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Abstract—Enterprise applications in virtualized environments
are often subject to time-varying workloads with multiple sea-
sonal patterns and trends. In order to ensure quality of service
for such applications while avoiding over-provisioning, resources
need to be dynamically adapted to accommodate the current
workload demands. Many memory-intensive applications are not
suitable for the traditional horizontal scaling approach often used
for runtime performance management, as it relies on complex and
expensive state replication. On the other hand, vertical scaling
of memory often requires a restart of the application. In this
paper, we propose a proactive approach to memory scaling for
virtualized applications. It uses statistical forecasting to predict
the future workload and reconfigure the memory size of the
virtual machine of an application automatically. To this end, we
propose an extended forecasting technique that leverages meta-
knowledge, such as calendar information, to improve the forecast
accuracy. In addition, we develop an application controller to
adjust settings associated with application memory management
during memory reconfiguration. Our evaluation using real-world
traces shows that the forecast accuracy quantified with the MASE
error metric can be improved by 11 − 59%. Furthermore, we
demonstrate that the proactive approach can reduce the impact
of reconfiguration on application availability by over 80% and
significantly improve performance relative to a reactive controller.

I. INTRODUCTION

Enterprise applications often have workloads that change

over time, with overlapping seasonal patterns and trends.

At the same time, virtualization offers great flexibility in

dynamically changing the amount of resources allocated to

running applications. In the past decade, this flexibility has

proven to be very valuable: instead of allocating resources

based on the peak demands of an application, we can dynam-

ically match the amount of allocated resources with the actual

resource demands of the application at runtime. This results

in higher utilization of physical resources without sacrificing

the application’s quality of service.

There are a number of mechanisms one can use to change

the resource allocation of an application using virtualization.

At the most basic level, the scheduling parameters of a virtual

machine (VM) running in the hypervisor can be changed

to affect the VM’s CPU and memory consumption, or the

IO bandwidth. Another method is to dynamically migrate a

VM from one physical host to another so that it can have

access to potentially larger amounts of resources on the latter.

A third approach is to spawn more VM instances for a

bottlenecked application tier, an approach commonly referred

to as horizontal scaling of an application. In most recent years,

hypervisors added the capability to add (or remove) virtual

resources, such as virtual CPUs (vCPUs), memory, or I/O

devices to running VMs. This is referred to as hot-add (or

hot-remove). This way, for example, one can reconfigure a

VM from a 2-vCPU, 8 GB memory configuration to an 8-

vCPU, 32 GB memory configuration without restarting it. This

is referred to as vertical scaling of a VM.

Vertical scaling provides a running VM immediate access

to more resources (bigger memory, more CPU instances).

However, many applications are unable to immediately start

consuming the newly available resources (e.g., memory); in

some cases, the guest operating system (OS) or the application

itself needs to be restarted. On the other hand, we cannot just

allocate the maximum amount of resources to a VM that it

may require at peak times, as this would create huge overheads

in terms of scheduling overheads and larger page tables or it

may lead to serious resource over-provisioning. As a result, it

is important for the resource allocation systems to determine

the right configuration for the VMs, and to reconfigure the

VM resources prior to the incoming demand peaks.

Unfortunately, existing resource management systems do

not have the capability to proactively reconfigure application

resources to satisfy their projected resource demands in the

future. Existing systems are reactive in nature, changing

resources after a need for a change in allocation is already

observed, typically causing performance degradation in the

application. For vertical scaling, this approach could be detri-

mental, causing additional slowdowns during reconfiguration

while the resource demands are rising.

In this paper, we introduce a new proactive approach for dy-

namically configuring virtual resources of an application, using

a combination of demand forecasting and resource prediction

techniques. Demand forecasting creates a model of application

demands over time allowing to make the resource allocation

decisions ahead of changes in the workload demand. Resource

prediction enables the determination of the right resource

configurations that would be able to satisfy the projected

demand. Our demand forecasting method relies on multiple

time series analysis techniques and incorporates additional

meta-knowledge (e.g., calendar information) in the models to

better capture the seasonality patterns in the workloads. In the



evaluation, we focus on main memory as the primary resource,

as memory reconfigurations are the most costly operations and

it is extremely critical for most applications to be provisioned

with sufficient memory resources.

We evaluate our forecasting method on three different

request traces from real-world applications. The results show

that incorporating calendar information in the forecast model

significantly improves its accuracy compared to state-of-the-

art statistical forecast methods. The MASE error metric is

improved between 11% and 59% for all three traces. Using

the forecast method as a foundation, we implemented a

proactive resource controller to adapt the memory size of

a VM according to the predicted workload demand. In a

case study, we applied the proactive controller to the Zimbra

Collaboration Server [1] subject to a trace-driven, time-varying

workload. The proactive controller reduces the impact of the

reconfiguration on the application availability by more than

80% and significantly improves application latency compared

to a threshold-based, reactive controller. Furthermore, we show

that using our extended forecast method the over- and under-

provisioning of the VM’s memory is below 11%.

II. MOTIVATION AND CHALLENGES

Modern hypervisors (e.g., VMware ESX) support two dif-

ferent approaches to dynamically adapt the actual amount

of memory available to a virtualized application: memory

hot-add (and hot-remove), or memory ballooning. Memory

ballooning techniques [2] allow to reclaim memory from the

guest OS at run-time. This mechanism is used to reallocate the

physical memory between VMs in over-commited scenarios.

However, memory-ballooning only works within the bounds

of the initially configured memory size. While it would be

possible to set this size to the maximum physical memory

size, it is not recommended as it usually results in memory

overheads. Furthermore, it can also severely limit the possi-

bilities to migrate such a VM between physical hosts in a

heterogeneous data-center. In the following, we describe the

challenges of memory scaling caused by deficiencies of many

modern operating systems and applications.

Most current versions of the Linux and Windows OS can

dynamically activate additional memory without a restart.

However, memory reconfigurations can fail at the OS level.

For instance, Linux requires a contiguous physical memory

space for its internal memory management tables. If there

is a high memory pressure by the application, we observed

frequent failures when activating the additional memory as

the OS is unable to find enough space to enlarge its memory

management tables.

Many enterprise applications, including their underlying

middleware and database systems, implement their custom

memory management mechanisms. Examples include database

systems, such as the MySQL server, which maintains a buffer

cache to keep frequently used pages in memory, and process

VMs, such as the Java VM, with their garbage collected heap

space. These applications also need to be made aware of any

additional memory added at runtime so that they can adapt

their behavior accordingly. However, the parameters control-

ling the application’s memory management mechanisms often

cannot be changed without restarting the application (e.g., the

MySQL buffer pool size, or the maximum heap size of a Java

application).

In [3], the authors propose an extension to MySQL and

OpenJDK to integrate memory ballooning techniques in the

application memory management. However, this approach

works only within certain bounds configured initially and it

requires profound changes in the OS and application source

code [3]. As long as the application does not allow to

dynamically changes its memory management configuration,

the only option is to restart the application although it is

an expensive operation, both in terms of availability and

performance. In particular, data-intensive applications need to

reload their working set data back into memory after a restart.

The Zimbra Collaboration Server [1], which is an example

for such a data-intensive application, becomes unavailable for

up to 10 minutes due to the restart and shows a severely

degraded application performance (a slowdown factor of 10)

for over half an hour while reloading its internal caches (see

Section V-A).

In summary, the major challenges when reconfiguring mem-

ory of virtualized applications are the following: a) the settings

of the memory management mechanisms of applications must

be adjusted to reflect the additional capacity, b) many practical

applications need to be restarted to update the memory man-

agement configuration, and c) the reconfiguration is unreliable

when memory demand is high and may cause additional

overheads.

III. APPROACH

Our approach is based on a control loop which proactively

adds or removes memory resources to VMs match its future

workload demand and to improve application availability and

performance. We use a proactive approach, as it enables us

to plan the reconfiguration in advance and schedule it to be

executed during a phase of low application load (e.g., at night).

This has the following benefits: a) reconfiguration failures at

the OS level are avoided, and b) if an application restart is

required, the impact on the performance and availability can

be significantly reduced (see Section V).

We assume that the application is subject to a dynamic,

time-varying workload with different seasonal patterns, such

as daily and weekly patterns, as well as different long-term

trends (increasing or decreasing). If a application restart is

required, the memory reconfiguration may take place during

pre-defined maintenance windows when a short application

outage is acceptable (e.g., between 3:00 and 3:15 AM). This

results in significantly longer control periods compared to

many other runtime management systems. While the long

control period limits the elasticity of the system, it helps to

avoid counter-productive reconfigurations at peak workload.

The control loop consists of the components shown in

Figure 1. For each virtualized application, our approach peri-

odically adjusts the memory allocations to the VMs using a
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Fig. 1. Approach overview.

closed-loop controller. As described in Section II, a memory

reconfiguration may also require changing the memory settings

of the application, including a possible restart of the applica-

tion. Our approach therefore needs to determine a memory

allocation at+1 sufficient to serve the peak workload during

the next control interval t + 1 (e.g., next 24 hours) and then

it reconfigures the system in advance during a maintenance

window. The App Sensor continuously monitors the arriving

workload and stores the aggregate observations in a time series

λt = {λ1
t ...λ

m
t }. The parameter m controls the smoothing

of the input data and also the computational overhead of the

approach. Assuming a control interval of one day, we usually

use m = 48 or m = 24 corresponding to a sampling interval

of 30 to 60 minutes.

In order to predict the workload for the next interval, the

time series λt is fed as input to the Workload Forecaster
component. This component builds a statistical model based on

the historical data λ1...λt. Our workload forecaster relies on

multiple time series analysis techniques and exploits additional

calendar information to distinguish between different types of

seasonal patterns (e.g., work days vs. non-working days). We

refer to this approach as splitTs in the rest of the paper. The

result of the workload forecaster is the expected peak workload

λt+1 of the control interval t+ 1.

The Resource Predictor component determines the required

memory allocation at+1 to a VM to be sufficient for the

peak workload λt+1. To this end, it requires a function

at+1 = h(λt+1) that maps a given workload λt+1 to a

memory requirement at+1 for the control interval t + 1. In

the following, we assume a step function mapping between a

discrete set of memory sizes (e.g., in 2 GB steps) and the cor-

responding sustainable application workload. However, more

generic functions can be used depending on the application.

The function may be either provided to the resource predictor

as input knowledge or learned over time by analyzing historic

application performance data.

Based on the required memory allocation at+1, the Sizing
Controller component determines the new VM memory set-

tings for the application. This includes the configured memory

size (st+1) and the memory limit (lt+1) of the VM. The

limit setting is used to reduce the memory consumption of

a VM using memory-ballooning techniques. This is because

hot-removal of memory is currently not supported by guest

operating systems without a restart of the VM. Therefore,

the sizing controller uses the limit setting to scale down the

memory of a VM if it does not require all configured memory.

The freed memory can then be used by other co-located VMs

enabling a higher consolidation ratio on the physical host.
1) Workload Forecaster: Based on the observed arrival

rates λt the workload forecaster predicts the expected arriving

workload during the next control interval. After observing

several days (typically three complete days), it is possible to

forecast the arriving workload for a complete day using time

series analysis methods as described in [4]. To avoid under-

/over-provisioning of memory resources, it is crucial to predict

the peak workload of the next day accurately.

A shortcoming of all forecasting methods based on time

series analysis is their limited capability to identify and

cope with multiple overlapping seasonal patterns at the same

time. The effects of days, weeks and months are examples

of such overlapping patterns as commonly found in real-

world workload traces. Many workload traces from public

webservers (e.g., in [5], [6]), or enterprise systems (e.g.,in [7])

show regular differences in the workload intensities between

different week days (e.g., working vs. non-working days).

In order to cope with these types of overlapping seasonal

patterns, splitTs classifies the observed, historic data λ1...λt

into subsets Sd = {λi : f(λi) = d, 1 ≤ i ≤ t} with d ∈ D.

The classificator f is based on calendar information provided

as static meta-knowledge. When predicting the arrival rate

λt+1, first d = f(λt+1) is determined, and then only subset

Sd is used for the forecast. In our evaluation, we use a

fixed D = {workingday, nonworkingday}. More complex

classifications are possible, however, it comes at the cost of

an increased number of days required to learn the forecast

model. As shown in Section IV, this classification significantly

improves the forecasting accuracy on the considered real-

world traces. In future work, we plan to extend splitTs to

automatically cluster the different days based on the historic

data.

In order to obtain a forecast from a subset Sd, we use

the WCF method described in [7]. WCF dynamically selects

between different underlying statistical methods based on time

series analysis depending on the forecasting objectives and

incorporates direct feedback on the forecast accuracy.
2) Sizing Controller: The sizing controller expects the

required memory allocation at+1 for the next control interval

as input. It first determines the new memory size (st+1)

and memory limit (lt+1) of the VM considering the current

memory size and technical constraints from the hypervisor

(e.g., VMware ESX expects the memory size to be a multiple

of 128 MB). If at+1 is larger than the VM’s current memory

size, the hot-add functionality of the hypervisor is used to

add additional memory to the VM without restarting it. Fur-

thermore, the memory limit is also set to the required memory

size. If instead, at+1 is less than its current memory size, only

the memory limit is adjusted accordingly.

The individual steps to adjust the memory settings of a

VM also include the necessary adjustments to the OS and

application configurations. The following steps are executed

in the given order:

1) The application is stopped in order to adjust static config-

uration settings (e.g., Java maximum heap space, or the



database buffer pool size).

2) The new memory settings of the VM are fed to the

hypervisor using the supported reconfiguration API.

3) Any additional memory is activated in the OS to become

available to the memory scheduler. Depending on the OS,

and its version this step is either triggered automatically

by the OS or needs to be executed manually.

4) Any application-specific, memory-related configuration

settings are updated to reflect the new memory size. The

required automation scripts need to be provided by a

system administrator and included in the VM.

5) The application is started with the new settings and it

resumes serving user requests.

Two observations are worth noting. First, if memory usage

is high, step 3) may fail if the OS cannot find enough free,

contiguous physical memory to extend its memory manage-

ment tables. This is why step 1) is executed before step

3) to reduce the memory usage in the VM and prevent

reconfiguration failures. Second, steps 1) and 5) are not needed

if the application is able to dynamically adapt its memory

management to the new memory size of the VM.

IV. FORECAST ACCURACY

In this Section, we evaluate the splitTs forecaster with

regards to the improvement in accuracy through exploiting

calender meta-knowledge.

1) Workload Traces: In order to evaluate the prediction

accuracy, request arrival traces are needed that fulfill the

following requirements: (a) they should contain request ar-

rivals from a real-world application, (b) they should include

daily patterns, as this is an assumption of our approach, (c)

they should cover a period of several weeks (at least four

weeks) in order to learn a forecast model that also captures

weekly patterns. We found three request arrival traces fulfilling

our requirements: FIFA’98 World Cup, Wikipedia, and CICS
transactions. The FIFA’98 traces [5] were taken from the web

servers of the official FIFA’98 world cup web site. We used the

first five weeks of the traces for our evaluation. The wikipedia

traces [6] contain every 10th request to the official wikipedia

site. For our evaluation, we used four weeks of trace data from

the English language site (September 19th to October 21st,

2007). The CICS transaction time series reports the number

of started transactions at a real-world deployment of an IBM

z10 mainframe server. The trace data was taken from the case

study described in [7]. We used a total of four weeks of this

trace (January 31st to February 27th, 2011).

2) Error Metrics: We use the Mean Absolute Scaled Error

(MASE) to evaluate the accuracy of the forecast values. Given

a time series Y1...Yn of actual observations from the system

and a time series of forecasts F1...Fn, the forecast error et
is generally defined as et = Ft − Yt for t = 1...n. Then the

MASE is defined as:

MASE = mean

(
|et|

1
n−1

∑n
i=2 |Yi − Yi−1|

)
(1)

MASE scales the error with the error from a one step naı̈ve

forecaster, which takes the last observation as the forecast.The

MASE error is scale-independent and can be used for compar-

isons across multiple time series [8]. In contrast to the mean

relative error, it is not influenced by skewed error distribu-

tions and thus ensures unbiased comparisons [8]. Assuming

a forecast horizon of one interval, a MASE < 1 indicates

that on average the considered forecast method yields smaller

errors than the one step naı̈ve approach. In our experiments, we

forecast the workload for a complete day resulting in a forecast

horizon of 24 or 48 depending on the sampling interval.

Therefore, MASE is expected to be larger than one [8].
3) Results: Figure 2 shows the resulting forecasts by the

splitTs method on the FIFA’98 traces. The splitTs is able to

capture the daily and weekly patterns (i.e., the differences

between weekdays and weekends) in its model and to reflect

them in the forecasts. The forecasting method is executed

at 3am each night when the workload is low. Due to space

constraints, the complete forecast time series of the Wikipedia

and CICS transaction traces are not included in this paper.

More information on their shape can be found in [6] and [7].
In order to assess the improvement achieved in our

splitTs approach, we compare its forecast accuracy to

three state-of-the-art approaches, WCF [7], ARIMA [9] and

tBATS [10] (using their implementations from the R package

forecast [11]). The first days required to learn the seasonal

patterns are excluded from the comparison (in total 6 complete

days as the splitTs approach requires three workdays and three

non-workdays to learn the seasonal patterns).

TABLE I
FORECAST ACCURACY

splitTs WCF ARIMA tBATS

FIFA’98
MASE 1.42 2.18 2.65 2.33
Infs 0 0 0 24
C.I width 840 1075 852 954

Wikipedia
MASE 1.14 1.28 1.68 2.21
Infs 0 0 0 0
C.I width 39878 50820 58683 43323

CICS
transactions

MASE 1.23 3.01 4.97 3.28
Infs 0 0 0 0
C.I width 9584 24774 15322 24536

Table I shows the summarized forecast errors of the splitTs

compared with the WCF, ARIMA and tBATS methods. The

splitTs approach can reduce the MASE errors by between 11%

(Wikipedia traces) and 59% (CICS transaction traces). The

differences can be explained by the different weekly patterns

present in these two traces. The CICS transaction traces stem

from an enterprise application and the differences between the

weekend and weekday workloads are higher. In contrast, the

Wikipedia traces have less distinctive weekend patterns and

therefore, the improvements through the splitTs approach are

smaller. Figure 3 shows the distribution of the absolute scaled

errors.
In Table I, we also included the number of infinite values

forecast by the methods and the mean width of the 80%

confidence interval. On the FIFA’98 traces, the tBATS ap-
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Fig. 2. Forecasts using splitTs on the FIFA’98 traces (first day is Friday).

proach fails to fit a forecast model in one interval resulting

in 24 infinite values. The mean confidence interval length

is significantly reduced by the splitTs on all three traces

indicating a better fit of the forecast model to the observations.

In summary, the results show that by classifying different

types of days and executing the time series analysis only

on subsets with similar seasonal patterns, splitTs improves

forecast accuracy significantly compared to existing state-

of-the-art techniques based on time-series analysis. On the

considered data sets, existing time-series analysis techniques

were not able to forecast the overlapping weekly seasonal

patterns (workingdays vs. nonworkingdays) correctly.

V. VERTICAL MEMORY SCALING

In this section, we evaluate in a case study how the proactive

approach can help to reduce the impact of the reconfiguration

on the application availability and performance by comparing

it with a reactive approach. The case study is based on the

Zimbra Collaboration Server [1] (or Zimbra), an open-source

groupware and collaboration server.

A. Experiment Setup

Zimbra is a distributed enterprise application consisting

of a mailbox server (Java application server and MySQL

database), a mail transfer agent (MTA) and a LDAP server.

The mailbox server manages a mailbox for each Zimbra user

and provides multiple interfaces (e.g., SOAP, IMAP, POP3)

to access a mailbox. A mailbox contains the user’s mails,

calendars, address books, etc. The MTA is responsible for

checking incoming and outgoing mails for spam and virus

content and delivering them to the recipients’ mailboxes. The

LDAP server manages the central configuration of Zimbra and

provides user authentication services.

In our setup, we deployed Zimbra using two VMs, one for

the mailbox and LDAP servers, and the other for the MTA.

The Zimbra VMs and the load generator were deployed on

three physical hosts (each equipped with 8 core CPUs, 16 GB

RAM and 500 GB HDD) running VMware vSphere 5.5. The

VMs were configured with 2 vCPUs and 4 GB RAM running

a CentOS 7.0 64-bit OS. We used Zimbra 8.5 and adapted its

database configuration to store and reload the MySQL buffer

pool when restarting in order to reduce cache warm up times.

Each mailbox contains approximately 5000 messages with

content and different types of attachments from a dump of a set

of mailboxes from a production mail server. A load generator

executes a session-based workload on Zimbra consisting of

a sequence of login, several mail read, mail send, and mail

delete operations. Each session randomly chooses a mailbox

on the server from a uniform distribution. The number of

concurrent sessions is dynamically varied over the duration

of an experiment. Given that we could not obtain suitable

arrival traces from a production Zimbra server, we extracted

the workload intensity from the FIFA’98 trace and scaled it to

match the capacity of our system.

B. Proactive vs. Reactive Controllers

We compare our proactive controller to a threshold-based,

reactive controller. In addition, we performed one baseline

experiment without vertical memory scaling.

As the application does not directly support the observation

of the incoming load, we use the monitored throughput as an

approximation for the number of arriving requests, and learn

the forecasting model based on the throughput. Given that

we aggregate the collected statistics over a complete hour, we

argue that this is a safe approximation. The proactive controller

is configured to do a forecast every night at 3 AM when

a minimum load on the system is expected. It predicts the

number of requests for the next day resulting in 24 hourly

arrival rates of which it takes the maximum. As thresholds,

we use the maximum sustainable throughput of the system

for a given memory size. We determined these thresholds in

an offline profiling experiment. The controller reconfigures the

memory in 4096 MB steps.

The reactive controller monitors the availability and re-

sponse time of the mailbox server. It is triggered if the server

is unavailable or if the observed response times are above one

second for over a period of three minutes. The controller has

a quiet time of one hour, i.e., after a memory reconfiguration

the trigger will not fire again in this period.

C. Results

1) Impact of reconfiguration: In this experiment, we eval-

uate the impact of memory scaling on the availability and

performance of the application. We used the setup described
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Fig. 3. Cumulative distribution function of absolute scaled errors.

TABLE II
COMPARISON OF CONTROLLERS.

No control Reactive Proactive

Mean response time 7,567 ms 1,211 ms 52 ms
Maximum response time 349,830 ms 1,023,100 ms 1,077 ms
Timeouts 84 285 0
Errors 8493 1485 337
Time of reduced availability 176 min 33 min 4 min

in Section V-A for the experiment. The FIFA’98 trace covers

a period of 92 days making it infeasible to run an experiment

over the complete length. Therefore, we extracted a subset of

four days from the trace, scaled its length to an experiment

length of 16 hours, and used it as an input to our load

generator. The subset covers the period from Saturday, June

30th 3:00 AM to Wednesday, July 4th, 3:00 AM.

In order to reduce the experiment duration, we used four

weeks of historic data from the FIFA’98 trace to learn the

forecast model. As the experiment begins, the proactive con-

troller automatically switches to the live monitoring data from

the Zimbra server. The live data is continuously appended to

the historic data and the forecast model is updated according

to the new observations.

In the following, we define the term “availability” as the

number successful requests divided by the total number of

requests during a time interval. If the availability is below

100%, we consider it reduced availability. Here the success

of each request is measured from the client perspective, i.e., as

observed by the load generator. If a request times out due to an

overloaded application, we consider the request unsuccessful.

Figure 4 shows the observed average response time for three

different experiments including the time of reduced availability

during which not all requests can be successfully served. In

the first experiment in Figure 4(a), no additional memory is

added to the VM. On the third and forth day, the application

is overloaded as the memory becomes a bottleneck resulting

in high read load on the hard disk. The response times of the

application therefore increase significantly (see also Table II).

During peak periods the application is not able to serve all

requests. In total, the availability is below 100% for a period

of 176 minutes due to timeouts and connection errors (see

Table II).

The reactive controller in Figure 4(b) is triggered by the

unavailability of the application as the response times increase

too abruptly for the controller to react.

As the application is overloaded, the steps described in

Section III-2 take a long time to complete and afterwards

the application also needs to reload its caches under a high

workload causing additional overhead. In total, the application

is only partially available over a period of 33 minutes due to

the overload situation and the reconfiguration (see Table II).

After that period, the reconfiguration effectively mitigated the

memory bottleneck and the application is able to serve the

workload with an acceptable performance again.

The results from the proactive controller are shown in

Figure 4(c). The proactive controller correctly detects the

future memory bottleneck in the night between the second and

third day and proactively triggers the reconfiguration during

a phase of low load. This results in a much lower impact

of the reconfiguration on the availability and performance

of the application. Given that the application needs to be

restarted, it is unavailable for a period of 4 minutes (see

Table II). After this period, it reloads its caches and serves user

requests in parallel without overloading the VM. Compared to

the reactive controller, our approach reduces both the time

of lower availability and the number of errors during the

reconfiguration by more than 80%. We conclude that using a

proactive control approach to memory scaling can effectively

reduce the impact of the required reconfigurations on the

application.

2) Memory usage: Figure 5 shows the observed memory

usage of the application as reported by the guest operating

system in the VM. The free counter reports the unallocated

memory and corresponds to the memory usage as seen by

the hypervisor. The available counter does not include the

memory reserved for the operating system buffer caches. As

the Linux operating system greedily allocates memory for

its buffer caches, the free counter does not reflect the actual

memory demand of the VM. The available counter is a better

indicator of the memory pressure within the VM. However, it

does not show a clear correlation to the workload intensity.

Therefore, it is necessary in our approach to benchmark the
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Fig. 4. Observed response times of the mailbox server.
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Fig. 5. Observed memory usage of the mailbox server VM.

TABLE III
ALLOCATION DECISIONS

Step size Overprovisioned Underprovisioned
Days Amount Days Amount

1024 MB 3 1.08% 14 10.79%
splitTs 2048 MB 0 0% 9 10.07%

4096 MB 0 0% 6 8.54%

1024 MB 6 3.6% 18 14.03%
WCF 2048 MB 4 3.36% 14 13.42%

4096 MB 2 2.44% 8 10.98%

application in advance to determine the maximum number of

session that can be served with a given memory size.

3) Allocation decisions: Using the same thresholds as in the

reconfiguration experiments, we also analyzed the allocation

decisions of the proactive controller for the complete first 5

weeks of the FIFA’98 trace. Excluding the training phase of

the forecaster, this results in 30 days for which the proactive

controller can predict the required memory size. We compare

the memory allocation resulting from the forecast arrival rate

to the memory allocation that would be required for the actual

arrival rate. As the memory allocation can only be a multiple

of a certain step size in our approach, we calculated the over-

and under-provisioning ratios using step sizes of 1024 MB,

2048 MB, and 4096 MB. The results are shown in Table III.

In summary, the proactive controller using the splitTs

method results in a lower chance of over- and under-

provisioning (< 11%) compared to the WCF method. How-

ever, both methods tend to underestimate the resource allo-

cation on the FIFA’98 trace. This is also visible in Figure 2.

Although splitTs correctly captures the long-term increasing

trend of the trace, more sophisticated methods to extract over-

lapping trends and seasonal patterns may improve the results.

This will be part of our future work on combining splitTs

with the load intensity modeling framework DLIM [12]. In

order to obtain more conservative forecasts and reduce under-

provisioning, we recommend to use the upper confidence level

of the forecast. Compared to a constant factor as proposed

in [13], the confidence interval has the advantage that its width

also depends on the fitting quality of the forecast model.

VI. RELATED WORK

Prior work on proactive resource management describe

different approaches to use the demand forecast in allocation

decisions. Surveys on the state-of-the-art in resource manage-

ment of virtualized environments [14], [15], [16] list different

approaches to address vertical scaling via VM resizing in a

proactive manner. All methods in this category focus on the

dynamic provisioning of virtual CPUs as the computational

resource. Our work focuses on proactive provisioning of

memory resources for memory intensive applications.

In [17], the authors describe how proactive resource man-

agement might be achieved at the granularity of an entire

cluster of virtual machines. vManage [18] uses short range

forecasts (15 minutes into the future) to optimize VM place-

ment on physical hosts and avoid ping-pong of VM migra-

tions. In [19], the authors use a combination of reactive and

proactive techniques to horizontally scale an application to

meet workload demands. AppRM [20] dynamically adapts

the CPU and memory reservation and limit settings in a

reactive manner. The scale up is, however, limited to the



initially configured resource capacity. CloudScale [13] uses

multiple techniques including Fast Fourier Transforms (FFTs)
–to identify repeating resource usage patterns–, discrete time

Markov Chains – to predict the demand in the near future–

, online adaptive padding and incremental (adaptive) over-

provisioning –to remedy and detect under-provisioning–. This

information is used for short-term optimization of CPU and

memory limits.

Approaches to dynamically adapt the memory management

of applications are described in [3], [21], [22].The authors

of [3] integrate memory balooning techniques in Java and

MySQL applications to improve elasticity. In [21], a control

mechanism is proposed to dynamically manage the heap size

of Java applications running in the same VM depending

on the current demand. Gingko [22] is an over-commitment

framework for memory that is aware of application memory

management. These approaches are orthogonal to ours and

may be used to improve the elasticity further.

Our work, differs from these related works in the follow-

ing aspects: (a) it leverages memory hot-add mechanisms

of VMware ESX, (b) it enables application reconfigurations

necessary to exploit the additional memory resources, and (c)

it uses mid-term workload forecasts (e.g., one day horizon) to

automatically schedule reconfigurations during a pre-defined

maintenance window.

VII. CONCLUSION

In this paper, we present a proactive approach for ver-

tical scaling of resources with a focus on memory inten-

sive applications that often do not support state replication

across nodes. We explicitly address the technical challenges

of dynamic memory provisioning. Furthermore, we present

our splitTs method to demand forecasting, which is based

on multiple time series analysis methods and also incorpo-

rate meta-knowledge about the expected workloads. In our

evaluation based on real-world traces, we demonstrate that

splitTs significantly improves the forecasting accuracy. In

the context of a case study with the Zimbra Collaboration

Server, we show that our proactive approach can reduce the

impact of reconfigurations on the application availability and

performance of the application by more than 80% compared

to a reactive controller. Using splitTs, we were also able to

reduce the over- and under-provisioning of memory compared

to WCF to under 11%.

As part of our future work, we plan to extend the descriptive

modeling capabilities for capturing relevant meta-information

to further improve the forecasting accuracy. Combining our

splitTs method with the load intensity modeling framework

DLIM described in [12] appears promising. We also plan

to extend the set of experiments as soon as a standardized

benchmark methodology for evaluating resource management

mechanisms, as presented in [23], is available. Finally, we

plan to further extend our approach to include methods for

estimating memory demands based on monitoring data from

the hypervisor in order to automatically determine the required

memory size for a given workload at system runtime.
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