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Abstract—Proactive adaptation improves the system perfor-
mance of Autonomic Computing systems as it recognizes adap-
tation concerns in advance and adapts or prepares adaptation
accordingly. To support this, forecasting methods use historical
data to predict future system states. According to the “No-
Free-Lunch-Theorem”, there is no general forecasting method
that performs best in all scenarios. Usually at design time,
expert knowledge is required to decide on the forecasting method
based on the anticipated characteristics of the resulting time
series data. The uncertainty that results from the gap between
design time and runtime for adaptive systems, as well as the
environmental uncertainty at runtime, decreases the possibility
that a forecasting method chosen at design time can cope with
runtime demands. A common approach to tackle this problem
is to use recommendation systems that automatically choose the
forecasting methods. In this paper, we introduce a novel approach
for forecasting method selection and a recommendation-based
ensemble forecasting approach. We compare our approaches with
one of the most widely used recommendation approaches for
time series forecasting. Whereas the reference system uses static
recommendation rules, we contrast a modified version which
supports dynamic rule learning. The results of the evaluation
show that our approaches outperform the original approach with
static rule learning.

Index Terms—Forecasting, rule induction, recommendation,
univariate time series, data characteristics, method selection

I. INTRODUCTION

In order to react to changes in the system or the environment

through adaptation, Autonomic Computing systems integrate

a mechanism for analyzing data monitored about system

resources and the environment. Traditionally, this analysis uses

models or thresholds and targets the current status of the sys-

tem. Through the increasing omnipresence of computational

power – e.g., by integrating cloud resources – the integration

of proactive adaptation through analysis of predicted systems

states becomes a suitable alternative to reactive adaptation [1],

[2]. This eliminates delays in the adaptation process as the

system recognizes adaptation concerns beforehand.

To enable proactive adaptation, the system integrates fore-

casting methods to predict future system states. Forecasting is

an established and important discipline in many research areas

enabling estimations of future observations by examining a se-

ries of past ones. Based on the “No-Free-Lunch Theorem” [3]

from 1997, stating that there is no optimization algorithm best

suited for all scenarios, an analogy can be drawn to the domain

of time series forecasting: there is no forecasting method that

performs best for all time series. In other words: forecasting

methods have their advantages and drawbacks depending on

the specific use case and considered time series.

Usually, choosing the best forecasting method relies on

expert knowledge which can be expensive, might have a

subjective bias, and may take a long time to deliver results.

Additionally, Autonomic Computing systems need to handle

complex types of uncertainties [2], i.e., when it is not possible

to model a priori the situations in which such a system

might reside at run time. This also influences the choice

of the suitable forecasting method, as the characteristics of

the time series data might be unknown at design time. For

this reason, the integration of expert knowledge at design

time is not applicable for Autonomic Computing scenarios

like proactive auto-scaling of cloud environments. Here, the

forecasts of future workloads have to be delivered within a

very short period of time so that scaling decisions can be

executed in time. Accordingly, autonomously choosing the

forecasting method at runtime can cope with unanticipated

situations as well as context switches.

In order to automate the process of applying forecasting

methods, while avoiding to rely on expert knowledge, several

hybrid approaches have been developed in the literature. One

approach is ensemble forecasting where multiple forecasting

methods are applied on the same time series and a weighted

average of their forecasts is returned as a final result [4]–

[9]. Another approach is based on time series decomposition
where a time series is split into components and a different

forecasting method is applied to each of the components [10]–

[14]. The results of the component forecasts are then combined

to derive a forecast for the entire time series. Finally, a further

class of hybrid forecasting approaches is based on forecasting
method recommendation [15]–[19]. Here, a set of rules is

used to select a proper forecasting method based on specified

features of the considered time series. The set of rules can

either be created manually or generated automatically by using

more sophisticated algorithms.

The most popular recommendation system for time series

forecasting is from Wang et al. [17], postulating general

rules for selecting forecasting methods. The approach is

quite popular due to its detailed introduction to the topic of



TABLE I
FORECASTING METHODS TO BE RECOMMENDED.

Name Brief functionality Implementation

Random Walk
The assumption is made that the last observation is most likely to be seen next. That is, the
predicted value equals the last value of the history.

self-implemented

ETS
The components season, trend, and error are used to construct an exponential smoothing state
space model. The combination of the components can be either additive, multiplicative, or not
present, whereas their weightings are adjustable [20].

ets method of the R pack-
age forecast [21]

(s)ARIMA
ARIMA models combine autoregressive models, moving average models, and differentiation to
handle non-stationary time series. sARIMA is an extension of ARIMA that is able to model
seasonal data by adding a seasonal component to each non-seasonal component [22].

auto.arima method of
the R package forecast

ANN
A multilayer perceptron with a single hidden layer. The ANN is trained with lagged values of
the time series. In this implementation, the number of lags is chosen automatically [21].

nnetar of the R package
forecast

forecasting method recommendation. Surprisingly, despite the

high citation count, the reliability of these rules has never

been evaluated thoroughly. To address this issue, we focus

on rule generation for forecasting method recommendation

and propose a novel approach to dynamically (re-)learn

recommendation rules based on a growing collection of data

sets in this paper. We study the following research questions:

RQ1: What is the recommendation quality of the rules

by Wang et al. on the original training data set?

RQ2: Are the recommendation rules by Wang et al.
transferable to other data sets?

RQ3: How can the quality of forecasting method recom-

mendations be improved?

The paper is structured as follows: Next, we introduce the

foundations of time series forecasting, the applied methods,

and forecasting method recommendation in Section II. In Sec-

tion III, we summarize related work and the static recommen-

dation system proposed by Wang et al. Following, we propose

our own approach to dynamically learn recommendation rules

in a context specific manner in Section IV. In Section V, we

investigate the quality of the static rules by Wang et al., i.e.,

we address RQ1 and RQ2. To address RQ3, we show how

our approach improves the selection quality by dynamic rule

learning. Lastly, Section VI concludes the paper.

II. BACKGROUND

A univariate time series is a sequence of data points ordered

by time. Typically, the data points are measurements and

the time between two measurements is equally spaced. A

time series can also be multivariate containing additional

information for each timestamp, however, in this work, we

focus on univariate time series.

A. Time Series Characteristics

Time series can be described by many different character-

istics. In order to choose a proper forecasting technique, the

exact value of the characteristics is typically less important

than its degree of predominance. Thus, most of the charac-

teristics are normalized to the range from zero to one. The

larger this normalized value, the stronger the presence of the

feature. In the following, the characteristics trend, seasonality,

periodicity, skewness, kurtosis, serial correlation, non-linearity,

self-similarity, and chaos will be considered since they have

also been used by Wang et al. for their time series forecasting

method recommendation system. More information on these

characteristics can be found in the work of Wang et al. [17].

The calculation of the following characteristics as well as the

normalization was made available by Hyndman, co-author in

Wang et al. [17], on his website1.

B. Forecasting Methods

In the research field of forecasting, many different ap-

proaches have been developed. However, we focus on four

well-established forecasting methods that have also been used

by Wang et al. [17], i.e., random walk (RW), exponential

smoothing (ETS), (seasonal) autoregressive integrated moving

average (ARIMA), and artificial neural network (ANN). A

brief description of these methods is provided in Table I.

C. Forecasting Method Recommendation

The basic idea behind forecasting method recommendation

is to learn rules based on time series characteristics. Thus,

several time series characteristics are determined in order to

cover most of the relevant aspects. Then, these features are

used to learn dependencies between the performance of fore-

casting methods and the time series characteristics themselves.

Wang et al. adapted an architecture for meta-learning from

Vilata [17] named “knowledge acquisition mode” and is ini-

tially meant for data mining tasks [23]. Our approach also

follows this architecture. Figure 1 depicts the basic concept.

The approach uses a database of time series examples for

generation of the rule set. This approach is tripartite.

On the left hand side, the prediction component is depicted.

It forecasts all time series in the example database. To predict

future values, all time series are split into two parts. The

first part is called history and is used to train the model of

the respective forecasting method. The second part is used

for validation. Thus, the predicted values are compared to

these original values. The forecasting results are stored in the

prediction results database.

1TS Characteristics: https://robjhyndman.com/hyndsight/tscharacteristics/
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Fig. 1. Knowledge acquisition mode according to Vilata [23]. Wang et al.
applied an adapted version in [17].

On the right hand side, the calculation of the characteristics

is shown. This step determines, normalizes, and stores the

characteristics (cf. Section II-A) in the meta-level attributes

database. Moreover, it calculates the characteristics serial

correlation, non-linearity, skewness, and kurtosis additionally

on the de-trended and de-seasonalized time series. De-trending

and de-seasonalizing means that the trend and seasonal compo-

nents are removed from the original time series. Consequently,

13 characteristics are determined for each time series.

The third part combines the prediction results and the meta-

level attributes to the meta-level data set that maps time series

characteristics to the forecasting accuracy. Based on this data,

rule generation algorithms create rules and store them in the

knowledge base.

III. RELATED WORK

To overcome the issue of the “No Free Lunch Theorem”,

many hybrid forecasting methods have been introduced in

literature. In this context, a hybrid method consists of at least

two individual forecasting methods. Thus, a hybrid method

tries to compensate the drawbacks of one method by addi-

tionally using other forecasting methods. The existing hybrid

forecasting methods in literature can be categorized into three

groups of approaches each sharing the same basic concept:

(i) ensemble forecasting, (ii) time series decomposition, and

(iii) forecasting method recommendation.

Ensemble Forecasting was introduced by Bates and

Granger in 1969 [4] and is the historically first group. Here,

multiple forecasting methods are applied to the entire history

of a time series. A weight is assigned to each of these

forecast methods. By applying a weighted average, the final

forecast is calculated. Although this concept is rather simple,

the assignment of weights is essential for the quality of the

prediction. Therefore, the range of approaches for assigning

weights extends from simple average to much more sophisti-

cated methods [5], [7], [8].

Time Series Decomposition takes advantage of strengths

of individual forecasting methods for specific domains. By

doing so, drawbacks of other forecasting methods in the

same hybrid model can be equalized. There are two common

approaches in literature that use time series decomposition

as hybrid models. The first approach applies an individual

forecasting method on the entire time series and afterwards

uses a second individual method on the residuals [24], [25]. It

is important that the second forecasting method has different

strengths than the first one so that it is able to extract any more

information from the residuals. The second approach utilizes

time series decomposition explicitly. That is, the time series

is split into several components, e.g., trend, seasonality, and

remainder [10], [14]. Then, a specific forecasting method is

selected for each component. In this way, the advantages of

forecasting methods can be utilized.

Forecasting Method Recommendation aims at generating

a set of rules in order to estimate the assumed best forecasting

method based on measurable time series characteristics. In

literature, there are two common approaches to create such

a rule set: (i) expert knowledge and (ii) automation. Collopy

and Armstrong introduced as first researchers the idea of using

a manually created expert system in 1992 [15]. They used

18 features to generate 99 rules for the selection between

four forecasting methods – random walk, regression, Brown’s

linear exponential smoothing, and Holt’s exponential smooth-

ing – and showed that their expert system could improve the

forecasting accuracy compared to simple average ensemble

forecasts. The modified version of Adya et al. reduces human

intervention but still requires it [26]. The second type of

approaches uses algorithms to automatically derive a rule set.

In order to use such rule induction methods, the data set is

split into a training and a validation set. The rules are learned

based on the time series characteristics on the training set.

Then, the rules are applied to the testing set. As first authors,

Arinze et al. [16] applied artificial intelligence-based methods

for rule generation in 1997. They extracted six time series

characteristics and selected one out of six forecasting methods.

Prudencio and Ludermir showed two case studies with six and

seven features, respectively [27]. In the first case study, the

recommendation system consisted of two forecasting methods,

while three methods were chosen for the second case study.

In 2009, Wang et al. proposed clustering and rule induction

algorithms to generate categorical and quantitative rules based

on a large variety of time series features [17]. Therefore,

the authors first introduced nine time series characteristics

that are assumed to have a relation to the performance of

four forecasting methods, i.e., ARIMA, ETS, ANN, and ran-

dom walk. Then, hierarchical clustering and self-organizing

maps were presented in the field of time series forecasting.

Wang et al. described how to use these clustering methods to

group similar time series together and then create judgmental

and conceptive rules. Moreover, the authors applied a decision

tree technique, i.e., the C4.5 algorithm, to generate quantitative

rules automatically. Therefore, the forecasting methods are

ranked for each time series according to their accuracy. As the
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Fig. 2. Schematic process of the rule generation approach. First, oversampling is applied to the class label vectors and the matrix of characteristics T . The
oversampled class label vectors and matrices of characteristics T1 to T4 are then used to learn a random forest model M1 to M4 for binary classification for
each forecasting method in the recommendation system. The prediction of those models for a validation time series V results in probabilities for the class
labels 0 and 1 for each forecasting method. The forecasting method with the highest probability of class label 1 is returned.

recommendation system only tries to say which forecasting

method to choose, Wang et al. set the class label to 1 for

the best forecasting method for each time series. All other

forecasting methods receive the class label 0 for the respective

time series. These labels are used as prediction class and the

time series characteristics are used as meta-level attributes.

Then, the C4.5 algorithm is applied with this data on each

forecasting method to generate quantitative recommendation

rules. This results in four rule sets, one for each forecasting

method. These rules tell whether to use the respective forecast-

ing method or not. Wang et al. provide all necessary parameter

settings for applying the C4.5 algorithm as well as they present

the generated rules. However, neither the conceptual nor the

quantitative rules have been evaluated. In addition, the data

set used to learn the models is not split and thus, there is no

distinction between training and validation data.

Lemke and Gabrys identified another feature set [18]. Al-

though multiple characteristics are similar to Wang et al., they

also omitted some and introduced several more. Lemke and

Gabrys used this feature set to examine the applicability of

different rule generation approaches for the selection between

15 forecasting methods and seven combination techniques on

two data sets. Their results show that ensemble forecasting

methods provide more robust predictions than single forecast-

ing methods. Lemke and Gabrys also pointed out that the work

of Wang et al. is so far the most comprehensive treatment of

rule induction and forecasting method recommendation [18].

Since comparatively less research has been done in this area

in recent years, this still holds true. Thus, we focus on

the evaluation of the quantitative rule induction proposed by

Wang et al. and also introduce two alternative approaches.

The first approach is based on oversampling and binary

classification, while the second approach combines forecasting

method recommendation and ensemble forecasting.

IV. PROPOSED ALTERNATIVE APPROACHES

In this paper, we propose two new approaches that we

evaluate against the approach of Wang et al. The first approach

generates rules by applying binary classification with over-

sampling. The second approach combines forecasting method

recommendation and weighted ensemble forecasting.

A. Binary Classification with Oversampling

Figure 2 schematically shows our rule learning approach.

It directly addresses the limitations of the approach by

Wang et al.: (i) the single tree constructed by the C4.5

algorithm tends to overfit the training data, (ii) the training

data are highly unbalanced, and (iii) the rules sometimes do

not recommend any forecasting method. In the following, this

section describes our approach.

First, the characteristics for all time series in the training

set need to be determined. Therefore, the calculation and nor-

malization of characteristics are the same as for the approach

by Wang et al. Figure 2 depicts the matrix of characteristics

for the training set as T on the left hand side. Here, each row

of the matrix represents one time series.

Second, in order to evaluate the forecasting accuracy, the

first 80% of observations are used to train the four forecasting

methods. The remaining 20% are defined as the forecast

horizon, from which the accuracy can be calculated. Then, the

approach determines for each time series which forecasting

method provides the best forecast. This results in a vector

of zeros (not the best forecasting method) and ones (best

forecasting method) for each forecasting method, i.e., each

entry in this vector stands for one time series. Figure 2 shows

the resulting four vectors on the left hand side.

Yet, since there are four forecasting methods in competition,

it can be expected that each forecasting method will receive

more zeros as class labels than ones. This results in a highly

unbalanced training set and impacts the quality of the gen-

erated rules in a negative way. To handle unbalanced data,

several approaches have been developed. On the one hand,

performance metrics (e.g., precision, recall, and F1-score) can

be adjusted to represent the unbalanced data set correctly.

On the other hand, oversampling or undersampling can be

applied for balancing. Oversampling creates new instances of

the minority either by simply duplicating existing instances or

artificially creating new instances. In contrast, undersampling

discards instances of the majority class until both prediction

classes are balanced. In this work, we use oversampling to

avoid reducing our training base. We apply the duplication

approach for oversampling because, in a preliminary study,

it provided better performance for our scenarios than the

approach that synthetically creates new instances. However,



this study is out of the scope of the paper. Here, not only the

entries of the class label vectors are duplicated, but also the

corresponding rows of the matrix of characteristics. Figure 2

illustrates the oversampled matrices as T1 to T4 along with

the respective class label vectors. The oversampled entries of

the vectors and matrices are depicted in grey.

Next, a rule learning algorithm generates rules using the

oversampled training data. Wang et al. use the C4.5 algo-

rithm which creates a decision tree based on the time series

characteristics of the training set. However, a single decision

tree might not cover all relevant aspects for decision making

and tends to overfit. Thus, we apply an ensemble learning

method based on random forest to dynamically learn the rule

set as random forest constructs several decision trees. We use a

parameterized version to perform binary classification2. Thus,

this step results in four random forest models, M1 to M4, one

for each forecasting method (cf. Figure 2).

Lastly, for recommending the best forecasting method, the

matrix of characteristics of the validation time series V is

passed to the random forest models. The validation set consists

of time series that are not used for training. Now, each of these

models delivers two class probabilities per time series. The

probability of class label 1 indicates how likely a forecasting

method is to be suitable for the respective time series. As

soon as the class probabilities for all forecasting methods

are available, the one with the highest probability for class

label 1 is recommended to ensure that a forecasting method

is recommended in any case.

B. Recommendation-based Ensemble Forecasting

To tackle the problem of typical forecasting method rec-

ommendation3 we use a combination of ensemble forecasting

and forecasting method recommendation. On the one hand, we

apply linear regression for automatically adjusting the weights

for a linear combination of forecasting methods. On the other

hand, we use an activation function that acts as a sieve to

select only the most appropriate methods.

To this end, we derive a linear combination of each fore-

casting method Y i (ARIMA, Exponential smoothing, artifi-

cial Neural network, and Random walk). Each weight ϑi is

estimated by a linear regression of the characteristics of the

previously seen time series. As the regression only has the

values zero and one as input, it delivers values in this range.

We interpret this output as the probability of how good the

forecasting method is suitable for the time series. In contrast to

typical weights in ensemble forecasting, these weights have to

be activated. That is, if a weight fulfills the activation function

Γ, the weight is used, otherwise, the weight is set to zero. A

weight of zero means that the associated forecasting method

is not considered for the forecast. The linear combination

is also normalized by ϑ, which is the sum of the activated

weights. For the activation, different functions can be used.

2Random forest: https://cran.r-project.org/web/packages/randomForest/
index.html (classwt = false, mtry = 2, type = binary classification)

3By selecting only one forecasting method for each time series, the
forecasting accuracy over a set of time series typically shows large variance.

Our function is two-folded, i.e., we activate a weight if it

fulfills both criteria: the weight ϑi must be (i) greater or equal

to the mean of the weights ϑ and (ii) greater or equal to the

share α of the maximum weight ϑ̂.

The first condition has the advantage that by using the

mean of all weights, the assumed most appropriate forecasting

method is chosen in any case and the assumed worst suitable

method is omitted. Further, if all weights have the same value,

all forecasting methods are considered. As the mean can be

influenced by outliers, the second condition allows having a

higher threshold than the mean if the outlier is near to zero.

The steps can be mathematically expressed as follows:

Y =
1

ϑ

∑
Y i · Γ(ϑi)

i∈{A,E,N,R}
with ϑ =

∑
Γ(ϑi)

i∈{A,E,N,R}
,

Γ(ϑi) = ϑi ·
(
1−max(sign(max(ϑ, α · ϑ̂)− ϑi), 0)

)
,

ϑ = mean(ϑi)
i∈{A,E,N,R}

, and ϑ̂ = max(ϑi)
i∈{A,E,N,R}

Both the binary classification with oversampling approach

as well as the recommendation-based ensemble forecasting

approach can be applied for runtime performance decisions

in autonomous systems. In an offline phase, the initial rec-

ommendation rules need to be learned. The rules and weights

can be used for new and unseen time series at runtime since

applying the recommendation is very fast. Moreover, these

new time series can then be used to dynamically re-learn the

recommendation rules and weights. As we rely on a random

forest based approach for rule generation4, the dynamic re-

learning of rules is feasible with a small overhead at runtime.

V. EVALUATION

In this section, we address the research questions formulated

in Section I. First, Section V-A introduces the experimental

setup. The following section investigates the quality of the

rules proposed by Wang et al., i.e., addressing RQ1 and RQ2.

In Section V-C, we compare our own approaches with a

dynamic version of the approach proposed by Wang et al.
Afterwards, we discuss threats to validity. In Section V-E, we

summarize our findings and conclude the evaluation.

A. Experimental Setup

The entire analysis is implemented in R version 3.3.2. In

order to calculate and normalize the time series characteristics,

the original script by Hyndman, which is also written in R, is

applied. The R package forecast is integrated in version 7.3

to perform the forecasting methods [21].

Since we aim at evaluating the recommendation perfor-

mance of the approach by Wang et al. and comparing our

novel approaches with it, we first use the data set mentioned in

the original paper and the same forecasting methods, ignoring

other interesting forecasting methods (e.g., tBATS, Theta,

SVM, and LSTM). However, as some of the sources are not

4Random forest is typically very fast for both learning and prediction.
On our data sets, the rule generation is done within minutes and the
recommendation for a single time series within milliseconds.



available anymore, we focus on the time series from the UCR

Time Series Classification Archive [28], which are the main

part of the original data set. This data set consists of 377 time

series and is called UCR in the following. We use this data set

to address RQ1. In addition, we use another data set consisting

of 1005 time series from the M3 competition [29] to provide

an answer to RQ2. Finally, we use both data sets to compare

our approaches to the rules by Wang et al. and the individual

forecasting methods (RQ3).

B. Evaluation of Approach by Wang et al.

As a first contribution, we evaluate the postulated rules of

Wang et al. (cf. RQ1 and RQ2) using the following aspects:

• Which average rank does the recommendation achieve?

• When comparing the forecasting error of each recom-

mended forecasting method to the actual best performing

forecasting method in competition, what is the average

degradation in accuracy?

To evaluate the recommendation quality of the approach

proposed by Wang et. al [17], we conduct two sets of exper-

iments. The first one uses the UCR data set and the second

experiment row uses time series from the M3 competition.

For both data sets, we investigate the accuracy of both one-

step-ahead and multi-step-ahead forecasting. Thus, we observe

the rank and the forecast accuracy degradation for each fore-

casting method and each time series, comparing them with the

recommendation provided by Wang et al.’s approach. The rank

reflects on which place the method is sorted according to the

forecast accuracy. The forecast accuracy degradation indicates

how much lower the associated method performs compared

to the best method. The ground truth of which method would

have been best is only known ex-post. We chose the mean

absolute percentage error (MAPE) as error measure:

MAPE = 100 · 1
k

k∑
i=1

| ei
Yi
|

Here, k represents the length of the forecasting horizon, Yi

stands for the original value of the ith observation in the

forecasting horizon, and ei describes the forecasting error at

observation Yi, i.e., the difference between the predicted and

the original value.

To provide answers to the first two research questions,

Table II presents the average ranks when applying the rules

from Wang et al. on the UCR (cf. RQ1) and M3 (cf. RQ2)

data sets. The rules and individual forecasting methods are

applied to both data sets. We evaluate not only the multi-

step-ahead performance but also the one-step-ahead accuracy.

The average rank of the recommendation system varies from

2.62 to 2.80. Since there are only four forecasting methods

in competition, the theoretical expected value of a random

guess would be 2.5 if all forecasting methods perform best

equally frequent. Moreover, it can be seen that the average

ranks of ARIMA, ETS, and ANN are better than the ranks

of the recommendation rules for both scenarios of the UCR

data set. Only random walk shows a worse average rank for

TABLE II
AVG. RANKS FOR THE RULES BY WANG et al. AND INDIVIDUAL METHODS.

Data set Wang et al. ARIMA ETS ANN RW

UCR one-step 2.62 2.33 2.42 2.34 2.92
UCR multi-step 2.80 1.95 2.64 2.59 2.83
M3 one-step 2.63 2.38 2.37 2.67 2.58
M3 multi-step 2.75 2.28 2.17 2.79 2.76

the UCR data set. Please note that Wang et al. used the UCR

data set to learn their rule set, which makes these results even

more surprising. In terms of the M3 data set, ARIMA and

ETS again outperform the recommendation system for both

scenarios. Even random walk shows a smaller average rank

than the rule-based selection for one-step-ahead forecasting.

The distribution of achieved ranks when applying the rec-

ommendation system can be seen in Figure 3. Here, the

horizontal axis depicts the four ranks and the vertical axis

shows the respective probability density. For each rank, four

bars are depicted whereupon each bar represents one scenario

of a data set, i.e., from left to right: one-step-ahead forecasting

on UCR, multi-step-ahead forecasting on UCR, one-step-

ahead forecasting on M3, and multi-step-ahead forecasting on

M3. The figure shows that the most frequent rank is 4 and thus,

the worst forecasting method in the system. The probability

density of rank 4 is never less than 30% for any scenario.

18

24

19

28

2121
23

21

30

2424

16

3131

34
35

0

10

20

30

1 2 3 4

Rank

Pr
ob

ab
ilit

y 
D

en
si

ty
 [%

]

Data Set
UCR_One
UCR_Multi
M3_One
M3_Multi

Fig. 3. Histogram of the distribution of achieved ranks for the rules by
Wang et al. on the UCR and M3 data sets.

As the rules generated by Wang et al. provide a separate

recommendation for each forecasting method whether to apply

it or not, it may happen that the rules do not recommend

any of the forecasting methods. However, this does not help

autonomous systems in decision making. Table III presents the

amount and percentage share of missing recommendations on

the UCR and M3 data sets. For each data set, the values are

the same for one-step-ahead and multi-step-ahead forecasting.

It can be seen that the recommendation system fails to suggest

a forecasting method for almost 15% of all time series in the

UCR data set and even 44% in the M3 data set.



TABLE III
MISSING RECOMMENDATIONS FOR THE RULES OF WANG et al.

Data set Amount Percentage share

UCR 55 14.6%
M3 442 44.0%

Besides the ranking and examination of missing recommen-

dations, the degradation of accuracy is investigated. Thus, for

each time series and forecasting method, the achieved MAPE

is compared to the lowest MAPE value for the respective

time series. The average degradation of accuracy is shown

in Table IV. For each data set, the first row shows the mean.

It can be seen that the mean is typically very large as there

are high outliers. In addition, for one-step-ahead forecasting

on M3, the mean values of Wang et al., ARIMA, ETS, and

ANN are infinity because random walk achieves a MAPE of

0% for some time series. For this reason, the median is also

presented in the second row for each data set. Again, ARIMA

and ETS provide better accuracy for all data sets and scenarios

compared to the rule-based selection. ANN also yields better

results than the recommendation system in most cases. Only

the median of multi-step-ahead forecasting on M3 is slightly

worse than applying the rules of Wang et al. In comparison

to random walk, neither the rules of Wang et al. nor random

walk has a significant advantage in the presented scenarios.

TABLE IV
ACCURACY DEGRADATION FOR ALL FORECASTING METHODS AND THE

RULES BY WANG et al. FOR EACH DATA SET, THE FIRST ROW SHOWS THE

MEAN VALUE AND THE SECOND ROW THE MEDIAN.

Data set Wang et al. ARIMA ETS ANN RW

UCR 992.6% 2096.9% 312.7% 404.0% 1053.2%
one-step 96.8% 46.1% 55.8% 48.6% 130.1%

UCR 282.3% 92.5% 328.5% 391.4% 284.6%
multi-step 108.5% 3.1% 100.1% 74.1% 89.8%

M3 Inf Inf Inf Inf 1150.8%
one-step 106.4% 40.4% 42.5% 68.7% 62.3%

M3 69.4% 53.7% 42.6% 92.0% 81.6%
multi-step 33.4% 10.0% 7.9% 35.1% 34.0%

To answer RQ1, the postulated rules of Wang et al. on the

UCR data set achieve average ranks and accuracy degradations

worse than those of ARIMA and ETS, i.e., the use of one of

these methods would provide better forecasting performance.

The quality of recommendations is therefore relatively poor.

ARIMA and ETS outperform the rules of Wang et al. also on

the M3 data set. Moreover, the share of missing recommen-

dation increases dramatically compared to the UCR data set.

Thus, RQ2 can be rejected since the postulated rules are not

transferable to the M3 data set.

From a statistical perspective, only the next forecast value is

important, but planning in advance, for instance in autonomic

systems like auto-scaling, requires multiple values. Thus, in

the next sections, we investigate multi-step-ahead forecasts.

C. Evaluation of Alternative Approaches

To evaluate our proposed alternative approaches, we use

80% of the time series from both data sets to learn the

relation between characteristics and the performance of the

forecasting methods. The remaining 20% of the time series

from both data sets are then used to evaluate the rules. Since

such a division is arbitrary, the data sets are divided randomly

100 times and the results of all permutations are averaged.

Binary Classification with Oversampling
In general, it is not possible to cover all aspects of time series

in such small training databases like the UCR data set or the

M3 data set (cf. Section V-A). Thus, either a huge and diverse

time series database is required or the learned recommendation

system targets a specific domain. Our evaluation is based

on two data sets. Therefore, we create the rules twice, i.e.,

once for each data set. So, in contrast to Wang et al., we

do not provide general rules for the selection of forecasting

methods. Instead, we learn the rules dynamically on each data

set under investigation resulting in a more realistic setting of

a recommendation system optimized for a specific domain.

Table V shows the comparison of (I) the rules by Wang et al.
who uses the C4.5 algorithm for rule generation to (II) dy-

namically generating the rules according to the procedure

by Wang et al. but using the C5.0 algorithm, an extension

of the C4.5 algorithm, and to (III) our approach based on

binary classification with oversampling. By replacing the C4.5

algorithm with the C5.0 algorithm, which generally achieves

more accurate results, the approach of Wang et al. is updated to

the current version. Dynamically generating the rules means

to learn the rules on the training part of each data set and

not to learn a global, static set of recommendation rules

for all data sets. Besides this adaptation of dynamical rule

learning and using C5.0 instead of C4.5, the rule induction

process of Wang et al. is applied. To compare the three

approaches, we apply ranks, missing recommendations, and

accuracy degradation as metrics.

In terms of ranks, approach (II) as well as our approach

show significant improvements. For the M3 data set, however,

approach (II) improves the average rank even more than our

approach. Yet, the difference between the ranks of these two

methods is rather small, i.e., 0.07. In contrast, our approach

outperforms approach (II) on the UCR data set in terms of the

average rank by 0.03. Again, the difference between the two

approaches is very small.

Our approach and approach (II) provide very similar results

on both data sets with respect to the degradation of accuracy.

The measure of our approach equals the one of approach (II)

on the M3 data set and is only 0.2 percentage points behind

approach (II) on the UCR data set. Again, the dynamic rule

learning modification of Wang et al., i.e., approach (II), as well

as our approach reduce the accuracy degradation distinctly.

Though, when taking a look at the missing recommenda-

tions, it can be seen that approach (II) does not provide a

recommendation for a very large proportion of time series.



TABLE V
AVG. RANKS, AMOUNT OF MISSING RECOMMENDATIONS, AND AVG. DEGRADATION IN ACCURACY FOR THE RULES BY WANG et al. (I), LEARNED RULES

USING C5.0 WITHOUT OVERSAMPLING (II), AND OUR BINARY CLASSIFICATION WITH OVERSAMPLING APPROACH (III).

Data set
(I) Orig. Rules from Wang et al. (II) Learned Rules - no Oversampling (III) Binary Classification with Oversampling
Rank No Recom. Degradation Rank No Recomm. Degradation Rank No Recom. Degradation

UCR multi-step 2.80 14.5% 282.3% 1.89 31.6% 79.5% 1.86 0% 79.7%
M3 multi-step 2.75 44.0% 69.4% 2.07 79.6% 39.5% 2.14 0% 39.5%

In fact, the percentage share of missing recommendations

increases drastically compared to the rules by Wang et al., i.e.,

from 14.5% to 31.6% and 44.0% to 79.6%. Thus, approach (II)

performs some kind of “cherry-picking”, since it only provides

recommendations for time series for which it is relatively

confident. In contrast, our approach guarantees to recommend

a forecasting method. So, our approach also recommends a

forecasting method, even if none of them is perfectly fitting

for the time series. For such scenarios, it is hard to estimate

which of the forecasting methods would perform best, because

the models try to learn which forecasting method performs

well for certain characteristics. However, in this scenario, there

are none of the forecasting methods performing well, but

still, the one with the smallest forecasting error should be

recommended. Thus, it is reasonable that the average rank and

accuracy degradation is slightly larger than for approach (II).

On top of that, not recommending any forecasting method is

not feasible for most autonomous systems in practice since

they require this input for their decision making process.

As the results for the binary classification with oversampling

approach presented in Table V are only averaged over 100

random splits for training and validation, the results of all splits

are shown as box plots: Figure 4a provides the box plots for the

ranks and Figure 4b depicts the distributions of degradation.

For both figures, the data sets, i.e., UCR and M3 both for

multi-step-ahead forecasting, are shown on the horizontal axis.

Figure 4a shows that the interquartile range, indicated by the

upper and lower border of the box plot, for the M3 data set is

very small as the first quartile has a value of 2.10 and the third

quartile is 2.19. Moreover, there are only a few outliers. This

shows that the average rank for the oversampling approach is

rarely dependent on the choice of split between training and

validation data. For the UCR data set, the variation is a bit

larger. The interquartile range reaches here from 1.79 to 1.92.

However, this range is still acceptable.

In terms of degradation of accuracy, Figure 4b shows that

the variation for the M3 data set is very small, i.e., the

first quartile is 33.0% and the third quartile is 44.2%. This

underlines the previous statement that the performance of

this approach does not depend much on the split of data. In

contrast, the degradation of accuracy varies highly on the UCR

data set. Here, the interquartile range is much larger compared

to the M3 data set. It ranges from 63.0% to 100.2%. However,

the long whiskers indicate that some of the splits highly affect

the degradation of accuracy on the UCR data set presumably

as this data set is smaller than the M3 data set and is also

intended for time series classification rather than forecasting.
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Fig. 4. Box plots of ranks and accuracy degradation for 100 splits using the bi-
nary classification with oversampling approach on the M3 and UCR data sets.

Figure 5 shows a histogram of ranks for the UCR and M3

data sets. Here, the binary classification with oversampling

approach is applied for multi-step-ahead forecasting. On the

horizontal axis, the ranks are presented whereas the probability

density of each rank is shown on the vertical axis. For each

rank, two bars are depicted. The left bar represents the UCR

data set and the right bar the M3 data set. In contrast to the

histogram of ranks for the original rules, which is shown in

Figure 3, the probability densities of the ranks are strictly

decreasing. Thus, for both data sets rank one is by far most

frequent with 51% and 39% for the UCR data set and the M3

data set, respectively. In addition, the worst forecasting method

for each time series, i.e., rank four, is least recommended (9%

for the UCR data set and 16% for the M3 data set) with a

distinct distance to ranks three and two.

Taking into account the average rank, accuracy degradation,

and the distribution of ranks, our binary classification with

oversampling approach shows distinct improvements in the

recommendation quality. Moreover, when comparing the

recommendation with the individual forecasting methods,

our approach also outperforms them. On the UCR data

set, ARIMA performs best with an average rank of 1.95

(cf. Table II) and accuracy degradation of 92.5% (cf. Table IV).

That is, the average rank of our approach is lower by 0.09 and

the average accuracy degradation is less by 12.8 percentage

points (cf. Table V). For the M3 data set, ETS achieved the



39

51

25
21

2019
16

9

0

10

20

30

40

50

1 2 3 4

Rank

Pr
ob

ab
ilit

y 
D

en
si

ty
 [%

]

Data Set
UCR_Multi
M3_Multi

Fig. 5. Histogram of the rank distribution for the approach using binary
classification and oversampling on the UCR and M3 data sets.

best results of the individual forecasting methods. However,

our approach still provides better results than ETS with a

reduction of the average rank by 0.03 (cf. Tables II & V). In

addition, our approach decreases the degradation in accuracy

by 3.1 percentage points (cf. Tables IV & V).

Recommendation-based Ensemble Forecasting
To evaluate the recommendation quality of the linear model

with activation function, Table VI presents the degradation

in accuracy for all forecasting approaches averaged over all

100 splits. As this linear model approach creates an entirely

new forecast, it can be seen as a fifth forecasting method,

in addition to ARIMA, ETS, ANN, and random walk. Thus,

comparing ranks would yield completely other results than

shown before. Therefore, only the degradation in accuracy

is shown for this approach. However, also keep in mind

that the values of degradation here are slightly larger than

in the previous sections as the optimal forecast can now

be our recommendation-based ensemble forecasting approach.

Table VI shows that our approach achieves the smallest

degradation in accuracy for the M3 data set, followed by our

binary classification with oversampling approach and ARIMA.

All other approaches are clearly outperformed. In terms of

the UCR data set, our binary classification with oversampling

approach reaches the best result ahead of ARIMA and our

recommendation-based ensemble forecasting approach. Again,

the other approaches are all far behind. On the M3 data set,

the rules by Wang et al. only outperform the ANN and random

walk whereas they perform worst for the UCR data set.

D. Threats to Validity

In our work, we try to reconstruct the original data set

used by Wang et al. that consists mainly of the UCR data

set. Unfortunately, the exact time series have not been stated

but only the amount. However, by analyzing the year of

publication of Wang et al., we were able to identify the UCR

data sets. Though, we could not use time series from the other

sources since some of them are not available anymore or could

not be uniquely identified. Indeed, we use 46 from 62 time

series data sets. As this is almost 75% of the original data

set, the results for the rules proposed by Wang et al. may be

slightly better while using the original data set, but the missing

time series would not lead to the best results.

Moreover, the time series from the UCR target initially

classification and not forecasting. The predictability of these

time series is rather poor since their entropy is very low, e.g.,

some time series only show peaks similar to Dirac impulses.

For this reason, the predictions in general are relatively inac-

curate. This results in a largely random ranking of the best

prediction methods for such time series. Although random

walk is typically used as a baseline forecasting method, this

approach performs comparably well on these data sets.

As the rules by Wang et al. sometimes do not recommend a

forecasting method, we omit these time series in the evaluation

in Section V-B. By punishing the missing recommendations,

the approach of Wang et al. would perform even worse.

Since we try to reproduce the setup of Wang et al., we

consider only time series with more than 100 and less than

1000 values. Thus, the observed results may only be valid for

time series with the specified length.

To ensure comparability, we only consider the forecasting

methods of Wang et al.: ARIMA, ETS, ANN, and random

walk. Thus, the results are only valid while using these

methods. However, since there are only four methods in the

recommendation system, a distinct improvement in the average

rank is hard to validate. Moreover, some of the forecasting

methods are very similar to each other, e.g., ETS and ARIMA

often provide very close results for short time series with little

information content and short seasonality. However, the data

sets contain many time series of this kind. In order to validate

the recommendation system in more detail, more forecasting

methods and in particular more diverse ones are required.

The results of our experiments are easily reproducible as the

entire code is written in R using only publicly available pack-

ages and data sets. Moreover, we are working on providing

the R scripts on GitHub5.

5GitHub: https://github.com/marwinzuefle/ForecasterRecommendation

TABLE VI
DEGRADATION IN ACCURACY FOR ALL APPROACHES AVERAGED OVER ALL 100 RANDOM SPLITS.

Data set Wang et al. ARIMA ETS ANN Random walk Bin. Class. + Oversampling Recom. + Ensemble

M3 multi-step 69.8% 59.9% 46.2% 91.0% 83.6% 42.3% 40.6%
UCR multi-step 404.9% 98.0% 345.6% 386.3% 300.9% 82.1% 104.9%



E. Evaluation Findings

The approach proposed by Wang et al. was not yet evaluated

and thus, we investigated the recommendation quality on the

original and an additional well-known time series data set. The

key takeaways of our evaluation are:

(I) The experimental results show that the rules proposed

by Wang et al. are outperformed by all forecasting methods

besides random walk on both data sets (RQ1 and RQ2).

(II) Compared to the individual forecasting methods and the

rules of Wang et al., our binary classification with oversam-

pling approach yields the best results on both data sets for both

average rank and average degradation in accuracy (RQ3).

(III) The approach of using a linear regression model with

activation function for the recommendation and combination

of forecasting methods achieves the best results on the M3

data set and the third best results on the UCR data set (RQ3).

VI. CONCLUSION

In this work, we focus on the application of forecasting

methods to support proactive decision making in autonomic

computing systems. As there is no forecasting method that

works best for all time series, usually expert knowledge is

required to choose the right method. Recommendation systems

aim to tackle this problem, however, those are often not

evaluated in literature. Thus, we provide a detailed evaluation

of one of the most cited recommendation approaches for time

series forecasting. As the experimental results of this approach

show that the proposed rules do not perform well, i.e., three

out of four individual forecasting methods achieve a better

forecasting performance, we introduce two novel approaches.

The first approach applies oversampling and binary classi-

fication, while the second approach uses recommendation-

based ensemble forecasting. We show that both approaches

outperform the rules by Wang et al. significantly.

As future work, we plan to integrate our approach into a

framework for proactive analyzing in autonomic computing

systems and apply this framework in a real world system. In

this work, the characteristics, forecasting methods, and data

sets have been limited to the set presented in the work of

Wang et al. due to comparability. To offer more flexibility and

to compare our approach to other works, we plan to (i) include

more time series characteristics, (ii) use other data sets with

more diversity in their characteristics, and (iii) integrate more

forecasting methods. In addition, we plan to investigate other

class labeling methods.
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