C. Abad, J. N. Amaral, P. Tůma, and A. Iosup, “Method-
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