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Abstract—Platooning is a promising approach for optimizing
the usage of the existing road infrastructure by driving in convoys
with low inter-vehicle distances. Platooning coordination fosters
advantages like an increased road throughput and reduced fuel
consumption. Diverse so-called platooning coordination strategies
exist in the literature and according to the no-free-lunch theorem,
each has individual assets and drawbacks, making them best
applicable for different traffic situations.

This paper proposes a layered system model and a feedback
loop for meta-optimization of self-adaptive systems. We apply our
concept on platooning coordination as a case study and provide
an experience report. The platooning coordination strategy is
exchangeable and its input parameters are tuned to fit the current
traffic situation. Our evaluation results show that the choice
of the platooning coordination strategy is situation-dependent.
Further, our meta-optimization of the input parameters of these
strategies for the traffic situation is favorable compared to a
static approach.

Index Terms—Situational Awareness, Meta-Optimization, Pla-
tooning Coordination

I. INTRODUCTION

The amount of traffic on the roads increases every year; for
example, in Germany, an increase in the total vehicle stock by
approximately one million vehicles was observed from 2018
to 2019 [1]. Authorities try to tackle this issue by expanding
the road network, which leads to increased costs [2]. Due to
the advancement in autonomous driving, this infrastructure
demand can be reduced through platooning, which is the
ability of vehicles to drive at very low inter-vehicle distances
enabled by communication [3]. Utilizing platooning, the road
throughput [4] and safety [3] increases while driving.

While the feasibility of platooning is shown in diverse
projects, the issue of platooning coordination still exists.
Platooning coordination is the process of assigning vehicles to
platoons and controlling the platooning activities. The platoon-
ing coordination problem is a multi-objective problem with
multiple dimensions since objectives of the drivers, aspects
of the platoon and global traffic need to be considered [5] as
well as fairness between participants must be guaranteed as
the leading vehicle benefits less from slipstream effects [6].

Following the observation from [7] that the choice of the
algorithm for adaptation planning in self-adaptive systems [8],
[9], is dependent on the situation of the system, we claim
that the choice of the platooning coordination strategy also is
situation-dependent. However, it will not be feasible to define
the best-fitting strategy for each traffic situation determined by
various parameters such as the number of vehicles, the ratio of
trucks versus cars, or the number of lanes [10]. Accordingly,
we propose to define a matching of strategies for everyday
traffic situations and apply a meta-optimization of the strat-
egy’s parameters to fit them to the specific traffic situation. We
analyze different strategies and optimization algorithms under
varying traffic situations to show the usefulness of combining a
situation-dependent choice of the adaptation planning strategy
with a meta-optimization of the parameters. Following this
adaptation approach, this work improves the platooning coor-
dination process by adapting an existing system via selecting a
platooning coordination strategy and optimizing the strategy’s
configuration based on the current traffic situation. Hence, our
contribution is threefold:

• We define a 3-layered system model for meta-
optimization in self-adaptive systems using the example
domain of platooning coordination.

• By analyzing a set of platooning coordination strategies
and optimizing them, we provide a multi-objective meta-
optimized platooning coordination process.

• We propose a customizable and reusable testbed for eval-
uating meta-optimized adaptation planning algorithms.

The remainder of the paper is structured as follows. Sec-
tion II discusses related works. Section III proposes our system
model, our feedback loop adaptation and use case specific de-
tails. Section IV defines details on platooning coordination and
Section V presents used optimization algorithms. Section VI
presents our reusable evaluation testbed before Section VII
summarizes our evaluation results and discusses threats to
validity. Section VIII discusses upcoming challenges regarding
our vision and Section IX concludes the paper.



II. RELATED WORK

Neumüller et al. [11] present a parameter meta-optimization
implementation for the heuristic optimization environment
HeuristicLab Hive. Feurer et al. [12] improve the Sequential
Model-based Bayesian Optimization (SMBO) used for tuning
the parameters of machine learning algorithms integrating
meta-learning. Chis et al. [13] analyze the design space explo-
ration process using the framework for automatic design space
exploration (FADSE) to compare the performance of various
multi-objective meta-heuristics. Similarly, Vinctan et al. [14]
address design space exploration by implementing a meta-
optimization layer for the FADSE tool.

According to Lewis et al. [15], meta-self-awareness “leads
to the ability to model and reason about changing trade-
offs during the system’s lifetime”. Gerostathopoulos et al. [16]
propose the concept of meta-adaption for cyber-physical sys-
tems, which improves the adaption of a cyber-physical sys-
tem by generating new self-adaption strategies at runtime.
Kinneer et al. [17] propose an approach based on a genetic
algorithm for reusing historical knowledge of existing plans
for adaptation planning.

A recent study from Calinescu et al. [18] has shown that
situation-awareness is the key driver for developing self-
adaptive systems and, hence, is still an important research
topic with many open research challenges. Fredericks et al. [7]
propose a concept that enables a system to identify the situa-
tion it is in and detect the optimal system configuration for this
situation at runtime. Hardes et al. [19] address communication
issues in urban platooning scenarios by utilizing the concept
of situation-awareness. Porter et al. [20] propose a software
framework that learns optimal system assemblies in emergent
software systems. Kang et al. [21] analyze which history
length and sensor range yields the best results on long-term
situational awareness.

This work delineates from the presented related work as fol-
lows: The first presented meta-optimization approaches mainly
focus on optimizing machine learning or design space explo-
ration techniques. In contrast, we apply meta-optimization on
adaptation planning strategies for adaptive systems. Further,
the meta-self-awareness approaches focus on the generation of
new adaptation strategies or the use of historical knowledge to
plan adaptations at runtime while we depend on the existing
strategies and aim at optimizing the input parameters of these
strategies. The approaches on situational awareness inspired
us to use an optimization algorithm for situation-dependent
parameter optimization. Hence, we implement optimization
approaches and compare their performance in our use case.
Finally, to the best of our knowledge, no other work proposes
meta-optimization of platooning coordination what makes our
work a unique contribution to the community.

III. SYSTEM MODEL

We present our system model in terms of a layered architec-
ture following the proposed three layer architecture of Kramer
and Magee [22] to address maintainability and separation of
concerns principles. Additionally, we decided for this layered
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Fig. 1. Three-layered system model consisting of a simulation layer, a
platooning coordination layer, and a layer for meta-optimization.

architecture to pay attention to different scopes and time
horizons of the existing components. Further, we propose a
feedback loop adaptation and discuss the relevant platooning
coordination details.

A. Layered Architecture

Figure 1 depicts our approach as a three-layer architecture.
The Simulation forms the lowest layer of our architecture and
provides the basis for vehicle traffic and platooning. This layer
simulates aspects like traffic volumes, vehicle types, road con-
ditions, and tempo limits using SUMO [23]. Plexe [24] and the
Python Plexe API [25] provide the platooning functionality,
that is, the execution of CREATE, JOIN, MERGE, SPLIT,
and LEAVE tasks of vehicles. In this paper, we assume that
a vehicle travels within the assigned platoon until it reaches
its destination and we prohibit platoon assignment changes
during the journey.

The second layer, called Platooning Coordination, contains
a platooning coordination system and is responsible for execut-
ing the platooning coordination strategy and determining the
platooning actions for each vehicle, that is, the decision which
vehicle should CREATE, JOIN or LEAVE which platoon. A
platooning coordination strategy makes this decision, which
typically has several input parameters that can be tuned to
optimize it for the current situation.

Finally, the Meta-Optimization layer contains a decision
logic component. It incorporates a database of available pla-
tooning coordination strategies and optimization algorithms.
For a specific platooning coordination strategy, the decision
logic executes an optimization algorithm that tunes the accord-
ing platooning coordination strategy’s input parameters. After
each iteration of the optimization algorithm, the platooning co-
ordination strategy’s tuned input parameters are passed to the
Platooning Coordination layer and a simulation is executed to
retrieve the resulting metrics for each set of input parameters.

B. Feedback Loop Adaptation

In addition to the already provided layered system model,
we also present the process of our approach based on the



Plan
(Param tuning, selection of
PC strategy)

Analyze
(Performance of PC

strategies)

Monitor
(Vehicles, platoons,
objective metrics )

Execute
(Change of input

parameters and/or
PC strategy)

Knowledge
(PC strategies, tunable parameters,
historyofdecision and performance)

Fig. 2. Process of our approach depicted as MAPE-K Adaptation Loop as
introduced in [26] (PC = platooning coordination).

MAPE-K adaptation loop [26] as depicted in Figure 2. In
the Monitor phase, all use-case specific data is gathered, such
as the number and properties of vehicles and platoons and
their assignment. Further, all required details to calculate the
optimization objectives—as explained later—are gathered and
stored in the knowledge base. The Analyze phase uses this
data to calculate the optimization objectives. These objectives
are used to assess the performance of the current platooning
coordination strategy. Based on this analysis, the Plan phase
performs optimization tasks to tune the platooning coordina-
tion strategy’s input parameters. Additionally, it is possible to
change the platooning coordination strategy if another strategy
better fits the current situation. Finally, the Execute phase
uses these decisions and changes the platooning coordination
strategy or its input parameters if required. The Knowledge
component stores all relevant information of each loop, such
as the monitored vehicle and platoon statistics, the analyzed
performance, and the made decisions. This information can
be used in future cycles to find better decisions on strategy
selection and parameter tuning.

C. Use Case Details

Scenario Parameters. The maximum platoon size specifies
the number of vehicles that are allowed to join a platoon. The
car spawn rate defines the number of cars starting their route
per hour while the truck spawn rate specifies the values for
heavy-duty vehicles. The platooning percentage controls how
many vehicles are participating in the platooning process. The
parameters regarding the platooning maneuvers overtaking
and join define whether platoons can overtake vehicles in a
scenario and whether a vehicle can only join a platoon from
the back or also at the front. Furthermore, the number of lanes
defines the road’s size. Finally, the speed limit affects the traffic
flow by setting a maximum speed for every vehicle on the
road. We select this set of scenario parameters since these
form the most common parameter types for the strategies in
the platooning coordination research.

Optimization Objectives. As target metrics for the opti-
mization algorithms, we define four objectives with according
metrics to analyze the currently selected input parameters’
performance. All metrics are normalized to a range between
zero and one. The throughput metric (φ) analyzes the number
of vehicles arriving per hour compared to the number of
vehicles starting per hour and covers platooning goals for

traffic flow and road capacity:

φ =
# veh. arriving per hour
# veh. starting per hour

(1)

The time loss metric (δ) calculates the average amount of
time in seconds all vehicles lost on the road compared to
their expected travel time (tt). Therefore, we calculate the
difference between actual and expected travel time, summarize
this difference over all vehicles and divide it by the number of
vehicles. Afterwards, this value is normalized by the average
actual travel time of all vehicles. This metric is relevant for
the velocity and time goals of platooning and vehicle-specific
objectives for platooning coordination:

δ =
avg. tt−

∑
(actual tt− expected tt)/# vehicles

avg. tt
(2)

The platoon utilization metric (ρ) measures the average pla-
toon size, that is the average number of vehicles in the
platoons, compared to the maximum platoon size. Hence,
it shows the mean utilization of the existing platoons with
regards to the possible maximum platoon size. The aim of
the optimization technique will be to maximize this value.
This metric addresses platoon-specific goals of platooning
coordination:

ρ =
avg. platoon size
max. platoon size

(3)

Finally, the platoon time metric (τ ) compares the time in sec-
onds driven in a platoon to the overall travel time. This metric
addresses the time and user comfort metrics of platooning:

τ =
avg. time in platoon

avg. travel time
(4)

IV. PLATOONING COORDINATION

This section introduces the platooning coordination strate-
gies with input parameters and their impact on these strategies.

A. Strategies

The platooning coordination strategy is responsible for de-
ciding which platoon a vehicle should join [27]. This decision
is based on driver preferences like the desired velocity, the
vehicle’s current state, and the strategy’s input parameters.
While these strategies form state-of-the-art in platooning co-
ordination and are applicable in many scenarios, we propose
that they perform differently well in varying scenarios and an
additional parameter optimization can tune their performance
to a specific situation.

Best velocity. This strategy defines the best matching pla-
toon by calculating the velocity difference between platoon
and vehicle and selecting the platoon with the lowest positive
speed delta. This can lead to matched platoons that are far
away and we introduce two input parameters—a range for
searching behind (search dist. back) and one for searching in
front (search dist. front) of the vehicle.

Closest distance. The closest distance strategy analyzes the
distance between vehicle and possible platoons and selects
the platoon with the lowest longitudinal distance. This way,



vehicles can join close platoons very fast and thereby maxi-
mize their time in a platoon. We define the input parameter
maximum speed difference that trades-off the differing desired
velocity of the vehicle and planned velocity of the platoon.

Closest distance and lane. This strategy not only cal-
culates the longitudinal distance of vehicle and platoon but
incorporates the number of lanes between them. Therefore,
this strategy uses the lane-distance ratio (ldr) as an additional
input parameter. Equation 5 summarizes the calculation of the
distance with regards to the longitudinal distance (long dist),
the lane of the vehicle (v lane) and of the platoon (p lane).

dist = long dist+ ldr ∗ | v lane− p lane | (5)

B. Input Parameters

Table I describes value ranges and default values for all
input parameters. We set the value ranges for the search
distance front and search distance back in meters to [200, 1000]
and [0, 500], respectively. We define the default values as the
mean values of the ranges: 600 and 250, respectively. The
max speed difference parameter can take km/h values in the
range of [10, 60] and we set the default value to be 35. The
lane-distance ratio parameter can accept values in the range
of [0, 500] and we define the default value to be 250. We
further introduce parameters that apply to all strategies. The
advertising duration describes the time (in seconds) a platoon
stays on the lane it was created to remain joinable for all other
vehicles. This parameter can accept values in the range of
[0, 20] and we set the default value for each strategy to be 10.
The last set of parameters are the speed thresholds for different
lanes. We specify speed thresholds for at most four lanes in this
work, but transferring the concept to larger road segments is
also possible. Based on each platoon’s velocity, the platooning
coordination strategy determines the starting lane for each
platoon to create a pre-sorted road order. We define the ranges
for the second, third, and the fourth lane to be [100, 140],
[110, 150], and [120, 160], respectively, and set the default
values to be 100, 130, and 160, respectively. We decide to use
these parameters to reserve the first lane for comparably slow
truck vehicles driving below 100km/h and evenly distributed
the speed ranges up to the maximum possible speed for
platoons of 160km/h to the other lanes. If a platoon does

TABLE I
VALUE RANGES AND DEFAULT VALUES FOR ALL INPUT PARAMETERS.

Range Default value

Search distance front (m) [200, 1000] 600

Search distance back (m) [0, 500] 250

Max speed difference (km/h) [10, 60] 35

Lane-distance ratio (m) [0, 500] 250

Advertising duration (s) [0, 20] 10

Speed threshold lane 2 (km/h) [100, 140] 100

Speed threshold lane 3 (km/h) [110, 150] 130

Speed threshold lane 4 (km/h) [120, 160] 160

not fit into the defined ranges per lane, a platoon spawns by
default at the first lane and therefore, no range is given for it.
Each input range is defined as integer, hence, assuming that
no discretization is performed, the input configuration space
is 800 ∗ 500 ∗ 50 ∗ 500 ∗ 20 ∗ 40 ∗ 40 ∗ 40 = 1.28 ∗ 1016.

V. OPTIMIZATION ALGORITHMS

We now describe the used optimization algorithms to adapt
the coordination strategies by selecting their parameters.

A. NSGA-II

Since the non-dominated sorting genetic algorithm II [28]
is a popular multi-objective optimization algorithm, we use
the Python-based inspyred framework [29] due to the provided
configuration possibilities. The tournament selection parameter
specifies the number of solutions as parent elements for the
next generation; we set this parameter to two. The algorithm
uses the selected parents to generate the children by applying
crossover and a mutation probability of 10%. As additional
configuration parameters, the algorithm requires the population
size and number of generations whose definition is postponed
to the evaluation section.

B. Novelty Search

Inspired by Lehman et al. [30] we extend the NSGA-II
algorithm by integrating novelty search. When evaluating the
new solution’s score, the added novelty function calculates
the distance between the new solution and all solutions in
the population and normalizes it into the novelty score (ns).
This is used to calculate the output vector, i.e., the score
value for each objective of all solutions, as proposed by
Mouret et al. [31]. Equation 6 summarizes the calculation of
the overall score. It adds the fitness value (fi) of each objective
i that is weighted using the novelty weight (w) to the weighted
novelty score (ns). We examine the definition of the novelty
weight (w) value experimentally throughout our evaluation.

si = fi ∗ (1− w) + ns ∗ w (6)

The result of this process is a score vector for each solution
containing a score for each objective. Afterward, the algorithm
updates the novelty archive inspired by Fredericks et al. [7].
We use a fixed maximum size of 20% of the total evaluations
done by the optimization algorithm. The algorithm adds all
solutions of the new generation to the novelty archive, sorts it
by the novelty score of the solutions, and cuts off the worst
solutions until the archive’s maximum size is met. This novelty
archive is then used for the next generation of solutions.

C. Bayesian Optimization

Bayesian Optimization is a popular single-objective opti-
mization algorithm implemented in the scikit-optimize frame-
work for Python [32] which we use in this work. We extend it
to handle multi-objective problem statements by implementing
a hypervolume [33] and a Pareto dominance [34] approach
to merge the multi-objective score function into one single
value. The hypervolume approach uses a reference point with



a higher value than any objective value and compares the
solutions to this reference point. Since all objective values are
normalized to a range from zero to one, we specify the value
1.1 for every objective as the reference point. We decided
to use this value as it is outside of the normalization range
of the objective values. Still, we could have chosen any value
above 1.0 as this has no impact on the optimization. Afterward,
the algorithm uses the hypervolume implementation by Simon
Wessing [35] and the given reference point to calculate the
score of the new solution. The Pareto dominance approach
rates the new solution based on the percentage of solu-
tions of the current Pareto front not dominating it. Utilizing
these black-box function, the Bayesian optimization procedure
builds its model based on a single value and tries to find bet-
ter solutions sequentially. The algorithm needs configuration
parameters for the number of random initialization points and
the number of evaluations of the black-box function, which
are experimentally examined in the evaluation.

D. Simulated Annealing

As fourth optimization algorithm, we use Simulated An-
nealing [36] in this work. Similar to Bayesian Optimization,
Simulated Annealing supports only one return value from
the score function as well. Therefore, we again apply the
hypervolume and Pareto dominance approaches as already
explained for the Bayesian Optimization in Section V-C to
address multi-objectiveness. Simulated Annealing requires the
definition of some parameters. We set the temperature reduc-
tion factor to 0.5, which leads to halving the temperature after
each iteration. Further, the initial temperature is determined
at runtime by calculating four randomly chosen solutions’
mean score. According to Rao [36], the number of iterations
should be set within a range of 50 to 100 iterations. This value
and the maximum number of evaluations are again examined
experimentally in the evaluation section.

VI. EVALUATION TESTBED

This section introduces our third contribution, the design
of a customizable and reusable testbed for evaluating meta-
optimized adaptation planning algorithms. We propose this
testbed on a conceptual level than can be applied to a di-
verse set of meta-optimized adaptation planning algorithms.
However, since the main components, that are the Controller,
Simulation, Optimization, and Analysis heavily depend on
the use case we do not provide an open source software
framework. Figure 3 summarizes our evaluation approach.

Controller: The controller first defines the scenario param-
eters and the strategy to be used and forwards this information
to the Simulation. We define four base scenarios representing
general traffic situations. Table III describes our scenarios. In
the following, we describe the different parameters. Platooning
percentage captures the number of vehicles that are interested
in platooning. We defined the vehicle spawn rates using
real traffic information—provided by the Federal Highway
Research Institute [37] —from the simulated road segment
of the German motorway A8, ranging from the motorway

loop

Controller Simulation Optimization Analysis

Scenario Parameters
Strategy

Input Parameters

Simulation Output

Overall Results

Experiment Summary

Fig. 3. Sequence diagram of the evaluation procedure handled by a Controller
that manages the Simulation, Optimization, and Analysis components.

intersection Stuttgart until the exit ramp Stuttgart-Degerloch.
In 2018, on average 3351 cars and 434 trucks drove on
this road segment per hour; Scenarios 2 and 3 select values
for vehicle spawn rates above the average (but still below
the maximum traffic volume), Scenarios 1 and 4 utilize low
traffic volumes instead. The simulation environment handles
vehicle spawns with the same random seed during all the
simulation runs. Following German traffic laws, we consider
two different speed limits for platoons: the speed limit of
160 km/h creates traffic scenarios with few restrictions for
velocity; alternatively, vehicles can only drive 120 km/h at
maximum. We selected a maximum speed limit of 160 as
high speed platooning is not realistic. This is due to the effect
that the faster a platoon travels, the more difficult it is to
ensure string stability. Further, our experience showed that
vehicles inside the simulation exceed this limit very seldom
even if they are allowed and able to drive faster. Hence,
this speed limit will affect a small amount of vehicles only
and can be considered as driving without restrictions. Further,
we modified the parameters maximum platoon size (5 versus
10 vehicles), platoons can overtake other traffic participants
or not, and—as the simulated highway supports a temporary
release of the hard shoulder—the number of lanes (3 versus 4).
A limit for the number of vehicles in a platoon is reasonable
since the disturbance propagation within the platoon increases
with the platoon size [38]. Table II lists these variations.
As a result, the alteration of the basic scenarios with the
five variations of the mentioned parameters generates twenty
scenarios for the evaluation.

TABLE II
USED VARIATIONS FOR THE BASE SCENARIOS.

Max. platoon size Overtaking Number of lanes

Default values 5 yes 4

Variation 1 5 yes 3

Variation 2 10 yes 4

Variation 3 5 no 4

Variation 4 10 no 3

Simulation: We use SUMO (Simulation of Urban MObil-
ity) [23] for simulating traffic with the extension Plexe [24]



which provides platooning functionality. To coordinate the
platooning operation, we integrate the Platooning Coordination
System (PCS) from [27]. Using the Python-Plexe API [25], the
PCS periodically receives information for each vehicle, such
as current position and velocity. In return, using the currently
specified platooning coordination strategy, the PCS sends
commands—for example, changing velocity or the lane—for
each vehicle to the Python-Plexe for controlling platooning.

Optimization: The optimization step adapts the parameters
of the platooning coordination strategy to the current traffic
situation. The used optimization algorithm is interchangeable
but needs to optimize a black-box multi-objective function
without prior knowledge. We apply NSGA-II [28], Novelty
Search [39], Bayesian optimization [40], and Simulated An-
nealing [41] as optimization techniques (see Section V). All of
these approaches support multiple objectives based on Pareto
fronts [34], the concept of hypervolumes [33], or the domi-
nance rank approach [42]. The input for the black-box function
is a possible configuration of the platooning coordination strat-
egy. A simulation run return metrics representing the fitness of
the function evaluation. The optimization algorithm alternately
evaluates configurations for the function and computes new
configurations. This iterative cycle repeats itself until it reaches
a predefined maximum number of function evaluations.

TABLE III
THE PARAMETER SETTINGS FOR THE FOUR BASE SCENARIOS.

Scen. 1 Scen. 2 Scen. 3 Scen. 4

Platooning percentage 25% 50% 75% 100%

Car spawn rate (car/h) 2680 4021 4021 2680

Truck spawn rate (truck/h) 349 524 524 349

Speed limit (km/h) 120 160 120 160

Analysis: Finally, the Analysis receives log data from the
Simulation and Optimization loop. It analyzes the optimized
strategy’s performance by preprocessing the log data and
calculating the platooning and performance metrics.

VII. EVALUATION

The purpose of the evaluation is two-fold. First, Sec-
tion VII-A describes experiments to motivate (i) situation-
awareness triggering the need to switch the adaptation plan-
ning strategy in the platooning coordination use case as well as
(ii) that different configurations of the same strategy are benefi-
cial depending on the current situation of the environment and
the system itself. In our use case, the range of the parameters
platooning percentage (in percent), number of cars and trucks,
speed limit (80, 90, 100, 110, 120, 130, unlimited), and
number of lanes lead to 100∗10, 000∗1, 500∗6∗5 = 4.5∗1010
different traffic scenarios, i.e., environment situations. As it
will not be possible to identify the best strategy and its
optimal configuration for each specific situation, we claim
that it is beneficial to have a mapping of some everyday
situations to adaptation planning strategies and then optimize
the configuration of the strategy. Accordingly, Section VII-B

shows that the system should not only switch the adaptation
planning strategy according to the current situation but also
optimize its parameters. Further, we provide an analysis of
different optimization procedures.

A. Comparison of Platooning Coordination Strategies

For supporting our claim of situation-awareness in the
behavior of platooning coordination strategies, we focus in the
first experiments on showing that the choice of the platoon-
ing coordination strategies itself is dependent on the current
situation. Hence, we omit optimizing a strategy’s parameters
and use the default configurations and two variants of each
of the platooning coordination strategies from Section IV-A
for evaluation. We apply those strategies in all of the 20
traffic scenarios. Table IV displays the changes to each default
configuration that lead to the respective configuration sets.

TABLE IV
CHANGES TO THE DEFAULT CONFIGURATION PARAMETERS OF THE

PLATOONING COORDINATION STRATEGIES.

Strategy Configuration Parameters changing Default New
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Configuration 1 None (default) - -

Configuration 2 Speed threshold lane 2 100 110
Speed threshold lane 3 130 125
Speed threshold lane 4 160 140

Configuration 3 Advertising duration 10 5
Search distance front 600 400
Search distance back 250 200

C
lo

se
st

di
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ce

Configuration 1 None (default) - -

Configuration 2 Speed threshold lane 2 100 110
Speed threshold lane 3 130 125
Speed threshold lane 4 160 140

Configuration 3 Advertising duration 10 5
Max speed difference 35 20
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ce

an
d
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ne

Configuration 1 None (default) - -

Configuration 2 Speed threshold lane 2 100 110
Speed threshold lane 3 130 125
Speed threshold lane 4 160 140

Configuration 3 Advertising duration 10 5
Max speed difference 35 20

Lane-distance-ratio 250 150

1) Situation-Dependent Behavior of the Coordination
Strategies: In this experiment, we compare the strategies in
all 20 traffic scenarios and analyze, which strategy optimizes
which metric. Figure 4 displays the comparison between the
strategies. The figure considers the four metrics independently.
The x-axis displays the different platooning coordination
strategies; the y-axis shows the number of best solutions each
strategy has for each metric. Since 20 different traffic situations
exist, a coordination strategy can have 20 best solutions at
maximum. As every platooning coordination strategy has three
different configuration sets for this run, a coordination strategy
may score the best solution with any of those configurations.
To have the best solution for a given metric and traffic
situation, a coordination strategy needs the best objective
score for the metric and scenario variation. As can be seen,
the best velocity strategy performs best, i.e., has the highest
number of best solutions, for the platoon time and platoon



utilization metric what goes in line with our expectations as
the selected platoon fits best regarding the travel speed and
the need to switch to another platoon is minimized in this
strategy. Contrary, the closest distance as well as the closest
distance and lane strategies perform best with regards to the
time loss and throughput metric. This might be due to the fact,
that the closest distance strategy minimizes the time until a
vehicle actually joined a platoon and, hence, avoids long catch
up times with a platoon ahead. Thus, none of the strategies
performs best for each metric. Consequently, the relevant
metrics drive the choice of the platooning coordination strategy
and, hence, this choice is objective-dependent. Further, as, e.g.,
each strategy optimizes the throughput metric in a specific
scenario, even for a dedicated metric, a specific strategy might
be superior in a specific traffic scenario; hence, the choice is
also situation-dependent. Hence, the results show that adapting
to the traffic situation by switching strategies is beneficial.

Best velocity Closest distance Closest distance & lane0
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Fig. 4. Comparison of the coordination strategies over all 20 traffic situations.

2) Situation-Dependent Behavior of the Strategy Configu-
ration: We now focus on one specific strategy and analyze in
detail the relevance to take various configurations into account.
The experiment focuses on the metric platoon utilization. For
this metric, the strategy best velocity has the best solutions
in all of the 20 traffic scenarios. However, each of the three
different strategy configurations might be superior depending
on the traffic condition. Figure 5 shows for every scenario how
many best solutions each configuration of the best velocity
strategy has. Since every scenario has the default setting
and four additional variations, the maximum number of best
solutions per scenario is five. The figure shows that Configu-
ration 2 only has the best solutions in Scenario 2 and 3. The
other configurations have the best solutions in every scenario.
Furthermore, there is no scenario with only one configuration
having the best platoon utilization solution for every variation.
Consequently, the results demonstrate the benefit of adapting
the platooning coordination strategy’s configuration to the
specifics of the current traffic situations as even slight changes
in the conditions need to be coped in the strategy’s parameters.

B. Optimization of the Strategy Parameters

The previous experiments motivate that optimizing the
platooning coordination strategies’ configuration parameters
based on the traffic scenario may be beneficial. Table V
summarizes the optimization algorithms—including the con-

Fig. 5. Analyzing the velocity based strategy: Best configuration parameters
dependent on the scenario for the platoon utilization metric.

figuration variants of every algorithm—used in the experi-
ments. Every algorithm has 1000 function evaluations before
terminating with the final Pareto front. For the evolutionary
approaches, the 1000 evaluations are split into 50 generations
with 20 population each. Since Novelty Search is less explored
than the other optimization techniques, this evaluation run
considers three variants of Novelty Search with 10%, 20%, and
30% novelty weight. Bayes and Simulated Annealing require
an extension for supporting multi-objectiveness. Therefore,
the evaluation includes two variants of these optimization
algorithms. One variant using the hypervolume value and one
utilizing the dominance rank approach. We consider only the
default variant of traffic scenario 2 and apply the best velocity,
closest distance, and closest distance & lane strategies.

TABLE V
THE OPTIMIZATION ALGORITHMS USED IN THE EXPERIMENTS (NOVSEA =

NOVELTY SEARCH; SIMAN = SIMULATED ANNEALING; POP =
POPULATION; EVAL = EVALUATIONS).

Algorithm Multi-obj. Configuration params

NSGA-II Pareto front Pop. size: 20 #gen: 50

NovSea 0.1 Pareto front Pop. size: 20 #gen: 50 Nov weight: 0.1

NovSea 0.2 Pareto front Pop. size: 20 #gen: 50 Nov weight: 0.2

NovSea 0.3 Pareto front Pop. size: 20 #gen: 50 Nov weight: 0.3

Bayes hv Hypervolume #init points: 20 #eval.: 1000

Bayes dom Dom. count #init points: 20 #eval.: 1000

SimAn hv Hypervolume #iterations: 100 #eval.: 1000

SimAn dom Dom. count #iterations: 100 #eval.: 1000

1) Comparing the Course of Optimization: This experiment
compares all eight optimization approaches based on the
course of their optimization, focusing on the progress in
solution quality and the change in the Pareto front size during
the optimization procedure. Since the duration of the optimiza-
tion process heavily depends on the executing hardware, we
decided—following the common evaluation of optimization
techniques—to use the number of function evaluations as du-
ration metric. Figures 6 and 7 show important aspects for this
evaluation. Figure 6 shows the progress in solution quality. The
x-axis displays the number of performed function evaluations.
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Fig. 6. Pareto front quality in the course of optimization.

For analyzing the quality of the optimization at a given point
in time, this plot takes the Pareto front at this timestamp,
calculates the hypervolume value for this front, and shows the
percentage of the maximum volume this Pareto front covers
on the y-axis. The optimization algorithms optimize four
objectives at once, all normalized between zero—for the worst
possible score—and one. In this setting, the hypervolume
values become small very fast. For example, a solution scoring
0.8 in every objective score only has a hypervolume percentage
of 0.84 = 0.4096 = 40.96%. Since the evaluation proce-
dure covers three different platooning coordination strategies,
the hypervolume value for every optimization algorithm and
function evaluation is an average value of all coordination
strategies. We decided to use the Hypervolume value since we
are interested in convergence and diversity aspects of a Pareto
front [43]. However, other quality indicators for comparing
Pareto fronts exist that could be used when focusing other
aspects [44]. Figure 7 shows the size of the Pareto front over
the course of optimization.
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Fig. 7. Pareto front size in the course of optimization.

Similar to the first plot, the x-axis displays the number of
function evaluations. The y-axis shows the number of solutions
in the front at any given point during optimization. This value
considers all coordination strategies by taking the average
Pareto front size of all three. The results show Bayes im-
proving its hypervolume the fastest. The Bayesian approaches

and the hypervolume variant of Simulated Annealing are
pretty close for the best hypervolume score regarding the
final solution. However, they might have an advantage for
the hypervolume metric because they directly improve this
metric as the goal of their optimization. Out of the evolutionary
optimization techniques, NSGA-II improves the fastest at first,
in terms of the final score, NSGA-II and Novelty Search 0.2
perform equally. However, the other Novelty Search versions
have a lower score. After around 600 function evaluations, the
hypervolume progress stagnates for all optimization techniques
except for Simulated Annealing. The size of the Pareto front
still rises from 600 function evaluations onwards, though. This
indicates that the optimization algorithms only find a small
number of new solutions dominating the existing ones because
replacing a solution with a dominating one generally comes
with a bigger increase in the hypervolume value. NSGA-II
produces the highest number of solutions for the evolutionary
approaches, followed by Novelty Search 0.1. Novelty Search
0.3 has the lowest size. This shows how it becomes more
difficult for Novelty Search with increasing novelty weight as
new solutions become less novel and thus have fewer chances
to be added to the front. This scales with the novelty weight.
Bayes with dominance rank evaluation has the highest number
of solutions, Simulated Annealing and the other Bayes variant
are comparable to NSGA-II in terms of Pareto front size. We
are aware, that the currently discussed results have limited
expressive power when applying the approach in on-line
optimization of adaptation strategies scenarios since we did
not perform time measurements of the optimization process.
However, we applied anytime optimization approaches—such
as Simulated Annealing, NSGA-II, and Novelty Search—that
yield valid results after each function evaluation and thus
a final convergence of the algorithms is not mandatory for
executing optimized adaptations. Further, in our application
scenario, the required time for on-the-fly adaptation of the
parameters is less important, as we only adjust the strategy’s
parameters after switching the planning strategy for the current
situation, i.e., we do not have real-time constraints. From sim-
ilar applications of the optimization algorithms it seems valid
to assume a reasonable time. Still, for a real-world application
of our approach, time measurements are meaningful to select
the best fitting optimization technique.

2) Comparing the Final Pareto Fronts: This experiment
analyzes the solutions returned by the optimization algorithms
after creating the final Pareto front.

Evaluating the Algorithms based on Pareto Dominance:
First, we compare the optimization algorithms using only the
concept of Pareto dominance. Figure 8 combines the solutions
of all Pareto fronts produced by every optimization algorithm
into one front. First, it displays the size of the final Pareto
fronts in green. Additionally, the plot contains the number of
contributions and unique contributions for every optimization
algorithm. The contribution indicates the number of solutions
in the final front produced by an optimization algorithm which
are not dominated by solutions in the combined front. A
unique contribution is a contribution that was only made by



TABLE VI
AVERAGE OBJECTIVE SCORE AND STANDARD DEVIATION FOR EVERY

OPTIMIZATION ALGORITHM AND OBJECTIVE.

Time loss Throughput Platoon time Platoon util.

mean std mean std mean std mean std

Bayes hv 0.887 0.015 0.732 0.007 0.475 0.159 0.572 0.115

Bayes dom 0.907 0.016 0.737 0.005 0.402 0.175 0.486 0.128

SimAn hv 0.89 0.014 0.733 0.007 0.461 0.142 0.559 0.087

SimAn dom 0.902 0.013 0.736 0.006 0.4 0.14 0.505 0.104

NSGA-II 0.905 0.015 0.737 0.006 0.39 0.137 0.502 0.124

NovSea 0.1 0.9 0.014 0.734 0.006 0.379 0.132 0.5 0.114

NovSea 0.2 0.897 0.014 0.734 0.006 0.396 0.143 0.517 0.121

NovSea 0.3 0.893 0.013 0.732 0.006 0.405 0.127 0.526 0.105

Default 0.897 0.009 0.735 0.003 0.363 0.033 0.494 0.034

one optimization algorithm. Ranking the optimization tech-
niques, Bayes is first in terms of contributions, followed by
Simulated Annealing and NSGA-II, which provide comparable
results, and finally Novelty Search with low amounts of
contributions. However, every optimization technique—except
for Novelty Search with a novelty weight of 0.3—contributes
some unique solutions to the combined final Pareto front.
Thus, no algorithm dominates another one entirely.
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Fig. 8. Contribution to the best-known front by each optimization algorithm.

Evaluating the Algorithms based on Objective Scores:
Second, we analyze the final Pareto fronts of every optimiza-
tion algorithm based on the objective scores as summarized
in Table VI. Remember, we only use Scenario 2 (c.f. Ta-
ble III) for this evaluation, apply the three strategies, and
calculate mean and standard deviations over the final Pareto
fronts of all strategies per optimization technique. The table
highlights the best average value per objective. Taking all
platooning coordination strategies into account, the evaluation
calculates the average and standard deviation over the final
fronts of all strategies. Overall, Bayes has great results for
every metric, especially when taking both algorithm versions
into account. NSGA-II and Simulated Annealing show average
values overall. Novelty Search is below average, except for
the platoon utilization metric of versions 0.2 and 0.3 as well
as the time loss metric for Novelty Search 0.1. Furthermore,
there is a tendency for the hypervolume and dominance rank

versions of Simulated Annealing and Bayes. The solutions
produced by the dominance rank show high scores for time
loss and throughput while the hypervolume versions dominate
the platooning-specific metrics. As mentioned previously, the
hypervolume based approaches may focus on more fluctuating
metrics since a greater increase in metric score leads to better
hypervolume values. This complies with the findings in this
table, showing a higher standard deviation in the platoon
metrics. Additionally, the high standard deviation of Bayes
with dominance rank is another interesting aspect. Figure 8
shows a high Pareto front size of Bayes with dominance rank
combined with higher standard deviation indicate that this
optimization algorithm finds more diverse solutions providing
opportunity for adaption to user preferences.

C. Discussing the relation between optimization, adaptation
planning, and objectives

The following Figure 9 contains boxplots for showing the
relation between optimization algorithms, platooning coordi-
nation strategies, as well as objectives. As it can be seen, to
optimize different objectives, not only a specific planning strat-
egy is superior, also for the optimization different algorithms
might improve the planning strategies differently. As one
specific example, for the objective platooning utilization, it can
be seen that for the strategy best velocity NSGA-II performs
best. However, it performs worst for the closest distance;
contrary behaves Simulated Annealing. Also, it can be seen
that for a specific planning strategy, not a single optimization
algorithm performs best. For example, for the closest distance
and lane strategy, the Simulated Annealing algorithm performs
worst when targeting the objective time loss. However, it is
superior for the platoon utilization objective. Finally, it can be
concluded that the choice of the adaptation planning strategy
but also the optimizer to improve the strategy’s parameters
is not a “one fitting all” choice, especially in multi-objective
scenarios. Still, it can be visible that in most scenarios,
the application of any of the three considered optimization
techniques still outperforms the default parameters of the
adaptation planning strategies’ default parameters, which has
been already defined by domain experts.

D. Threats to Validity

We have identified the following threats to validity of
the evaluation results. First, we only applied a small set
of adaptation planning strategies for platooning coordination,
while additional strategies are present in literature. However,
as our focus was not on finding the best solution for the domain
but showing the requirements to switch the adaptation planning
strategy, our choice of strategies should be representative
enough. Second, we have used the default version of the opti-
mization strategies with only slightly adjusted variants. Thus,
we did not tune the meta-parameters (e.g., number of gen-
erations, crossover rate) to tailor each technique specifically
to the use case. Third, we focus on platooning coordination
as use case and our evaluation results are obtained for this
simulated system. However, we assume that the results are
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Fig. 9. Comparison of optimized and default solutions for the strategies.

representative for many other classes of self-adaptive systems.
Fourth, we examined the simulations in a single map and,
due to high computational costs of the optimization, with a
restricted number of twenty situations. A more in-depth study
could examine multiple maps and additional situations. Lastly,
it is not preferable to perform those optimizations at runtime
in a real system as it might lead to performance decreases
and uncertainties in the objective space. Hence, a simulation
of the system is required to identify the best strategy and its
parameter setting for a specific situation.

VIII. CHALLENGES

We now discuss challenges for our vision of a situation-
aware meta-optimization framework in line with [7].

Flexible situation detection. In this paper, we excluded
the definition of a specific situation detection approach and
solely consider the detection of a situation a posteriori and
perform a reactive analysis. Still, our system model supports
on-the-fly situation detection. In line with current research
efforts in the area of SASs [9], [45], the integration of
predicting system states seems promising to enable proactive
adaptation.However, those approaches might introduce addi-
tional uncertainty as predictions of situations always come
with some unreliability. In a previous study, we analyzed
how to cope with uncertainty in the domain of Intelligent
Transportation Systems [46]. In the future, further studies need
to be conducted to analyze the scalability and transferability
of the situation detection and the system as a whole.

Domain knowledge integration. Currently, domain knowl-
edge is applied to set up the adaptation planning strategies’
default parameter settings. However, the integration of domain
knowledge might be beneficial for finding the best adaptation
planning strategy as well as for boosting the optimization
process by reducing the search spaces. The main challenge is
the transformation of domain-specific descriptions from users
that potentially are neither familiar with self-adaptive system
nor with programming in a domain-independent form that
can be understood by the framework. A further advantage
of domain knowledge integration might be the search space
reduction for the optimization component and, hence, a faster
time to result in this component.

Meta-adaptation. One crucial challenge is the meta-
adaptation, i.e., the re-configuration of the adaptation planning
strategy at runtime. In [47], we compared different approaches
for structural and parametrical meta-adaptation of self-adaptive
systems. Structural meta-adaptation changes the structure of
the decision logic, e.g., the exchange of the adaptation
planning strategy. Parametrical meta-adaptation refers to the
adjustment of parameters, e.g., changing the configuration
of the adaptation planning strategy. Our approach requires
addressing both structural and parametrical meta-adaptation as
it exchanges the adaptation planning strategy and customizes
its parameters to the specifics of the current situation. None of
the analyzed approaches from [47] provide such flexibility, es-
pecially the interplay of strategy selection and simultaneously
optimizing its parameters might be challenging.

IX. CONCLUSION

In this paper, we make the first step towards our vision of
a framework for situation-aware meta-optimization of adap-
tation planning strategies by our threefold contribution: (i)
we propose a layered system model for the situation-aware
selection of adaptation planning strategies, (ii) an adapted
feedback loop for meta-optimization of the current strategy’s
parameters to the system / environmental situation, and (iii)
propose a customizable and reusable testbed for evaluating
meta-optimized adaptation planning algorithms. We provide
a study within the platooning coordination domain and show
situation- and objective-dependent behavior of the coordina-
tion strategies and their configuration. In our opinion, platoon-
ing coordination suits as domain under study as diverse so-
called platooning coordination strategies exist in the literature;
however, according to the no-free-lunch theorem, each has
individual assets and drawbacks, making them best applica-
ble for different traffic situations. Additionally, we compare
eight different versions of four optimization algorithms to
tune the coordination strategies’ parameters to provide ad-
vice for selecting the optimization algorithm for our meta-
optimization framework. In the future, we plan to tackle the
mentioned challenges and focus on implementing the meta-
optimization framework.This includes the implementation of
a flexible situation detection, e.g., based on clustering (cf. [7])
or classification (cf. [48]) techniques. Further, the integration
of domain knowledge can improve the process.However, this



might result in issues for human in the loop integration,
e.g., uncertainty [49]. Finally, future work could integrate
approaches reducing the search space such as [50], [51].
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