
Performance modeling
of storage virtualization

Diploma Thesis at the
Institute for Program Structures and Data Organization

Chair for Software Design and Quality
Prof. Dr. Ralf H. Reussner

Fakultät für Informatik
Universität Karlsruhe (TH)

by

cand. inform.
Nikolaus Huber

Advisor:

Prof. Dr. Ralf H. Reussner
Dipl.-Inform. Christoph Rathfelder

Date of Registration: 2008-11-01
Date of Submission: 2009-04-30

Chair for Software Design and Quality
Xperf=1.00
Xloss=0.01

I declare that I have developed and written the enclosed Diploma Thesis completely
by myself, and have not used sources or means without declaration in the text.

Karlsruhe, 2008-04-30

Virtualisierung ermöglicht die gemeinsame Nutzung von Hardware und spielt deshalb
bei der Serverkonsolidierung eine wichtige Rolle, weil Kosten für Platz und Manage-
ment eingespart werden können. Einer der Teilbereiche von Virtualisierung ist die
I/O Virtualisierung, welche z.B. Speicherinfrastruktur zur gemeinsamen Nutzung
bereitstellt. Häufig sind bei dem Entwurf und der Implementierung von Systemen
die Einflüsse verschiedener Parameter oder von Entwurfsentscheidung auf die Leis-
tungsfähigkeit des Systems unbekannt oder nur schwer einzuschätzen. Performance-
Modelle bieten jedoch die Möglichkeit, das Verhalten von Systemen zu modellieren
um es anschließend zu analysieren und zu bewerten. Das Palladio Component Model
(PCM) ist eine Modellierungssprache zur Beschreibung von komponentenbasierten
Softwarearchitekturen. In dieser Arbeit wird mit Hilfe von PCM ein Modell für ver-
schiedene Entwurfsalternativen einer Virtualisierung der Speicherinfrastruktur en-
twickelt. Die Kalibrierung und Validierung des Modells erfolgt anhand von Mess-
daten eines bestehenden Prototyps. Aufbauend auf diesem Model werden zum einen
die Auswirkungen verschiedener performance-relevanter Faktoren auf die Leistungs-
fähigkeit untersucht und zum anderen Entwurfsalternativen verglichen. Darüber-
hinaus ist diese Arbeit eine Fallstudie für die Anwendbarkeit von PCM und dessen
Fähigkeiten im industriellen Kontext außerhalb seiner Domäne der komponenten-
basierten Softwarearchitekturen.

Contents

1 Introduction 1

1.1 Goal . 2

1.2 Outline of the Thesis . 2

2 Foundations 5

2.1 Virtualization in general . 5

2.1.1 CPU virtualization . 7

2.1.2 Memory virtualization . 8

2.2 I/O virtualization in particular . 8

2.3 Outline of the System z I/O architecture 10

2.4 Palladio Component Model . 11

2.4.1 PCM developer roles and their artifacts 12

2.4.2 Components, interfaces and datatypes 13

2.4.3 Resource demanding SEFFs 13

2.4.4 System . 15

2.4.5 Allocation . 15

2.4.6 Usage . 16

2.4.7 Random variables and special functions 16

2.5 The Goal/Question/Metric approach 19

2.6 Experiment-based derivation of software performance-models 20

2.7 Summary . 23

3 Related Work 25

3.1 I/O virtualization performance analysis 25

3.2 PCM and performance modeling . 27

3.2.1 PCM and CoCoME . 27

viii Contents

3.2.2 PCM in industrial context . 28

3.2.3 PCM and concurrent, message-oriented communication 28

3.3 Performance modeling using (layered) queuing networks 29

3.4 Summary . 30

4 Virtualization layer architecture 31

4.1 Execution environment . 31

4.2 Virtualization layer internals . 33

4.2.1 Synchronous request handling 33

4.2.1.1 Static view . 33

4.2.1.2 Dynamic view . 34

4.2.2 Asynchronous request handling 35

4.2.2.1 Static view . 35

4.2.2.2 Dynamic view . 35

4.3 Performance relevant parameters and system behavior 37

4.3.1 Queue access and blocking . 37

4.3.2 Performance parameters . 38

4.3.3 Variable parameters . 39

4.3.4 Configurable Parameters . 39

5 Model implementation 41

5.1 Limitations and Assumptions . 41

5.1.1 Challenges, limitations and solution patterns 41

5.1.1.1 Limitations of PCM 42

5.1.1.2 Technical limitations 45

5.1.2 Assumptions . 46

5.2 The model implementation . 48

5.2.1 Model overview . 48

5.2.2 Model details . 50

5.2.2.1 Data-type request 50

5.2.2.2 RequestGenerator component 50

5.2.2.3 I/O thread components 51

5.2.2.4 Capacity controller 54

Contents ix

5.2.2.5 I/O interface and storage hardware 55

5.2.2.6 Storage hardware . 57

5.2.2.7 Completion thread 57

5.2.2.8 Resource environment and allocation model 58

5.2.2.9 Usage model . 58

5.2.3 Component parameterization 59

5.2.3.1 RequestGenerator 59

5.2.3.2 IoThread . 59

5.2.3.3 CapacityController 60

5.2.3.4 IoInterface and StorageHardware 60

5.2.3.5 Completion thread blocking 61

5.3 Summary . 61

6 Synchronous model calibration and validation 63

6.1 Experiments - Overview . 63

6.1.1 The Goal . 64

6.1.2 Motivation of the questions 64

6.1.3 Experiment design . 65

6.2 Experiment results - answering the questions 67

6.2.1 Question RequestSize . 67

6.2.2 Question RequestType . 68

6.2.3 Question CPU . 69

6.2.4 Discussion . 70

6.3 Calibration of the performance model skeleton 71

6.3.1 I/O thread resource demands 71

6.3.2 I/O subsystem resource demands 72

6.3.2.1 Measurement results and interpretation 72

6.3.2.2 Calibrating the StorageHardware resource demands . 73

6.3.2.3 Calibrating the IoInterface resource demands 74

6.3.3 Final calibration . 77

6.4 Model validation . 79

6.4.1 READ/WRITE mixture . 79

6.4.2 CPU power . 82

x Contents

7 Evaluation 85

7.1 Asynchronous model setup . 85

7.2 Parameter influences . 86

7.3 Synchronous and asynchronous model comparison 89

7.4 Discussion . 90

8 Summary and Conclusions 93

Glossary 95

A Measurements 97

Bibliography 101

1. Introduction

Virtualization techniques offer the possibility to use highly available and efficient
computer systems to consolidate a multiplicity of serves on one single machine. This
consolidation can reduce the cost and management overhead [RG05]. An example for
such big virtualized hardware is the System z1, allowing to run hundreds to thousands
of servers on a single mainframe. This need for big, virtualized hardware requires
improved and efficient virtualization solutions. The focus of current research is not
only on CPU and memory virtualization, but also on I/O virtualization. Having
plenty of different storage hardware types of different vendors, an efficient design
and implementation of a storage virtualization set an ambitious goal for system
developers.

To assess the impact of design decisions on the performance of a system and to eval-
uate implementation details, models for performance prediction can be supportive.
The goal of this work is to implement such a performance model for a potential stor-
age virtualization for an IBM system. This shall be achieved by making performance
relevant abstractions of the architecture description by creating a performance model
which reflects the behavior of the real system. The model can then be used to an-
alyze and evaluate the performance impact of changing design decisions or varying
performance influencing parameters in a quick, easy and cost efficient way.

There are research projects dealing with I/O virtualization, focusing on the perfor-
mance analysis in comparison to existing systems [WJW07,WRJ07]. However, none
of them implements a performance model. The performance modeling approach
used in this work is the Palladio Component Model (PCM), designed and developed
to analyze the performance of component-based software architectures. Current
projects are concentrated on evaluating PCM’s applicability in PCM’s target do-
main [KR08,And08], but neither of them explores its applicability in a PCM-foreign
domain.

PCM and a performance modeling approach in general has several advantages like
cost efficiency or design-time performance analysis. Furthermore, a PCM instance
offers flexibility, i.e. it is possible to easily exchange model components by others

1IBM System z, http://www-03.ibm.com/systems/z/

http://www-03.ibm.com/systems/z/

2 1. Introduction

with different behavior. This allows to simulate the PCM instance with different
configurations to observe their influences on the performance and to compare design
alternatives. Moreover, a performance model offers the flexibility to vary several
parameters to observe the influences on the system’s performance and the system’s
behavior. These observations are supported by the visualization features of PCM.

However, to analyze the performance influences of different design alternatives of
storage virtualization, an appropriate model is required. This model shall provide
an easy variation and evaluation of the performance factors.

1.1 Goal

The main goal of this thesis is to create of a performance model for a potential
virtualization layer for I/O (VL) for IBM systems, investigated as a proof of concept
and implemented on a System z as a showcase. The target is to extract, analyze and
model the performance relevant factors of the potential storage virtualization layer so
the created model reflects the behavior of a system prototype. Therefore, methodical
experiments to derive software performance models will be conducted which evaluate
the performance influences of the system. These resulting measurements guide the
calibration and validation of the model.

The design alternatives explicitly evaluated in this work are synchronous versus
asynchronous VL implementation. Based on the synchronous model calibration, an
asynchronous model alternative is created to evaluate this alternative without the
need to implement a dedicated prototype. The evaluation covers different parameter
configurations of the asynchronous model as well as a comparison of both design
alternatives.

Because the modeled system is not located within the target domain of PCM, the
whole modeling process itself is a study of PCM’s applicability in other domains
besides component-based software architectures and business information systems.
For problems and difficulties arising from the deviation of PCM’s domain, prefer-
ably generic solution patterns shall be presented. Hence, this work shall assess the
practicability of PCM in a concrete industrial but research- and innovation-affected
context and reveal the potential and shortcomings of PCM.

1.2 Outline of the Thesis

This thesis is structured as follows. Chapter 2 discusses the foundations of this
work, introducing current virtualization techniques in general and I/O virtualization
in particular. Furthermore, the System z architecture is explained, followed by an
introduction to PCM. Moreover, a methodology to derive performance models is
presented.

In chapter 3, other research related to this work is discussed, starting with perfor-
mance analysis of I/O virtualization and followed by other projects using PCM to
create performance models. As there currently is no research project modeling the
performance of I/O virtualization, other approaches to create performance models
of systems and the Proactor/Reactor patterns are presented.

1.2. Outline of the Thesis 3

Chapter 4 explains the architecture of the system to be modeled. Chapter 5 presents
the model created according to the introduced architecture and discusses the chal-
lenges and limitations of the modeling process. After that, chapter 6 explains the
calibration and validation of the created synchronous performance model.

Chapter 7 is an evaluation of the asynchronous model and a comparison of the two
design alternatives under different configurations. Finally, chapter 8 summarizes
this work and discusses the advantages and difficulties of the modeling approach.
Moreover, it gives an outlook on future work.

4 1. Introduction

2. Foundations

This chapter explains the background of this work and the foundations for this
modeling approach. The first and second section deal with virtualization concepts
in general and I/O virtualization in particular. The third section gives an overview
of the System z architecture and how I/O virtualization could be integrated. In the
fourth section, the Palladio Component Model (PCM) as an approach for perfor-
mance modeling and prediction is introduced. Finally, an approach to derive and
validate software performance models based on experiments is presented.

2.1 Virtualization in general

There exist different types of virtualization. Sometimes, terms related to virtualiza-
tion are used with a different meaning. In the following, virtualization always refers
to full virtualization (or native virtualization) which means that a machine’s hard-
ware like CPU, memory and I/O devices are entirely simulated. This is in contrast
to the emulation (or non-native virtualization) which allows software applications or
operating systems (OS) written for a special type of computer processor architecture
to be executed on a different platform.

The first time virtualization was used in the 1960s. At that time, hardware was very
large and expensive, especially mainframes. Virtualization provided a convenient
way to multiplex that scarce hardware resources. During the 1980s and 1990s, hard-
ware became cheap and mainframes were replaced by minicomputers and later PCs,
and virtualization disappeared to the extent that computer architectures no longer
provided the necessary hardware to implement them efficiently [RG05]. Today, less
expensive and more powerful hardware has led to a proliferation of machines, but
these machines are often not fully utilized and require a lot of space and manage-
ment overhead. This is why virtualization regains importance, especially in server
consolidation.

The core of each virtualization concept is the virtual machine monitor (VMM, also
called hypervisor). Basically, a VMM is an abstraction layer added on top of the bare
hardware [Men05] that provides an uniform interface to access the hardware below
(see figure 2.1). A virtual machine (VM) is the environment created by a VMM

6 2. Foundations

Virtual Machine Monitor

Host OS

App App

Guest OS

App App

Guest OS

VM VM

Hardware

Host OS

App App

Guest OS

App App

Guest OS

VM VM

Hardware

Virtual Machine Monitor

App App

Guest OS

VM

Figure 2.1: The Virtual Machine Monitor as an abstraction layer between hardware
and VM (type-I) and between Host OS and VM (type-II).

which is similar to the original machine, but usually with different or shortened
hardware resource configurations (e.g. less memory). The following explains the
advantages of virtualization and gives an overview of its types and properties. This
can be referred in more detail in [RG05,Men05].

As already mentioned, virtualization decouples the software from the hardware (see
figure 2.1). This complete abstraction from the underlying hardware enables the
VMM to control the hardware access and hardware resource usage of the guest
operating systems, the operating systems running inside of virtual machines. Another
property is that a VMM provides a uniform view of the underlying hardware. For
example, even if a different I/O system of a different vendor is used, it looks the same
for the virtual machine. Hence, administrators can easily exchange the hardware the
virtual machines run on.

Vallee et. al. distinguish between two different types of virtualization [VNOS08].
The first is type-I virtualization where the VMM runs on the physical hardware,
directly. In this case, the VMM is often hosted inside a specialized Linux kernel.
An example for type-I is Xen1. In contrast, if the VMM runs on a host operating
system, it is called type-II virtualization, like the VMware server2 (see figure 2.1).

Virtualization allows to run many different VMs on one single physical machine.
Each VM is an environment completely separated from the others, can host a differ-
ent operating system and can easily be ported onto other machines. Hence, virtual-
ization can solve mobility and security problems by hardware abstraction, hardware
multiplexing and separation from other systems. For example in high performance
computing (HPC), the need for I/O virtualization and virtualization in general is
increasing because it has the advantage that developers can implement new soft-
ware inside the VM of a local machine which can then easily be ported to a cluster.
Moreover, as all systems can be consolidated on one physical machine, virtualization
can overcome manageability difficulties e.g. when updating hardware. Furthermore,
virtualization provides a possibility for deploying existing and legacy-like software
systems on old hardware and an easy way to test the software based on innovative
operating systems.

1The Xen hypervisor, http://www.xen.org/
2VMware, http://www.vmware.com/

http://www.xen.org/
http://www.vmware.com/

2.1. Virtualization in general 7

Moreover, as the software state of a VM is completely encapsulated, it is easier for
the VMM to map or remap available hardware to virtual machines or even to migrate
them to a different system. This simplifies load balancing, dealing with hardware
failures and eases system scaling.

Concerning security, with virtualization it is possible to distribute applications which
previously ran on one single OS over several virtual machines. If an attacker com-
promises one application executed within one VM, only this VM is compromised
and other virtual machines stay unaffected [RG05]. Or if one application crashes
the OS, the other applications continue their work. In short, virtualization gains
more and more importance, especially in the area of server consolidation and util-
ity computing. Mainly its capability to consolidate several systems on one physical
machine - which is the superior motivation of this work - makes it attractive as a
cost saver.

Concluded, the VMM must provide a hardware interface for the virtual machines.
Various techniques with different advantages and drawbacks can achieve this. The
following briefly explains the different types of hardware resource virtualization,
whereas section 2.2 explains I/O virtualization in more detail.

2.1.1 CPU virtualization

A CPU architecture is virtualizable if it supports the execution of VMs on the real
hardware, while the VMM still has the control of the CPU [RG05]. This is called
direct execution. In this case, the VMM provides an abstraction of the underlying
machine’s hardware and transparent hardware access to all VMs. This implies that
software, e.g. the operating system can be executed without changes or adjustments.
An example for such a VMM is the z/VM hypervisor, designed to run hundreds to
thousands of servers on a single mainframe [ea07]. Unfortunately, not all architec-
tures were designed to be virtualizable, e.g. the x86 architecture [Men05,RG05].

One challenge of the x86 architecture is that unprivileged instructions let the CPU
access privileged states. Software running in the VM can read the code segment
register to determine the processor’s current privilege level. A virtualizable processor
would trap this instruction, and the VMM could then patch what the software
running in the VM sees to reflect the virtual machine’s privilege level. However, the
x86 does not trap this instruction. Hence, with direct execution the software would
see the wrong privilege level in the code segment register [RG05].

A solution to enable virtualization on non-virtualizable architectures is provided by
para-virtualization. Here, the VMM designer provides an “almost” identical abstrac-
tion, where non-virtualizable parts of the original machine instruction set is replaced
by virtualized equivalents. The drawback is that any operating system run in a VM
of a para-virtualized VMM must be ported to support the changed instruction set.
However, most normal applications run unmodified. In contrast, para-virtualization
provides better performance as the guest systems knows about the VMM and hence
can be further optimized. An example for a VMM with para-virtualization is Xen.

Another possibility to overcome the virtualization problems of x86 architectures is
direct execution with binary translation which is used by VMWare [AA06]. The
advantage of binary translation is that any unmodified x86 OS can be executed in
VMWare’s virtual machines. Binary translation basically translates kernel code to

8 2. Foundations

replace non-virtualizable instructions with new sequences of instructions which have
the intended effect on the virtualized hardware.

Intel and AMD both developed hardware virtualization support for x86 CPU VMMs.
With these technologies, full virtualization is possible on x86 CPUs, too. This
means, Xen does not need to para-virtualize the architecture and VMWare can do
virtualization without binary translation. However, these technologies often suffer
lower performance, especially for I/O workloads and require further research [AA06].

2.1.2 Memory virtualization

The traditional technique to virtualize memory is a VMM which contains a data
structure called shadow page table, a shadow of the virtual machine’s memory man-
agement data structure. This enables the VMM to control which pages of the ma-
chine’s memory can be accessed by the virtual machine. The VMM detects changes
of this data structure and directs them to the actual page location on the hardware
memory. Hence, a VMM can always control what memory each virtual machine is
using. Furthermore, the VMM can page the memory of a virtual machine or parts
of it to a disk. Therefore, the memory of a virtual machine can exceed the physical
memory. The VMM can control how much memory each virtual machine shall get
according to the needs and thus seems to be able to solve all memory problems,
unfortunately with the drawback of performance loss.

One reason for such a performance loss is that the VMM operating at the hardware
level cannot page parts of the virtual machines memory to a disk as effectively as
it could be done by the guest operating system. This is because the guest OS
is likely to have more and better information about the VMMs virtual memory
system. Furthermore, running multiple virtual machines can waste memory because
redundant copies of code and data (e.g. the OS or some applications) are stored
across virtual machines.

Another disadvantage of shadowing arises in the field of high performance computing
(HPC). There, a VMM with a small memory footprint is desired which is inhibited
by potentially huge page tables. The memory footprint can have direct impact on
modern execution platforms, e.g. multicore processors with shared cache [VNOS08].
One current research approach addressing these issue is the hardware support to
store the VM’s “memory map” directly on the hardware (e.g. Intel Extended Page
Tables [EPT]).

In the future, better resource management can improve memory virtualization and
hardware-managed shadow tables as presented in mainframe virtualization architec-
tures could accelerate virtualization, too [RG05].

2.2 I/O virtualization in particular

A very basic but effective example of storage hardware (e.g. a normal hard disk
drive, HDD) virtualization is provided by VMWare server, where the VM’s HDD is
either a simple file or partition inside the host OS. However, this device cannot be
shared with other VMs. Hence, to realize sharing of I/O devices, e.g. the network
interface card or storage devices, more and more challenges arise, especially when a
performance efficient implementation is required.

2.2. I/O virtualization in particular 9

VMM

App App

VM

OS

App App

OS

Virtual disk

VM

Virtual disk

I/O device

Device driver

App App

Device driver

OS

VM

I/O device I/O device

VMM

App App

Device driver

OS

VM

Figure 2.2: Pure isolation and shared devices

Basically, I/O virtualization means that the virtualization layer must offer a uniform
interface to communicate with the I/O devices. Its advantage is that different VMs
can use the device infrastructure simultaneously. Usually, all I/O devices are shared
among all VMs of one machine (see figure 2.2) [KS08]. However, there are hypervisor
implementations where each VM has its own devices - called pure isolation - for
security reasons, e.g. the MILS separation kernel designed by the NSA [KS08].

In the case of pure isolation, performance is not relevant insofar as each VM has
its own devices and does not share them. Hence, the performance is purchased by
attaching additional devices. If one wants to save additional devices and build an
I/O virtualization where devices are shared, performance efficiency comes back to
the surface in every design but in a different way.

The classic I/O subsystems of IBM mainframes use a channel-based architecture.
Access to I/O devices in this architecture is through communication with a separate
channel processor. This reduces the CPU overhead inside the VMM. But even
with I/O channels, the additional performance cost of I/O virtualization cannot be
omitted.

In current technologies, it is the VMM which assures that all device accesses are legal
and consistent and hence every I/O access must pass through the VMM. This can
have the advantage that the VMM can serve as a multiplexer to control e.g. QoS.
On the other hand, the VMM intervention increases I/O latency and CPU overhead
and is the performance bottleneck in case of I/O intensive workloads. This overhead
is extremely adverse in HPC, where interconnected I/O hardware provides very low
latency and high bandwidth [LHAP06], especially the network interface cards.

To move this performance bottleneck out of the VMM, other approaches use a ded-
icated I/O VMM in a special privileged partition. An example is Xen. In this case,
the dedicated I/O hypervisor itself often includes an entire OS. Although the work
for I/O processing is now moved out of the actual VMM, this approach can decrease
performance because the hypervisor must send the I/O requests to the dedicated I/O

10 2. Foundations

VMM. Furthermore, there can also be additional costs to copy or map data to the
I/O VMM. This again leads to the need of performance efficient I/O virtualization
implementations.

The authors of [VNOS08] describe in their work the basic challenges and problems of
implementing a system-level virtualization solution for HPC. One of the addressed
issues is the previously motivated need for efficient I/O mechanisms and storage
solutions for the virtualized environment, since overhead of current virtualization
techniques can be unacceptably high. The proposed solutions and research for per-
formance efficient I/O virtualization are versatile and will be briefly presented in the
following. A detailed discussion of I/O virtualization performance analysis related
to this work is given in chapter 3.

One approach uses self-virtualized I/O devices which are peripherals with additional
computational resources close to a physical device. One of its responsibilities is to
(de)multiplex a large number of virtual devices. To achieve this, the VMM intercepts
all VM I/O requests to virtual devices and maps them to the corresponding physical
device. This mapping is done by the additional computational resources and as such
self-virtualized devices can be compared to the channels mentioned in the previous
sections.

The VMM-Bypass I/O virtualization is based on the idea of para-virtualization and
decouples I/O handling from the VMM. To virtualize a device in a VM, a special
device driver called guest module is implemented in the guest OS. Since the guest
module does not have direct access to the device hardware, the VMM implements
a software component called backend module which provides device hardware access
for the guest modules. The backend module can talk to the device directly or use the
privileged module of the OS-bypass device driver which enables processes to directly
execute I/O operations without the involvement of the OS kernel. This avoids
overhead caused by context switches etc. [LHAP06]. Here, performance critical I/O
operations can be carried out directly in the VMs without the need of the VMM
and/or a privileged VM.

In contrast to centralized I/O virtualization - where the I/O virtualization is in-
tegrated into the VMM - there are other approaches using a separate I/O virtual
machine (IOVM) dedicated to I/O virtualization only [WJW07]. The motivation
is the same as for this work, namely to overcome the problems of centralized I/O
virtualization. Some of these problems are that the VMM could be easily over-
loaded by I/O virtualization. A possible solution to these problems of centralized
I/O virtualization is scale-up which means to add more resources to the centralized
VMM. However, this does not necessarily result in increased I/O virtualization per-
formance [WJW07], whereas scale-out (creating a separate IOVM) can provide a
scalable solution (see section 3.1).

2.3 Outline of the System z I/O architecture

When talking about mainframes, one thinks of a special type of computer often used
by large organizations. They are mainly used for business or research applications
with high performance requirements like in the finance sector or weather forecast. A
modern mainframe has special properties like its CPU power, I/O throughput, avail-
ability, reliability and robustness which predetermines it as a central server [Gre05].

2.4. Palladio Component Model 11

LPAR 1 LPAR 2 LPAR n

zHypervisor

Storage Hardware

CPU CPU CPU

Hardware

z/OS

Figure 2.3: System z I/O architecture overview

Today, mainframes gain more importance because they have many benefits with re-
spect to server consolidation like scalability, manageability and capacity flexibility.

The System z is a such a mainframe. Its hardware virtualization layer is the zHy-
pervisor, depicted in figure 2.3. Basically, it virtualizes the mainframe’s hardware
into so called logical partitions (LPARs), i.e. each LPAR can be considered as a
separate, smaller System z. In each partition, one can install an operating system
(e.g. zOS). Furthermore, it is possible to run another hypervisor (e.g. z/VM) inside
such a LPAR which can itself host several guest systems (in this work called clients).
Each LPAR can be equipped with its own hardware configuration, including CPU
power, memory size and storage devices. The storage hardware could be e.g. direct
attached storage devices or a storage area network (SAN).

Currently, all I/O requests are sent to the hardware via the zHypervisor. Because
the variety of storage hardware devices and vendors is permanently increasing, IBM
discusses other possibilities of I/O handling. One possibility is the introduction of
a dedicated virtualization layer for I/O, further explained in chapter 4.

2.4 Palladio Component Model

The Palladio Component Model3 (PCM) is a domain-specific modeling language
to specify component-based software architectures and their non-functional require-
ments in a parametric way. This model with its associated tool-set is developed by
the SDQ-Group4.The PCM approach originates from the concept of parameterized
contracts introduced by R. H. Reussner [Reu01] with its idea to use Service Effect
Specifications (SEFF) to specify the internal behavior of components. This approach
developed and improved to a complex meta-model to describe software architectures
with concepts like components, interfaces and connectors [BKR09].

The transformation of the component model to an ECORE instance [(EM09] real-
ized by K. Krogmann [Kro06] enables model-driven tool support. There is a concrete
graphical syntax first implemented by M. Uflacker [Ufl05] and improved by a student

3Palladio Component Model (PCM), http://www.palladio-approach.net/
4Chair for Software Design and Quality (SDQ), http://sdq.ipd.uni-karlsruhe.de/

http://www.palladio-approach.net/
http://sdq.ipd.uni-karlsruhe.de/

12 2. Foundations

group project [KB07]. Moreover, Becker integrated a model-based simulation envi-
ronment for performance predictions [BKR09]. The advantage of such a simulation
and analysis framework is that extra-functional properties of software architectures
can be evaluated prior to the implementation. This can support in trading off design
decision and thus prevent from costly design changes in late software development
stages.

PCM defines an own, specific development process built on the component-based
software engineering (CBSE) development roles [CD00]. This is possible because the
Palladio component model is composed of a set of complete model parts according
to the CBSE roles. An explanation of these roles and PCM is given in [BKR09] and
more detailed in [Bec08]. The following sections introduces the main concepts of
PCM focusing on the ones needed in this work.

2.4.1 PCM developer roles and their artifacts

In PCM, there exist four different developer roles. These roles are: the Component
Developer who designs and models components, the Software Architect who assem-
bles the components to a complete system, the System Deployer who allocates the
components with hardware resources and the Domain Expert who models the user
behavior. For each role PCM defines a specific view on a PCM model instance. This
model instance is a combination of submodels, the views of each role. The design and
implementation work of each role is stored in role-specific artifacts. Together, these
artifacts form the complete PCM model. They will be explained in the following.

The Component Developer creates components by specifying their interfaces and
their internal behavior. The artifact or part of the PCM instance resulting from this
role is the Repository. It stores information about required and provided interfaces
assigned to components and the Resource Demanding Service Effect Specifications
(RD-SEFFs) which model the internal behavior of components [Bec08,Koz08]. Fur-
thermore, components can be equipped with special parameters (ComponentParam-
eter) influencing the behavior of the component. This special parameter type has
the advantage that the Software Architect can override this parameter value in the
later development process. In short, the Repository stores the information about
components and their relationship to other components defined by interfaces.

The artifact of the Software Architect role is the System Model. It stores how
Software Architectures are assembled of components specified in repositories. By
connecting these components to a system, the Software Architect puts components
into a context which is why such components are called Assembly Context. If neces-
sary components are missing, he delegates their specification and implementation to
the Component Developer. Moreover, the Software Architect chooses the best fit-
ting component if the repository provides two components with identical interfaces
but different behavior. Important to know is that he has no knowledge about the
implementation of the components and looks at them as black boxes. His target is
to assemble the complete software system.

Now, all components must be deployed on resources. The System Deployer speci-
fies these resource environments by specifying their hardware resources like CPU(s),
network latency etc. Furthermore, the system deployer allocates the components
of the specified system onto the defined resources. The Allocation Model and the

2.4. Palladio Component Model 13

Implementation

ComponentType

Basic

Component

Composite

Component

Composed

Structure

Figure 2.4: PCM component types

resource environments are artifacts of this development step. The resource environ-
ment contains the hardware resource information and the allocation model stores
the information, to which resource the assembly contexts are allocated to.

The Domain Expert defines in special usage scenarios how the system is used, i.e. he
provides information about the amount of users, their think time or the interarrival
time of inquiries. These usage scenarios and their behavior are stored in the the
Usage Model of the PCM instance.

2.4.2 Components, interfaces and datatypes

Interfaces can be used to describe which services a component offers or which services
are needed to provide this service. Thus, they can be compared to the method
signature of a programming language. Interfaces can serve as contracts between
components, specifying the component’s provided and required functionality and
how they communicate with their environment. If a component offers a service, this
interface is called provided interface and needed services are called required interface.
These interface role types are explained in more detail in [RBK+07].

The most important component type in PCM is the ImplementationComponentType.
This component type provides an abstract specification of the component’s imple-
mentation. Such a component specifying all its required and provided interfaces
could be a BasicComponent or a CompositeComponent. The behavior of a Basic-
Component is set by its own behavior. A Component Developer uses this type, if
the component cannot be decomposed further. In contrast, a CompositeComponent
is implemented by composing other BasicComponents or CompositeComponents.
Hence, the functionality of a CompositeComponent is specified by its inner compo-
nents.

In PCM, signature lists of interfaces can contain different data types to express
the data needed or returned. A data type can be one of PrimitiveDatatype which
cover the common basic types of programming languages, a CollectionDatatype to
represent collections like lists or sets or a CompositeDatatype to define a type which
is a set of other elements. The latter can be used to define own data types.

2.4.3 Resource demanding SEFFs

The Resource demanding service effect specification (RD-SEFF) was introduced by
Koziolek [Koz08] as a language to describe the behavior of component services. It
was specifically designed for performance analysis. Such a language to describe each

14 2. Foundations

single service instead of the complete architecture has the advantage that it exploits
benefits of CBSE, such as re-usability and division of work.

Hence, an RD-SEFF can be used to describe the internal behavior of a component
service (provided role) in an abstract manner. With RD-SEFFs, the Component
Developer can specify dependencies to external services (required roles), can assign
resource demands or he can pass variables to other components.

In principle, the RD-SEFF is a chain of different types of actions. This chain or
control flow always starts with a StartAction, ends at the StopAction and can be
structured by branches, forks or loops. Some of the other actions placeable between
start and end will be explained in the following.

InternalActions represent any calculation or execution within a service that
does not require external services. This calculation can be modeled by a hard-
ware resource demand (e.g. CPU), a simple delay, a hard disk access etc.
In any case the InternalAction uses a ParametricResourceDemand construct
to issue this demand. The ParametricResourceDemand is used to specify
which hardware is needed by this component, e.g. CPU, HDD, network. The
Component Developer can only specify that the CPU is required, he cannot
specify which CPU should be used. This separates the hardware model from
the software model and enables the parameterization for different resource en-
vironments. The actual amount of the demand issued to a resource can be
specified by a stochastic expression.

AquireAction and ReleaseAction can be used to acquire respectively re-
lease passive resources of a component. Components can have passive re-
sources, e.g. to model semaphores, thread pools etc. The capacity of these
passive resources can be parameterized as well.

ExternalCallAction defines a dependency between components by referring
a required interface role of the current component and therefore corresponds
to a synchronous service call. This action does not specify resource demands,
but delegates them to the called service. Furthermore, it offers the possibility
to pass values to the input parameters and receive values via the return type
by using the VariableUsage construct.

SetVariableAction This action can be used to specify the returned value of a
service or any other variable in the model. Currently PCM supports five char-
acteristics: VALUE, STRUCTURE, TYPE, BYTESIZE, NUMBER_OF_ELEMENTS. With
stochastic expressions it is possible, to assign values to these characteristics to
better qualify the variables and parameters of the model.

Loops There are two different types of loops which are supported. The
LoopAction models a repeated execution by specifying the iteration count by
a stochastic expression. The CollectionIteratorAction models a repeated exe-
cution for each element of a CollectionDatatype.

Branches manipulate the control flow of the RD-SEFF. There are two types
of branches to specify and alternative control flow. In a ProbabilisticBranch

2.4. Palladio Component Model 15

the path of the control flow depends on a fixed probability whereas a Guard-
edBranch checks which of the specified conditions is true to determine which
path the control flow takes.

Forks split the control flow in several separate control flows. Usually, the
fork is asynchronous and the original control flow continues directly after all
sub-RD-SEFFs are forked. However, SynchronisationPoints can be used to
synchronize all forks. Then, the original control flow is blocked until all sub-
RD-SEFFs are completed and then continues.

2.4.4 System

The System Model is the domain specific language of the software architect which can
be used to assemble components of repositories to a fully functional software appli-
cation [Bec08]. Like the CompositeComponents, the System is a ComposedStructure
with inner components.

To the outside, the system offers SystemProvidedRoles and SystemRequiredRoles.
The SystemProvidedRole can be used to interact with the system. This role can only
be used by the Usage Model and not by other components and its call is delegated by
a DelegationConnector to the matching interface of an inner component. The inner
components of a system are connected by AssemblyConnectors. Each component of
a system is put into an AssemblyContext by its specified connection and relation to
other components.

Furthermore, the system keeps the information which component parameters speci-
fied by the Component Developer have been overridden by the Software Architect.
These component parameters characterize the state of a component in an abstract
and static way and hence offer a more flexible parameterization of the model.

2.4.5 Allocation

The Allocation Model specifies which components are allocated to which hardware.
For this purpose the hardware environment must be specified in the ResourceEnvi-
ronment model and then the system can be deployed onto this ResourceEnvironment.

PCM supports the System Deployer by offering several hardware ProcessingRe-
sourceTypes (explained later in this section) to specify such a ResourceEnvironment.
Basically, an hardware environment where the software system is executed can be
specified by several ResourceContainers. The latter represents a server or any type
of computer. These resource containers can be interconnected by LinkingResources,
an abstraction of network connections.

As a ResourceContainer represents a computer, it provides one or more Processing-
ResourcesTypes like CPU and HDD and CommunicationResourcesTypes like network
interfaces. Each of these resources can be specified by ProcessingResourceSpecifica-
tions. This value defines the processing rate of a resource in abstract units, i.e. the
System Deployer can define this unit (e.g. the amount of cycles per second of a
CPU). The LinkingResource defines the properties of the network connections of the
ResourceContainer which are throughput and latency.

By the mapping of the system’s components to hardware resources the System De-
ployer creates the AllocationContext to component of the system.

16 2. Foundations

2.4.6 Usage

The Usage Model serves as a description for different types of user interactions with
the system. Each possible user interaction is captured in a Usage Scenario. As there
can be several types of users with different types of interactions, a Usage Model can
contain several Usage Scenarios.

The Usage Scenario specifies the Usage Behavior and the type of Workload that is
issued to the system. The Usage Behavior defines a set of system calls and their
order which is executed by the user or a group of users.

The Workload defines the frequency in which the Usage Behavior is executed. PCM
distinguishes two types of workloads. In case of an OpenWorkload, the Domain
Expert can only specify the interarrival time of new users. This is the time elapsing
from the arrival of user one till the arrival of user two. After a user has executed its
usage scenario, he leaves. In a ClosedWorkload, the Domain Expert can specify the
amount of users executing usage scenarios and the think time a user waits before
the next execution of his usage scenario.

2.4.7 Random variables, stochastic expressions and proba-
bility distribution functions

In PCM, most developer roles use random variables to specify performance prop-
erties, especially if one needs to characterize situations under uncertainty [Bec08].
Examples for such situations are the interarrival time, the amount of loop iterations
or characteristics of input parameters. Sometimes one wants to use mathematical
expressions and random variables to express new random variables. The Stochas-
tic Expressions (StoEx) enables the model developer to use mathematical operators
(+,−, ·, / etc.) or logical operations (==,>,<,and,or, etc.) to calculate new random
variables. The possibilities of stochastic expressions are explained in [RBK+07].

Not mentioned in the Technical Report [RBK+07] are the probability distribution
functions supported by PCM. The following explains the functions which can be used
within a StoEx. The functions supported are some of the most common probability
distribution functions. Used in a StoEx, such a function returns a random variate
according to the kind of the probability distribution and the specified parameter(s).

Defining own distribution functions

Already implemented in PCM and its StoEx editor is the possibility to specify prob-
ability mass distribution functions (PMF) and probability density functions (PDF).
PMFs describe discrete and PDFs continuous distributions. An example for the syn-
tax is DoublePDF[(x;p)(y;q)(z;r)]. A detailed explanation of the discretization
of continuous distribution functions and the differences of discrete and continuous
distributions is given in [RBK+07].

Uniform Distribution Function

PCM supports two types of uniform distribution functions. They can be distin-
guished by their return type. UniInt(a,b) returns a random variate of the Integer

type whereas UniDouble(a,b) returns random variates of the type Double. Therefore

2.4. Palladio Component Model 17

−4 −2 0 2 4

0.
0

0.
1

0.
2

0.
3

0.
4

x

(a) Standard normal distribution,
µ = 0, σ = 1

5 10 15

0.
00

0.
05

0.
10

0.
15

k

P
λλ((k

))

(b) Poisson distribution, λ = 6

Figure 2.5: Probability density function of the standard normal distribution (a) and
the Poisson distribution function (b)

UniInt(a,b) is a discrete probability distribution and UniDouble(a,b) a continuous
probability distribution.

In case of UniInt(a,b) the returned variate is an integer value out of the interval
[a, b]. For example, UniInt(1, 4) returns 1, 2, 3 or 4, each value with a probability of
25%.

The expression UniDouble(a,b) returns a uniform random variate out of the inter-
val (a, b), where a and b are real numbers with a < b. The density function of
UniDouble(a,b) is

f(x) =
1

(b− a)
, a ≤ x ≤ c

Normal Distribution Function

If the expression Norm(µ, σ) is used, this function returns a normally distributed
random variate. The continuous probability distribution is determined by two pa-
rameters, mean (µ) and variance (standard deviation squared, σ2), where σ > 0.
The density function is

f(x) =
1

σ
√

2π
e−

(x−µ)2

2σ2 , x ∈ R

Figure 2.5a gives an example for the probability density function of the standard
normal distribution (µ = 0, σ = 1).

Poisson Distribution Function

The expression Pois(λ) returns a random variate of a discrete probability distribu-
tion, called Poisson distribution. It expresses the probability of a number of events

18 2. Foundations

0 1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

f λλ
((x

))

(a) Exponential distribution probability
density function, λ = 1

0 1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

0.
8

k

P
((k

))

(b) Binomial distribution probability
mass function, n = 1 and p = 0.05

Figure 2.6: Probability density function of an exponential distribution (a) and prob-
ability mass function of a binomial distribution (b)

occurring in a fixed period of time if these events occur with a known average rate
and independently of the time since the last event. This distribution function is char-
acterized by its parameter λ, where λ > 0. This parameter is equal to the expected
number of occurrences during a given interval. If the expected number of occur-
rences in this interval is λ, then the probability that there are exactly k ∈ N ∪ {0}
occurrences is equal to

Pλ(X = k) =
e−λλk

k!

An example for a Poisson distribution with λ = 6 is given in figure 2.5b.

Exponential Distribution Function

The stochastic expression for an exponential distribution function in PCM is Exp(λ).
It is a continuous distribution function with the probability density function of

fλ(x) =

{
λe−λx, x ≥ 0

0, x < 0

Here λ > 0 is the parameter of the distribution, often called the rate parameter. An
example of a probability density function of Exp(1) is given in figure 2.6a.

Binomial Distribution Function

The binomial distribution is the discrete probability distribution of the number of
successes in a sequence of n independent yes/no experiments, each of which yields
success with probability p. The PCM expression to generate a random variate of
a binomial distribution function is Binom(n, p). The probability of getting exactly
k = 0, 1, 2, . . . , n successes in n trials is given by the probability mass function

2.5. The Goal/Question/Metric approach 19

Goal 1 Goal 2

Question Question Question QuestionQuestion

Metric MetricMetric Metric MetricMetric

D
ef

in
iti

on

In
te

rp
re

ta
tio

n

Figure 2.7: Relation between goals, questions and metrics [Hap08].

P (k) =

(
n

k

)
pk(1− p)n

Figure 2.6b shows the probability mass function of a binomial distribution where the
number of experiments n = 1 and the probability of success p = 0.05. This setting
can be compared to a an unfair coin toss, where the probability of observing heads
(1) is only 5%.

2.5 The Goal/Question/Metric approach

The following describes some of the crucial facts of the Goal/Question/Metric ap-
proach (GQM) introduced by Basili, Caldiera, and Rombach [BCR94]. This ap-
proach guides the method of Happe to derive software performance models [Hap08],
explained in section 2.6.

GQM is a systematic top-down process model to quantify the quality of processes
or products. The major purpose of this approach is to attain a greater target and
to improve the understanding of this target. By specifying a goal, refining it by
questions and defining metrics, one documents step-by-step the motivation, the ap-
proach and the technique of a measurement to quantivy the greater goal. Basili,
Caldiera, and Rombach argue that measurements must be goal-oriented and defined
in a top-down manner to be meaningful and efficient. For example, if concrete goals
are missing, the risk of collecting large amounts of unnecessary data is likely.

In GQM, goals strongly depend on the context where measurements shall take place.
This defines the object, reasons, points of view, and environment of the measure-
ments. Possible objects of measurements are products, processes, or resources. GQM
requires the explicit definition of the goal’s issue, object or process, viewpoint, and
purpose to place a goal into a given context. Questions determine the assessment
of a specific goal. They characterize the object of measurement (product, process,
resource) with respect to selected quality attributes from the selected viewpoint.
Metrics assign a set of data to each question to answer the questions in a quanti-
tative way. GQM distinguishes objective and subjective metrics. The first depend
only on the object under measurement (e.g. lines of code), the latter depend on the
viewpoint from which the measurements are taken (e.g. readability of a text).

The GQM process starts with the definition of one or more explicit measurement
goals. Questions refine the goals and identify its major components the measure-
ments shall answer. The questions are further refined by metrics (see figure 2.7).

20 2. Foundations

After the measurements are taken, the collected data is interpreted bottom up. Met-
rics are directed towards a specific question and help to interpret the measurements
and to answer questions. Whether a goal has been attained or not can be decided by
analyzing and interpreting the data with respect to the questions refining a specific
goal.

2.6 Experiment-based derivation of software per-

formance-models

Creating accurate performance models of complex software systems is often not
easy and erroneous. Therefore, a systematic approach to i) identify performance
relevant features of the test system, ii) design accurate performance models of these
features and to iii) validate the prediction accuracy of the created model is necessary.
Happe describes such an approach, called experiment-based derivation of software
performance-models [Hap08]. This approach is inspired by general ideas by Jain
[Jai91] and combines existing knowledge about the test system with iterative, goal-
oriented measurements.

The motivation of such an approach is to avoid several common mistakes in soft-
ware performance evaluation. The most common mistake is the absence of goals.
Furthermore, approaches are often unsystematic and lead to unnecessary high effort
and inaccurate performance models. The choice of the modeled factors must be
problem-driven and not by the analysts knowledge.

Moreover, performance models must be validated. This can be accomplished by
comparing the results with expert intuition, theoretical results or real system mea-
surements. The proposed method uses the latter, as expert intuition can be mislead-
ing and theoretical results can be erroneous, too. To verify the model, performance
analysts must identify necessary assumptions about the test system and validate
them. This allows to focus on the most influential factors [Hap08]. The following
explains the experiment-based derivation of software performance models in more
detail and explains, how assumptions and their evaluation lead to a validated per-
formance model.

The method

The design of accurate and reliable performance models require a systematic model
design based on validated assumptions [Hap08]. This approach can be used either
by performance analysts to design configurable models or by software architects to
create prediction models for existing parts of the system.

Performance model design is driven by a specific goal. This helps to focus the design
effort on the most relevant factors and keeps the model on an abstract level. The
goal is defined by purpose, issue, object and viewpoint, similar to the Goal-Question-
Metric (GQM) approach [BCR94].

The purpose sets the general goal of this method, e.g. designing a configurable
performance model. The goal can be focused on special characteristics of the test
system by specifying issues like different configurations. Objects target the effort
towards a specific part of the system, e.g. the requests handling. The perspective for

2.6. Experiment-based derivation of software performance-models 21

Identification

Experiment Design

Experiment Run

Possible Assumptions
and Influences

GQM Plan

Valid Assumptions and
relevant Influences

Documentation
Functional

Specification

Performance Model Design

Performance Model
Validation

Valid Performance Model

Performance Model
Missing Assumptions

and Influences

Missing Assumptions
and Influences

Experimental
Setting

Activity

Change of Activity

Flow of Artifact

Figure 2.8: The different steps of experiment based derivation of software perfor-
mance models [Hap08].

which the performance model shall be made is specified by the viewtype, for example
a special user group or another part of the system.

Figure 2.8 depicts the process model of this method. All steps are executed it-
eratively and refine the performance model by adding additional assumptions or
performance-relevant factors.

Identifying performance relevant factors

In its first step, the proposed method aims to identify an initial set of performance
relevant factors of the test system. According to the QGM schema, performance
analysts pose questions to address these factors. These questions are based on
documentations specifications. For example, the size of a request issued to the VL
may influence its performance, and hence a performance analyst may ask: “How
does the request size influence the throughput of the VL?”.

As documentation and specification focuses on the description of functional features
of the test system, it may be difficult to judge whether a specific factor influences
the performance or not. Hence, this first step lists all performance relevant factors
of interest for the modeling goal. The next step systematically identifies those with
influence on the system’s performance.

Experiment design

The experiments designed in this step aim for the systematic evaluation of perfor-
mance influences of the factors collected in the previous step. The GQM method
therefore defines questions and performance metrics. Its extension by Happe adds

22 2. Foundations

specific scenarios and hypotheses to evaluate the experiment results ([Hap08], sec-
tion 4.1.3).

Scenarios define the experimental setup. In software performance evaluation, they
have to be defined explicitly and must be representative to evaluate the influence of
specific factors. As questions of a GQM plan often leave several degrees of freedom,
the scenarios introduced by Happe fix the experimental environment (e.g. execution
environment and other settings) which enables the experiment to be reproducible.
In contrast, carelessly chosen scenarios can lead to wrong conclusions from the mea-
surements, as the performance influences of specific factors ar likely to depend on
the experimental setup.

Hypotheses formulate the expected outcome of the experiment for each question
and are based on available documentation of the test system. Hypotheses support the
performance analyst to answer the questions posed in the previous step. Therefore,
hypotheses should be revisable and hence they should be formulated in such manner
that measured results allow conclusions, whether a hypothesis needs to be revised
or not.

In short, scenarios allow the performance analyst to define specific and reproducible
experiment setups. Hypotheses formulate the expected outcome of an experiment
and used to assess whether a performance factor conforms to the expectations or
not.

Experiments

Now the previously defined experiments can be executed to measure their results.
If these results conform to the expectations made, the assumptions made can be
considered as valid, until proven otherwise. If he measurements differ from the
expected results, one needs to examine the cause and more detailed evaluations
might be required.

After all assumptions made in the previous step are valid, the performance analyst
can use this validated assumptions about the influence of performance relevant fac-
tors to create a performance model of the test system. Then, the performance model
can already be considered as performance valid.

Performance model design

After the previous step is completed, the performance analyst is able to design a
performance model. He can use the results of the previous step to decide which
factors are performance relevant and shall be integrated into the model. Moreover,
experiment results can be used to quantify the resource demands depending on the
experiment settings.

At this stage, the performance model reflects the performance relevant factors of
the test system in an abstract manner [Hap08]. But if the model represents a valid
abstraction of the performance behavior of the complete system or not must be
evaluated in a separate validation step.

2.7. Summary 23

Model validation

As the creation of performance models for complex software systems is accompanied
by several risks, this separate model validation step ensures that the model predicts
the necessary performance metrics with the expected accuracy and that all perfor-
mance relevant factors are modeled correctly. Some of the most important risks are
that not all performance relevant factors have been identified or that their influence
on each other was considered to be independent but were not. Moreover, a model
validation can identify modeling errors which can be easily introduced in complex
performance models. If the outcome of this step shows an unacceptable inaccuracy
of the performance model, the performance analyst is required to refine or adjust the
model. This can even require the definition and execution of further experiments.

The model validation itself employs the same scenario-based GQM method as the
experiments design. But in this case, the hypotheses make statements about the
expected prediction accuracy of the model. Although it might be intuitive to keep
the prediction error of the model as low as possible, it is sometimes acceptable to
allow a certain inaccuracy to keep the performance model simple but still achieves
a moderate prediction accuracy.

The performance model validated reflects only factors identified in the previous steps
and hence the validation cannot make statements of the validity of other scenarios or
factors. Therefore, to allow a generalization of the prediction model while ensuring
the prediction accuracy, the experiments should reflect a wide range of different
scenarios and environments.

2.7 Summary

This chapter gave an overview about virtualization in general and the idea of how
I/O virtualization in case of an IBM system can be accomplished. It discussed the
current virtualization technologies and depicted how they are related to the I/O
virtualization for IBM systems. Furthermore, it presented PCM as a tool for perfor-
mance analysis of such I/O virtualization architectures. Moreover, a methodology
to systematically create performance models was proposed.

24 2. Foundations

3. Related Work

This chapter introduces other research projects dealing with performance analysis,
performance modeling and I/O virtualization. The first section presents current
research in the field of I/O virtualization and what kind of performance analysis
currently exists. The next section presents performance modeling projects using
PCM as the preferred performance model. Although not directly related to I/O vir-
tualization, the last section proposes alternative performance modeling approaches
based on queuing networks.

3.1 I/O virtualization performance analysis

There are several research projects dealing with I/O virtualization and its perfor-
mance. They are not directly related to this work as they analyze the performance
of I/O virtualization on a different level of abstraction. Nevertheless, they pro-
vide useful ideas and insights on how to implement I/O virtualization. Basically,
both proposed approaches try to improve the I/O virtualization’s performance by
either by scale-up (e.g. additional hardware) or scale-out (moving the performance
bottleneck to dedicated hardware). The following introduces these approaches and
discusses their advantages and drawbacks.

As scale-up, the Wei et al. propose a solution for delivering scalable network per-
formance on a multi-core platform [WJW07]. They focus on the so-called driver
domain which acts as a proxy between the guest OS inside a VM and the physical
device. The most common way to deploy such a driver domain is to use the hypervi-
sor as a centralized driver domain. Now, the authors want to achieve a performance
increase by moving the I/O virtualization work out of the hypervisor onto dedicated
I/O virtual machines (IOVMs). Their experiment results and performance compar-
isons show improved efficiency and flexibility of dedicated IOVMs compared to a
centralized solution. However, the results must be restrained as the focus of the
authors and their evaluation is on network virtualization on multi-core platforms
and Xen as VMM.

The IOVM proposed by the authors is a specialized guest operating system which
contains native device drivers for the physical devices and backend drivers for the

26 3. Related Work

guests. Furthermore, they propose and compare three different configurations of
such IOVMs: i) monolithic IOVMs, where all devices are assigned to a single IOVM,
ii) multiple small IOVMs, where each device is assigned to one dedicated IOVM and
iii) a hybrid configuration with multiple IOVMs where each manages a subset of
physical devices. Furthermore, they explain how such an IOVM can be minimized
(kernel size, network protocol stack, runtime).

Their performance analysis results provide new insights on the influence of different
IOVM configurations, showing that IOVMs result in better performance (throughput
and efficiency) compared to centralized I/O virtualization architectures. Another
interesting detail of the experiment analysis is that the scheduling technique used to
balance the workload across multiple cores can have an impact on the performance
metrics. Especially if the IOVM CPU is the performance bottleneck, using a credit-
based scheduler resulted in better efficiency than a static scheduler. The influence
of scheduling strategies is of interest for this work, too, especially on multi-core
platforms. However, the performance analysis of the proposed work remains on
a more abstract level, namely the comparison of different IOVM configurations,
whereas this work deals with the performance modeling and analysis of IOVM’s
internal configuration, like threads and communication model.

In another paper by two of the authors of the previous approach, they follow the
approach of scalable networking from another point of view [WRJ07]. This time,
the authors present a scale-up strategy for network I/O, based on the IOVM idea
also used in the previous section. Furthermore, they present empirical results and
analysis of such an implementation. In contrast to the previous work, this approach
focuses on the IOVM internal setup and configuration, particularly the threading
model.

Usually, the network backend driver in a centralized approach runs in the IOVM and
is simply a Linux kernel driver, providing a way for network devices to be shared.
It has an interrupt handler and also two contexts (receive and transmit) for special
kernel tasks to run in. The transmit context is scheduled when a guest is transmitting
data and is also responsible for handling completed transmits. The receive context
processes data received from the NIC and moves them to the destination guest. This
data move requires a specific amount of processor cycles and it is easy to saturate
a single processor with a relatively low number of guests. One starting point for
performance increase on multi-core platforms is possible to split the contexts across
different cores. Furthermore, the authors vary the type of threads executed in the
contexts to examine their influence. They distinguish two types. The first is the
tasklet which is scheduled from an interrupt handler and must run on the same CPU
that serviced the interrupt. Workqueues on the other hand are full kernel threads
with an associated state.

In several experiments the authors examine different configurations of cores, context
distributions and thread types. Results show that splitting the transmit and receive
operations to separate cores provides no gain. Moving from a single processor to
a SMP configuration further improves throughput, However, the overall system ef-
ficiency is decreasing. Adding cores to the IOVM showed that the number of L2
cache misses rose significantly. The performance analysis conducted in this work is
closer related to this project as the previous one, as it examines the impact of thread
types (and threading models) on a multi-core platform. However, it does not create

3.2. PCM and performance modeling 27

a performance model. Nevertheless it provides some interesting facts which can have
influence on the architecture of IOVMs in general and the VL in particular. The
main focus of this thesis is to create a performance model which allows to modify
the model and adjust it to such architectural decisions to predict their performance
impact.

Although the two approaches reside on a different level of abstraction, the scale-out
approach demonstrates and confirms that the introduction of a separate IOVM is
a promising approach, whereas scale-up provides moderate improvement, only. The
fact that the scheduling technique and the thread types used can have a performance
impact should lead to further considerations about the VL architecture proposed in
this work. Furthermore, it legitimates the comparison of different threading models
this work wants to draw. However, these research projects cannot contribute directly
to this work by supporting the performance model creation.

3.2 PCM and performance modeling

There are two other research projects which elaborated a performance model of
existing systems using PCM. The following sections describe these projects and the
advantages and shortcomings of PCM emerged during these work.

3.2.1 PCM and CoCoME

The Common Component Modelling Example1 (CoCoME) is targeted to provide a
common component-based system as a modeling example to evaluate and compare
the applicability of existing component models (like DisCComp, Fractal, Focus or
UML Extensions). However, many of these component models concentrate on differ-
ent yet related aspects of component modeling. Although CoCoME is an imaginary
example, it describes use cases as they were delivered by a business company and
could be reality. Moreover, there exist implementations [HKW+07] of this theoretical
example.

In [KR08], the authors present the modeling of CoCoME with PCM. The intention
of this project is to evaluate the applicability and capability of the Palladio approach
with the CoCoME. Hence, the paper describes the advantages as well as limitations
and shortcomings of PCM. The results are possible performance predictions of the
non-functional properties of the CoCoME and further necessary enhancements or
features for PCM to improve its practicability.

As PCM is primarily targeted at business information systems, the authors focused
on modeling components, interfaces, resource environment etc. with respect to non-
functional properties. With PCM’s big strength in sizing scenarios (estimating
performance under changing conditions, e.g. the usage scenario) and relocation
scenarios (reuse of existing components in a different context) the authors were able
to use their simulation approach to evaluate the response time of CoCoME’s PCM
model instance. For example, the authors showed the upper limit of concurrent
service requests the system can handle based on the specification of extra-functional
properties stated by CoCoME [KR08]. Furthermore, their work demonstrates how
PCM supports the prediction of QoS properties, namely performance.

1CoCoME, http://agrausch.informatik.uni-kl.de/CoCoME

http://agrausch.informatik.uni-kl.de/CoCoME

28 3. Related Work

However, modeling the PCM instance of CoCoME exposed shortcomings of PCM,
even when modeling an architecture of its target domain, the business information
systems. Some of these limitations are important for this work, too, and will be
discussed in detail in section 5.1. For example, the fact that components are stateless
or no support of dynamic architectures complicated the modeling process and effect
the modeling of this project, too. Hence, this work can profit from the limitations
and solutions presented in [KR08]. However, the CoCoME PCM instance can be
differentiated from this work for one main reason, namely it does not model a real-
world scenario. This means, the results found in their work and the implementation
itself where never used in the field. The work proposed in the following addresses
this problem by evaluating the utilizability of PCM in an industrial environment.

3.2.2 PCM in industrial context

In his diploma thesis, Roman Andrej uses PCM to model an appropriate software
system of the CAS Software AG2 [And08]. The goal of this work was to study and
evaluate PCM in a real world scenario. Therefore, performance predictions were
made with PCM and compared to measured values of a real system to demonstrate
the quality of the prediction. Furthermore, this work served to identify shortcomings
of PCM when used in the field.

In his work, the author describes the construction of a performance model of the
CAS teamCRM software system. He uses the GQM approach explained in section
2.5 to get an overview of the performance behavior and to determine the performance
factors of the software system. The evaluation then describes the comparison of the
model’s performance prediction with the real system. The results demonstrated
that PCM is a mature method for performance analysis in the domain of business
information systems.

Moreover, the proposed work demonstrates the applicability of PCM and lists its
advantages and shortcomings. These identified limitations and their possible solu-
tions are important for this work, too. Although PCM’s applicability and quality
of performance analysis is shown by the proposed work, it is different as the re-
quirements of this project are in a completely different domain, totally apart from
business information systems. Hence, this approach can present new findings and
insights in the applicability of PCM in “PCM-foreign” domains.

3.2.3 PCM and concurrent, message-oriented communica-
tion

The VL basically introduced in section 2.3 and described in detail in section 4 can
be considered as a sort of message-oriented middleware, as its responsibility is the
delivery of messages, sent by clients to the receiver, namely the storage hardware.
Furthermore, its architecture and hardware predestines the VL to handle messages
concurrently which is necessary to guarantee a most effective way of message han-
dling.

The diploma thesis of Friedrich [Fri07] deals with such concurrent, component-based
software systems, in particular the Java Messaging System (JMS). The author eval-
uates design patterns for concurrent systems with respect to their applicability for
PCM. Hence, these results can be of interest for the VL architecture design.

2CAS Software AG, http://www.cas.de/

http://www.cas.de/

3.3. Performance modeling using (layered) queuing networks 29

Both Friedrich and Happe [Fri07, Hap08] extensively evaluate the behavior of the
design patterns, especially their performance relevant parameters. Furthermore,
Happe proposes a systematic approach explained in section 2.6 to evaluate perfor-
mance relevant factors. This approach will be applied in this work, too.

3.3 Performance modeling using (layered) queu-

ing networks

As presented in the previous sections, there are projects analyzing I/O virtualization
performance on a higher level of abstraction and hence with a different approach.
During this work there were no research projects found which are related to this
work on the same level of detail, analyzing or modeling the performance of an I/O
virtualization approach. However, there are several research projects either modeling
comparable or transferable software architectures. Some of them will be presented
in the following.

Harkema et al. present a quantitative performance model of CORBA-based middle-
ware [HGvdMH04]. Their goal is to apply their model to predict the performance
of middleware-based applications. Although middleware is not related to the topic
of this work, they have a lot of issues in common. For example, the authors have to
deal with thread pool sizes, threading models and resource sharing, too. Further-
more, it encompasses a similar set of factors like processor speed or arrival rate. The
authors describe the creation of a performance model based on queuing networks.
This model is validated by comparing simulation results with performance results
of lab experiments. They show that the performance prediction results match accu-
rately and conclude that model-based approach to predict middleware performance
is promising.

The paper of Ramesh and Perros describes a multi-layer client-server queuing net-
work model with synchronous and asynchronous messages [RP00]. Their work is
motivated by CORBA, too, where distributed objects use the client-server inter-
face to communicate by synchronous and asynchronous messages. In particular, the
model considers blocked clients, too. Although motivated by practical topic, the
model is very generic as the focus is more on model analysis then performance mod-
eling. The authors analyze the model for one-layer and multi-layer networks and
compare the simulation results with performance measures to evaluate the accuracy.
The good accuracy results show that this novel queuing network can open up a new
way to analyze queuing networks with blocking. Hence, their work indicates that
other models can provide a way to analyze the performance of I/O virtualization,
too.

The Proactor/Reactor patterns used in middleware [SHB07] are closely related to the
synchronous and asynchronous I/O request handling analyzed by this work. Espe-
cially the Proactor pattern effectively encapsulates the asynchronous mechanisms of
the operating system. Praphamontripong et al. present a qeueing model which cap-
tures the performance relevant characteristics of this Proactor pattern [PGGG06].
They analyze the performance of a Proactor-based Web server, concentrating on
metrics like throughput and response time. The authors demonstrate the applica-
tion of their model in practical scenarios and illustrate the use of the model to
guide e.g. design-time configuration decisions. In a second paper, the authors

30 3. Related Work

present a performance model of the Reactor pattern based on Stochastic Reward
Nets (SRN) [PGGG07]. Their analyses are the same as in the previous paper and
evaluates the same performance metrics as response time, throughput and loss prob-
ability. Again, a case study illustrates the use of the model. However, their per-
formance models for both patterns are different and they only focus on either the
Proactor or Reactor pattern. So far, no analytical comparison of both patterns was
made which is one of the targets of this work.

The here presented works show good results and indicate promising applicability.
Hence, the approaches of (layered) queuing networks models seem appropriate to
model the rather hardware-oriented requirements of this work. However, the great
benefit of the component-oriented PCM is its flexibility. It enables easy exchange
components (e.g. synchronous with asynchronous implemented components) to ob-
serve the model behavior. Though appearing more complex, PCM seems also more
comprehensive as it allows easy deployment and deployment changes, components
or hardware configuration changes. Furthermore, it provides detailed graphical de-
piction of resource (e.g. CPU usage) or response times of components.

3.4 Summary

There are several research projects dealing with the performance of I/O virtual-
ization. However, they highlight I/O virtualization from a different point of view
then this work. Their focus is on the analysis of new I/O virtualization approaches
in comparison to existing techniques. Unfortunately, there are no projects dealing
with performance modeling of I/O virtualization. Other research projects like QN
are promising approaches to create performance models, too, but were demonstrated
in other domains and did not analyze I/O virtualization.

4. Virtualization layer architecture

This chapter gives a detailed explanation of a potential Virtualization Layer for
I/O (VL) architecture which could be integrated into an IBM system. The fol-
lowing explains involved components, environmental requirements and restrictions,
and design alternatives. First, an overview of a potential VL integration is given.
The second section describes the environment, especially the hardware the VL is
equipped with. Furthermore, it depicts all components the VL interacts with. The
next section explains the internal architecture of the VL, distinguishing between two
potential implementation alternatives, namely synchronous and asynchronous I/O.
The last section gives an overview of the parameters determined to be relevant for
this performance modeling approach.

4.1 Execution environment

One possibility to integrate a VL into an IBM system is as an application in an
operating system within a privileged partition (see figure 4.1). Its target is to handle
I/O requests and to send them to the storage hardware. As other partitions, the
VL partition can be individually equipped with CPUs. It is privileged because it
requires memory access to the other LPARs which facilitates request handling. In
the remainder, VL is used as the expression for this partition, including both the
OS and the request handling application unless stated otherwise. The term I/O
interface encompasses all services offered by the OS to enable request handling.

From the user’s point of view, the VL offers virtual devices the clients can be con-
figured with. Clients are the guest systems hosted by LPARs (see section 2.3).
Internally, the VL directs the requests to the attached logical device provided by the
storage hardware. In turn, logical devices are related to the actual physical devices
of the storage hardware.

The VL is a separate privileged partition. These privileges are crucial because the
VL must have read and write access to dedicated memory areas of clients. These
privileged accesses allow the VL to simply reset pointers to memory areas which
avoids store and forward of requests. For example, to send a request to the I/O
interface, the VL passes the pointer to the specific memory area of the request to

32 4. Virtualization layer architecture

LPAR 1 LPAR 2 LPAR n

zHypervisor

Storage Hardware

CPU CPU CPU

CPU
Virtualization Layer for I/O

Hardware

z/OS

Figure 4.1: Architecture overview

the interface. This saves CPU time because requests do not have to be copied from
the client memory to the VL memory. Thus, the processing time of the I/O thread
to send an I/O request to the I/O interface is independent of the request size.

An advantage of a separate partition for the VL is that it can be equipped with
an arbitrary amount of CPUs of the system’s hardware. The CPU amount must
be set prior to the execution of the VL. If CPU or CPU demand is mentioned in
the remainder, this always refers to the CPU assigned to the VL if not mentioned
elsewise.

Basically, the VL provides access to the storage hardware for a variable set of clients
(see figure 4.2). Every client is configured with a different, varying amount of virtual
devices served by the VL. The configuration of clients with virtual devices may
change during the VL’s execution as well as the amount of clients. Assigned to
each virtual device is the Request Completion Queue Pair. This is a dedicated part
of the client’s memory the VL is allowed to access because of its privileges. Such
a Request Completion Queue Pair is used to signal new I/O requests and receive
their corresponding completion signal. The access of this Request Completion Queue
Pairs and the processing of the requests is specified by the implementation of the
VL, explained in the next section.

If a request is passed to and handled by the I/O interface, the OS providing the I/O
interface uses the same CPU as the other components of the VL. Another property
is its throughput which is restricted to a special amount of requests per unit of time.
If the arrival rate is higher than the throughput rate, all further requests will be
delayed until capacity is available. For example, if the throughput is x Requests
per second and x + 1 requests arrive in second one, then the request x + 1 will be
delayed. This throughput capacity is defined by the channel attached to the I/O
interface. If necessary, it is possible to add more channels to the I/O interface.

Below the VL (see figure 4.2) is the storage hardware which can be accessed via the
operating system’s I/O interface. The storage hardware receives the requests sent

4.2. Virtualization layer internals 33

Client 1

Request
Completion

Queue Pair 1

Request
Completion

Queue Pair n

I/O Interface

Client 2

Request
Completion

Queue Pair 1

Request
Completion

Queue Pair n

Client n

Request
Completion

Queue Pair 1

Request
Completion

Queue Pair n

Virtualization
Layer

Storage Hardware

CPUCPU CPU

Figure 4.2: Execution environment of the VL

by the VL via the I/O interface and executes them. When a request completes, the
results are signaled via the I/O interface. In this approach, the storage hardware
acts like a black box, where only response times are of interest.

As I/O virtualization is performance critical, it is obvious to research for the best
implementation and to determine the benefits and drawbacks of different design al-
ternatives. Important and interesting questions are, what are the factors influencing
the performance of such an implementation, how are they influencing the perfor-
mance and whether another design (e.g. synchronous vs. asynchronous request
handling) yields better performance results.

4.2 Virtualization layer internals

The VL is responsible for collecting and processing the requests of all the different
client request queues. It preprocesses the requests, so they can be handled by the
storage hardware. After a request completes, the results are sent to the respective
client’s completion queue. This can be achieved in mainly two ways. The first is
based on synchronous I/O request handling, the second approach uses asynchronous
request handling. The peculiarities of these two approaches will be explained and
discussed in the following.

4.2.1 Synchronous request handling

This section explains the synchronous request handling process by two different point
of views. The first is a static view, focusing on the involved components and the
architecture. The second is a dynamic view, explaining the behavior of the different
components.

4.2.1.1 Static view

In the synchronous case, each client has a request queue for each configured device
which the client can fill with requests the device has to execute. An I/O thread

34 4. Virtualization layer architecture

collects this request and sends it to the storage hardware by using the VL’s I/O
interface. Then, the I/O thread waits for the result of the request. When this
arrives, he will return this result to the client. Hence, the client receives his response
directly from the I/O thread and can now continue his work.

The specific amount of I/O threads must be large enough to handle all requests
in time without blocking or delays. For this work, the number of synchronous I/O
threads running is assumed to be infinite and independent of the amount of attached
clients.

Client 1

I/O Interface

Client 2 Client n

VL

I/O Thread

Storage Hardware

I/O Thread

Request
Queue 1

Request
Queue n

Request
Queue 1

Request
Queue n

Request
Queue 1

Request
Queue n

Figure 4.3: Architecture of the VL using synchronous request handling

4.2.1.2 Dynamic view

Whenever a client wants to send a request to the storage hardware, an I/O thread
collects this request from the request queue and sends it to the I/O interface. Then,
the I/O thread has to wait for the results of the storage hardware. This implies
that the thread and hence the request issuing application are blocked until the
result is returned by the storage hardware. This is the substantial difference to the
asynchronous request handling explained in the following section. This delay from
the arrival of a request until the storage hardware signals the completion is composed
by two parts. The first part of the delay results from the request processing inside
the operating system the I/O interface runs in. Th processing can be influenced and
can take much longer if the CPU is used by other components and must be shared.
The second part is the delay which is needed to actually read/write the data from/to
the storage hardware.

As the VL and hence its I/O threads has privileged access to the client’s request
queues, the I/O thread can simply pass the pointer of the request’s memory area
to the I/O interface. This demands only a constant amount of CPU time. This
constant time can only be influenced by other components, competing for the same
CPU resource.

4.2. Virtualization layer internals 35

Client 1

Request
Completion

Queue Pair 1

Request
Completion

Queue Pair n

I/O Interface

Client 2

Request
Completion

Queue Pair 1

Request
Completion

Queue Pair n

Client n

Request
Completion

Queue Pair 1

Request
Completion

Queue Pair n

VL

I/O Thread

Completion Thread

Storage Hardware

Figure 4.4: Asynchronous request handling: I/O threads and completion threads

4.2.2 Asynchronous request handling

Again, this section and the following section is composed of two different point of
views, likewise the previous section. The first section discusses the static architec-
ture, the second the dynamic behavior.

4.2.2.1 Static view

Again, one core element of the VL architecture is the I/O thread, depicted in figure
4.4. As in the synchronous case, I/O threads collect requests and pass them to the
I/O interface. To issue requests and to receive completion signals, each device of
each client uses the request completion queue pair.

The second elemental part of the VL are the completion threads, run by the VL
whenever a request completes. They signal the completion of the request by putting
the signal into the completion queue of the request completion queue pair the request
was sent from. The completion threads are started by the VL, whenever a request
completes. The I/O interface is more like a service component, offering to read from
and store data on the storage hardware.

4.2.2.2 Dynamic view

A more detailed picture of the I/O thread’s behavior is given in figure 4.5 and
figure 4.6. The activity diagram (see figure 4.5) shows that the I/O thread, once
started, runs until it receives an interrupt signal, e.g. because the VL will be shut
down. While the I/O thread is running, it iterates in an infinite loop over all request
queues the clients are configured with. It tries to access each queue to collect all
requests currently in this queue. While one I/O thread is working on a queue, no
other thread from within the VL can access this queue. Therefore, each further
access of an I/O thread results in a blocked access and a delay, until the queue is
released. Queue accesses from client’s side are not blocked. This can be realized by
a special design of the queue (see figure 4.7).

After all requests are collected, the thread releases the queue and sends the requests
to the I/O interface. This request processing demands a nearly constant amount of

36 4. Virtualization layer architecture

<<for each Request>>

getRequest
processIoOperationsacquireQueue releaseQueue

<<infinite Loop: for each RequestQueue>>

Stop

I/O Thread

Requests

Requests

Figure 4.5: Activity diagram of an I/O thread

RequestQueue:q_1 CompletionThread:ctIoInterface:iCompletionQueue:cq

start()

acquire()

release()

stop()

getRequest()

request

<<while request in Queue>>

processIoOperations(ops)

completeIoOperation()

requestComplete()

Time needed to

signal completion

of I/O Operation

<<for each Queue>>

I/O Request Handling

Response time

depends on interface

usage. Only x

requests per sec. can

be processed further,

requests will be

delayed

IoThread:t1

Figure 4.6: Request handling sequence diagram

4.3. Performance relevant parameters and system behavior 37

Client

Virtualization
Layer

Queue

filled
empty

Figure 4.7: Queue locking scenario

CPU time as it simply copies the pointer to the memory area, not the request itself.
In contrast to the queues, it is possible to concurrently access to the I/O interface
and each thread can hand over its requests without being blocked.

Whenever a request is passed to the I/O interface, the operating system of the VL
providing the I/O interface processes and executes the I/O operation by sending it
to the storage hardware. As in the synchronous case, the delay from the arrival of
a request until the storage hardware signals the completion is composed of the time
spent in the I/O interface’s and the storage hardware response time.

At last, when the completion of a request is signaled by the storage hardware, a
completion thread is started. This thread accesses the completion queue of the
corresponding request queue the request was issued. It puts the results given by
the storage hardware into the completion queue. Now, the client can check the
completion queue for new signals and then he will notice which requests completed.

Furthermore, the more requests are issued from the same request queue, the more
likely it is that a completion thread is blocked. Hence, it is delayed if it wants to
put the completion signal in the corresponding completion queue. Additionally, the
completion thread competes for the VL’s CPU like the other CPU-using components
like I/O thread and I/O interface. Thus it could have an impact on the overall system
performance.

4.3 Performance relevant parameters and system

behavior

This section discusses which parts of the presented architecture should be explicitly
modeled because of their possible influences on the system’s performance. At first,
the performance influences of possible blocked queue accesses will be explained.
After that, further parameters and their dependencies considered to be performance
relevant will be discussed.

4.3.1 Queue access and blocking

Given the architectures described in the last subsections, it is intuitive that blocking
of threads and thus delays will occur. These resulting delays are expected to have
an impact on the overall system performance, especially if the number of concurrent
threads is increased. Therefore, the understanding of why and how threads are
blocked is very important to create a proper model of this part of the system. This
subsection explains the queue access and discusses queue blocking effects in detail.

Figure 4.7 gives a schematic overview of the queue’s design. The design enables that
client and VL can work on the queue, concurrently. However, if one thread of the

38 4. Virtualization layer architecture

configurable variable
runtime of threads amount of CPUs

runtime of IO interface CPU power
request type amount of IO threads
request size IO interface throughput

storage hardware delay amount of request queues
queue access time

Table 4.1: Classification of performance parameters

VL accesses the queue, it locks the queue to prevent accesses of other VL threads.
Accesses from the client will not be blocked. To enable this, there exist two areas
inside the queue marked by e.g. pointers. The gray area of the queue is the part
which is filled with requests and can be accessed by only one VL thread. The white
area of the queue is empty and can be accessed by only one client thread to put new
requests into the queue. These areas can be marked by pointers which will prevent
client and I/O thread from blocking each other.

In the asynchronous scenario, there are two queues of the mentioned design. The
first one is the request queue of the Request Completion Queue Pair. When an
I/O thread tries to access a request queue, it is possible that another I/O thread
is already working on this queue and has locked it. In this case, the blocked I/O
thread is delayed until the request queue is unlocked by the thread which locked the
queue. However, the special design of the request-completion queues (see fig. 4.7)
prevents clients from blocking I/O threads and vice versa. Hence, if an I/O thread
accesses the request queue while a request is put into the queue by the client, the
access is not blocked. The case when two requests are put into the request queue by
the client is unspecified because it has no influence on the performance on the VL.

The second shared queue where conflicts can occur is the completion queue. Analog
to the last paragraph, a completion thread is blocked if it wants to access a comple-
tion queue and this queue is already locked by another completion thread. This case
may happen if two requests complete at almost the same time and their completion
signal must be delivered to the same completion queue at the same time. Then, the
first of the two completion threads blocks the access of the second thread. Likewise
for the request queue, the completion thread is not blocked if a client reads the
completion signal in the completion queue.

4.3.2 Performance parameters

The parameters of the here created performance model can be categorized into “con-
figurable” or “variable” parameters (table 4.1). Variable parameters are integrated
into the model such that the user of the model can change them. This enables
the model user to observe the performance behavior of the model with different
parameter settings.

In contrast, configurable parameters are the parameters of the performance model
which can be changed, but should not. They serve as possibilities to configure
and fine-tune the performance model until it matches the behavior of the reference
system. This configuration will be explained in detail in chapter 6.

4.3. Performance relevant parameters and system behavior 39

4.3.3 Variable parameters

One of the main variable parameter influencing the system is the amount of request
queues. The amount of client’s served by the VL is not fixed and can change while
the VL is running. As each client is configured with at least one device, the amount
of request queues increases with the an increasing number of clients. Furthermore,
each client can be individually configured with more than one device which increases
the amount of request queues, additionally. The amount of request queues could have
an influence on the system performance as the amount of request queues changes
according to the amount of clients and devices. One can imagine that if the amount
of request queues decreases to a very low level, the probability that an I/O thread is
delayed because of queue locking increases. The amount of request queues is classi-
fied as “variable” because the model user should be able to observe the performance
impact of a varying amount of request queues with a varying amount of threads.

This is why another variable parameter is the amount of I/O threads. It is an intu-
itive assumption that varying this thread pool size can have a performance impact
on the system, because an increasing number of I/O threads could either increase
the overall system throughput or it could delay other I/O threads because they
block each other. As mentioned in section 4.1, it should be possible to change the
amount of CPU’s assigned to the VL and therefore the CPU power that is available
to the VL. It is obvious, the amount of CPUs and thus, the overall CPU power must
influence the system performance.

Another parameter influencing the system performance is the throughput constraint
of the I/O interface. It only offers a specific amount of requests to be handled
in a certain unit of time. If the I/O interface becomes a bottleneck because its
capacity is insufficient, it is possible to assign additional capacity to the I/O interface
which might increase the throughput of the whole system. Hence, the I/O interface
throughput is categorized as variable, too.

4.3.4 Configurable Parameters

The queue access time is considered to be performance relevant, because it influences
the amount of time it takes a thread to access a queue which in turn might have an
influence on the throughput. Primarily, this queue access time will depend on the
variable parameters amount of queues and amount of I/O threads. In case of the
completion thread, the queue access time will more depend on the rate, the requests
arrive and complete. Hence, this configurable parameter queue access time should
not be set manually, it should result from the model’s design.

In a real world scenario, one has no influence on the type and the size of the requests
a client issues. Hence, request type and size are classified as configurable parameters,
though the user will have to change them to simulate different scenarios. Both, the
type and size of a request can have a performance impact. This results of the idea
that one request type (e.g. WRITE) might need more CPU time to be processed or
is delayed longer as READ. The second argument is that an increasing request size
might lead to an increasing hardware response time.

This storage hardware response time and the runtime of I/O thread and completion
thread are not variable in reality. They could only be influenced by changing the
implementation of the threads. Hence, their runtime is considered to be fixed within

40 4. Virtualization layer architecture

the model, too. Consequently, the runtime of I/O thread and completion thread
must be measured and then put into the model. The runtime of the I/O interface
depends on request size and type and is not variable, too.

5. Model implementation

This chapter describes the modeling of the architecture introduced in chapter 4.
Because PCM was primarily targeted on business information systems, some as-
sumptions and limitations of PCM complicate the usage of PCM in the specific
domain of this work. Hence, some components of the architecture had do be mod-
eled in a different way, because they could not be mapped directly to elements of
the PCM metamodel. Nevertheless, the realization of this performance model of the
architecture should be accomplished in the most accurate manner.

This chapter focuses on creating a model skeleton, whereas the following chapter 6
will explain the configuration of the model. The problems, assumptions and solutions
to create this model are discussed in the first section 5.1, followed by section 5.2
which gives a detailed explanation of the model. Finally, section 5.3 summarizes the
complete modeling approach.

5.1 Limitations and Assumptions

PCM was primarily developed to analyze software architectures of business infor-
mation systems. As I/O virtualization is a different domain, some challenges and
limitations arose which complicated the modeling of the architecture described in
chapter 4. This section discusses the limitations of PCM and how the resulting
problems can be solved. Furthermore, the validity of the assumptions made to solve
these problems will be discussed.

5.1.1 Challenges, limitations and solution patterns

As already emphasized, PCM focuses on modeling and analyzing the software ar-
chitecture of business information systems. During the development of PCM, sev-
eral limitations arose and assumptions were made. They are detailed described
in [Bec08, Koz08]. However, some of these assumptions are invalid in PCM-foreign
domains like this work, e.g. the abstraction from state. Further problems arise
because of the special requirements which are different from the requirements of
business information systems. However, some of PCM’s limitations pose problems
in general, too. Other works [And08,KR08] already faced some of these difficulties.

42 5. Model implementation

However, they had to invent different solutions to the one presented in the following
because of different requirements.

At first, the limitations of PCM and the resulting model-specific problems will be
listed. They are followed by a description of technical problems and limitations which
occurred during this work. Each problem is supplemented by a preferably general
solution pattern, if applicable, or a work-around which overcomes the shortcomings
in a problem-specific manner.

5.1.1.1 Limitations of PCM

The fundamental limitations of PCM influencing this work are listed in the following.

• Static architecture: The modeled architecture is static. Neither the connec-
tors of components can change, nor can components move to different hard-
ware resources. This implies that it is not possible to have a varying amount
of component instances during analysis or simulation. This makes it extremely
hard to model components which should have several instances, e.g. request
or completion queues.

• Abstraction from state: PCM does not regard the internal state of com-
ponents or the runtime environment. Hence, it is not possible to adapt the
component’s behavior at runtime. For example, it is impossible that one com-
ponent can store the information which queues are locked or which component
has locked queues. In this work, this makes a straight-forward modeling of
queue locking impossible.

• Active components: There are no active components in PCM. Each com-
ponent is triggered by method invocations. There is no component type which
can actively call other components autonomously. Hence, modeling an I/O
thread which actively polls the request queues is impossible out of the box.

• Scheduler support: Currently PCM only supports abstractions of scheduling
strategies like processor sharing or first-come-first-served and single processor
scheduling only. Furthermore, there is no support of multi-core platforms.

The following describes the difficulties arising from the previously listed limitations.
Each problem is described in a general and then work-specific manner, also its solu-
tion.

Active Components

The only active part within a PCM model is a UsageBehavior. Hence, compo-
nents are called by e.g. such a UsageBehavior or other components and cannot
autonomously call other components. Currently, components are not intended to
actively do something. However, such components could be useful to model e.g. the
frequent persisting of data. In this work, an active component is required to model
the behavior of the I/O thread. Recall that the I/O thread actively polls the request
queues for new request and processes any requests stored in the queues.

Solution: This active behavior can be modeled by an additional provided interface.
This interface allows to trigger the component from the outside of the system in

5.1. Limitations and Assumptions 43

a usage scenario. In the following model, the I/O thread provides such a trigger-
interface and the usage scenario of the usage model calls this interface with a specific
rate. One can then use the two workloads types to model different behavior. For ex-
ample, a closed workload realizes a continuous trigger without concurrency, whereas
an open workload with an interarrival time employs a behavior repeating with a
special frequency.

Capacity constraint

Another general challenge is how to model a specific resource-independent capacity
constraint of a component, e.g. a throughput of requests independent of the re-
quest’s size. In PCM there are no components or other possibilities to model such a
behavior without additional effort. Basically, this challenge arises from the fact that
components do not have internal states and thus cannot count e.g. the throughput.
Using a simple passive resource with a capacity corresponding to the capacity which
shall be modeled is no solution. It would only solve the problem that n processes
can use this passive resource in parallel, independent of the time. Hence, it cannot
restrict the amount of parallel processes per time.

Using an active resource like a CPU is not possible for the following reasons. The
major reason is that the active resource cannot be limited as there is no proper
scheduling policy meeting this special requirement of capacity restriction. In case of
PROCESSOR_SHARING, there is no possibility to limit the number of parallel executions
as well as with DELAY. Another problem of each scheduling policy and an active
resource in general is that a request would be delayed even if there was enough
capacity available.

Another possible solution one could think of is to combine a passive resource with
an active trigger, used in a dedicated usage scenario. This trigger activates a ded-
icated component to increase or decrease the capacity of the passive resource. But
this approach has the following disadvantage. Assume that the passive resource is
decreased less often than the trigger of the usage scenario calls increase or vice versa.
Then, this would lead to a raise of the passive resource’s capacity above the limit
which was originally set.

Solution: A general solution pattern for a capacity constraining component is the
CapacityController. It provides an interface to be accessed and contains a passive
resource. The passive resource’s capacity corresponds to the maximum capacity re-
striction the real component has. To model the maximum parallel access per time,
the SEFF of the provided interface must implement the behavior depicted in figure
5.1. At first, the passive resource must be acquired. If no passive resource is avail-
able, this call of the provided interface will be delayed until capacity is available. In
case of available passive resources, the control flow is forked by the following Asyn-
chronousForkAction. This asynchronous fork is necessary, as the original control flow
can continue and return. The second forked control flow contains an InternalAction
which delays the control flow for the specified amount of time. After this delay, the
acquired passive resource is released and the SEFF is complete. For example, if there
is a component with a throughput constraint of 10 per second, the passive resource’s
capacity of the model component would be set to 10. The resource demand DELAY
would be set to one second. Hence, any acquired passive resource would be released
after one second.

44 5. Model implementation

<<ResourceDemandingSEFF>>

controlCapacity

<<AquireAction>>

aquireCapacity

<<ResourceDemand>>

delay

<<ReleaseAction>>

releaseCapacity

<<ResourceDemandingBehavior>><<AsynchronousForkAction>>

Figure 5.1: Resource Demand Service Effect Specification of the CapacityController’s
internal behavior

<<Interface>>

RequestQueueIf IoThread

RequestGenerator

IoThread

RequestQueue

Instance 1

RequestQueue

Instance 2

RequestQueue

Instance n

aggregated to

<<Resource Container>>

<<Resource Container>>

Figure 5.2: Aggregation of several queues to one component

Returning to the VL architecture model, it is possible to ensure the I/O interface’s
throughput constraint by using this CapacityController and connecting it to the I/O
interface. The realization of this within the model is explained in section 5.2.

Multiple component instances

In general, with PCM there are no restrictions preventing from modeling a specific
amount of components, interconnected with a different component. Figure 5.2 gives
a short example how a several instances of the same component type can be con-
nected. But if this amount of component changes, the model must be manually
adjusted by adding or removing the components one by one. There is no possibility
in PCM to specify that a specific component should have several instances. This
shortcoming could be solved with inplace transformations which can automatically
generate components and connect them to others. However, implementing such a
transformation would go beyond the scope of this work.

Transferring the described problem to this work, the question remains how to model
a varying amount of several request queue and completion queue components respec-
tively. For the software architect, it is possible to allocate several different instances
of the queue model component to the resource container, but only with tremendous
effort, because each queue component must be allocated and connected explicitly
(see figure 5.2). Assuming that creating and connecting a variable amount of com-
ponents is possible, it would still be hard to specify and especially maintain the
access of the multiple instances, e.g in figure 5.2 to direct the thread component

5.1. Limitations and Assumptions 45

to the queue component it has to access. This could be achieved by branches but
would cause enormous effort to explicitly model this circumstance. Especially, if the
parameters are changing, one would have to adjust these branches.

For this work, a one-to-one modeling of the request queues accessed by I/O threads
and the completion threads and queues would be too much modeling effort. Espe-
cially because the amount of request queue components is a variable parameter and
changes frequently. Moreover, it is undefined how an I/O thread component shall
access the request queue components which implies it is not possible to specify or
model an order in which e.g. the thread component has to access each queue com-
ponent. Apart from the tremendous modeling effort, an explicit model would most
likely not lead to a more accurate result as the solution presented in the following.

Solution: Because of the previously explained problems, a solution to model sev-
eral instances of a component is to combine them into one component. The accesses
of a specific component must then be reflected by probability distribution calcula-
tions in branches and other SEFF-actions. Concerning the problem of how to model
several request queues, all instances were aggregated in one component. This queue-
representing component must meet two requirements. At first, it is responsible for
the request generation, because a queue access shall result in a returned request.
Second, it must reflect the behavior of threads which access and lock queues and
hence block each other. These blocking probabilities and resulting delay times are
now calculated by probability functions, using the stochastic expressions PCM sup-
ports. How this delay time and the blocking probabilities are calculated is explained
in section 5.1.2.

After a request completes and the completion thread has to signal the request com-
pletion, exactly the same problem arises. However, this time the queue access and
blocking must be based on more assumptions then for the requests queues and I/O
threads. Because of these assumptions, the same solution is not adequate and thus,
completion queue locking is modeled by simple approximations and probability dis-
tributions presented in section 5.1.2.

5.1.1.2 Technical limitations

The simulation engine of PCM currently works with native Java threads, i.e. for
each event created by the usage scenario, a new thread is started. Moreover, Asyn-
chronousForkActions fork new native threads, too.

In the scenarios of this work, a request arrival rate of over 50000 requests per second
is not exceptional. However, such scenarios cannot be simulated without increasing
the Java VM memory size and decreasing the stack size of Java threads. Otherwise,
OutOfMemory-exceptions are likely to occur when running the simulation, especially
for a lot of users. Hence, to run the simulation without errors, the Eclipse PCM
Bench 3.0 must be started with the following additional entries in eclipse.ini:

--launcher.XXMaxPermSize320m

-vmargs -Xss8k -Xms512m -Xmx1024m

--XX:PermSize =320M

The described problem usually is no limitation within the target domain of PCM as
they generally do not produce such an high amount of concurrency. Nevertheless, it

46 5. Model implementation

is a problem and constrains the potential of PCM in this domain. Although it can
be avoided by adjusting the Java VM parameters (heap space, stack size, etc.) a
better solution should be provided and is currently in work.

5.1.2 Assumptions

This section presents the assumptions made during the modeling process. These were
necessary to model or represent special circumstances of this work at all. Especially
the delay resulting from queue access delays could have an impact on the system
performance. Hence, these influences shall be captured by the model but can only be
reflected with approximations, probability distributions and/or assumptions. The
following is divided into the assumptions made to model request queue locking and
completion queue locking.

Request queues

Whenever an I/O thread tries to access a request queue, the queue might be locked
by another I/O thread. Then, the current I/O thread will be delayed. Because of
PCMs shortcoming of modeling a variable, parameterizable amount of queues, the
queue locking and delay of threads is approximated by probability calculations. As
the request queue access order is unspecified, it will be assumed that this access
order is randomly distributed. Thus, the queue access and resulting delays can be
approximated by a special function calculating the delay of a thread. The queue
access delay is calculated depending on the amount of I/O threads t, the number
of request queues q and the average delay s of a non-blocked queue access. The
determination of the thread delay is visualized by the activity diagram of figure 5.3.

At first, the average blocking probability m of a thread t when accessing one specific
queue has to be calculated. The probability that thread t accesses exactly one out of
q queues is p = 1

q
. Hence, the probability that another thread accesses exactly this

queue is the complementary probability p = (1 − p). Furthermore, the probability
that one of n other treads accesses exactly this queue is pn = (1 − p)n. Hence, the
probability that one of n threads does not access exactly this queue is again the
complementary probability 1− pn. Assuming that one specific thread tries to access
one specific queue of a system with q queues and n = t − 1 remaining threads, its
blocking probability is

m(t, q) = 1− (1− 1

q
)t−1 (5.1)

Furthermore, the average blocking probability m(t, q) is used to calculate whether a
thread is blocked or not. This is achieved by using a binomial distribution function
Binom(size,probability) (see section 2.4.7) with the parameter values size = 1 and
probability = m(t, q). Then the call of Binom(1,m) returns the value 1 with the
expectation value of m(t, q). In this case, 1 means that the thread was blocked, 0
means not blocked.

If a request queue is accessed and the thread is not blocked, the thread will be delayed
by s. If the queue is locked, a Poisson distributed (Pois(rate), see section 2.4.7)
random deviate n is calculated. For example, if the blocking probability is m = 0.05,

5.1. Limitations and Assumptions 47

Queue access

calculate blocking
probability m(t,q)

calculate if blocked or not
Binom(1, 1-m(t,q))

delay queue
access by s

calculate average
blocking frequeny

n=Pois(m(t,q))

delay queue
access by n*s

result = 0, not blocked result = 1, blocked

Figure 5.3: Calculation of the I/O thread queue access delay

5% of all queue accesses are blocked. This means, each twentieth access results in
a blocked and repeated access. How many consecutive tries will be unsuccessful
is defined by the Poisson distribution. An example for this distribution function
was given in figure 2.6a. In the case of request queue accesses, n = Pois(m(t, q))
reflects the amount of blocked queue accesses. In case the thread is blocked, it will
block n times and therefore be delayed by n · s. The rate-parameter of the Poisson
distribution is set to rate = m(t, q), the average probability that an I/O thread is
blocked because another thread already locked this queue. Formula (5.2) subsumes
the previous explained parts.

delay(s, t, q) = s · [1 +Binom(1,m(t, q)) · Pois(m(t, q))] (5.2)

Completion queues

The completion thread working on the completion queues to signal the result of a
request faces the same challenges as the I/O thread. Recall that PCM does not
support a dynamic structure where the completion queues can be generated auto-
matically at runtime. Hence, there must be an equivalent solution with probability
distributions comparable to the RequestGenerator component. However, in this case
the major problem is that it is unknown how much requests were issued, how much
are still in the system, when they complete and which client issued the requests. Be-
cause of these unknown variables, the same calculation as for request queues seems
inappropriate.

48 5. Model implementation

Assuming an equally distribution of requests per client is not a valid assumption,
as it is not true that all requests processed by the I/O interface were issued by all
clients equally. In reality, a scenario where some clients issue most of the requests is
more reasonable. Therefore a blocked completion thread is much more likely than
assuming an equal distribution of completion signals over all completion queues.
Therefore it is assumed that a simple estimation of the blocking probability and
access delay does not have worse results than an equation with to many unknowns.
Hence, the completion thread delay caused by blocked queue accesses will be based
on the following simple calculation, assuming a standard access delay of s.

delay(s, p) = s · [1 + ·Binom(1, p) · Pois(p)] (5.3)

Both the I/O and completion thread, the determination of the actual queue access
time s would be too costly to measure. Hence it is estimated as a percentage of
the corresponding thread runtime. In case of the I/O thread, this percentage is set
to 5% whereas it is set to 10% for the completion thread. As these values are only
estimations, a calibration might be required which will be discussed in chapter 6.

5.2 The model implementation

As mentioned before, this section explains the model according to the architecture of
chapter 4. First of all, the next subsection gives a coarse overview of the system view
with the modeled components, their component parameters and interfaces. This is a
followed by a detailed explanation of the model skeleton and the remaining parts to
complete the PCM model instance, the usage model and the resource environment.
The important part, the parameterization of the model, is explained in subsection
5.2.3 and deals with the variable parameters the model user can change to analyze
the behavior. The missing resource demands of the here created model skeleton will
be supplied in chapter 6.

5.2.1 Model overview

In the following, both IoThread and IoInterface represent abstract components.
PCM does not support abstract components like the ones depicted in figure 5.4, but
the figure demonstrates that they can be easily replaced by two different implemen-
tation types (synchronous or asynchronous version). The synchronous version will be
used to calibrate the model according to the real system. After the model reflects the
behavior of the reality, the synchronous components can be easily replaced by their
asynchronous counterpart. This flexibility in exchanging components demonstrates
the advantage of PCM.

To interact with the system, it provides one interface, namely the IoThreadIf in-
terface. This is the trigger for the IoThread component to activate the request
processing. The abstract IoThread component represents a concrete thread type
which collects requests from the request queues. It must be replaced by either
the asynchronous or synchronous implementation explained in chapter 4. Abstract
components in figure 5.4 are depicted by italic names. In the synchronous case, the
synchronous IoThread waits for the control flow to return from the synchronous im-
plementation of the IoInterface. In case of the asynchronous implementation of the

5.2. The model implementation 49

RequestGenerator

IOThread

CapacityController

IOInterface

StorageHardware

CompletionThread

<<Resource Container>>

Virtualization Layer for IO

<<Interface>>

IOTriggerIf

<<Interface>>

RequestQueueIf

<<Interface>>

IOInterfaceIf

<<Interface>>

CapacityControllerIf

<<Interface>>

StorageHardwareIf

<<Interface>>

CompletionThreadIf

Figure 5.4: System diagram with abstract components IoThread and IoInterface

IoThread, the control flow is forked. One part remains within the system and contin-
ues to the asynchronous IoInterface and the other part (the call of the asynchronous
IoThread) returns to handle the next request.

Starting at the IoThread component, the control flow transits to the RequestGenera-
tor component via the RequestQueueIf interface. Because of the special limitations
when modeling the request queues (see section 5.1.1), all request queues are aggre-
gated in this RequestGenerator which implements the interface. Compared to the
VL architecture, the RequestGenerator is the representation of all request queues.
Moreover, clients are not explicitly modeled, as attaching new clients only results in
an increased amount of request queues. This amount of request queues can be set
as a component parameter of the RequestGenerator.

Furthermore, each call of the RequestQueueIf interface will be delayed by the Re-
questGenerator depending on the parameters IoThreads, RequestQueues and IO-
ThreadRuntime. These parameters and their influence on the model behavior will
be explained in the section 5.2.3. After this delay, the RequestGenerator gener-
ates and returns a request according to parameters which are specified within the
RequestGenerator ’s RD-SEFF.

Once the generated request is returned by the RequestGenerator, the control flow
continues from the IoThread and passes the request to the IoInterface via the IoInt-
erfaceIf interface. The IoInterface component is abstract, too, and must be replaced
by either synchronous or asynchronous implementation. In either case, the control
flow continues to the CapacityController component by using the CapacityControl-
lerIf interface. If capacity is available, the control flow returns immediately. If not,
it is delayed until capacity is available.

Then, the control flow passes to the StorageHardware component via the Storage-
HardwareIf interface. This component models the storage hardware described in
the architecture chapter. Depending on the request type and size, the control flow
will be delayed and then returned to the IoInterface. In the synchronous case the
control flow returns back through all components, indicating the completion of the
request. In case of the asynchronous IoInterface, the CompletionThread component
is called which has to signal the completion of the request. When this call returns,
the control flow of the asynchronous request handling is completed.

50 5. Model implementation

Property name Description
Type String value t ∈ {READ,WRITE}, specifying the type of re-

quest.
Size Integer value s ∈ {1..∞}, specifying the size of the issued re-

quest in kilobyte.

Table 5.1: Data-type “request” and its properties

byte getRequest()

<<Interface>>

RequestQueueIf

RequestQueues.NUMBER_OF_ELEMENTS

IoThreads.NUMBER_OF_ELEMENTS

IoThreadRuntime.VALUE

SEFF <getRequest>

<<BasicComponent>>

RequestGenerator
<<Provides>>

Figure 5.5: RequestGenerator component, representing the request queues

Thus, the difference between synchronous and asynchronous implementation of the
IoInterface component is the call of the CompletionThread component in case of the
latter implementation.

5.2.2 Component, resource environment, allocation and us-
age model description

The following sections describe the data-type used in the model as well as the mod-
eled components, their implementation and hence their behavior in more detail.
Furthermore, resource environment, allocation and usage model will be explained to
complete the description of the PCM model instance. The resource demands of the
components and their parameterization will be explained in the next section 5.2.3.

5.2.2.1 Data-type request

In this work, an I/O request has two special performance relevant properties, namely
the request size and the request type. The values of these properties are specified in
table 5.1. Because PCM allows to specify properties like BYTESIZE and TYPE for a
primitive data type, I/O requests can be modeled by the primitive data-type BYTE

which PCM supports out of the box. Both the properties TYPE and the BYTESIZE

will be set in the RequestGenerator component according to values specified by
the user. These properties are then used in the IoInterface and StorageHardware
components to calculate CPU and DELAY resource demands.

5.2.2.2 RequestGenerator component

As already briefly described, the layer above the VL consisting of clients and request
completion queue pairs (see figure 4.2) looks different in the model. Here, the request
completion queue is divided in request and completion queue. The completion queue
is accessed by the completion thread and will be explained later in this section.

The idea of the RequestGenerator (see figure 5.5) is to have one component which
models the functionality of several request queues with the advantage that no gen-
eration tool is required. The RequestGenerator substitutes the request queues and

5.2. The model implementation 51

<<ResourceDemandingSEFF>>

getRequest

<<InternalAction>>

accessQueue

<<SetVariableAction>>

generateRequest

<<VariableUsage>>

RETURN.TYPE =

 EnumPMF[(„READ“;1.0),(„WRITE“;0.0)]

RETURN.BYTESIZE = 4

<<ParametricResourceDemand>>

<<ProcessingResourceType>>

name = „DELAY“

unit = „us“

Figure 5.6: RD-SEFF of the RequestGenerator ’s getRequest, configured to return
4KB READ requests.

thus provides the interface RequestQueueIf with the signature byte getRequest()

to be accessed like a request queue.

The RD-SEFF of getRequest can be divided into two sections (see figure 5.6).
First, getRequest is delayed by an InternalActionwhich requires delay(s, q, t) units
of the delay resource. This depends on the probability of being blocked and the
standard delay when accessing a queue. The delay time is calculated depending on
the component parameters: the number of I/O threads t, the amount of request
queues q and the standard queue access time s. The calculation is described in
detail in the subsection 5.1.2. Second, the request returned to the I/O thread is
generated. The first part of the SetVariableAction sets the returned request type to
READ (0), WRITE (1) or a mixture of both by using an integer probability mass
function. Next, the size of the request is specified by setting the BYTESIZE value of
the returned request.

5.2.2.3 I/O thread components

The synchronous or asynchronous IoThread component represents the set of all I/O
threads of one type and requires two interfaces (see figure 5.7). The first is the
RequestQueueIf interface which contains one signature byte getRequest(). The
second is the IoInterfaceIf interface which is used to pass the requests to the I/O
interface via void processRequest(Request aRequest). Furthermore, the syn-
chronous/asynchronous IoThread component provides an interface IoThreadIf which
is used to trigger the I/O threads, because there are no active components in PCM
(see section 5.1). The following explains the two different characteristics of the
Sync IoThread and Async IoThread component.

Synchronous I/O thread

In the synchronous case, the behavior of the handleRequest RD-SEFF of the
Sync IOThread component is simple (see figure 5.8a). Every call of handleRequest
directly leads leads to the ExternalCallAction getRequest of the RequestQueueIf
interface to receive a request.

In the synchronous case, there are no restriction on how many I/O threads process
the request and there is no delay because of blocked queues, as each thread works on

52 5. Model implementation

void handleRequest()

<<Interface>>

IoThreadIf

byte getRequest()

<<Interface>>

RequestQueueIf

void processRequest(byte aRequest)

<<Interface>>

IoInterfaceIf

SEFF <handleRequest>

<<BasicComponent>>

Sync_IoThread

IoThreads.NUMBER_OF_ELEMENTS

SEFF <handleRequest>

<<BasicComponent>>

Async_IoThread

<<Provides>>

<<Requires>>
<<Requires>>

<<Provides>>

<<Requires>>
<<Requires>>

Figure 5.7: Synchronous and asynchronous I/O thread components with required
and provided interfaces

its own queue. After the call returns from the RequestGenerator, the InternalAction
sendToIo requires a specific amount of CPU time which simulate the processing of
request by the I/O thread. This resource demand is independent of any external
parameter and only lasts a given amount of time, because the I/O thread only passes
pointers to memory areas and does not copy or work on the requests (see section
4.1). How this configurable parameter is determined is explained in chapter 6.

Once the InternalAction completes, the request is passed to the I/O interface by
the ExternalCallAction processRequest. The synchronous I/O thread must now
wait until the call returns. Its job is not completed and the thread cannot handle
further requests until this call returns. This behavior differs from the following
implementation.

Asynchronous I/O thread

In the asynchronous case, the number of I/O threads processing requests from re-
quest queues is limited. How many I/O threads work on the request queues can be
specified by the Async IoThread component’s parameter IoThreads. This specified
NUMBER_OF_ELEMENTS sets the capacity of the passive resource ThreadPoolSize and
hence delimits the amount of I/O threads working in parallel.

A diagram of the asynchronous handleRequest RD-SEFF is figure 5.8b. At first,
the passive resource ThreadPoolSize is acquired to assure that only a limited number
of threads is working on request processing. If the AcquireAction fails, the control
flow is delayed until the acquisition is successful. The following steps are similar to
the synchronous case. An ExternalCallAction of the RequestQueue interface to get
a request. Depending on the parameter values of the RequestGenerator component,
this call is delayed. After the ExternalCallAction returns, the InternalAction send-
ToIO represents the CPU resource demand of the IO thread. Again, this resource

5.2. The model implementation 53

<<ResourceDemandingSEFF>>

handleRequest

<<ExternalCallAction>>

getRequest

<<InternalAction>>

sendToIo

<<VariableUsage>>

currentRequest.TYPE = RETURN.TYPE

currentRequest.BYTESIZE = RETURN.BYTESIZE

<<ParametricResourceDemand>>

<<ProcessingResourceType>>

Name = „CPU“

Unit = „CpuCylces“

<<ExternalCallAction>>

processRequest

<<VariableUsage>>

aRequest.TYPE = currentRequest.TYPE

aRequest.BYTESIZE = currentRequest.BYTESIZE

(a) RD-SEFF of the Sync IoThread ’s handleRequest

<<ResourceDemandingSEFF>>

handleRequest

<<AcquireAction>>

acquireThread

<<ExternalCallAction>>

getRequest

<<InternalAction>>

sendToIo

PassiveResource = ThreadPool

<<VariableUsage>>

currentRequest.TYPE = RETURN.TYPE

currentRequest.BYTESIZE = RETURN.BYTESIZE

<<ParametricResourceDemand>>

<<ProcessingResourceType>>

name = „CPU“

unit = „CpuCylces“

<<AsynchronousForkAction>>

<<ReleaseAction>>

releaseThread

<<ExternalCallAction>>

processRequest

PassiveResource = ThreadPool

<<VariableUsage>>

aRequest.TYPE = currentRequest.TYPE

aRequest.BYTESIZE = currentRequest.BYTESIZE

(b) RD-SEFF of the Async IoThread ’s handleRequest

Figure 5.8: RD-SEFF of the synchronous (a) and asynchronous (b) I/O thread’s
handleRequest

54 5. Model implementation

Capacity.VALUE = 650

TimeTillReset.Value = 10 ^ 4

<<BasicComponent>>

CapacityController

void processRequest(byte aRequest)

<<Interface>>

IoInterfaceIf

<<Requires>>

<<Provides>>

Figure 5.9: The CapacityController component

<<ResourceDemandingSEFF>>

controlCapacity

<<AquireAction>>

aquireCapacity

<<InternalAction>>

delay

<<ReleaseAction>>

releaseCapacity

<<ResourceDemandingBehavior>>

<<AsynchronousForkAction>>

<<ParametricResourceDemand>>

<<ProcessingResourceType>>

name = „DELAY“

unit = „us“

specification = TimeTillReset.VALUE

PassiveResource = Capacity

Figure 5.10: RD-SEFF of the CapacityController ’s processRequest

demand is independent of any external parameters and only lasts a given amount of
time. The parameter value will be determined in chapter 6.

Afterwards, the ExternalCallAction of processRequest(byte aRequest) passes the
received request to the IoInterface component. In contrast to the synchronous case,
this is done inside an AsynchronousForkAction, because the task of the I/O thread
is completed now and the control flow can return to the user, simultaneously. Before
that, the ReleaseAction must release the acquired passive resource so that another
request can be processed by a new I/O thread. Hence, the thread pool is not
modeled by n different component instances of the asynchronous I/O thread, but by
the passive resource which limits the amount of simultaneously active control flows
to the passive resource’s capacity. This behavior is different to the synchronous case,
where no such restriction is given.

5.2.2.4 Capacity controller

The CapacityController component (see figure 5.9) implements the solution pat-
tern presented in 5.1.1.1 to address the problems of the I/O interface’s throughput
restriction. It provides the CapacityControllerIf interface to offer the IoInterface
component its service of capacity controlling. The capacity available by the Capaci-
tyController is modeled by the passive resource Capacity. This capacity corresponds
to the maximum available throughput of the I/O interface. The time after which
the capacity is reset can be specified by setting the DELAY resource demand value
of the controlCapacity RD-SEFF.

As already mentioned, the CapacityController component is used by the IoInterface
by calling controlCapacity. Once activated, this RD-SEFF of the CapacityCon-
troller tries to acquire the passive resource Capacity as depicted in figure 5.10. If no
capacity is available, the control flow is delayed until passive resources are released.
After the AcquireAction, an AsynchronousForkAction starts the release of the passive

5.2. The model implementation 55

void processRequest(byte aRequest)

<<Interface>>

IoInterfaceIf

void signalCompletion()

<<Interface>>

CompletionThreadIf

void execute(double reqSize, int reqType)

<<Interface>>

StorageHardwareIf

SEFF <execute>

<<BasicComponent>>

StorageHardware

SEFF <processRequest>

<<BasicComponent>>

Async_IoInterface

SEFF <processRequest>

<<BasicComponent>>

Sync_IoInterface

<<Requires>> <<Requires>>

<<Provides>> <<Provides>>

<<Provides>>

<<Requires>>

Figure 5.11: IoInterface and StorageHardware components with requires/provides
interfaces

resource. This release is delayed by the TimeTillReset value specified as component
parameter. While the ReleaseAction is forked, the call of controlThroughput can
immediately return to the I/O interface and the CapacityController ’s objective is
accomplished. For example, if the throughput was 100 requests per second, the ca-
pacity of the CapacityController would be set to 100 and the TimeTillReset value
would be set to one second. Hence, the release of the passive resource would take
action exactly one second after it was acquired.

5.2.2.5 I/O interface and storage hardware

The I/O interface and the storage hardware as described in chapter 4 are modeled by
two separate components (see figure 5.11). The first is the IoInterface component,
modeling the software or operating system part of the request handling process. The
second is the StorageHardware component, modeling the actual hardware with its
delays.

The IoInterface component has one provides interface (IoInterfaceIf) with the sig-
nature void processRequest(byte aRequest) to receive requests from the I/O
threads. Furthermore, it requires two different interfaces. The first is the Com-
pletionThread interface to trigger the completion thread in the asynchronous case.
Second, via void execute(double reqSize, int reqType) of the StorageHard-
wareIf interface, requests can be send to the StorageHardware component. This
method call represents the actual execution of a READ/WRITE request on the
storage hardware.

As for the IoThread component, the IoInterface component can be substituted either
by a synchronous or an asynchronous implementation.

56 5. Model implementation

<<ExternalCallAction>>

execute

<<ExternalCallAction>>

controlCapacity

<<ResourceDemandingSEFF>>

processRequest

<<Parameter>>

parameterName = „aRequest“

<<BranchAction>>

processReadOrWrite

To be specified and

parameterized in chapter 6

<<VariableUsage>>

reqSize=aRequest.BYTESIZE

reqType=aRequest.TYPE

(a) RD-SEFF of the synchronous I/O
interface’s processRequest

<<ExternalCallAction>>

execute

<<ExternalCallAction>>

controlCapacity

<<ExternalCallAction>>

signalCompletion

<<ResourceDemandingSEFF>>

processRequest

<<Parameter>>

parameterName = „aRequest“

<<VariableUsage>>

reqSize=aRequest.BYTESIZE

reqType=aRequest.TYPE

<<AsynchronousForkAction>>

<<BranchAction>>

processReadOrWrite

to be specified and

parameterized in chapter 6

(b) RD-SEFF of the asynchronous I/O in-
terface’s processRequest

Figure 5.12: RD-SEFF of the synchronous (a) and asynchronous (b) I/O interface’s
processRequest

Synchronous I/O interface

The Sync IoInterface component receives the requests by the method signature
processRequest of the provided interface (figure 5.12a). First, controlCapacity
is called to assure that there is enough throughput available. If there is no capacity
available, this call blocks until capacity is released. Then, a GuardedBranchAction
checks, whether a READ or WRITE request has to processed. Depending on this re-
quest’s type and size, the IoInterface demands resources within the InternalActions
processRead or processWrite. The parameter values for these resource demands
will be determined in chapter 6. Then, the request size and request type is passed
to the StorageHardware component by the ExternalCallaction execute. In the syn-
chronous case, the task of the Sync IoInterface component is completed as soon as
the call of the StorageHardware component returns and the control flow returns to
the synchronous I/O thread.

Asynchronous I/O interface

In the asynchronous case, the RD-SEFF of processRequest is slightly different
(figure 5.12b). Again, the execution of controlCapacity checks if the throughput
constraint is maintained. After the resource demands are issued according to READ
or WRITE requests, an ExternalCallAction calls execute and sends the request to
the StorageHardware component.

The main difference to the synchronous case is that the processRequest RD-
SEFF of the Async IoInterface component has one final ExternalCallAction. It

5.2. The model implementation 57

 <<ResourceDemandingSEFF>>

 execute <<Parameter>>

parameterName = „reqType“

parameterName = „reqSize“

<<BranchAction>>

executeIoOperation

to be specified and

parameterized in

chapter 6

Figure 5.13: RD-SEFF of the StorageHardware’s execute

void signalCompletion()

<<Interface>>

CompletionThreadIf

SEFF <signalCompletion>

<<BasicComponent>>

CompletionThread

<<Provides>>

(a)

<<ResourceDemandingSEFF>>

processRrequest

<<InternalAction>>

signalCompletion

<<ParametricResourceDemand>>

<<ProcessingResourceType>>

name=“CPU“

unit=“CpuCycles“

specfication=1.7*10^4

<<ProcessingResourceType>>

name=“DELAY“

unit=“us“

specification=delay(s,p)

(b)

Figure 5.14: The completion thread component (a) and its corresponding RD-SEFF
signalCompletion (b)

calls signalCompletion of the CompletionThread component to activate the sig-
naling of the request’s completion. The workflow in the asynchronous case is not
complete until signalCompletion is called. Like in the Async IoThread component,
this call is forked, as the control flow can return and does not have to wait for the
signalCompletion call to finish.

5.2.2.6 Storage hardware

The RD-SEFF execute of the StorageHardware component is very simple (see figure
5.13). It consists of a GuardedBranchAction, checking the request type the RD-SEFF
receives as a parameter. Depending on the request type, the resource demands are
calculated and issued within the InternalActions executeRead and executeWrite.

5.2.2.7 Completion thread

The completion threads started by the I/O interface are modeled by the Comple-
tionThread component. As this thread pool is not limited, this component contains
no passive resource. The interface provided by this component is the Completion-
ThreadIf interface with the signature void signalCompletion(), used as a trigger
to activate a completion thread.

58 5. Model implementation

The RD-SEFF of signalCompletion has only one InternalAction called signalCom-
pletion which issues two resource demands. First, it requires CPU resources to
process the information. Second, the completion thread might be delayed, because
another completion thread already locked the queue, this completion thread wants
to access. This case is not unlikely, because a client usually issues not only one
request per device, but many.

5.2.2.8 Resource environment and allocation model

Before the modeled components can be deployed onto a special resource container,
one has to define one or more corresponding resource container(s) in the resource
environment. In this work, the whole VL runs on the same hardware. Hence, there
is only one resource container called “VL”, containing two processing resources, one
is the CPU processing resource and the other is the DELAY processing resource.

The CPU processing resource corresponds to the CPU power provided by the CPU(s)
assigned to the VL’s partition. Its processing rate is specified in Hz. For example,
if the VL runs on a 1.7 GHz CPU, the processing rate would be set to 1.7 · 109

Hz. As the current scheduling policies are not able to reconsider multi-core CPUs,
adding more CPUs must be expressed by increasing the overall CPU processing
rate. The scheduling policy of the processing resource must be set, too. In this
work, Processor_Sharing (PS) is used.

Increasing the amount of available CPU cores is only possible if the exact scheduler
of Happe is used. This scheduler is currently integrated into a dedicated PCM work-
bench instance which allows to specify the amount of replicas of a CPU core via the
properties of the active resource. Furthermore, it offers three additional schedul-
ing policies, namely LINUX26, WINDOWS2003 and WINXP. However, this scheduler is
not fully integrated within the current PCM bench version. The configuration of
a version currently under development will be explained in section 6.4.2 when the
influences of available CPU cores are discussed.

The DELAY processing resource is used to model delays occurring e.g. if a thread
is blocked or to simulate the execution of a request within the storage hardware.The
delays specified in this work are specified in µs. To assist the component developer
or software architect when entering delay values, the DELAY processing rate is
set to a value of 106. This enables the declaration of delays as µs-values. For
example, if a DELAY resource demand of 5µs should be issued, the entered value
in the DELAY resource demand would be 5. As this value would be divided by the
DELAY processing rate 106, the resulting delay would be 5

106 s = 5µs.

Now that both the system components and the resource environment are specified,
one can allocate the components to resource containers. In this case, as there is only
one resource container, all components are allocated to the VL resource container
previously described.

5.2.2.9 Usage model

Finally, the usage model must be defined. It consists of only one usage scenario
which contains one SystemCallAction, calling the system model’s provided interface.
This call is delegated to the provided interface of the IoThread component. Hence,
it is the trigger for the active I/O thread to process requests. In which way and

5.2. The model implementation 59

frequency the trigger is released can be specified by the kind of workload. In the
test scenarios and experiments conducted in the following parts of this work, a
request producing test application will be used. This application can simulate the
amount of applications which issue requests to the system. Each of these simulated
applications can be compared to a user which issues a request and waits for the
results to return. Then, the next request is issued.

This behavior corresponds to the ClosedWorkload, where the value population spec-
ifies the amount of users (here the amount of simulated applications). To avoid that
all requests are simultaneously issued over and over again, the ThinkTime of the
ClosedWorkload was set to UniInt(0,9) * 10 ^ -6. This models a small variance
(between 0 and 9µs) the time spent until the next request is issued.

In the asynchronous scenario, such a ClosedWorkload might not be the best choice, as
the almost immediate return of the asynchronous I/O thread might lead to a always
fully loaded system. An OpenWorkload with a specific InterarrivalTime can be a
solution to simulate little load. This problem will be further discussed in chapter 7.

5.2.3 Component parameterization

The software architect designing the system can overwrite all component parameters
(e.g. the thread pool size) by setting new values in the properties view of a compo-
nent. Furthermore, component parameters ease the usage of the model as detailed
knowledge of the component’s implementation is not required. Table 5.2 gives an
overview of the available component parameters the system architect can change.
For example, The component parameters IoThreads and RequestQueues are vari-
able parameters as defined and explained in section 4.3. Thus, they are meant to be
changed to observe the model’s behavior. The following describes these variable pa-
rameters and how they can be used to influence the system’s behavior. Furthermore,
all other configurable parameters which do not require a detailed calibration will be
explained, too. The configurable parameters requiring a detailed determination and
calibration are described in the separate chapter 6.

5.2.3.1 RequestGenerator

Whenever an I/O thread tries to access a request queue, the queue might be locked by
another I/O thread and the current I/O thread will be delayed. All the calculations
presented in section 5.1.2 can be combined to one expression, calculating the delay
of an I/O thread. This expression is used for the resource demand in the RD-
SEFF getRequest. The stochastic expression follows the mathematical expression
delay(s, t, q) (5.2).

The parameters of the mathematical function (s, t, q)correspond to the introduced
component parameter IoThreadRuntime, IoThreads and RequestQueues to calculate
the delay. These parameters are meant to be changed by the user. In case the
parameter IoThreads is set to one, only the standard queue access delay will be
issued because m(t, q) = 0. This configuration is useful in case of the Sync IOThread
component, where no blocked queues occur.

5.2.3.2 IoThread

In the asynchronous case, the user of the model can specify the I/O thread pool size
by setting the IoThreads component parameter of the Async IoThread component.

60 5. Model implementation

Component type Parameter name Description

Async IoThread IoThreads Sets the size of the asynchronous I/O
thread pool.

RequestGenerator IoThreads This parameter is used to calculate
the blocking probability and queue ac-
cess delay. Must be the same value as
Async IoThread ’s IoThreads parame-
ter.

RequestQueues Amount of request queues used. Re-
quired to calculate the blocking prob-
ability and delay of an I/O thread

IOThreadRuntime Runtime of the I/O thread. Used
to calculate the delay for each failed
queue access.

CapacityController Capacity Specifies the maximum capacity the
CapacityController controls

TimeTillReset After this time (in µs), an acquired
passive resource is released.

Table 5.2: Component parameters

This parameter determines the maximum amount or capacity of the passive resource
which in turn reflects the thread pool size. By changing this parameter, the user
can influence the number of I/O threads asynchronously working on request queues.
The corresponding component parameter of RequestGenerator must be adjusted, as
well, to calculate the proper blocking probability. In the synchronous case, the user
cannot limit the amount of I/O threads.

In contrast to the amount of I/O threads, the user should have no influence on the re-
quest processing time and therefore the CPU resource demand the I/O thread issues
in its handleRequest RD-SEFF, neither in the synchronous nor in the asynchronous
case. This parameter is configurable and determined in chapter 6.

5.2.3.3 CapacityController

The CapacityController component was introduced to model the throughput con-
straint of a channel which connects the IBM system with the storage hardware.
The following explains the parametrization of this component using the example
throughput constraint of such a channel. The channel has a throughput of 65000
requests per second. Because the simulation engine cannot process so many requests
per second and because all delay resource demands in this model are specified in µs,
the parameter of the CapacityController must be scaled to 650Requests

104µs
. Therefore, the

capacity of the CapacityController ’s passive resource is set to 650 and the DELAY
resource demand of the InternalAction delay to 104µs. To ease the change of these
parameters, they were defined as component parameters and their default values are
set to the example values.

5.2.3.4 IoInterface and StorageHardware

Both the CPU and DELAY resource demands of the IoInterface and StorageHard-
ware are configurable parameters. As they should not be changed, these parameters

5.3. Summary 61

were not defined as component parameters. Their values must be determined by
measurements and calibrated to match the real system behavior. The calibration
and fine-tuning of the corresponding resource demands of the processRequest and
execute RD-SEFF will be explained in chapter 6.

5.2.3.5 Completion thread blocking

Because of the reasons explained in section 5.1.2, it is not possible to model the
queue locking without enormous effort and too hard to make proper assumptions
about the blocking probability.

Therefore, the decision made was to calculate the delay with the expression given
in (5.3) with a constant blocking probability for each completion thread of p = 0.1.
The thread runtime is assumed to be r = 10µs and its standard queue access delay is
assumed to be 10% of its runtime, s = 0.1 · 10µs. Therefore, the signalCompletion

RD-SEFF DELAY resource demand is (0.1 * 10) * Binom(1,0.1) * Pois(0.1).
The binomial distribution function with a probability of p = 0.1 ensures that 10% of
all calls evaluate to 1. Then the value of Pois(0.1) defines, how often the thread was
blocked with a Poisson distribution with a rate of 10. This value is then mutliplied
by 10% of the completion thread runtime.

As the thread runtime is 10µs, it demands the CPU for this time. The amount of
CPU cycles required during this time can be calculated by c = r · CpuProcRate =
10µs · 1.7 · 109Hz = 1.7 · 104. This is the value of the signalCompletion RD-SEFF
CPU resource demand.

5.3 Summary

This chapter described the implementation of the architecture proposed in chapter 4
as a model instance of PCM. This was not a straight-forward process, because of the
PCM-foreign domain of the modeled system. Hence, the modeling of some compo-
nents was not easy, e.g. the modeling of the throughput constraint. Although these
facts complicated the modeling process, this work could show that it is generally
possible to use PCM in different domains. However, some assumptions and abstrac-
tions had to be made to achieve this target. The following chapter will validate if
the model behavior matches the system behavior.

62 5. Model implementation

6. Synchronous model calibration
and validation

This chapter explains the calibration and validation of the synchronous model im-
plemented in the previous chapter. The evaluation of the asynchronous model will
be discussed in detail in the following chapter 7. In this approach, calibration means
to measure the configurable model parameters and use these values to derive the
proper resource demands to fit the model to the behavior of an existing prototypical
system.

Creating an accurate performance model requires to understand the internal behav-
ior of the system. Hence, the configuration approach follows the systematic approach
of Experiment-based Derivation of Software Performance-Models by Happe [Hap08]
to identify the performance relevant influences of the real system. The attained
results improve the knowledge and understanding of the system’s behavior which in
turn supports the configuration of the performance model skeleton.

First, this chapter motivates and explains the experiments conducted to determine
the main influence factors on the system’s performance. The next section describes
the test system and the attainment of further specific measurement data. Moreover,
it explains which difficulties complicated the measurements and their interpretation.
Then, the derivation of the model resource demands from measurements so they can
be used in the PCM model instance is explained. After the calibration’s descrip-
tion, this chapter discusses the simulation results of the parameterized synchronous
model. Thereby, the focus is on the validity of simulation results compared to the
measured values and the behavior of the real system. The final section summarizes
the model calibration and discusses the main important observations made during
the configuration process.

6.1 Experiments - Overview

At the beginning of this work the influence and impact of the different performance
relevant parameters on the system’s performance were unclear. The experiment
results of the following experiments shall help to draw conclusions about the influence

64 6. Synchronous model calibration and validation

of the variable performance relevant parameters. The variable parameters of the real
system are the request size and type and the amount of CPUs assigned to the VL.

Based on the experiment-based derivation method by Happe (see section 2.6), the
following GQM plan poses the main goal of the experiments. The explicit questions
the experiments must answer will be described later in this section. Furthermore,
hypotheses regarding the influences of parameters on the system performance will
be stated. These hypotheses are based on the current knowledge of the system and
shall be evaluated by the experiments. If not disproved, these hypotheses will be
used to define the behavior of the test system the synchronous performance model
must follow.

6.1.1 The Goal

According to the scenario-based GQM methodology used by the experiment-based
derivation explained in section 2.6, one needs to specify a goal for the performance
evaluation. The goal of this approach is the following:

Goal: Purpose Identify
Issue the performance influence

Object of request size, request type and
amount of CPUs

Viewpoint from the user’s point of view.

The goal focuses on the evaluation of the performance influences which can be ob-
served externally, in particular the throughput of the system. It is assumed that
this throughput mainly depends on three performance relevant factors, the request
size, the request type and the amount of CPUs the VL is equipped with. The metric
throughput will be explained later in this section.

6.1.2 Motivation of the questions

To achieve the main goal stated in the previous section, the following poses questions
targeted at the influence of request size and type on the system’s throughput. One
further question shall answer the performance influence of the amount of CPUs on
the throughput.

Request size and type As mentioned in previous sections, it is intuitive that
the different properties of a request influences the performance of the system (e.g.
the throughput). The size of a request has an influence on the performance because
the VL must process and transfer the request from the user application to the I/O
interface. For example, the bigger the request the longer it should take the storage
hardware to execute it.

The request type influences the system’s performance because READs and WRITEs
can cause different response times when executed by the storage hardware or by the
I/O interface. Nevertheless, it is unknown to what extend the system’s performance
is affected by these parameters. The question RequestType and RequestSize sum-
marized in table 6.1 address these influences and shall improve the understanding
of these performance factors.

6.1. Experiments - Overview 65

Performance influence of request size, request type and amount of CPU
CPU

Throughput (Requests/second)

Request Size ResponseTime

Quest ion To what extend does the
request size influence the
system's throughput?

How does the request type
influence the throughput of
the system?

What influence on the
throughput has the amount
of CPUs?

Scenarios READ requests
WRITE requests

4KB
16KB
64KB
256KB

1CPUs
2CPUs

Met r ic

Hypot hesis The throughput decreases
linear to the request size

The throughput for WRITE
requests is lower than for
READ requests

With more CPUs, the
maximum throughput
increases

Table 6.1: Questions and hypotheses concerning the performance relevant factors

Amount of CPU Another factor influencing the performance of the VL is the
amount and the processing rate of CPUs attached to the VL’s partition. The more
power is available, the more and the bigger requests can be processed per unit of
time. As the CPU power grows, other factors can limit the performance, e.g. the
channel capacity or the storage hardware delay. Question CPU (table 6.1) addresses
the influence of a different amount of CPUs assigned to the VL.

6.1.3 Experiment design

The following experiments are conducted on a System z. This IBM system is a
complex computer system, consisting of several layers including software as well as
hardware. Hence, the experiment setup was designed to get an approximation of
the system behavior for a typical operating system and I/O hardware configuration.
All of the experiment measurements were made by the IBM Germany Research &
Development GmbH, because the test system was a shared resource with restricted
access.

IBM uses a proprietary tool to measure the system throughput. Basically, this tool
is a workload generator and is able to vary the request size and type issued to the
system while measuring the system’s performance. Furthermore, it provides the
possibility to vary the amount of requests issued to the system. Such a process can
be compared to an artificial user or an application which generates requests, called
request producer in the remainder. Thereby it can be observed how fast (with how
many users) the maximum throughput is reached. To test the throughput under
a varying amount of CPUs, this workload generation tool must be re-run with a
different VL CPU configuration.

All experiments and measurements in the following are executed on a System z9
with 48 processors and 128 Gigabyte of memory. The storage controller is a DS8000
and connected via 4Gbit/s FCP (Fiber Channel Protocol) channels. To avoid the
bandwidth limit, the experiment setup was configured with 4 channels.

The experiments itself are designed as follows. Each experiment shall identify the
influence of one performance relevant factor. Hence, the independent variables in
the following experiments are request size, request type and amount of CPU. Fur-
thermore, for each experiment the amount of request producers is increased in equal
steps to observe the system under different conditions (little load up to high load).

66 6. Synchronous model calibration and validation

Hypervisor

Internal hardware

External hardware
Storage hardware

Application

Storage hardware
response time

I/O interface and
application
response time

System components MeasurementsModel components

I/O interface

I/O thread O
verall response tim

e,
T

hroughput m
easurem

ent

Device driver

Adapter driver

Figure 6.1: Measurement setup architecture

An example configuration of such an experiment is the following. Assuming that the
influence of the request size shall be measured, there are different measurement runs
for different request sizes, 4, 16, 64 and 256 kilobytes (KB). All other parameters are
fixed during these runs, e.g. 1 CPU, only READ requests. Furthermore, to observe
the performance impact under different load conditions, the workload generated
increases by increasing the amount of request producers (1, 2, 4, 8 ... 256).

The performance metric measured in the experiments is always the throughput. In
the following, the system’s throughput (X) is defined as the ratio of requests (R)
per time (T), i.e. X = R/T . The IBM proprietary tool measures the throughput as
follows. At first, the amount of requests (R) can be measured by counting the amount
of completed requests which returned to the workload generating application. The
period of time (T) in which the requests are counted is the execution time of the
workload generator. Then, the throughput can be calculated as the ratio of requests
per time.

However, to calibrate and parameterize the resource demands of the model com-
ponents, response time measurements must be conducted. The following section
explains both, the throughput and response time measurements, conducted by IBM.

I/O stack

To understand how throughput and response time measurements were taken, this
section explains a conceivable I/O request handling architecture for a typical oper-
ating system and I/O hardware (see figure 6.1). For these experiments, Linux was
chosen as operating system, because it provides measurement tools, such as the FCP
statistics tool [dev09] to obtain more detailed hardware results . Basically, the I/O
stack can be divided into the sections depicted in figure 6.1.

On the top, there is the request issuing application (e.g. the workload generator),
followed by the device driver and adapter driver. The next layer is the zHypervisor
which is on top of the hardware. Compared to the model, the I/O thread corresponds
to the application (the VL), the device driver, adapter driver, and hypervisor are
represented by the I/O interface and the internal and external hardware by the
storage hardware component.

The different sections of this architecture and response times and throughput were
measured with different tools. The overall throughput and response time is the
amount of requests issued by the application and was measured with an IBM pro-
prietary tool. To measure the I/O interface response time and storage hardware
response time, the FCP statistics tool was used.

6.2. Experiment results - answering the questions 67

For this work, the different layers were summarized to two main components cor-
responding to the modeled components. The layers can be classified into storage
hardware response time (the time spent outside the machine) and I/O interface
response time (which is the time spent in the device driver, adapter driver and hy-
pervisor) (see figure 6.1). However, the FCP statistics tool does not measure the
time spent in the application, device driver and adapter driver. Hence, it is not
possible to measure the complete time spent in the OS, directly. It must be calcu-
lated by subtracting the storage hardware response time from the measured overall
response time. Moreover, if one assumes that a constant amount of time is spent
within the application, one can calculate the response time for the I/O interface
component.

6.2 Experiment results - answering the questions

Based on the method proposed by Happe, the following defines scenarios and hy-
potheses for each question raised in the previous. The results of these experiment
scenarios shall confirm the stated hypotheses about the performance influences, oth-
erwise the hypotheses must be revised. Furthermore, these experiments shall increase
the understanding of the system’s behavior.

All of the experiment results relate to the throughput measured with the IBM pro-
prietary workload generator tool for several specific amount of request producers.
Hence, it is not a continuous measurement. The illustrations in the following depict
the throughput measured for a specific amount of workload, interconnected by a
straight line. Furthermore, the x-axis has logarithmic scale to clearly display all
measurement points.

6.2.1 Question RequestSize

This question evaluates the influence of the request size (question RequestSize, table
6.1) on the system’s throughput.

Scenario: In these scenarios, the varied parameter is the request size and takes
the values 4KB, 16KB, 64KB and 256KB. In the READ scenario, the request type
is set to READ whereas the request type is WRITE in the second scenario. In
both cases there is only one CPU assigned to the VL. The measured results of this
configuration shall allow conclusions about the influence of the request size on the
overall throughput in case of READ and WRITE requests. Furthermore, varying
the amount of request producers shall demonstrate the influence of the load on the
system’s throughput. The only metric in these scenarios is the throughput.

Hypothesis: For the described scenario, the hypothesis expects a decrease of the
overall throughput which is linearly correlated to the size of the issued request. This
assumption stems from the fact that the bigger the requests are, the longer their
processing by the VL should take. For example, if a request must be copied during
its processing, then the bigger the request is, the longer is the response time. This
in turn influences the throughput. This linear dependency should be true for READ
and WRITE requests. However, they might not show the same linear correlation.

Results: The results of the throughput measurements are collected and listed in
table A.1. An illustration of the measurements is given in figure 6.3. For all request

68 6. Synchronous model calibration and validation

types and size combinations, it shows an increase of the throughput as the amount
of request producers is increased. This indicates that the system is not loaded with
one request producer and at its limit with 256 request producers. Moreover, the
throughput for a WRITE request is always below the throughput of the READ with
corresponding size which indicates that WRITE requests must be more resource
intense. Furthermore, as stated in the hypothesis, the throughput decreases as the
request size increases. However, with in figure 6.3 it is hard to conclude any corre-
lation between the request size and the throughput and thus is analyzed separately.

Though, for this analysis one has to consider the amount of request producers. In
case of an increasing amount of users and hence an increasing system load, the cor-
relation of request size and throughput might be distorted, because e.g. contention
and/or concurrency effects might influence the throughput. Hence, to conclude
the influence of the request size on the throughput, only the measured values for
one request producer are taken into consideration. Figure 6.2 shows the correla-
tion of throughput and request size. Apparently, the linear dependency is hard to
conclude and hence, the hypothesis must be revised. A logarithmic correlation is
much more fitting and can be concluded by using the measurements as input for
the model (f(x) = a ∗ log(x) + b)) in R [Dal08]. The resulting coefficients are
a = −1385.9, b = 8244.5 for READ and a = −684.6, b = 4710 for WRITE
requests. In case of READ, the correlation coefficient R2 is 0.9892 and 0.9877 for
WRITE.

In short, this experiment shows that the hypothesis is valid concerning the assump-
tion that there is a correlation between request size and throughput. However, it is
not linear but logarithmic. Furthermore, the measurements showed that the corre-
lation is different for READ and WRITE request. The reason for this observation
seems obvious if looking at figure 6.2 and 6.3. The bigger the request gets, the
lower the maximum throughput. This is intuitive as the system is bounded by its
resources the throughput converges to as the request size increases. Another conclu-
sion is, that the throughput for WRITE requests decreases earlier and quicker than
for READs. This indicates that WRITE processing must be more resource intense.

6.2.2 Question RequestType

This section discusses the influence of the request type on the system’s throughput
(question RequestType, table 6.1).

Scenario: In this case, the point of view onto the data depicted in figure 6.3 is
different. Here, the request type issued by the workload generator varies whereas
the request size is considered to be fixed. For example, one scenario compares the
throughput results of a 4KB READ request with the one of a 4KB WRITE request.
Further scenarios with similar settings shall examine the same question, but for
different request sizes (16KB, 64KB and 256KB). As in the scenario of question
RS, the amount of request producers is varied to observe the saturation of the
throughput.

Hypothesis: For the four proposed scenarios, the hypothesis expects a throughput
of READ request higher than a throughput of WRITE requests. This expectation
is based on the assumption that WRITE requests require additional CPU resources
within the OS. Moreover, it is assumed that WRITE requests cause more delay

6.2. Experiment results - answering the questions 69

0 50 100 150 200 250 300

10
00

20
00

30
00

40
00

50
00

60
00

Request size (in KB)

T
hr

ou
gh

pu
t (

in
 r

eq
ue

st
s/

se
co

nd
)

●

●

●

●

+

+

+

+

f((x)) == −− 1385.9log((x)) ++ 8244.5
f((x)) == −− 684.6log((x)) ++ 4710

Figure 6.2: Logarithmic function fitted for READ (o, blue) and WRITE (+, red)
requests

within the storage hardware then READ requests. This can influence the throughput
under little load.

Results: Figure 6.3 illustrates the measured values for all scenarios, 4KB, 16KB,
64K and 256KB READ and WRITE requests. Obviously, the request type has an
influence on the throughput. The throughput of WRITE requests is always below
that of READ requests which confirms the assumption that WRITE requests are
costlier than READ requests. However, as the request size increases, the influence
of the request type on the throughput abates. This can be explained by the thought
that the overhead for WRITES diminishes in comparison to the effort caused by the
request size.

6.2.3 Question CPU

This question is targeted at the influence of the amount of CPUs (question CPU,
table 6.1). The following scenarios and hypotheses shall reveal these influences.

Scenarios: To observe the CPU influence, two scenarios were designed. The differ-
ence is that in one scenario the reference system’s VL is configured with one CPU.
The other scenario uses two CPUs. In both cases, the request size is fixed to 4KB,
16KB, 64KB and 256KB and the request type is READ. As in the previous scenarios,
the amount of request producers is increased.

Hypothesis: Assigning additional CPUs to the VL should increase the throughput
because more requests can be handled at the same time, especially for bigger request
sizes. Because one CPU should be sufficient to process the requests of little load

70 6. Synchronous model calibration and validation

●

●

●

●

●

●

●
● ●

●

●

●

●

●

● ● ●
●

0
10

00
0

20
00

0
30

00
0

40
00

0
50

00
0

Number of request producers

T
hr

ou
gh

pu
t (

re
qu

es
ts

/s
ec

on
d)

Throughput Measurement

1 2 4 8 16 32 64 128 256

●

●

4KB READ
16KB READ
64KB READ
256KB READ
4KB WRITE
16KB WRITE
64KB WRITE
256KB WRITE

Figure 6.3: Throughput measurement for different request sizes and types with log-
scaled x-axis

(few request producers), the benefit of two CPUs should be only observable for more
than an initial amount of request producers.

Results: Figure 6.4 depicts the influence of additional CPUs. As one can see,
further CPUs increase the throughput, but only if a significant amount of requests
is generated by the workload generator. This demonstrates that the CPU becomes
the bottleneck as the load increases. Additional CPUs slow down the emersion of this
bottleneck. Furthermore, the throughput nearly doubles when adding an additional
CPU for small requests, whereas this increase diminishes the bigger the requests get.
On the initial throughput the additional CPU has only slight influences (see table
A.2). This is because the response time for one request is not affected by the amount
of CPUs, but would rather be affected by the CPU power. Hence, the benefit of
additional CPUs is in scenarios with workloads of high load and high concurrency.

6.2.4 Discussion

The previous sections gave a feeling and understanding for the influences of the main
performance factors. The hypothesis that the system’s throughput linearly correlates
with the request size was disproved and substituted by a logarithmic correlation.
However, further measurements must be obtained to make better conclusions about
the correlation of the request size and type and their influences within the operating
system and the storage hardware.

Concerning the request type, the throughput of WRITE requests is lower than for
READ requests, but only for small request sizes. The bigger the requests get, the
less significant is the throughput difference of READ and WRITE requests of the

6.3. Calibration of the performance model skeleton 71

●

●

●

●
●

●

● ● ●

●

●

●

●

●

●

●

●
●

Number of request producers

T
hr

ou
gh

pu
t (

in
 1

00
0

re
qu

es
ts

/s
ec

on
d)

2 CPUs vs 1 CPU

1 2 4 8 16 32 64 128 256

0
10

20
30

40
50

60
70

80
90

10
0

●

●

4KB READ
16KB READ
64KB READ
256KB READ
4KB READ, 2 CPUs
16KB READ, 2 CPUs
64KB READ, 2 CPUs
256KB READ, 2 CPUs

Figure 6.4: Measurements of READ requests with different CPU settings and log-
scaled x-axis

same size. This effect can be explained by the fact that the overhead for WRITE
requests abates in comparison to the overhead caused by the request’s size.

Additional CPU power by assigning cores to the VL has no effect for few (< 4)
request producers. Especially for big requests, the difference between the throughput
of a VL with one or two CPU cores disappears.

6.3 Calibration of the performance model skele-

ton
This section explains the parameterization of the missing parts of the model skeleton
proposed in chapter 5. Measurements of an existing System z will be used as a
reference for the configurable model parameter values. The following sections explain
these measurements for different parts of the system and the difficulties to obtain
them. Furthermore, the validity and significance of these values is discussed and
the conversion of the measured values to the necessary model input values will be
explained. The whole model calibration process is guided by the results of the
previous experiments. The target is to simulate the behavior of the real system as
accurate as possible, while simultaneously using the measured values as unchanged
as possible. However, approximations must be made to broaden the applicability of
the model, e.g. to use other request sizes besides the ones which were measured.

6.3.1 I/O thread resource demands

The CPU runtime of the synchronous I/O thread and hence its CPU demand could
not be determined exactly. Manual measurements at the real system targeted at

72 6. Synchronous model calibration and validation

<<InternalAction>>

sendToIo

<<ParametricResourceDemand>>

<<ProcessingResourceType>>

name=“CPU“

specification=25500

unit=CpuCycles

Figure 6.5: RD-SEFF of the InternalAction sendToIo of the I/O threads

determining the I/O thread runtime did not yield explicable and satisfiable results.
The measured values were in the range of 10ms to 100ms which intuitively seems
too high for the work the I/O thread has to do. Recall that the I/O thread basically
copies pointers from the request queues to the I/O interface. However, with the
results of a test series of an already existing, not fully configured model and the
knowledge of the IBM experts, the CPU runtime of the synchronous I/O thread
(rIOThread) was determined to be 15µs on a 1.7 GHz CPU.

The CPU resource demands within RD-SEFFs must be specified in CPU cycles. The
amount of CPU cycles of the I/O thread (cIOThread) can be calculated by cIOThread =
rIOThread ·rCPU , where rCPU is the processing rate of the CPU. The hereby calculated
value of CPU cycles can be entered directly as the CPU resource demand of the
IoThread component’s RD-SEFF (see figure 6.5). As the runtime of the I/O thread
on a 1.7 GHz CPU is set to 15µs, the corresponding CPU cycles value entered in
the InternalAction of handleRequest must be set to 25500. An example is given in
figure 6.5 for the RD-SEFF handleRequest of the synchronous I/O thread.

6.3.2 I/O subsystem resource demands

The following section describes and discusses the detailed measurements of the I/O
request handling stack (figure 6.1). These values are required for several reasons.
First, they further improve the knowledge of the performance relevant parameters,
especially for the different resource demands of READ and WRITE requests. Fur-
thermore, these values help to configure the still not parameterized components
IoInterface and StorageHardware.

6.3.2.1 Measurement results and interpretation

The measurements explained in the following were taken in the same hard- and
software system already used for the experiments described in section 6.1.3. The
measurements of the mean response time of I/O interface + I/O thread, the storage
hardware and the overall response time were collected while the workload generator
was issuing requests with one request producer. The restriction to only one request
producer avoids the probability of measurement distortions caused by side effects like
contention. The option to ignore caches was set and the data was collected for the
same request type and size configurations as in the experiments. This was considered
to be sufficient to determine the correlation of request size/type and response time.

The resulting data provided very detailed measurements of every layer of the I/O
request handling stack (see figure 6.1). These values are reduced to the values listed
in table 6.2. The I/O interface + I/O thread part of table 6.2 denotes the time
the request spent in the OS and application part of the I/O subsystem. This time

6.3. Calibration of the performance model skeleton 73

READ 4KB 16KB 64KB 256KB 1024KB
I/O interface + I/O thread 180µs 200µs 300µs 650µs 1820µs

Storage hardware 100µs 160µs 420µs 1490µs 5160µs
Overall response time 270µs 360µs 720µs 2140µs 6980µs

Throughput (req./sec.) 3600 2750 1400 470 145

WRITE 4KB 16KB 64KB 256KB 1024KB
I/O interface + I/O thread 170µs 180µs 200µs 300µs 1120µs

Storage hardware 250µs 380µs 890µs 2180µs 5830µs
Overall response time 420µs 560µs 1090µs 2480µs 6950µs

Throughput (req./sec.) 2350 1780 915 400 145

Table 6.2: I/O Interface + I/O thread, storage hardware and overall response times
and system throughput

is assumed to require CPU resources, only. In contrast, the storage hardware part
is the response time of the storage hardware and is modeled by a DELAY resource
which has no contention effects.

These detailed measurements help to recognize the correlation of request size, request
type and the response times. However, they also bring up further questions because
these values do net seem to fit to the throughput experiments. Each measured
throughput is significantly below the throughput measured in the experiments. The
only difference between this measurement setup and the one of the experiments is
the additional FCP statistics tool. Hence, an explanation for the deviation could be
that the additional FCP statistics tool slows down the request handling process. A
comparison of the overall response time of the experiments with these measurements
confirmed this assumption as it was clearly lower than the overall response times of
table 6.2.

Another peculiar observation is that the response time of I/O interface + I/O thread
for WRITE requests is below the ones for READ requests. This would imply less
resource demands for WRITE requests. However, this conflicts with the previous
experiments which showed that WRITE requests are more resource intense.

Thus, for the I/O interface part, further considerations must be made which will be
discussed in section 6.3.2.3. As there are no contradictions concerning the storage
hardware measurements, they are assumed to be valid and can be used directly,
explained in the following section.

6.3.2.2 Calibrating the StorageHardware resource demands

Because the storage hardware resource is a DELAY resource whose resource de-
mands are specified in µs, the measured values can be used as model input without
any transformations or calculations. Based on the storage hardware values of table
6.2 it is possible to fit a linear model to the data set. The results are linear equa-
tions expressing the correlation of the request size and their corresponding response
times of the storage hardware, depending on the request type. The good correlation
coefficient R2 of 0.9989 for READ and 0.9863 for WRITE requests indicates that
the request size is linearly correlated to the throughput. However, the configura-
tion showed that one can yield better simulation results if the data set is split into

74 6. Synchronous model calibration and validation

+

+

+

10 20 30 40 50 60

0
20

0
40

0
60

0
80

0
10

00

Request size (in KB)

R
es

po
ns

e
tim

e
(in

 u
s)

●

●

●

READ (o)
WRITE (+)

(a)

+

+

+

200 400 600 800 1000

0
10

00
20

00
30

00
40

00
50

00
60

00

Request size (in KB)

R
es

po
ns

e
tim

e
(in

 u
s)

●

●

●

READ (o)
WRITE (+)

(b)

Figure 6.6: Linear correlation of request size and storage hardware response time
for small (6.6a) and big (6.6b) requests

Request Linear equation R2

READ 4.95 · reqSize+ 115.31 0, 9992
WRITE 5.35 · reqSize+ 446.84 0, 9897
READ, ≤ 32KB 5.36 · reqSize+ 76.67 0, 9998
READ, > 32KB 4.89 · reqSize+ 165.00 0, 9993
WRITE, ≤ 32KB 10.65 · reqSize+ 208.34 1
WRITE, > 32KB 5.04 · reqSize+ 711.67 0, 9959

Table 6.3: Storage hardware response time linear equations and corresponding cor-
relation coefficients. The parameter of the equation is the request size.

small and big requests. Figure 6.6 shows these linear correlations for small and big
requests. The blue (red) lines indicate READ (WRITE) requests and ’o’ (’+’) the
measured values. The resulting linear equations and their corresponding correlation
coefficient are depicted in table 6.3.

To model the difference between READ and WRITE requests, the RD-SEFF of the
StorageHardware component must distinguish between these request types. Fur-
thermore, it must discern between small and big requests. This is modeled by a
GuardedBranchAction. Then, the linear equations for each different request type
and size are used to calculate the DELAY resource demand depending on the re-
quest size. This is modeled by entering the linear equation as StoEx into the DELAY
resource demand of the corresponding InternalAction (see figure 6.7).

6.3.2.3 Calibrating the IoInterface resource demands

The CPU resource demand must be derived from the response times of the I/O in-
terface + I/O thread depicted in table 6.2. However, comparing these response time
measurements with the results of the experiments depicts contradictions, challeng-

6.3. Calibration of the performance model skeleton 75

<<BranchAction>>

executeIoOperation

<<InternalAction>>

executeSmallRead

<<InternalAction>>

executeBigRead

<<InternalAction>>

exeuteSmallWrite

reqType=“READ“

reqSize<=32

<<ParametricResourceDemand>>

<<ProcessingResource>>

name=“DELAY“

specification=-5.36*reqSize + 76.67

unit=us

<<ParametricResourceDemand>>

<<ProcessingResource>>

name=“DELAY“

specification=-10.65*reqSize + 200.34

unit=us

<<ParametricResourceDemand>>

<<ProcessingResource>>

name=“DELAY“

specification=-4.00*reqSize + 120.00

unit=us

reqType=“READ“

reqSize>32

reqType=“WRITE“

reqSize<=32

reqType=“WRITE“

reqSize>32

<<InternalAction>>

executeBigWrite

<<ParametricResourceDemand>>

<<ProcessingResource>>

name=“DELAY“

specification=-4.00*reqSize + 250.00

unit=us

Figure 6.7: BranchAction executeIoOperation of the StorageHardware RD-SEFF

ing the validity and significance of the response time measurements. The following
example calculation for 4KB READ requests demonstrates these incompatibilities.

The measured response time value of the I/O thread and the I/O interface is 180µs
for 4KB READ requests. The reciprocal of 180µs, approximately 5555 requests per
second, is the theoretical amount of requests the model can process per second if the
CPU is fully used. This value is clearly below the measured throughput of 47416
requests per second. Hence, using the measured values as CPU demand for the
model components would lead to wrong simulation results.

In turn, one can calculate the maximum time the CPU is allow to require per re-
quest to achieve the measured maximum throughput. This is the reciprocal of the
measured throughput. However, this is only valid if the CPU is the limiting factor.
For 4KB READ requests, the maximum throughput measured was 47416 Requests
per second which leaves a theoretical time of about 21.09µs per request. This the-
oretical value already includes scheduling and other overhead as well as the I/O
thread runtime. When subtracting the I/O thread runtime of this calculated CPU
runtime, the actual CPU demand of the I/O interface is approximately 6.09µs. This
is the value the I/O interface is allowed to require at most if the model shall reach
the desired throughput measured in the experiments. The difference of measured
and calculated value can be explained by delays caused by delays which occurred
during the request processing and were captured by the measuring tools. Or the
measurement tool caused additional overhead which delayed the request processing
e.g. because of contention effects. Hence, the I/O interface component of the model
needs to specify not only a CPU resource demand, but a DELAY resource demand,
too. However, these computations are only feasible for a high load. Then, the stor-
age hardware delay can be disregarded, because the CPU resource is assumed to be
the bottleneck and thus the throughput is completely dependent of the CPU load.

76 6. Synchronous model calibration and validation

++
+

+

+

0 200 400 600 800 1000

0
50

0
10

00
15

00
20

00

Request size (in KB)

R
es

po
ns

e
tim

e
(in

 u
s)

I/O interface response times for READ requests

measured (+)
calculated (o)

●●

●

●

●

(a)

++ +
+

+

0 200 400 600 800 1000

0
50

0
10

00
15

00
20

00

Request size (in KB)

R
es

po
ns

e
tim

e
(in

 u
s)

●●

●

●

●

measured (+)
calculated (o)

I/O interface response times for WRITE requests

(b)

Figure 6.8: Measured (+) and calculated (o) I/O interface response time for READ
(6.8a) and WRITE (6.8b) requests without I/O thread

CPU demand DELAY demand
Request type Equation R2

READ (≤ 32) 5.29 · 1.04reqSize 0.9997 −(0.25 · reqSize) + 28
READ (> 32) (1.26 · reqSize)− 11.43 1 0.0
WRITE (1.33 · reqSize) + 3.85 0.9999 0.0

Table 6.4: Equations to calculate CPU resource demands and the DELAY resource
demand of the I/O interface in µs

If the target is to match the throughput measurements of the experiments, only a
model configuration according to the previous considerations leads to reliable results.
If the target is the lower throughput obtained while measuring the I/O subsystem,
then it is possible to use the measured values, directly, and the measured through-
put is simulated, too. Hence, one could think of repeating the experiments with
the hardware measuring tool and hence measure the decreased throughput for each
request type and size and for each amount of request producers to get compatible
throughput and response time measurements. However, because of the complicated
measurement setup to measure both throughput and response times, it is not possi-
ble to re-run the experiments with maintainable effort.

The previous calculation can be repeated for all other request type and size combi-
nations and with the assumption that the I/O thread runtime is 15µs. The results
are graphically displayed in figure 6.8a for READs and in figure 6.8b for WRITEs
respectively, compared to the measured CPU resource demand.

Furthermore, figure 6.8 shows the CPU demand characteristic calculated accord-
ing to the maximum throughput. For small request sizes, the increase of the CPU
resource demand is not as intense as for big requests. This indicates a possible con-
stant standard overhead for each request to be processed. This overhead becomes
insignificant in relation to the resource demand needed to process big requests. How-

6.3. Calibration of the performance model skeleton 77

<<BranchAction>>

processReadOrWrite

<<InternalAction>>

processSmallRead

<<InternalAction>>

processBigRead

<<InternalAction>>

processWrite

aRequest.TYPE=“READ“

aRequest.BYTESIZE<=32
aRequest.TYPE=“WRITE“

<<ParametricResourceDemand>>

<<ProcessingResource>>

name=“CPU“

specification=7800*1.05^aRequest.BYTESIZE

unit=CpuCycles

<<ProcessingResource>>

name=“DELAY“

specification=-1.45*aRequest.BYTESIZE + 47

unit=us

<<ParametricResourceDemand>>

<<ProcessingResource>>

name=“CPU“

specification=2260*aRequest-BYTESIZE + 12000

unit=CpuCycles

<<ParametricResourceDemand>>

<<ProcessingResource>>

name=“CPU“

specification=2000*aRequest.BYTESIZE - 23000

unit=CpuCycles

aRequest.TYPE=“READ“

aRequest.BYTESIZE>32

Figure 6.9: BranchAction processRequest of the RD-SEFF of the IoInterface com-
ponent

ever, this behavior is observed for READ requests, only. Hence, the RD-SEFF of
the I/O interface component has to distinguish between small and big READ re-
quests and the WRITE requests. Splitting the READ CPU resource demand into
small and big requests yields higher correlation coefficients. Especially for small
READ requests, an exponential model shows a better correlation in comparison to
a linear model (R2

exp = 0.9997, R2
lin = 0.9832,). For WRITE request, a distinction

of small and big requests was insignificant. Moreover, an exponential regression
for small WRITE requests showed a worse correlation than the linear regression
(R2

exp = 0.7759, R2
lin = 0.9999,). The correlation of request size and I/O interface

response times listed in table 6.4. As the calculated delays of the I/O interface did
not show any specific and explainable correlation, these DELAY resource demands
were manually adjusted and configured to best-fit the throughput measurements
of the experiments. However, this delay is necessary for small READs to achieve
the same initial throughput as measured in the experiments. It can be explained
by periods the I/O interface was idle for some reasons, which was captured by the
measurements, too.

The results of these considerations and calculations can be used to determine the
CPU resource demand in CPU cycles. The CPU resource demand must be converted
from time r to CPU cycles c. This can be achieved by calculating c = r · p. The
processing rate p of the CPU is known and amounts to 1.7 GHz. Then, the values
of table 6.4 can be used to calculate and specify the RD-SEFF (figure 6.9) of the
IoInterface component. A GuardedBranchAction checks the three different types of
request size/type combinations. Then the proper resource demands can be specified
as StoEx according to the determined equations to issue resource demands in the
corresponding InternalActions (see figure 6.9).

6.3.3 Final calibration

The purpose of this final calibration is to calibrate the model with its CPU and DE-
LAY resource demands in such a way that it matches the throughput measurements

78 6. Synchronous model calibration and validation

●

●

●

●

●
● ● ● ●

●

●

●

●
● ● ● ● ●

●

●

●

●

●

● ● ● ●

●

●

●

●

●
● ● ● ●

●

●

●

●

● ● ● ● ●

0
10

00
20

00
30

00
40

00
50

00

Number of request producers

T
hr

ou
gh

pu
t (

re
qu

es
ts

/s
ec

on
d)

1 2 4 8 16 32 64 128 256

A
B
C
D
E

Influences of resource demands

Figure 6.10: Influences of different resource demand settings. Curve A is the simu-
lation result with the determined configuration setting for a 256KB READ request.
Curve B and C are simulation result for 30% less and 30% more DELAY resource
demands (storage hardware) respectively. Curve D and E describe the characteristic
for 30% less and 30% more CPU resource demand (I/O interface).

with less then 10% relative error. The key values to reach during this calibrations
are the i) initial throughput (the system is under litte load, only one request pro-
ducer) and ii) maximum throughput (the system is under high load, 256 request
producers).

During this final calibration process, it became evident that if one tunes the DELAY
resource demands, the characteristics of the throughput curve stays the same, but the
curve is moved left or right, with an higher or lower initial throughput. If the CPU
resource demand is changed, the maximum throughput is decreased or increased,
whereas the initial throughput is unaffected. These observations are graphically
depicted for a 256KB READ request in figure 6.10, the measured simulation val-
ues are listed in table A.4. Hence, to fine-tune the initial (maximum) throughput,
the resource demands of the storage hardware (I/O interface) must be adjusted.
Furthermore, if for example the initial throughput is to low for all the big READ
requests, one has to adjust the gradient of the linear equation.

With this considerations, it was possible to keep the relative error for almost every
key value below the 10% margin (see table A.3), achieved by little adjustments to the
correlations of request size and type determined in the previous sections 6.3.2.2 and
6.3.2.3. The resource demands finally used within the RD-SEFFs of the synchronous
model are listed in table 6.5. The validity of this configured model will be discussed
in the following.

6.4. Model validation 79

CPU (in CPU cycles) DELAY (in µs)
I/O thread 25500
I/O interface
READ, ≤ 32 7800 · 1.05reqSize (−1.45 · reqSize) + 47
READ, > 32 (2000 · reqSize)− 23000
WRITE (2260 · reqSize) + 12000
Storage hardware
READ, ≤ 32 (5.36 · reqSize) + 76.67
READ, > 32 (4.00 · reqSize) + 120.00
WRITE, ≤ 32 (10.65 · reqSize) + 200.34
WRITE, > 32 (4.00 · reqSize) + 450.00

Table 6.5: Final CPU and DELAY resource demands after the calibration process

6.4 Synchronous performance model validation

For the validation of the synchronous performance model, another series of through-
put measurements was collected. As in the previous experiments, the setup was
completely the same (see section 6.1.3), only the type of requests was a mixture
of 60% READ and 40% WRITE requests. A mixture of the request size was not
possible because the workload generation tool did not support this feature. The
throughput of this configuration was measured again for the four different request
sizes (4KB, 16KB, 64KB, 256KB) and will be explained in the following section.
After that, the influnece of additional CPU power will be discussed in the next
section.

Before the measurements and simulations results are analyzed, hypotheses will be
stated. These hypotheses must be confirmed by the measurement and simulation
results. Basically, these hypotheses resemble the experiment’s hypotheses. However,
now they are targeted at the READ/WRITE mix measurement. Only the hypothe-
ses concerning the influence of an additional CPU targets at the READ measurement
of the experiment in section 6.2.3. The hypotheses are:

1. The bigger the requests of the mixture get, the lower is the throughput. The
relation between the initial and maximum throughput of the different request
sizes is the same as detected by the experiments.

2. Initial (maximum) throughput of simulation and measurement start (settle)
at the same level. As for the experiments, quantitative errors are acceptable,
but the qualitative prediction must not deviate.

3. If the CPU power is doubled, it is possible to process twice as many requests
as with one CPU in case of the maximum throughput. Hence, the maximum
throughput doubles. However, it does not influence the initial throughput, as
the response time of one request is not influenced by an additional CPU.

6.4.1 READ/WRITE mixture

To evaluate the model, it was simulated and the simulation throughput results
were collected for the same configurations as in the READ/WRITE mix through-

80 6. Synchronous model calibration and validation

●

●

●

●

●

●

●

● ●

●

●

●

●

● ● ● ● ●

0
10

00
0

20
00

0
30

00
0

40
00

0
50

00
0

Number of request producers

T
hr

ou
gh

pu
t (

re
qu

es
ts

/s
ec

on
d)

●

●

4KB measured
16KB measured
64KB measured
256KB measured
4KB simulated
16KB simulated
64KB simulated
256KB simulated

1 2 4 8 16 32 64 128 256

READ/WRITE mixture throughput

(a) logarithmic scale

●

●

●

●

●

●

●

● ●

●

●

●

●

● ● ● ● ●

0 50 100 150 200 250

0
10

00
0

20
00

0
30

00
0

40
00

0
50

00
0

Number of request producers

T
hr

ou
gh

pu
t (

re
qu

es
ts

/s
ec

on
d)

READ/WRITE mixture throughput

(b) linear scale

Figure 6.11: Comparison of measured and simulated throughput results for different
READ/WRITE mixtures. Figure 6.11a is in a ld-scale and figure 6.11b has a linear
scale.

put measurement (60% READs and 40% WRITEs for 4, 16, 64 and 256KB re-
quests). To model the mixture of request types, the StoEx inside the Request-
Generator component which sets the request type has to be adjusted. The StoEx
IntPMF[(0;0.6)(1;0.4)] arranges that 60% READ requests and 40% WRITE re-
quests are generated. The simulation time was set to one simulation second and the
amount of measurements at the handleRequest sensor was used as the amount of
completed requests.

The measured and simulated throughput results of the READ/WRITE mix are
depicted in figure 6.11. Both, the measurement and simulation confirm the first
hypothesis with respect to the requested behavior, namely the throughput decreases
the bigger the requests are. The second hypothesis is qualitatively confirmed, too,
although the simulation results are deviating from the measured results. This quali-
tative comparison shows a good match of system and model behavior. However, the
quantitative results show more deviation then expected. This will be discussed in
the following.

In case of the initial throughput, the relative error of the mix is bigger than the errors
of the uniform request type throughput measurements (see table A.5). However, a
qualitative analysis of this deviation shows that the measured initial throughput of
the mix is between the initial throughput of uniform READ and WRITE measure-
ments (for 4KB, 16KB and 64KB). The simulation shows the same behavior since
at least the same areas are hit.

However, the relative errors 8% (4KB), 27% (16KB), 15% (64KB) and 9% (256KB)
show deviations in case of the maximum throughput. They can result from errors
made by approximating CPU and DELAY resource demands with linear and expo-
nential regressions. However, a test simulation run with the calculated values did

6.4. Model validation 81

not lead to better results and thus demonstrated, that this is not the reason for the
deviations.

Another explanation for these errors can be derived from the throughput measure-
ments. When focusing on the maximum throughput of READ and WRITE requests
bigger than 16KB, it is peculiar that the throughput of the READ/WRITE mix
is above the throughput of the READ requests. This is only explainable by the
consideration that the WRITE requests require less CPU than the READs, what is
confirmed by the separate I/O interface response time measurement but contradicted
by the experiments.

However, as the model tries to achieve the throughput measurements of the exper-
iments, the calculated CPU demand for WRITE requests was set to a higher value
then for READs. Hence, with this model configuration in case of a 16KB request
mix, the throughput of the model must decrease in comparison to the throughput
of READs-only, as the READs are mixed with the more CPU-intense WRITEs. In
contrast, in the real system the READs must be mixed with something less CPU-
intense to explain the increase of the mix throughput above the READ throughput.
Consequently, measured and simulated results drift apart, causing an even greater
deviance.

Another explanation for the higher throughput in case of the measurement is that
cache hits might have had an influence. Although the measuring application was
configured to try to ignore caches, it is likely that cache hits occured, especially if
there are two caches (one in the storage hardware and the other inside the VL’s OS).
Especially if there’s a hit within the OS cache, the speedup could be influencing the
throughput.

Furthermore, there are errors not quantifiable caused by measurements and calcu-
lations. Especially for small requests, a proper measurement of their very short re-
sponse times is hard as other influences like timer resolution or even context switches
can easily distort them. A correction of these errors, especially in case of the 16KB
mix is not easy, as changing the model parameters would influence the results of the
other simulation results.

To further minimize the simulation’s errors, one would need more data to make better
estimates about the resource demands. First, more data means more experiment
runs to calculate mean response times for different request size/type configurations
which could improve the quality for small request sizes. Second, a more discretized
experiment design - which means more than four request sizes - could be helpful to
make a better approximation of the request type and request size correlation. And
third, a measurement setup which covers both throughput and I/O request handling
component response times can lead to better suiting results of both throughput
and I/O subsystem measurements. However, collecting this data causes tremendous
effort, especially if caches must be completely avoided or the OS code must be
instrumented to get more detailed results. Based on the measurements results and
their accuracy, the simulation provides a good qualitative and quantitative prediction
accuracy in case of synchronous request handling for READ or WRITE requests
only. For a request mixture the results can be accepted under the exception, that
the prediction is only qualitatively valid. However, the deviations are explainable
but their resolving would require further analysis of the real system which might
require an extension of the model.

82 6. Synchronous model calibration and validation

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ● ● ●

Number of request producers

T
hr

ou
gh

pu
t (

in
 1

00
0

re
qu

es
ts

/s
ec

on
d)

Measured vs simulated throughput with 2 CPUs

●

●

4KB measured
16KB measured
64KB measured
256KB measured
4KB simulated
16KB simulated
64KB simulated
256KB simulated

0
10

20
30

40
50

60
70

80
90

10
0

1 2 4 8 16 32 64 128 256

(a) logarithmic scale

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ● ● ●

0 50 100 150 200 250

Number of request producers

T
hr

ou
gh

pu
t (

in
 1

00
0

re
qu

es
ts

/s
ec

on
d)

0
10

20
30

40
50

60
70

80
90

10
0

Measured vs simulated throughput with 2 CPUs

(b) linear scale

Figure 6.12: Measured throughput for 2 CPUs and simulated throughput for doubled
processing rate with ld-scale (6.12a) and linear scale (6.12b).

6.4.2 CPU power

To examine and analyze the influence of additional CPU cores, the idea was to
integrate the exact scheduler created by Happe into PCM. The advantage of this
exact scheduler is that it provides an exact simulation of scheduling policies which
consider multicore CPUs. As the provisional integration of this exact scheduler was
completed at a late stage of this work, a first analysis examines the CPU’s influence
on the throughput by a doubled CPU processing rate. In a second setup, the exact
scheduler is used to basically test the influences of the scheduling. The following
describes these analyses, starting with the doubled processing rate.

During the first comparison of measurement with 2 CPU cores and simulations with
doubled processing rate, both results contradicted each other, as the model predicted
a significantly higher throughput for request sizes over 16KB. A revision of the mea-
surement revealed, that with two CPUs the bandwidth restricts the throughput.
Hence, the measurement was repeated with more channels connecting the storage
hardware with the system. Accordingly, the throughput controller’s capacity must
be raised to 130000 requests per second, too. Another possibility is to model the
bandwidth restriction by limiting the throughput controller to the limit of the band-
width. For example, if 64KB requests are issued and the bandwidth is 8 GBit per
second, the throughput controller’s capacity must be set to 8·109

64·103·8 requests. Simu-
lation runs with this configuration then are bandwidth-limited, too. However, it is
the theoretical limit which is reached in the simulation and not the real bandwidth
restriction. Hence, the solution without bandwidth restriction and extra channels is
considered to be more expressive.

With this configuration, measurement and simulation results (see figure 6.12) confirm
the third hypothesis, as the throughput almost doubles in both cases. Furthermore,
it confirms the expectation that increasing the CPU power unburdens the I/O in-
terface and hence increases the throughput. However, the throughput increase of
the simulation with additional CPUs is more significant the bigger the requests get.

6.4. Model validation 83

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●
● ● ● ●

10
00

20
00

30
00

40
00

50
00

60
00

Number of request producers

T
hr

ou
gh

pu
t (

re
qu

es
ts

/s
ec

on
d)

measured
doubled processing rate
exact scheduler

1 2 4 8 16 32 64 128 256

Throughput of 256KB READ

Figure 6.13: Throughput comparison of a 256KB READ request of the measurement
results and the simulation results with a doubled processing rate and the exact
scheduler

This is not observed in real system. An explanation can be the scheduling influences
in the real system which are not captured by the model. Nevertheless, the simula-
tion and measurement results with twice the CPU processing rate shows that the
initial throughput is almost the same in both cases and only influences the maximum
throughput (see table A.6).

For the exact scheduler by Happe, a special PCM workbench and PCM model had
to be created. This PCM workbench provides the possibility to specify the amount
of replicas of a resource container’s processing resource and to set the processing
resource’s scheduling policy. Hence, to simulate the synchronous model with an ad-
ditional CPU core the amount of replicas of the CPU was set to two. Furthermore,
the exact scheduler’s simulation time is based on milliseconds. Hence, each value re-
ferred to the simulation time like processing resources, resource demands, simulation
time or the interarrival rate must be transformed to this unit.

The differences of a doubled processing rate and the exact scheduler are exemplary
examined for a 256KB READ request and are graphically depicted in figure 6.13.
As one can see, the maximum throughput of the exact scheduler is lower than for a
doubled processing rate. This is observed for other request sizes, too (see table A.6).
The explanation is probably the utilization of both CPU cores. In case of the exact
scheduler, one CPU core is 10% idle. The reason for this idle time might be the
fact that I/O threads or the I/O interface has to wait for the response of the storage
hardware. However, it is remarkable, that the idle time is always approximately 10%
for the second core for whatever request size or type. This is peculiar as the idle

84 6. Synchronous model calibration and validation

time should be equal on both CPU cores. However, further simulations and alayses
are required to better assess the influences of the exact scheduler, to understand its
behavior and to check its correct integration.

Furthermore, it is remarkable that the exact scheduler’s prediction results are better
for both the initial and maximum throughput. Especially for the maximum through-
put, the simulation results with 2 CPU cores are significantly lower than the results
with doubled processing rate. This is explainable because the exact scheduler con-
siders e.g. context switching which slows down the throughput. On the contrary,
simply doubling the CPU processing rate does not consider such side effects and
thus results in a higher throughput.

In short, the exact scheduler provides better prediction results than simply doubling
the CPU processing rate. The analysis showed that adding additional CPUs to the
VL improves the performance behavior of the system. However, scheduling effects
must be taken into consideration. The exact scheduler can reflect these influences,
but the measurements indicate more significant influences for big requests and heavy
load.

7. Evaluation

After the calibration and validation of the synchronous model behavior in the pre-
vious chapter, this chapter evaluates the asynchronous model. This is performed
in two ways. First, the performance relevant parameters are varied and the results
are compared and discussed. And second, the synchronous and asynchronous design
alternatives will be compared with respect to their performance. As there is no pos-
sibility to validate the results of the asynchronous model by means of measurable
results, the plausibility and validity of the asynchronous simulation is discussed. The
first section explains the simulation setup with open and closed workloads. The sec-
ond section evaluates the variable model parameters and their influences on the per-
formance as well as new identified cruxes of the model’s performance behavior. The
last section compares the simulation results of the synchronous and asynchronous
model as far as possible to assess performance drawbacks and advantages of the
design alternatives.

7.1 Asynchronous model setup

Unfortunately, there is no reference system or prototypical implementation one could
measure the response times for the asynchronous components. However, the goal
of this work was to construct a performance model to avoid the implementation
of a performance prototype. Therefore, it is assumed that the resource demands
of I/O interface and storage hardware do not differ from their synchronous coun-
terpart. The same applies for the asynchronous I/O thread which has the similar
runtime as the synchronous I/O thread. The only differences are the behavior of the
asynchronous I/O thread, the asynchronous I/O interface and the possible delays
because of blocked queue accesses as explained in chapter 4. To simulate the asyn-
chronous model, the synchronous components must be replaced by their synchronous
correspondents within the system diagram.

The model is tested under two types of workloads, open and closed. In a closed
workload, one can specify the amount of users working on the system. In an open
workload, the interarrival time specifies how much time elapses between the arrival

86 7. Evaluation

of two requests (see section 2.4). For the synchronous model validation and evalua-
tion, the closed workload corresponded to the kind of workload generated by IBM’s
workload generation tool and hence, a closed workload was the best choice.

However, Schroeder et al. demonstrate that the type of workload issued to a system
can have significant influences on the performance results [SWHB06]. Especially
in the asynchronous model, an open workload is more reasonable because arriving
requests should be independent of the processing of their previous request. More-
over, the authors show that as the amount of users of a closed workload increases,
the closed workload approaches open ones [SWHB06]. The following examines the
influences of both open and closed workloads.

The closed workload always has the same configuration as for the experiments in
the previous chapter and the results are measured for a varying amount of request
producers (1,2,4,...,256). The interarrival time of an open workload can be calculated
according to L = λW (Little’s Law [Lit61]), where L is the amount of requests in
the system and W the amount of time a request spends within the system. Hence,
for an open workload the interarrival time (or arrival rate λ) fully utilizing the
asynchronous model is the reciprocal of the maximum throughput per second. If the
arrival rate λ exceeds a system’s processing rate p, the system gets overloaded.

7.2 Parameter influences

This section discusses the influence of variable performance parameters on the sim-
ulated system’s performance, assessed by the throughput. The simulated system’s
performance behavior is observed and compared with different parameter settings
as well as with closed and open workloads. If not stated otherwise, the following
simulations are conducted exemplary with 256KB READ requests. All quantitative
simulation results are listed in table A.7.

Amount of I/O threads

The first parameter setting observed is the VL’s asynchronous thread pool size, thus
the amount of asynchronous I/O threads. It was varied between the three values: 1,
10 and 100 threads. Concerning the simulation results, one can observe two different
throughput metrics. The first is how many requests are issued by the I/O thread per
unit of time. This value indicates the amount of requests currently processed by the
system. It can be measured by the amount of calls returning from handleRequest.
The other metric is the amount of requests which were actually completed. This is
the amount of returned calls of signalCompletion.

The first peculiarity is that already one I/O thread reaches its maximum through-
put for already one request producer. This maximum is roughly the same as the
maximum throughput in the synchronous case. An additional amount of request
producers has no influence on the throughput. However, this is only valid under the
assumption that the request producer is able to generate requests in the same or a
higher frequency as the asynchronous I/O thread can pass them to the I/O interface.
But if the I/O thread’s runtime is quicker than the rate in which requests are issued
to the VL, one I/O thread is sufficient to handle the requests. This is independent
of request size or type and is only influenced by the CPU load. Hence, the VL only

7.2. Parameter influences 87

benefits from further threads if the requests arrive within a shorter period of time
the I/O thread can process them.

Further noticeable is that the asynchronous I/O threads send more requests to the
system than effectively completed. Hence, the system can be considered as “over-
loaded”. For more than one I/O thread, if increasing the amount of request produc-
ers the throughput drops until the amount of request producers reaches the same
amount as the number of I/O threads. Then, for a further increasing amount of
request producers, the throughput is constant. This observation can be explained
by the overload. At first, as long as the system is not used, the I/O threads can put
requests into the system without being impeded. While the threads process the next
requests, they are hindered by the previous requests currently processed by the I/O
interface. Hence, the processing time and response time of the I/O thread increases.
This delay continues to increase until a saturation is reached. This is the system’s
state when the I/O threads put the same amount of requests into the system as
completed by the completion thread.

As the simulation results show, there is a difference between amount of requests
in the system and actually completed requests. This difference is generated while
the I/O thread(s) are issuing requests unimpeded by the I/O interface. However,
the ratio of surplus requests and successfully handled requests converges to one the
longer the simulation lasts. This indicates, that the simulation has a warm up phase
until it reaches a steady-state.

In the following the influences of the amount of I/O threads with an open workload
will be observed. The simulation results show that the maximum load of the model
with the previous settings (256KB READ) is achieved for an interarrival time of
3.14 · 10−4 seconds (1/3185 seconds per request). With this configuration, the CPU
utilization for one I/O thread is 99,6% and the response time of the I/O thread is
approximately 15.7µs. A shorter interarrival time of the open workload leads to an
overloaded system. This can be observed at the CPU utilization, where suddenly
more than just two jobs are busy and in the I/O thread’s response time which further
increases.

Analyzing the influences of additional I/O threads, no effects on the system through-
put or response time are observable. This behavior is explainable by comparing the
response time of the I/O thread with the interarrival time. The interarrival time
of 314µs is significantly higher than the response time of the I/O thread (15µs).
Hence, one thread is sufficient to handle this load and thus the benefit of additional
threads only observable if the thread’s response time is higher than the interarrival
time. Unfortunately this cannot be tested as the simulation breaks down because it
is overloaded before the interarrival time can be sufficiently lowered.

However, a second simulation run with a more realistic interarrival time indicates an
influence. This time, the interarrival rate is assumed to be exponentially distributed,
with a mean arrival rate of approximately 3180 requests, the maximum throughout
optimally utilizing the system. This exponentially distributed arrival rate assures,
that the interarrival time is varied and the system does not settle in a steady-state.
The cumulative distribution function shows (figure 7.1) the fluctuation of response
times for handleRequest with 1, 10 and 100 asynchronous I/O threads. One can
see, that the dispersion of the response times abates and the mean response time

88 7. Evaluation

0 5 10 15 20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Response time (in ms)

P
ro

ba
bi

lit
y

Response time probabilities

1 I/O thread
10 I/O threads
100 I/O threads

Figure 7.1: Cumulative distribution function of the response time for handleRequest
of 1, 10 and 100 asynchronous I/O threads

shortens if the thread pool size increases. This indicates the advantage of thread
pool in comparison to a single thread, namely the pool can better handle peak loads
like the ones simulated by the exponential interarrival time.

Queue blocking

The following discusses the influences of queue blocking. Therefore, the previous
results are used as reference results. In additional simulations the amount of queues
was fixed to 256 for one test series and took the same value as amount of request
producers in another series. The simulations shows that the delay of I/O threads or
completion threads because of blocked queues has no significant influence, at least
not if the system is fully loaded. The reason is that the blocking delay of about one
to six microseconds has no significant consequences on overall response times of 80
milliseconds and more. However, it can have an influence under little load, as the
overall response time is much shorter.

To test the influence of queue blocking in an open workload, the interarrival time
was increased to 1.5ms. This assures that no other influences besides queue block-
ing affect the I/O thread response time because previous requests are completely
handled before a new request arrives. The first simulation run with one I/O thread
and 256 request queues showed no blocking delays. The mean response time of
handleRequest for 667 measurement points is 15.75µs. The first observable differ-
ence occurs in a simulation run with 256 request queues and 100 I/O threads where
blocked accesses can be registered in the response times. In total, the mean re-
sponse time for 667 measurements is only slightly different (15.83µs). Even for 1000

7.3. Synchronous and asynchronous model comparison 89

threads and 256 queues, the throughput is not affected and only the asynchronous
I/O thread mean response time is slightly increased to 16.49µs for 667 measure-
ments. This demonstrates that the blocking delay is insignificant with respect to
the overall system response time. However, in the worst case the response time of
the I/O thread for one request might be approximately 17µs instead of 15µs. One
could argue, that this difference can influence the overall response time for one sin-
gle request because the request is sent to the I/O interface 2µs delayed. However,
this delay is insignificant if the minimum overall response time for one request is
approximately 1.45ms.

The same considerations apply for the completion thread. The difference of the
system components response times because of the additional CPU resource demands
of the completion thread or delays are marginal. They are insignificant for the mean
response time or overall throughput of the system. Regarding one request, it has a
slight effect on the overall response time (1447.3µs vs. 1477.4µs) and I/O thread
response time (15.65µs vs. 15.75µs) if comparing synchronous and asynchronous
model. However these influences disappear if comparing overall response time and
throughput.

7.3 Synchronous and asynchronous model com-

parison

To compare the synchronous with the asynchronous model, both are simulated with
an open workload with interarrival time of 3.14µs and 256 request queues. In the
asynchronous case, only one I/O thread handles the arriving requests. However, a
straight-forward comparison of both variants is not simple as the following shows.

At first glance, both simulation results seem similar (see table 7.1). In the syn-
chronous case, the throughput is 3181 requests per second and in the asynchronous
case, the completion thread signaled 3181 requests per second, too. Also the re-
sponse times are approximately the same, as the mean response time per request in
the synchronous case is 1.45ms and 1.48ms in the asynchronous case. The differ-
ence between the two approaches is that the CPU utilization in the synchronous case
(96.4%, at most one busy job) is a bit lower than in the asynchronous case (99.6%,
at most two busy jobs). This difference in utilization is almost exactly the overead
caused by the completion thread which can be reconstructed by calculations.

Comparing the synchronous model with open and closed workloads assesses the in-
fluences of the workload on the system’s throughput. The comparison reveals a
slightly worse throughput of only 3121 requests per second in the closed workload
case. The difference is even more significant when comparing the response times.
The response time of one request for the open workload is 1.45ms whereas it takes
77.67ms in a closed workload. This response time is so much longer as the closed
workload dramatically overloads the system. This overload is caused by the high
concurrency of request arrivals generated by 256 request producers. Moreover, high
concurrency on the CPU extends the response times of the CPU demanding com-
ponents. Because the synchronous thread has to wait for the return of the CPU
demanding I/O interface, the overall response time increases.

This indicates that the high load generated with the closed workload is not really
appropriate in the asynchronous case. However, it is not possible to simulate the

90 7. Evaluation

Simulation
Overall

A-OW314-1 15.75 1441.63 20.01 1477.39 3185 3181
A-OW150-1 15.75 1431.63 10.01 1457.39 667 666
A-OW150-10 15.75 1441.63 10.01 1467.39 667 666
A-OW150-100 15.83 1431.65 10.01 1457.49 667 666
A-OW150-1000 16.49 1431.65 10.01 1458.15 667 666
S-OW314 15.65 1431.65 - 1447.30 3181 -
S-CW256 3694.00 73985.00 - 77679.00 3121 -

A-OW314-1
A-OW150-1
A-OW150-10
A-OW150-100
A-OW150-1000
S-OW314
S-CW256

Response time [us] Throughput (requests/second) of
Configuration I/O Thread I/O If + HW Comp. Thrd handleRequest signalCompletion

Async. Model, OpenWorkload, Interarrival Time 3.14*10^-4s, 1 I/O Threads, 256 Queues
Async. Model, OpenWorkload, Interarrival Time 1.5*10^-3s, 1 I/O Thread, 256 Queues
Async. Model, OpenWorkload, Interarrival Time 1.5*10^-3s, 10 I/O Threads, 256 Queues
Async. Model, OpenWorkload, Interarrival Time 1.5*10^-3s, 100 I/O Threads, 256 Queues
Async. Model, OpenWorkload, Interarrival Time 1.5*10^-3s, 1000 I/O Threads, 256 Queues
Sync. Model, OpenWorkload, Interarrival Time 3.14*10^-4s
Sync. Model, ClosedWorkload, 256 Users

Table 7.1: Throughput and response time measurements for different simulation
settings.

model with an open workload which generates a comparable load as the simulation
would crash.

The main difference between synchronous and asynchronous model under an open
workload with an exponentially distributed interarrival time is depicted in figure
7.2. It shows that the dispersion of the response time in case of the synchronous I/O
thread is very high, comparable to that for one asynchronous I/O thread. Further-
more, the mean response time in the asynchronous case with several I/O threads
is shorter and shows less dispersion as the synchronous I/O thread. However, a
direct comparison of the response times is not possible as the response time in the
synchronous case also comprises the response time of storage hardware and I/O in-
terface. This is exhibited by the right-shifted cumulative distribution function of
the synchronous model. The gap indicates the response time of I/O interface and
storage hardware.

7.4 Discussion

Concerning the performance of synchronous and asynchronous request handling,
there are some observable slight differences. However, they strongly depend on the
kind of load exposed to the system. Assuming that a closed workload with a high
amount of users in the synchronous and an open workload in the asynchronous case
simulate an equal load, the synchronous version has slightly less throughput. In
short, one can conclude that the differences of both approaches have only marginal
influence on the throughput because their similarities (I/O interface and storage
hardware) dominate the performance behavior of the system.

Hence, the decision between synchronous and asynchronous I/O can be made based
on the general properties of synchronous and asynchronous I/O. One advantage of
synchronous I/O is that it is easier to implement and better to maintain. For exam-
ple, if a request is not returned for any reason, it is easier to determine which thread
is affected. Furthermore, it has a intrinsic mechanism preventing the system from
overloading as a new request can only be processed if a previous one is completed.
However, synchronous I/O has the disadvantage that the VL’s thread pool must

7.4. Discussion 91

0 5 10 15 20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Response time (in ms)

P
ro

ba
bi

lit
y

Response time probabilities

synchronous I/O thread
1 I/O thread
100 I/O threads

Figure 7.2: Cumulative distribution function of the response time of handleRequest
for 1 and 100 asynchronous I/O threads and the synchronous I/O threads

provide enough threads, whereas in the asynchronous case already ten threads seem
to be sufficient according to the results of this work. Furthermore, asynchronous
I/O is more flexible and can better handle peak loads as the simulations with an
exponentially distributed interarrival time demonstrated. However, asynchronous
I/O has the disadvantage, that it is likely to overload the system if no preventing
mechanism are implemented.

Furthermore, the evaluation of the models shows that the influences of the perfor-
mance relevant parameters like amount of I/O threads and queue blocking delay do
not have the significant influence as expected, at least not for the overall throughput
and response time. The reason is that their influence on e.g. the response time
is not significant enough. Their influences are in the range of µs, whereas other
components, e.g. the I/O interface are in the range of ms. Other factors identified
during the calibration of the model have more significant influences on the system’s
performance (see figure 6.10), namely the CPU and DELAY resource demands of
the I/O interface and the storage hardware.

• DELAY resource demand. The change of a component’s demand on the
DELAY resource (see figure 7.3) only influences the initial throughput of the
system (which is the throughput under little load). It has no influence on the
maximum throughput (achieved under high load). Hence, with less DELAY
resource demand, the throughput-characteristics is moved to a higher initial
throughput under little or medium load, implying that the saturation of the
maximum throughput can be achieved earlier with less load. This observation
can be explained by the fact that under little or medium load, the CPU is

92 7. Evaluation

IO Interface Completion Thread

CPU

Component

Resource demands

optional

DELAY CPU

Storage Hardware

DELAY

IO Thread

CPU

Figure 7.3: Component chain

not the bottleneck. Hence, shorting or prolonging the DELAY resource de-
mand has a direct influence on the response time which in turn influences the
throughput under little load.

• CPU resource demand. The CPU resource demand is influencing the max-
imum throughput of the system, only. Under little or medium load, the CPU
resource demand has no influence on the initial throughput. In contrast, it
massively influences the maximum throughput. This behavior is explainable
as under full load the CPU is the system’s bottleneck. The system’s response
times and hence the throughput are completely depending on the processing
time. Thus, an additional CPU can have remarkable influences on the maxi-
mum throughput.

These influences observed during the model calibration lead to the following hy-
potheses about the influences of system components on the system’s performance.
They are particularly encouraged by the measurements with two CPUs. Further
measurements with e.g. different storage hardware would be necessary to test these
hypotheses.

1. The I/O thread is a CPU resource demanding component, only. Hence,
its influence on the system’s maximum throughput is observable, if its CPU
resource demand is significantly higher compared to other resource demanding
components. Then, an in/decrease of its resource demand can de/increase the
system’s maximum throughput. However, with the current configuration it
has no significant influences.

2. The I/O interface is mainly consuming CPU resources. Its DELAY resource
demands can be neglected for bigger requests, as the CPU resource demand
dominates. But this CPU resource demand significantly influences the max-
imum throughput. Hence, optimizing this part of the system can provide a
better system performance with respect to the maximum throughput.

3. The storage hardware is delaying the system’s throughput. This has no
influence on the maximum throughput under high load, whereas it significantly
influences the throughput with few users. Hence, optimizing this system part
can increase the system’s performance for little or medium load, e.g. shorter
response times for few users.

The CPUs assigned to the VL has significant influence on the throughput of the
system. As the experiments with two CPUs show, the maximum throughput can
be drastically increased. However, as the performance bottleneck CPU disappears,
other limiting factors determine the performance, e.g. the bandwidth or throughput
of the network and the response time of the storage hardware. Moreover, one should
derive the maximum throughput from the kind of workloads issued to the system to
determine how much CPU power is required.

8. Summary and Conclusions

The main objective of this work was to create a performance model of a potential
storage virtualization for IBM systems. The model’s purpose was to evaluate design
alternatives of its architecture as a showcase on a System z. The implementation
and configuration of the model was guided by the approach for an experiment-
based derivation of software performance models by Happe. The target was to
create and validate a performance model which reflects the behavior of a prototypical
storage virtualization layer implementation, namely synchronous request handling.
The synchronous model was validated by measurements of an existing system.

Furthermore, another objective was to model and predict the behavior of an asyn-
chronous implementation. As no prototype existed for the asynchronous model, it
was neither possible to configure nor to evaluate the asynchronous model by means
of measurements of an implemented system. Hence, the asynchronous model was
based on the expertise of synchronous model. Its evaluation is a discussion of the
performance parameters’ influences on the system’s performance and a comparison
with the synchronous model.

The selected modeling language was the Palladio Component Model (PCM), a
domain-specific meta-model concentrated on component-based software architec-
tures. Because it is not within PCM’s domain, this work is also a study of PCM’s
applicability in other, PCM-foreign domains and whether it can meet IBM’s require-
ments for a performance modeling tool.

During the modeling, several limitations of PCM appeared which required special
solutions and additional modeling effort. For example, PCM does currently not
support to parameterize the amount of a component’s instance and abstracts from
a component’s state. This impeded the exact modeling of the request queues and
I/O threads, and their queue access and locking behavior. Therefore, assumptions
and abstractions had to be made to model all requirements.

Other difficulties arose because the simulation results contradicted the hardware
measurements of the IBM system. Further analysis of the discrepancy of model
and reality led to the revision of the measurement procedure and to new measure-
ment results confirming the model’s prediction. For example, the simulation of a

94 8. Summary and Conclusions

system with two CPUs predicted a higher throughput as measured on the refer-
ence system. The greatest problem was that the throughput measurements of the
experiments contradicted the throughput measured while collecting the system com-
ponent’s response times. This resulted in a discrepancy of throughput measurements
and simulation results. As a solution, the hardware measurements were only used
to derive the influences of performance relevant factors, qualitatively.

The simulation results of the synchronous model show that the simulated behavior
matches the experiment results with errors less than 10%. However, the validation
of the synchronous model with a mixture of READ and WRITE requests did not
yield the expected results of errors less than 10%. One explanation is that the
measurements of the mixture might have been influenced, e.g. by cache hits, although
the measurement tool was set to ignore caches. Another explanation is that the
system might have READ/WRITE mix related properties not reflected by the model.
However, the validation shows a good qualitative performance prediction of the
synchronous model compared to the reference system.

Moreover, the evaluation of the model shows that the performance relevant factors
like amount of I/O threads, amount of request queues and queue blocking do not
have an impact on the overall throughput and only a slight impact on the response
times. In fact, the main performance influence factors identified are the storage
hardware and the I/O interface. The evaluation confirms the assumption of IBM
that the performance of the asynchronous is not completely different from the syn-
chronous implementation. Hence, the question whether synchronous is better than
asynchronous I/O must be answered by trading off the general advantages and dis-
advantages of the two design alternatives.

Besides the performance modeling, this project was a study of the abilities and
applicability of PCM. IBM has learned that it is possible to create a performance
model with relatively low effort. Although IBM sees the supporting abilities of
PCM in future development rather neutral, they confirmed the usefulness of PCM
to improve the knowledge about a system. However, this work demonstrates that
detailed knowledge is required to model a system with sufficient accuracy.

This modeling approach showed that PCM can be used for performance modeling
in other domains besides component-based software architectures. However, then
several limitations and restrictions apply. Hence, to be used in further projects,
PCM must be extended by several features resolving PCM’s current issues, some of
them already familiar.

To extend the model of this work, further studies could conduct more detailed and
complex measurements. Then, the results could be analyzed to better assess the
validity of the model and to improve the quantitative reflection of the system be-
havior. Additionally, the full integration of the scheduler model by Happe could be
used to analyze the scheduler’s impact on the system’s performance more detailed.

Furthermore, the identification of realistic workload profiles (e.g. a database work-
load) by IBM would be of interest. Then, the model could be used to determine
which configuration suits best to which workload profile. Such a classification of
workload types could help a system deployer to decide, how a system should be
configured. Moreover, with typical workloads it might be possible to determine if
one of the two design alternative is more suitable.

Glossary

Channel A channel connects a system with the stor-
age hardware. It has several properties like
throughput and bandwidth constraints.

Client A client resides a request-completion queue
pair for each attached logical device. A client
signals a new request for a device via the re-
quest queue. The actual request is put in the
according request queue to be processed by an
I/O thread.

Completion Queue If an I/O operation of a request completes, the
signal is put in the completion queue belong-
ing to the request’s origin.

Completion Thread Processes the completion signal received from
the OS and puts it in the corresponding com-
pletion queue. This thread not under control
of the IOVF.

I/O Interface The interface offered by the operating system
to read/write data from/to logical devices. In
this work, it is equivalent to the operating sys-
tem the VL runs on.

I/O Thread Processes the requests for a device signaled in
a request queue by modifying and sending the
request to the I/O Interface.

Logical Device Logical representation of multiple physical de-
vices or of a part of a physical device.

Partition (LPAR) A logical partition (LPAR) is a virtual in-
stance of the computer system identical to the
hardware, but smaller. It can host several
clients, e.g. guests running on a hypervisor
like KVM.

96 Glossary

Physical Device The actual device.

Request Specifies an I/O operation.
Request Queue Stores the requests of the client for a device in

the corresponding request queue.
Request-Completion Queue Pair Each device assigned to a client has a Request-

Completion queue pair. If a request out of the
request queue completes, the completion is sig-
naled in the corresponding completion queue.

Virtual Device Virtual representation of a logical device.
VL Virtualization Layer for I/O. Responsible for

delivering requests from the clients’ virtual de-
vices to the physical devices and signaling the
completion of these operations back to the
client.

A. Measurements

The following contains detailed measurement and simulation results used for the
experiments and the model calibration as well as simulation results of the evaluation
chapter.

1 2 4 8 16 32 64 128 256
4KB READ 6219 11766 23759 36815 39205 43297 46649 47539 47416

16KB READ 4707 8343 17091 28145 34584 36258 38493 39383 39518
64KB READ 2184 3424 6336 9605 11842 11622 11715 11780 11911

256KB READ 656 945 1886 1930 2824 2784 2929 3013 3053
1024KB READ 223 263 511 502 666 646 757 763 771

4KB READ, 2CPU 6327 11891 23905 42010 57052 68561 81891 87891 89230
16KB READ, 2CPU 4767 8899 17225 29958 49423 62205 62210 71338 69919
64KB READ, 2CPU 2324 3640 7079 11909 15709 18470 18774 18854 18789

256KB READ, 2CPU 706 912 2087 3244 3908 3984 3922 4002 4166
4KB WRITE 3276 6236 12736 23484 34262 35618 35254 35375 34487

16KB WRITE 2286 4483 8941 15717 24403 23965 24013 23450 23700
64KB WRITE 1130 2233 4496 7565 9847 9688 9574 9564 9553

256KB WRITE 498 914 1835 2613 2863 2874 2870 2902 2863
1024KB WRITE 175 233 480 723 714 721 710 712 723

4KB, 60/40% R/W Mix 3947 7725 13734 21983 33422 40927 45437 46857 46514
16KB, 60/40% R/W Mix 2887 5621 10009 18754 24277 34110 39618 40347 41150
64KB, 60/40% R/W Mix 1570 2462 4511 6497 9477 10635 12030 12465 13099

256KB, 60/40% R/W Mix 455 690 1235 1926 2208 3027 3146 3346 3332

Request size/type
Request producers

Table A.1: Throughput measurements for different request sizes and types under
varying load

98 A. Measurements

1 User 1 User 256 Users 256 Users
1 CPU 2 CPUs 1 CPU 2 CPUs

4KB READ 6219 6327 1.02 47416 89230 1.88
16KB READ 4707 4767 1.01 39518 69919 1.77
64KB READ 2184 2324 1.06 11911 18789 1.58

256KB READ 656 706 1.08 3053 4166 1.36

Request Relative
Deviation

Relative
DeviationSize/Type

Table A.2: Absolute throughput and relative deviation (2CPUs/1CPU) for lit-
tle/high load (1/256 request producer(s))

Initial Throughput
Type Size Measured Simulated Measured Simulated

READ

4 6219 6049 170 2.73% 47416 48706 -1290 2.72%
16 4707 4539 168 3.57% 39518 37879 1639 4.15%
32 3580 3372 208 5.81% 22530 23196 -666 2.96%
64 2184 2183 1 0.05% 11911 12889 -978 8.21%

256 656 688 -32 4.88% 3053 3125 -72 2.36%
1024 223 184 39 17.49% 771 820 -49 6.36%

WRITE

4 3276 3628 -352 10.74% 34487 36355 -1868 5.42%
16 2286 2384 -98 4.29% 23700 22906 794 3.35%
32 1690 1636 54 3.20% 15574 15338 236 1.52%
64 1130 1221 -91 8.05% 9553 9144 409 4.28%

256 498 543 -45 9.04% 2863 2593 270 9.43%
1024 175 168 7 4.00% 723 717 6 0.83%

Request Maximum Throughput
Abs. Error Rel. Error Abs. Error Rel. Error

Table A.3: Absolute and relative errors for initial and maximum throughput of
measurements and simulation for the final configured model

1 2 4 8 16 32 64 128 256
688 1204 2090 2913 3192 3275 3262 3244 3227
901 1490 2617 3151 3261 3281 3270 3232 3215
556 980 1832 2885 3082 3254 3251 3260 3228
732 1344 2355 3930 4451 4553 4556 4577 4545
650 1066 1811 2286 2527 2556 2514 2484 2477

Resource demand setup Request producers

as configured
30% less storage hardware delay

30% more storage hardware delay
30% less I/O interface CPU demand

30% more I/O interface CPU demand

Table A.4: Simulation throughput results for different resource demand settings

R/W Mix

4 3947 4801 -854 21.64% 46.514 42.615 3899 8.38%
16 2887 3370 -483 16.73% 41.150 30.118 11032 26.81%
64 1570 1660 -90 5.73% 13.099 11.125 1974 15.07%

256 455 624 -169 37.14% 3.332 3.028 304 9.12%

Initial Throughput Maximum Throughput
Req. Size Measured Simulated Abs Error Rel. Error Measured Simulated Abs Error Rel. Error

Table A.5: Absolute and relative errors for initial and maximum throughput of
measurements and simulation for READ/WRITE mix

Initial TP Maximum TP

4 6327 6454 2.01% 6219 1.71% 89230 96229 7.84% 90214 1.10%
16 4767 4890 2.58% 4691 1.59% 69919 75902 8.56% 71404 2.12%
64 2324 2383 2.54% 2204 5.16% 18789 25970 38.22% 24441 30.08%

256 706 768 8.78% 690 2.27% 4166 6485 55.66% 6218 49.26%

READ request
size Measured 2*Proc.Rate Rel. Error 2 Cores Rel. Error Measured 2*Proc.Rate Rel. Error 2 Cores Rel. Error

Table A.6: Absolute and relative errors for initial and maximum throughput of
measurements with 2 CPUs and simulation with doubled CPU processing rate and
exact scheduler with two cores.

99

1 2 4 8 16 32 64 128 256
256KB READ 1 1 3208 3208 3208 3208 3208 3208 3208 3208 3208

3185 3185 3185 3185 3185 3185 3185 3185 3185
256KB READ 256 10 3208 3218 3236 3272 3290 3290 3290 3290 3290

3185 3174 3152 3112 3090 3090 3090 3090 3090
256KB READ 10 3208 3218 3236 3272 3290 3290 3290 3290 3290

3185 3174 3152 3112 3090 3090 3090 3090 3090
256KB READ 256 100 3208 3218 3236 3272 3344 3488 3776 4100 4100

3185 3174 3152 3112 3024 2848 2517 2200 2200
4KB WRITE 256 1 26757 26757 26757 26757 26757 26757 26757 26757 26757

26749 26749 26749 26749 26749 26749 26749 26749 26749
4KB WRITE 256 10 26757 26757 26757 26760 26760 26760 26760 26760 26760

26749 26748 26745 26736 26740 26740 26740 26740 26740

Throughput (requests/second) for x request producers
ReqSize/Type Queues I/OThreads

= nr. of req.
producers

Table A.7: Amount of issued and completed requests of the asynchronous model for
different parameter settings

100 A. Measurements

Bibliography

[AA06] Keith Adams and Ole Agesen. A comparison of software and hardware
techniques for x86 virtualization. In Proceedings of the 12th interna-
tional conference on Architectural support for programming languages
and operating systems, pages 2–13, New York, NY, USA, 2006. ACM
Press.

[And08] Roman Andrej. Evaluation des Vorhersageverfahrens ”Palladio” im
industriellen Kontext der CAS Software AG, 2008. Diploma thesis.

[BCR94] Victor R. Basili, Gianluigi Caldiera, and H. Dieter Rombach. The
Goal Question Metric approach. In Encyclopedia of Software Engi-
neering. Wiley, 1994.

[Bec08] Steffen Becker. Coupled Model Transformations for QoS Enabled
Component-Based Software Design. PhD thesis, University of Old-
enburg, 2008.

[BKR07] Steffen Becker, Heiko Koziolek, and Ralf Reussner. Model-based per-
formance prediction with the Palladio Component Model. In WOSP
’07: Proceedings of the 6th international workshop on Software and
performance, pages 54–65, New York, NY, USA, 2007. ACM.

[BKR09] Steffen Becker, Heiko Koziolek, and Ralf Reussner. The Palladio
Component Model for model-driven performance prediction. Journal
of Systems and Software, 82:3–22, 2009.

[CD00] John Cheesman and John Daniels. UML Components: A Simple
Process for Specifying Component-Based Software (The Component
Software Series). Addison- Wesley Professional, 2000.

[Dal08] Peter Dalgaard. Introductory Statistics with R. Springer, 2nd edition,
2008. ISBN 978-0-387-79053-4.

[dev09] IBM developerWorks. Fibre Channel Protocol (FCP) statistics
(SLES9 / SLES10). http://www.ibm.com/developerworks/linux/
linux390/perf/tuning how dasd scsiIO.html, 2009. Last changed: 2.
April, 2009.

[ea07] Parziale et al. Introduction to the new mainframe: z/VM Basics. IBM
redbooks, 2007.

http://www.ibm.com/developerworks/linux/linux390/perf/tuning_how_dasd_scsiIO.html
http://www.ibm.com/developerworks/linux/linux390/perf/tuning_how_dasd_scsiIO.html

102 Bibliography

[(EM09] Eclipse Modeling Framework Project (EMF). Homepage of the EMF
Project. http://www.eclipse.org/modeling/emf/, 2009. Last changed:
2. April, 2009.

[Fri07] Holger Friedrich. Modellierung nebenlaeufiger, komponentenbasierter
Software-Systeme mit Entwurfsmustern, 2007. Diploma thesis.

[Gre05] Wolfram Greis. Die IBM-Mainframe-Architektur. Open Source Press,
2005.

[Hap08] Jens Happe. Predicting Software Performance in Symmetric Multi-
core and Multiprocessor Environments. PhD thesis, University of Old-
enburg, 2008. To be published.

[HGvdMH04] M. Harkema, B. M. M. Gijsen, R. D. van der Mei, and Y. Hoekstra.
Middleware performance: A quantitative modeling approach. In Sym-
posium on Performance Evaluation of Computer Telecommunication
Systems, pages 733–742, 2004.

[HKW+07] Sebastian Herold, Holger Klus, Yannick Welsch, Constanze Deit-
ers, Andreas Rausch, Ralf Reussner, Klaus Krogmann, Heiko Kozi-
olek, Raffaela Mirandola, Benjamin Hummel, Michael Meisinger, and
Christian Pfaller. CoCoME - the Common Component Modeling Ex-
ample. In CoCoME, pages 16–53, 2007.

[Jai91] Raj Jain. The Art of Computer Systems Performance Analysis: tech-
niques for experimental design, measurement, simulation, and model-
ing. Wiley, 1991.

[KB07] Klaus Krogmann and Steffen Becker. A Case Study on Model-Driven
and Conventional Software Development: The Palladio Editor. In
Software Engineering 2007 - Beiträge zu den Workshops, volume
106 of Lecture Notes in Informatics, pages 169–176. Series of the
Gesellschaft für Informatik (GI), 2007.

[Koz08] Heiko Koziolek. Parameter Dependencies for Reusable Performance
Specifications of Software Components. PhD thesis, University of Old-
enburg, 2008.

[KR08] Klaus Krogmann and Ralf H. Reussner. The Common Component
Modeling Example, volume 5153 of Lecture Notes in Computer Sci-
ence, chapter Palladio: Prediction of Performance Properties, pages
297–326. Springer-Verlag Berlin Heidelberg, 2008.

[Kro06] Klaus Krogmann. Entwicklung und Transformation eines EMF-
Modells des Palladio Komponenten-Meta-Modells. Master’s thesis,
University of Oldenburg, Germany, 2006.

[KS08] Paul A. Karger and David R. Safford. I/O for virtual machine mon-
itors: Security and performance issues. IEEE Security and Privacy,
6(5):16–23, 2008.

http://www.eclipse.org/modeling/emf/

Bibliography 103

[LHAP06] Jiuxing Liu, Wei Huang, Bulent Abali, and Dhabaleswar K. Panda.
High performance VMM-bypass I/O in virtual machines. In ATEC
’06: Proceedings of the annual conference on USENIX ’06 Annual
Technical Conference, page 3, Berkeley, CA, USA, 2006. USENIX
Association.

[Lit61] John D. C. Little. A Proof for the Queuing Formula: L = λW .
Operations Research, 9:383–387, 1961.

[Men05] Daniel A. Menascé. Virtualization: Concepts, applications, and per-
formance modeling. In Int. CMG Conference, pages 407–414, 2005.

[PGGG06] U. Praphamontripong, S. Gokhale, Aniruddha Gokhale, and Jeff
Gray. Performance analysis of an asynchronous web server. Com-
puter Software and Applications Conference, Annual International,
2:22–28, 2006.

[PGGG07] U. Praphamontripong, S. Gokhale, Aniruddha Gokhale, and Jeff
Gray. Performance analysis of a middleware demultiplexing pattern.
In HICSS ’07: Proceedings of the 40th Annual Hawaii International
Conference on System Sciences, page 287a, Washington, DC, USA,
2007. IEEE Computer Society.

[RBK+07] Ralf H. Reussner, Steffen Becker, Heiko Koziolek, Jens Happe,
Michael Kuperberg, and Klaus Krogmann. The Palladio Component
Model. Interner Bericht 2007-21, Universität Karlsruhe (TH), 2007.

[Reu01] Ralf H. Reussner. Parametrisierte Verträge zur Protokolladaption bei
Software-Komponenten. Logos Verlag, Berlin, 2001.

[RG05] M. Rosenblum and T. Garfinkel. Virtual machine monitors: current
technology and future trends. Computer, 38(5):39–47, 2005.

[RP00] Sridhar Ramesh and Harry G. Perros. A multilayer client-server
queueing network model with synchronous and asynchronous mes-
sages. IEEE Trans. Softw. Eng., 26(11):1086–1100, 2000.

[RS07] Himanshu Raj and Karsten Schwan. High performance and scalable
I/O virtualization via self-virtualized devices. In HPDC ’07: Pro-
ceedings of the 16th international symposium on High performance
distributed computing, pages 179–188, New York, NY, USA, 2007.
ACM.

[SHB07] Douglas Schmidt, Kevlin Henney, and Frank Buschmann. Pattern-
Oriented Software Architecture: A Pattern Language for Distributed
Computing. Wiley, 2007.

[SWHB06] Bianca Schroeder, Adam Wierman, and Mor Harchol-Balter. Open
versus closed: a cautionary tale. In NSDI’06: Proceedings of the 3rd
conference on Networked Systems Design & Implementation, pages
18–18, Berkeley, CA, USA, 2006. USENIX Association.

104 Bibliography

[Ufl05] Matthias Uflacker. Design of an editor for the model-driven con-
struction of component based software architectures. Master’s thesis,
University of Oldenburg, 2005.

[VNOS08] Geoffroy Vallee, Thomas Naughton, Christian Engelmannand Hong
Ong, and Stephen L. Scott. System-level virtualization for high per-
formance computing. In PDP ’08: Proceedings of the 16th Euromi-
cro Conference on Parallel, Distributed and Network-Based Process-
ing (PDP 2008), pages 636–643, Washington, DC, USA, 2008. IEEE
Computer Society.

[WJW07] Jinpeng Wei, Jeffrey R. Jackson, and John A. Wiegert. Towards
Scalable and High Performance I/O virtualization - A Case Study. In
HPCC, pages 586–598, 2007.

[WRJ07] J. Wiegert, G. Regnier, and J. Jackson. Challenges for scalable net-
working in a virtualized server. Computer Communications and Net-
works, 2007. ICCCN 2007. Proceedings of 16th International Confer-
ence on, pages 179–184, Aug. 2007.

	Contents
	1 Introduction
	1.1 Goal
	1.2 Outline of the Thesis

	2 Foundations
	2.1 Virtualization in general
	2.1.1 CPU virtualization
	2.1.2 Memory virtualization

	2.2 I/O virtualization in particular
	2.3 Outline of the System z I/O architecture
	2.4 Palladio Component Model
	2.4.1 PCM developer roles and their artifacts
	2.4.2 Components, interfaces and datatypes
	2.4.3 Resource demanding SEFFs
	2.4.4 System
	2.4.5 Allocation
	2.4.6 Usage
	2.4.7 Random variables and special functions

	2.5 The Goal/Question/Metric approach
	2.6 Experiment-based derivation of software performance-models
	2.7 Summary

	3 Related Work
	3.1 I/O virtualization performance analysis
	3.2 PCM and performance modeling
	3.2.1 PCM and CoCoME
	3.2.2 PCM in industrial context
	3.2.3 PCM and concurrent, message-oriented communication

	3.3 Performance modeling using (layered) queuing networks
	3.4 Summary

	4 Virtualization layer architecture
	4.1 Execution environment
	4.2 Virtualization layer internals
	4.2.1 Synchronous request handling
	4.2.1.1 Static view
	4.2.1.2 Dynamic view

	4.2.2 Asynchronous request handling
	4.2.2.1 Static view
	4.2.2.2 Dynamic view

	4.3 Performance relevant parameters and system behavior
	4.3.1 Queue access and blocking
	4.3.2 Performance parameters
	4.3.3 Variable parameters
	4.3.4 Configurable Parameters

	5 Model implementation
	5.1 Limitations and Assumptions
	5.1.1 Challenges, limitations and solution patterns
	5.1.1.1 Limitations of PCM
	5.1.1.2 Technical limitations

	5.1.2 Assumptions

	5.2 The model implementation
	5.2.1 Model overview
	5.2.2 Model details
	5.2.2.1 Data-type request
	5.2.2.2 RequestGenerator component
	5.2.2.3 I/O thread components
	5.2.2.4 Capacity controller
	5.2.2.5 I/O interface and storage hardware
	5.2.2.6 Storage hardware
	5.2.2.7 Completion thread
	5.2.2.8 Resource environment and allocation model
	5.2.2.9 Usage model

	5.2.3 Component parameterization
	5.2.3.1 RequestGenerator
	5.2.3.2 IoThread
	5.2.3.3 CapacityController
	5.2.3.4 IoInterface and StorageHardware
	5.2.3.5 Completion thread blocking

	5.3 Summary

	6 Synchronous model calibration and validation
	6.1 Experiments - Overview
	6.1.1 The Goal
	6.1.2 Motivation of the questions
	6.1.3 Experiment design

	6.2 Experiment results - answering the questions
	6.2.1 Question RequestSize
	6.2.2 Question RequestType
	6.2.3 Question CPU
	6.2.4 Discussion

	6.3 Calibration of the performance model skeleton
	6.3.1 I/O thread resource demands
	6.3.2 I/O subsystem resource demands
	6.3.2.1 Measurement results and interpretation
	6.3.2.2 Calibrating the StorageHardware resource demands
	6.3.2.3 Calibrating the IoInterface resource demands

	6.3.3 Final calibration

	6.4 Model validation
	6.4.1 READ/WRITE mixture
	6.4.2 CPU power

	7 Evaluation
	7.1 Asynchronous model setup
	7.2 Parameter influences
	7.3 Synchronous and asynchronous model comparison
	7.4 Discussion

	8 Summary and Conclusions
	Glossary
	A Measurements
	Bibliography

