
Modeling Parameter and Context Dependencies in Online

Architecture-Level Performance Models
∗

Fabian Brosig
Karlsruhe Institute of

Technology

Am Fasanengarten 5

Karlsruhe, Germany

fabian.brosig@kit.edu

Nikolaus Huber
Karlsruhe Institute of

Technology

Am Fasanengarten 5

Karlsruhe, Germany

nikolaus.huber@kit.edu

Samuel Kounev
Karlsruhe Institute of

Technology

Am Fasanengarten 5

Karlsruhe, Germany

kounev@kit.edu

ABSTRACT

Modern service-oriented enterprise systems have increasingly
complex and dynamic loosely-coupled architectures that of-
ten exhibit poor performance and resource efficiency and
have high operating costs. This is due to the inability to
predict at run-time the effect of dynamic changes in the
system environment and adapt the system configuration ac-
cordingly. Architecture-level performance models provide a
powerful tool for performance prediction, however, current
approaches to modeling the execution context of software
components are not suitable for use at run-time. In this
paper, we analyze the typical online performance prediction
scenarios and propose a novel performance meta-model for
expressing and resolving parameter and context dependen-
cies, specifically designed for use in online scenarios. We mo-
tivate and validate our approach in the context of a realistic
and representative online performance prediction scenario
based on the SPECjEnterprise2010 standard benchmark.

Categories and Subject Descriptors

C.4 [Performance of Systems]: Modeling Techniques;
I.6.5 [Simulation and Modeling]: Model Development

Keywords

Architecture-level performance model, Parameter dependen-
cies

1. INTRODUCTION

Modern enterprise software systems are increasingly com-
plex and dynamic. They are typically composed of loosely-
coupled services that operate and evolve independently. The
increased flexibility gained through the adoption of technolo-
gies like virtualization, or paradigms like service-oriented ar-
chitecture, comes at the cost of higher system complexity.

∗This work was funded by the German Research Foundation
(DFG) under grant No. KO 34456-1.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CBSE’12, June 26–28, 2012, Bertinoro, Italy.
Copyright 2012 ACM 978-1-4503-1345-2/12/06 ...$10.00.

Managing system resources in such environments to ensure
acceptable end-to-end Quality-of-Service (QoS, e.g., perfor-
mance and availability) while at the same time optimizing
resource utilization is a challenge. This is due to the inability
to keep track of dynamic changes in the system environment
and predict their effect on the system QoS. Service providers
are often faced with questions such as: What performance
would a new service deployed on the virtualized infrastruc-
ture exhibit and how much resources should be allocated
to it? How should the system configuration be adapted to
avoid performance issues or inefficient resource usage aris-
ing from changing customer workloads? What would be the
effect of changing resource allocations and/or migrating a
service from one physical server to another? Answering such
questions requires the ability to predict at run-time how the
performance of running services would be affected if the sys-
tem configuration or the workload changes. We refer to this
as online performance prediction [12].

Existing approaches to online performance prediction (e.g.,
[15, 16, 14, 10]) are based on stochastic performance mod-
els such as (layered) queueing networks or queueing petri
nets. Such models, often referred to as predictive perfor-
mance models, normally abstract the system at a high level
without explicitly taking into account its software architec-
ture and configuration. Services are typically modeled as
black boxes and many restrictive assumptions are often im-
posed. Detailed models that explicitly capture the software
architecture and configuration exist in the literature, how-
ever, such models are intended for use at design time (e.g.,
[1, 6, 21, 17]). Models in this area are descriptive in nature,
e.g., software architecture models based on UML, annotated
with descriptions of the system’s performance-relevant be-
havior. Such models, often referred to as architecture-level
performance models, are used at design time to evaluate
alternative system designs and/or predict the system per-
formance for capacity planning purposes.

While architecture-level performance models provide a pow-
erful tool for performance prediction, they are typically ex-
pensive to build and provide limited support for reusability
and customization which renders them impractical for use
at run-time. Recent efforts in the area of component-based
performance engineering [13] have contributed a lot to fa-
cilitate model reusability, however, there is still much work
to be done on further parameterizing performance models
before they can be used for online performance prediction.

This paper argues that current approaches to modeling
the component execution context in architecture-level per-

formance models are not suitable for use at run-time since
they do not provide enough flexibility in the way param-
eter dependencies can be expressed and resolved. Compo-
nent performance models typically have multiple parameters
such as usage profile parameters, resource demand param-
eters, and control flow parameters. We argue that there
are some fundamental differences in the type and amount
of data available as a basis for model parameterization and
calibration at system design-time vs. run-time.

At system design-time, model parameters are often esti-
mated based on approximation techniques or measurements
if implementations of the system components exist. In a con-
trolled testing environment, theoretically one could conduct
arbitrary experiments under different settings to evaluate
parameter dependencies. However, in practice, this possi-
bility typically cannot be exploited adequately, due to the
inavailability of a realistic production-like execution envi-
ronment and/or the lack of complete implementations of all
system components. Thus, model parameters are often ap-
proximated very roughly based on experiments in a small
testing environment.

At run-time, all system components are implemented and
deployed in the target production environment. This makes
it possible to obtain much more accurate estimates of the
various model parameters taking into account the real execu-
tion environment and possibly complex interactions between
software components only observable at run-time. However,
during operation, we don’t have the possibility to run ar-
bitrary experiments since the system is in production. In
such a setting, monitoring has to be done with care, keeping
the monitoring overhead within limits such that the system
operation is not disturbed.

In this paper, we analyze the above mentioned issues when
trying to use classical architecture-level modeling approaches
in an online scenario and propose a new approach for mod-
eling the component execution context and parameter de-
pendencies specifically designed for use at run-time. We use
the Palladio Component Model (PCM) [1] as a basis given
that it is one of the most advanced component-based per-
formance meta-models in terms of parametrization and tool
support. We motivate and validate our approach in the con-
text of the industry-standard SPECjEnterprise2010 bench-
mark1, which provides a set of realistic and representative
application scenarios such as customer relationship manage-
ment, manufacturing and supply chain management.

In summary, the contributions of the paper are: i) anal-
ysis of typical online performance prediction scenarios and
the requirements on online modeling approaches, ii) novel
modeling abstractions and concepts for expressing and re-
solving parameter and context dependencies providing in-
creased flexibility at run-time, iii) detailed evaluation of the
suitability of the proposed modeling approach in the con-
text of a set of representative real-life scenarios. To the
best of our knowledge, no similar performance modeling ap-
proach at the architecture-level providing the level of flexibil-
ity achieved through the proposed abstractions exists in the
literature. The presented modeling abstractions are an inte-
gral part of the Descartes Meta-Model (DMM) [11], a new
meta-model for run-time QoS and resource management in

1
SPECjEnterprise2010 is a trademark of the Standard Performance Evaluation

Corp. (SPEC). The SPECjEnterprise2010 results or findings in this publication
have not been reviewed or accepted by SPEC, therefore no comparison nor per-
formance inference can be made against any published SPEC result. The official
web site for SPECjEnterprise2010 is located at http://www.spec.org/jEnterprise2010.

virtualized service infrastructures. In this paper, we focus on
modeling abstractions for the application architecture level.
Other parts of DMM describe the service deployment using
a resource environment model that reflects, e.g., the physical
infrastructure and the virtualization layer (see [9]).

The remainder of this paper is organized as follows. Sec-
tion 2 discusses current approaches to modeling parameter
and context dependencies in performance models as imple-
mented in PCM. In Section 3, we present our proposed mod-
eling abstractions and validate their suitability in the con-
text of representative real-life scenarios. We summarize the
results from the evaluation of the feasibility and accuracy
of the proposed approach in Section 4. Finally, we review
related work in Section 5 and wrap up in Section 6.

2. BACKGROUND

One of the most advanced architecture-level performance
modeling languages, in terms of parametrization and tool
support, is the Palladio Component Model (PCM) [1]. In
this paper, we use PCM as an example of a mature component-
based performance meta-model to motivate and discuss the
issues when trying to use classical architecture-level model-
ing approaches in an online scenario. To make the paper
self-contained, we first provide a brief overview of PCM.

PCM provides a meta-model designed to support the pre-
diction of extra-functional properties of component-based
software architectures. It is focused on design-time perfor-
mance analysis, i.e., enabling performance predictions early
in the development lifecycle to evaluate different architec-
tural design alternatives. The performance behavior of a
component-based software system is a result of the assem-
bled components’ performance behavior. In order to capture
the behavior and resource consumption of a component, four
factors are taken into account. Obviously, the component’s
implementation affects its performance. Additionally, the
component may depend on external services whose perfor-
mance has to be considered as well. Furthermore, both the
way the component is used, i.e., its usage profile, and the
execution environment in which the component is running
are taken into consideration.

PCM models are divided into five sub-models: The repos-
itory model consists of interface and component specifica-
tions. A component specification defines which interfaces
the component provides and requires. For each provided
service, the component specification contains an abstract
description of the service’s internal behavior. The system
model describes how component instances from the reposi-
tory are assembled to build an entire system. The resource
environment model specifies the execution environment in
which the system is deployed. The allocation model de-
scribes the mapping of component instances from the system
model to resources defined in the resource environment. The
usage model describes the user behavior. It captures the ser-
vices that are called, the frequency (workload intensity) and
order in which they are invoked, and the input parameters
passed to them.

Component Model and System Model. A compo-
nent may be either a basic (i.e., atomic) component or a com-
posite component. A composite component may contain sev-
eral child component instances assembled through so-called
assembly connectors connecting required interfaces with pro-
vided interfaces. A component-based system is modeled as a
designated composite component that provides at least one

CompA

Inst_CompC

<<CompositeComponent>>

<<Assembly
Context>>

Inst_CompB

<<Assembly
Context>>

Inst_CompD

<<Assembly
Context>>

Figure 1: Assembly of Composite Component

<<ExternalCallAction>>
requiredService1

<<InternalAction>>
ResourceDemand: 1000 <CPU_Units>

<<BranchAction>>

<<BranchTransition>>
Condition:

number.VALUE >= 0

<<BranchTransition>>
Condition:

number.VALUE < 0

<<LoopAction>>
Loop iteration count:

array.NUMBER_OF_ELEMENTS

<<ExternalCallAction>>
requiredService2

<<ExternalCallAction>>
requiredService3

Figure 2: RDSEFF of Service with Signature

execute(int number, List array) (cf. [1])

interface. An example of how a composite component is as-
sembled is shown in Figure 1. Component CompA comprises
three instances of basic components connected according to
their provided and required interfaces.

Service Behavior Abstraction. For each service a
component provides, in PCM the service’s internal behav-
ior is modeled using a Resource Demanding Service Effect
Specification (RDSEFF) [1]. An RDSEFF captures the con-
trol flow and resource consumption of the service depending
on its input parameters passed upon invocation. The con-
trol flow is abstracted covering only performance-relevant
actions. An example of a RDSEFF for the service ex-

ecute(int number, List array)[1] is shown in Figure 2.
Starting with an ExternalCallAction to a required service
and an InternalAction, there is a BranchAction with two
BranchTransitions. The first BranchTransition contains
a LoopAction whose body consists of another External-

CallAction. The second BranchTransition contains a fur-
ther ExternalCallAction.

The performance-relevant behavior of the service is pa-
rameterized with service input parameters. Whether the
first or second BranchTransition is called, depends on the
value of service input parameter number. This parameter
dependency is specified explicitly as a branching condition.
Similarly, the loop iteration count of the LoopAction is mod-
eled to be equal to the number of elements of the input
parameter array. PCM also allows to define parameter de-
pendencies stochastically, i.e., the distribution of the loop it-
eration count can be described with a probability mass func-
tion (PMF): IntPMF[(9;0.2) (10;0.5) (11;0.3)]. The
loop body is executed 9 times with a probability of 20%,
10 times with a probability of 50%, and 11 times with a

Figure 3: SPECjEnterprise2010 Architecture [22]

probability of 30%. Note that this probabilistic description
remains component type-specific, i.e., it should be valid for
all instances of the component.

In PCM, the performance behavior abstraction is encap-
sulated in the component type specification, enabling per-
formance predictions of component compositions at design-
time. However, as we show in the next section, such design-
time abstractions are not suitable for use in online perfor-
mance models of modern enterprise software systems due
to the limited flexibility in expressing and resolving param-
eter and context dependencies at run-time. Furthermore,
we show that in many practical situations, providing an ex-
plicit specification of a parameter dependency as discussed
above is not feasible and an empirical representation based
on monitoring data is more appropriate.

3. PERFORMANCE META-MODEL

In this section, we present a new performance meta-model
for expressing and resolving parameter and context depen-
dencies specifically designed for use in online scenarios. We
use PCM as a basis motivating and validating our approach
in the context of a realistic and representative online perfor-
mance prediction scenario based on the industry-standard
SPECjEnterprise2010 benchmark.

3.1 Online Performance Prediction Scenario

SPECjEnterprise2010 is a Java EE benchmark for mea-
suring the performance and scalability of Java EE-based
application servers. It implements a business information
system of representative size and complexity. The bench-
mark workload is generated by an application that is mod-
eled after an automobile manufacturer. As business scenar-
ios, the application comprises customer relationship man-
agement (CRM), manufacturing, and supply chain manage-
ment (SCM). The business logic is divided into three do-
mains: orders domain, manufacturing domain and supplier
domain.

Figure 3 depicts the architecture of the benchmark. We
refer the reader to [22] for further details on the benchmark.
We consider a scenario where a set of customers are running
their applications in a virtualized data center infrastructure.
In our case, each customer is running an instance of SPEC-

Benchmark
Driver Master

GBit LAN

Cluster A Application
Server
Cluster

Cluster B

SPECjEnterprise2010
deployed in a clustered

environment

Workload B

Database Server

Customer A

Customer B

Workload A

Benchmark
Driver Agents

... Dell PowerEdge R904
4 x 6-‐core AMD CPUs,
128 GB main memory

20 Compute Nodes
each node has
2 x 4-‐core Intel CPUs,
32GB main memory

Figure 4: SPECjEnterprise2010 Deployment

jEnterprise2010 tailored to a particular type of workload
(e.g., CRM, SCM). Each benchmark application instance is
deployed in one application server cluster in our deployment
environment depicted in Figure 4.

One application server cluster with a running SPECjEn-
terprise2010 instance is assigned to Customer A. Another
application server cluster is assigned to Customer B. The
database server runs separately and serves the requests of
all application instances. We assume that each customer
has its own independent workload and its own Service Level
Agreements (SLAs). The application server clusters are het-
erogeneous, the cluster may consist of physical or virtual
machines.

Given that customer workloads vary over time and new
services may be deployed on-the-fly, the system has to be
reconfigured dynamically to enforce SLAs while ensuring ef-
ficient resource utilization. Some examples of dynamic re-
configurations are the addition/removal of cluster nodes to
scale up/down resource allocations, or the deployment of a
new cluster to serve a new customer. To ensure SLA com-
pliance, the service provider requires the ability to predict
at run-time how application performance would be affected
if the system configuration or the workload changes.

3.2 Flexible Service Behavior Abstractions

3.2.1 Motivation
In the described scenario, in order to ensure SLAs while

at the same time optimizing resource utilization, the service
provider needs to be able to predict the system performance
under varying workloads and dynamic system reconfigura-
tions. The underlying performance models enabling online
performance prediction must be parameterized and analyzed
on-the-fly. Such models may be used in many different sce-
narios with different requirements for accuracy and timing
constraints. Depending on the time horizon for which a pre-
diction is made, online models may have to be solved within
seconds, minutes, hours, or days. Hence, in order to provide
maximum flexibility at run-time, our meta-model must be
designed to support multiple abstraction levels and different
analysis techniques allowing to trade-off between prediction
accuracy and speed.

Explicit support for multiple abstraction levels is also nec-
essary since we cannot expect that the monitoring data
needed to parameterize the component models would be
available at the same level of granularity for each system
component. For example, even if a fine granular abstraction
of the component behavior is available, depending on the
platform on which the component is deployed, some param-
eter dependencies might not be resolvable at run-time, e.g.,

Provided service:
purchase(..)

SupplyChain
Management

<<Component>>

SupplyChain
Management

<<Assembly
Context>>

Figure 5: Supply Chain Management Component

due to the lack of monitoring capabilities allowing to observe
the component’ internal behavior. In such cases, it is more
appropriate to use a coarse-grained or black-box abstraction
of the component behavior which only requires observing its
behavior at the component boundaries.

In the following, we describe three practical examples where
models at different abstraction levels would be needed. We
consider the supplier domain of SPECjEnterprise2010 (see
Sect. 3.1). Whenever the inventory of parts in the manufac-
turing domain is getting depleted, a request is sent to the
supplier domain to order parts from suppliers. The supplier
domain places a purchase order with a selected supplier of-
fering the required parts at a reasonable price. Figure 5
shows the SupplyChainManagement (SCM) component pro-
viding a purchase service for ordering parts.

If we imagine that the SCM component is an outsourced
service hosted by a different service provider, the only type
of monitoring data that would typically be available for the
purchase service is response time data. In such a case, infor-
mation about the internal behavior or resource consumption
would not be available and the component would be treated
as a “black-box”.

If the SCM component is a third party component hosted
locally in our environment, monitoring at the component
boundaries including measurements of the resource consump-
tion as well as external calls to other components would typ-
ically be possible. Such data allows to estimate the resource
demands of each provided component service (using tech-
niques such as, e.g., [18, 4]) as well as frequencies of calls to
other components. Thus, in this case, a more fine granular
model of the component can be built, allowing to predict
its response time and resource utilization for different work-
loads.

Finally, if the internal behavior of the SCM component in-
cluding its control flow and resource consumption of inter-
nal actions can be monitored, more detailed models can be
built allowing to obtain more accurate performance predic-
tions including response time distributions. Predictions of
response time distributions are relevant for example when
evaluating SLAs with service response time limits defined
in terms of response time percentiles. In our scenario, as
shown in Figure 6, the SCM component is implemented as
a composite component containing a child component Pur-

chaseOrder. The latter is responsible for dispatching the
purchase orders (service sendPurchaseOrder). The sending
operation supports two modes of operation: i) sending the
order as an inline message without attachments, or ii) send-
ing the order as a message with attachment. Figure 7 shows
some measurements of the response time of sendPurchase-
Order as a histogram. As expected, the measured response
time distribution is multi-modal. Thus, to predict the re-
sponse time distribution of the sendPurchaseOrder opera-

SupplyChainManagement
<<CompositeComponent>>

Provided service:
sendPurchaseOrder(..)

PurchaseOrder
<<Component>>

PurchaseOrder

<<Assembly
Context>>

Required services:
processPurchaseOrderAttachment(..)
processPurchaseOrderInline(..)

Figure 6: SCM Component Internals

Response Time [ms]

Fr
eq

ue
nc

y

0 20 40 60 80

0
10

0
20

0
30

0
40

0
50

0
60

0
70

0

Response Time Statistics

Figure 7: Response Time Statistics of sendPO

tion, a fine-granular model of its internal behavior is needed
taking into account its internal control flow.

3.2.2 Modeling Approach
To provide maximum flexibility, for each provided service,

our proposed meta-model supports having multiple (possi-
bly co-existing) behavior abstractions at different levels of
granularity:

Black-box behavior abstraction. A “black-box” ab-
straction is a probabilistic representation of the service re-
sponse time behavior. Resource demanding behavior is not
specified. This representation captures the view of the ser-
vice behavior from the perspective of a service consumer
without any additional information about the service be-
havior.

Coarse-grained behavior abstraction. A “coarse–
grained”abstraction captures the component behavior when
observed from the outside at the component boundaries. It
consists of a description of the frequency of external service
calls and the overall service resource demands. Information
about the service’s total resource consumption and informa-
tion about external calls made by the service is required,
however, no information about the service’s internal control
flow is assumed.

Fine-grained behavior abstraction. A “fine-grained”
abstraction is similar to the RDSEFF in PCM [1]. The
control flow is modeled at the same abstraction level as in
PCM, however, our approach has some significant differences
in the way model variables and parameter dependencies are
modeled. The details of these are presented in detail in
Section 3.3. A fine-grained behavior description requires in-
formation about the internal performance-relevant service
control flow including information about the resource con-
sumption of internal service actions.

System

InterfaceRequiringEntityInterfaceProvidingEntity

InterfaceProvidingRequiringEntity

RepositoryComponent

SubsystemCompositeComponentBasicComponent

BlackBoxBehavior

CoarseGrainedBehavior

FineGrainedBehavior

SignatureServiceBehaviorAbstraction

1

1

*

1

1

*

*

ComposedStructure

Figure 8: Service Behavior Abstraction

ResourceDemandSpecification

CoarseGrainedBehavior

ExternalCallFrequency

ExternalCall CallFrequency

*

1

1

1

1

1

0..1

*

ProcessingResourceType

ResourceDemand

1

1

(a)

BlackBoxBehavior

ResponseTime

1

0..1

(b)

Figure 9: (a) Coarse-Grained and (b) Black-Box Be-

havior Abstractions

3.2.3 Meta-model
Figure 8 shows the meta-model elements describing the

three proposed service behavior abstractions. Type Fine-

GrainedBehavior is attached to the type BasicComponent,
a component type that does not allow containing further
subcomponents. The CoarseGrainedBehavior is attached
to type InterfaceProvidingRequiringEntity that gener-
alizes the types System, Subsystem, CompositeComponent

and BasicComponent. Type BlackBoxBehavior is attached
to type InterfaceProvidingEntity, neglecting external ser-
vice calls to required services. Thus, in contrast to the
fine-grained abstraction level, the coarse-grained and black-
box behavior descriptions can also be attached to service-
providing composites, i.e., ComposedStructures.

The meta-model elements for the CoarseGrainedBehav-

ior and BlackBoxBehavior abstractions are shown in Fig-
ure 9. A CoarseGrainedBehavior consists of External-

CallFrequencies and ResourceDemandSpecifications. An
ExternalCallFrequency characterizes the type and the num-
ber of external service calls. Type ResourceDemandSpeci-

fication captures the total service time required from a
given ProcessingResourceType. A BlackBoxBehavior, on
the other hand, can be described with a ResponseTime char-
acterization.

Figure 10 shows the meta-model elements for the fine-
grained behavior abstraction. A ComponentInternalBehav-

FineGrainedBehavior

1

AbstractAction

1 *

ExternalCallAction

Signature

StartAction

StopAction

InternalAction LoopAction

ResourceDemandSpecification LoopIterationCount

ForkAction BranchAction

BranchProbabilities

BranchTransition

ComponentInternalBehavior

0..1

0..1

pred

succ
{ordered}

forks

body

1

*

11*

AcquireAction

ReleaseAction *

PassiveResource

1

1

0..1

Figure 10: Fine-Grained Behavior Abstraction

Customer BCustomer A

Required service:
purchase(List demands)

Provided service:
scheduleManufacturing(String workOrderId)

Manufacturing

<<Component>>

Manufacturing

<<Assembly
Context>>

Manufacturing

<<Assembly
Context>>

Figure 11: Manufacturing Component

ior models the abstract control flow of a service imple-
mentation. Calls to required services are modeled using
so-called ExternalCallActions, whereas internal computa-
tions within the component are modeled using InternalAc-

tions. Control flow actions like LoopAction, BranchAction
or ForkAction are only used when they affect calls to re-
quired services (e.g., if a required service is called within a
loop; otherwise, the whole loop would be captured as part
of an InternalAction). LoopActions and BranchActions

can be characterized with loop iteration counts and branch
probabilities, respectively.

3.3 Modeling Parameter Dependencies

3.3.1 Motivation
Figure 11 shows the Manufacturing component in our sce-

nario which provides a service scheduleManufacturing to
schedule a new work order in the manufacturing domain for
producing a set of assemblies. The component is instan-
tiated two times corresponding to two deployments of the
SPECjEnterprise2010 application in our scenario. A work
order consists of a list of assemblies to be manufactured and
is identified with a workOrderId. In case the items needed to
produce the assemblies available in the manufacturing site’s
warehouse are not enough, the purchase service of the SCM

component is called to order additional items.
We are now interested in the probability of calling pur-

chase which corresponds to a branch probability in the con-
trol flow of the scheduleManufacturing service. This prob-
ability will depend on the number of assemblies that have
to be manufactured and the inventory of parts in the cus-
tomer’s warehouse. Given that two different deployments of
the application are involved, the respective probabilities for
the two component instances of type Manufacturing can dif-
fer significantly. For instance, a customer with a large man-
ufacturing site’s warehouse will order parts less frequently
than a customer who orders items “just in time”.

As discussed in Section 2, PCM allows to model dependen-
cies of the service behavior (including branch probabilities)
on input parameters passed over the service’s interface upon
invocation. However, in this case, the only parameter passed
is workOrderId which refers to an internal structure stored
in the database. Such a parameter does not allow to model
the dependency without having to look into the database
which is external to the modeled component. Modeling the
state of the database is extremely complex and infeasible to
consider as part of the performance model. This situation is
typical for modern business information systems where the
behavior of business components is often dependent on per-
sistent data stored in a central database. Thus, in such a
scenario, the PCM approach of providing explicit character-
izations of parameter dependencies is not applicable.

Required service:
purchase(List demands)

Provided service:
newOrder(String assemblyId, int quantity)

Manufacturing

<<Assembly
Context>>

Manufacturing

<<Basic
Component>>

Dealer

<<Basic
Component>>

Dealer

<<Assembly
Context>>

Required/Provided service:
scheduleManufacturing(String workOrderId)

Figure 12: Dealer and Manufacturing Components

To better understand the considered dependency, in Fig-
ure 12 we show that the Manufacturing component is ac-
tually triggered by a separate Dealer component providing
a newOrder service which calls the scheduleManufacturing

service. The newOrder service receives as input parameters
an assemblyID and quantity indicating a number of assem-
blies that are ordered by a dealer. This information is stored
in the database in a data structure using workOrderId as a
reference which is then passed to service scheduleManufac-

turing as an input parameter.
Intuitively, one would assume the existence of the follow-

ing parameter dependency: The more assemblies are ordered
(parameter quantity of service newOrder of the Dealer com-
ponent), the higher the probability that new items will have
to be purchased to refill stock (i.e., probability of calling
purchase in the Manufacturing component). However, this
dependency cannot be modeled using the PCM approach
since two separate components are involved and furthermore
an explicit characterization is impractical to obtain.

In such a case, provided that we know about the existence
of the parameter dependency, we can use monitoring statis-
tics collected at run-time to characterize the dependency
probabilistically. Figure 13 a) shows monitoring statistics
that we measured at run-time showing the dependency be-
tween the influencing parameter quantity and the observed
relative frequency of the purchase service calls. Figure 13 b)
shows how the dependency can be characterized probabilis-
tically by considering three ranges of possible quantities. For
example, for quantities between 50 and 100, the probability
of a purchase call is estimated to be 0.67.

We conclude that the behavior of software components
is often dependent on parameters that are not available as
input parameters passed upon service invocation. Such pa-
rameters are often not traceable directly over the service
interface and tracing them requires looking beyond the com-
ponent boundaries, e.g., the parameters might be passed to
another component in the call path and/or they might be
stored in a database structure queried by the invoked ser-
vice. Furthermore, even if a dependency can be traced back
to an input parameter of the called service, in many practical
situations, providing an explicit characterization of the de-
pendency is not feasible (e.g., using PCM’s approach) and
a probabilistic representation based on monitoring data is
more appropriate. This type of situation is typical for busi-
ness information systems and our meta-model must provide
means to deal with it.

3.3.2 Modeling Approach
To allow the modeling of the above described “hidden”

parameter dependencies, in addition to normal call parame-
ters, our performance meta-model supports the definition of

●●

●

●

●●

●

●
●●

●
●
●

●●
●
●

●
●

●
●

●●

●
● ●

●

●
● ●

●●
● ●

●

●

●

●

●

●

●

●
●●

●

●

●

●●●

●

●

●

●●
●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●●

●●●●●

●

●

●●●●●

●

● ●●

●

●

●●● ●●●●

●●

●●●●●

●

●

● ●

●

●●●●●●●

●

●●●●● ●●●●

●

●●●●●●

●

●

●● ●●●● ●

●

●●●●●● ●●●● ●●●

●

●●●●

0 50 100 150 200

0.
0

0.
4

0.
8

quantity

P(
"m

or
e

pa
rts

 a
re

 n
ee

de
d"

) a) Monitoring Data

quantity

P(
"m

or
e

pa
rts

 a
re

 n
ee

de
d"

)

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

< 0 50 100 > 200

b) Summarized Statistics

Figure 13: scheduleManufacturing Statistics

SPECjEnterprise2010<<CompositeComponent>>

Required/Provided service:
purchase(List demands)

Provided service:
newOrder(String assemblyId, int quantity)

Required/Provided service:
scheduleManufacturing(String workOrderId)

SupplyChain
Management

<<AssemblyContext>>

Manufacturing

<<AssemblyContext>>

Dealer

<<AssemblyContext>>

Influencing
Parameter2

Influencing
Parameter1

Influenced
Variable1

Figure 14: Modeling Parameter Dependencies

arbitrary influencing parameters where call parameters are
treated as a special case. In order to resolve parameter de-
pendencies, the influencing parameters need to be mapped
to some observable parameters that would be accessible at
run-time. Often such a mapping will only be feasible at de-
ployment time once the complete system architecture and
execution environment is available.

Figure 14 illustrates our modeling approach in the context
of the presented example from Figure 12. The branch prob-
ability of calling the purchase service in the control flow
of the scheduleManufacturing service is represented as In-
fluencedVariable1. The component developer is aware of
the existence of the dependency between the branch proba-
bility and the quantity of assemblies to be manufactured.
However, he does not have direct access to the quantity

parameter and does not know where the parameter might
be observable and traceable at run-time. Thus, to declare
the existence of the dependency, the component developer
defines an InfluencingParameter1 representing the “hid-
den” quantity parameter and provides a semantic descrip-
tion as part of the component’s performance model. He
can then declare a dependency relationship between Influ-

encedVariable1 and InfluencingParameter1.

The developer of composite component SPECjEnterprise-
2010 is then later able to link InfluencingParameter1 to the
respective service call parameter of the Dealer component,
designated as InfluencingParameter2. We refer to such
a link as declaration of a correlation relationship between
two influencing parameters. In our example, the correlation
can be described by the identity function. Having specified
the influenced variable and the influencing parameters, as
well as the respective dependency and correlation relation-
ships, the parameter dependency then can be characterized
empirically as illustrated earlier (Figure 13). Our modeling
approach supports both empirical and explicit characteri-
zations for both dependency and correlation relationships
between model variables.

Note that an influencing parameter does not have to be-
long to a provided or required interface of the component.
It can be considered as auxiliary model entity allowing to
model parameter dependencies in a more flexible way. If an
influencing parameter cannot be observed at run-time, the
component’s execution is obviously not affected, however,
the parameter’s influence cannot be taken into account in
online performance predictions. The only thing that can be
done in such a case is to monitor the influenced variable
independently of any influencing factors and treat it as an
invariant.

Finally, the same software component might be used mul-
tiple times in different settings, e.g., as in our scenario where
the same application is run on behalf of different customers
in separate virtual machines with customized application
components. Hence, the meta-model should provide means
to specify the scope of influencing parameters. A scope of
an influencing parameter specifies a context where the influ-
encing parameter is unique. This means, on the one hand,
that measurements of the influencing parameter can be used
interchangeably among component instances provided that
these instances belong to the same context. On the other
hand, it means that measurements of the influencing param-
eter are not transferable across scope boundaries. Thus, if
monitoring data for a given influencing parameter is avail-
able, it should be clear based on its scope for which other
instances of the component this data can be reused.

Information about parameter scopes is particularly im-
portant when using online performance models to predict
the impact of dynamic reconfiguration scenarios. For in-
stance, when considering the effect of adding server nodes
to the application server cluster of a given customer (host-
ing instances of our SPECjEnterprise2010 composite com-
ponent), given that influencing parameters within the clus-
ter belong to the same context, monitoring statistics from
existing instances of the SPECjEnterprise2010 component
can be used to parameterize the newly deployed instances.

3.3.3 Meta-Model
Model Variables. The model variables involved in de-

pendency specifications are divided into influenced variables
and influencing parameters. As shown in Figure 15, model
variables that can be referenced as InfluencedVariable in-
clude resource demands and control flow variables (for coarse-
and fine-grained behavior descriptions) and response times
(for black box behavior descriptions). Parameters having an
influence on the model variables are represented using the
entity InfluencingParameter. Normal service call parame-
ters such as service input parameters, external call param-

ModelVariable

InfluencingParameter

name : string
description : string

CallParameter

ServiceBehaviorAbstraction

ResourceDemand

desc : RandomVariable

ResponseTime

desc : RandomVariable

ControlFlowVariable

desc : RandomVariable

BranchProbabilities

LoopIterationCountDistribution

CallFrequency

1

*

InfluencedVariable

0..1 0..1 0..1
1

*

Figure 15: Model Variables

CallParameter

ServiceInputParameter

ProvidedRole

1
*

ExternalCallReturnParameter

ExternalCall

1

ExternalCallParameter

ExternalCall
1

* *

Figure 16: Call Parameter Hierarchy

eters or return parameters of external calls (see Figure 16)
are special types of influencing parameters.

An InfluencingParameter is attached to a service be-
havior abstraction and has a designated name and descrip-

tion. These attributes are intended to provide a human-
understandable semantics that could be used by component
developers, system architects, system deployers or run-time
administrators to identify and model relationships between
the model variables.

Relationships: Dependency and Correlation. As
shown in Figure 17, we distinguish the two types of rela-
tionships DependencyRelationship and CorrelationRela-

tionship between model variables. The former declares an
influenced variable to be dependent on an influencing pa-
rameter. The latter connects two influencing parameters
declaring the existence of a correlation between them. The
Relationship entities are attached to the innermost (com-
posite) component or (sub-)system that directly surrounds
the relationship. A dependency is defined at the type-level of
the component and is specified by the component developer.
In this paper, for reasons of clarity, we only consider one-
dimensional dependencies. In general, our meta-model sup-
ports the modeling of multi-dimensional dependencies where
influenced variables are dependent on multiple influencing
parameters.

A correlation is specified when a composed entity such
as a Subsystem is composed of several assembly contexts.
Thus, both sides of the correlation, designated as “left”
and “right”, are identified not only by an InfluencingPa-

rameter but also by the specific component instance where
the influencing parameter resides.

To provide maximum flexibility, it is possible to map the
same InfluencingParameter to multiple co-related Influ-

encingParameters, some of which might not be monitorable
in the execution environment, others might be monitorable
with different overhead. Depending on the availability of
monitoring data, some of the defined mappings might not be
usable in practice and others might involve different mon-
itoring overhead. Given that the same mapping might be
usable in certain situations and not usable in others, the

Relationship

DependencyRelationship

InfluencedVariable

InfluencingParameter

left right

1

1
1 1

AssemblyContext

ComponentInstanceReference

left right

1 1

*

{ordered}

InterfaceProvidingRequiringEntity

*
1

1

Scope *

CorrelationRelationship

Figure 17: Relationships between InfluencedVari-

ables and InfluencingParameters

more mappings are defined, the higher flexibility is provided
for resolving context dependencies at run-time.

Finally, note that an AssemblyContext cannot always serve
as unique identifier of a component instance. For exam-
ple, imagine a subsystem containing several instances of the
SPECjEnterprise2010 component of Figure 14 represent-
ing a customer-specific application server cluster. From the
subsystem’s perspective, the different component instances
of, e.g., the Manufacturing component, cannot be distin-
guished by one AssemblyContext since this context is the
same among all instances of the SPECjEnterprise2010 com-
ponent. Hence, in order to unambiguously identify a cer-
tain Manufacturing instance from the perspective of such a
customer-specific subsystem, we require the specification of
a path consisting of the AssemblyContext of the SPECjEn-

terprise2010 component followed by the AssemblyContext

of the Manufacturing component. Accordingly, in our meta-
model, such paths used to uniquely refer to a component
instance are represented as ordered lists of AssemblyCon-

texts.
Scopes. As shown in Figure 17, we decided to model a

scope as a reference to a InterfaceProvidingRequiringEn-

tity. An InfluencingParameter may have several scopes.
Let p be an influencing parameter, and C(p) the (composite)
component or (sub-)system where the influencing parame-
ter p resides. Let S(p) = {scopeC1, . . . , scopeCn} denote the
set of (composite) components or (sub-)systems referenced
as scopes of p. Set S0(p) = S(p)∪{scopeC0}, where scopeC0

equals to the global system. Then, for an instance of C(p),
denoted as instC(p), the influencing parameter’s scope is de-
fined as scopeC(instC(p)) = scopeCi ∈ S0(p), where scopeCi

is the most inner composite in S0(p) when traversing from
instC(p) to the system boundary.

The default case is when an influencing parameter is glob-
ally unique (at the component type level). In this case,
monitoring data from all observed instances of the compo-
nent can be used interchangeably and treated as a whole.
Moreover, once a declared dependency of the component be-
havior on this influencing parameter has been characterized
empirically (e.g., “learned” from monitoring data), it can be
used for all instances of the component in any current or
future system. This trivial case can be modeled by either
omitting the specification of scopes or by specifying a scope
referencing the global system.

Characterization of Relationships. Each depen-
dency or correlation relationship can be characterized using
either an ExplicitCharacterization or an EmpiricalChar-

DependencyRelationship CorrelationRelationship

ExplicitCharacterization

EmpiricalCharacterization
0..1

0..1

+compute(ein influencingParam : Literal, ein scope : AssemblyContext) : ProbabilityFunction

EmpiricalFunction

0..1

0..1

0..1

0..1

leftToRight
Empirical

leftToRight
Explicit

rightToLeft
Explicit

rightToLeft
Empirical

ExplicitFunction

1

1

Figure 18: ExplicitCharacterization and Empiri-

calCharacterization

acterization (see Figure 18). The former means that the
relationship is characterized using explicit parameter depen-
dencies as known from PCM. Such a characterization is suit-
able if an expression of the functional relation between the
two considered model variables is available. If this is not the
case, an EmpiricalCharacterization can be used to quan-
tify the relationship using monitoring statistics. The entity
EmpiricalFunction in the figure describes the interface to a
characterization function based on empirical data. An Em-

piricalFunction can for example be based on monitoring
statistics as discussed earlier (Figure 13) and can be repre-
sented by abstracting the obtained statistics as illustrated
in Figure 13 b), e.g., using equidistant or equiprobable bins.
In this paper, we focus on the modeling concepts at the
meta-model level. Due to lack of space, we omit descrip-
tions of how the empirical characterizations can be derived
from monitoring statistics. In the following, we formalize the
semantics of the characterization functions for dependency
relationships and correlation relationships.

Let v be an influenced variable of a dependency relation-
ship and p the respective influencing parameter. A cor-
responding explicit function f then has the signature f :
Literal −→ ProbabilityFunction. It maps a value of p
to a probability function describing v. The signature of an
empirical function f̂ is f̂ : Literal× AssemblyContext −→
ProbabilityFunction. This function also maps a value of
p to a probability function. However, depending on the de-
fined scope S(p), the function has to evaluate differently for
different component instances of C(p). We denote a com-
ponent instance as instC(p). According to the function’s

signature, f̂ evaluates depending on an assembly context.
More precisely, f̂ evaluates depending on the assembly con-
text of the scope-specifying composite of instC(p), i.e., the
assembly context of scopeC(instC(p)).

The formalization of the semantics of characterization func-
tions for correlation relationships is similar. The main dif-
ference is that a correlation relationship may provide two
functions for both directions “left to right” and “right to
left”, i.e., fleftToRight and frightToLeft for explicit functions,
respectively f̂leftToRight and f̂rightToLeft for empirical func-
tions. For the explicit functions, the scopes of the involved
influencing parameters pleft and pright are ignored. For the
empirical functions, the intersection of the scopes pleft and
pright has to be considered.

workload

C
PU

 U
til

iz
at

io
n

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

low medium high very high

Legend
WLS Utilization, measured
WLS Utilization, predicted
DBS Utilization, measured
DBS Utilization, predicted

a) Utilization measurements and predictions

0
10

20
30

40
50

workload

R
el

at
ive

 R
es

p.
 T

im
e

Pr
ed

ic
tio

n
Er

ro
r i

n
%

low medium high very high

●

●

●

●

●

Browse
Purchase
Manage
CreateVehicleEJB
CreateVehicleWS

b) Relative error of response time predictions

Figure 19: Exemplary Measurements and Predic-

tion Results with SPECjEnterprise2010

4. SUMMARY OF EVALUATION

To evaluate the feasibility and effectiveness of our mod-
eling approach, we deployed the benchmark in the system
environment depicted in Figure 4 in two application server
clusters consisting of two and four nodes, respectively. We
used PCM as a basis adopting the modeling approach pre-
sented in this paper. The resource demands were estimated
based on utilization and throughput data. As performance
metrics, we considered the average response times of the five
benchmark operations as well as the average CPU utilization
of the WebLogic application servers (WLS CPU) and the
database server (DBS CPU). We predicted the performance
metrics for low load conditions (≈ 20% WLS CPU utiliza-
tion), medium load conditions (≈ 40%), high load conditions
(≈ 60%) and very high load conditions (≈ 80%) and then
compared them with steady-state measurements under the
same load conditions on the real system. Note that the re-
sponse times of the benchmark operations are measured at
the benchmark driver agents. We measured the delay for
establishing a connection to the WLS instance which is de-
pendent on the system load. With the knowledge of the
number of connections the individual benchmark operations
trigger, the load-dependent delay is considered in the pre-
dicted operation response times.

The response times of the benchmark operations vary
from 10ms to 70ms. We considered a number of different
scenarios varying the application workload and system con-
figuration. For lack of space, here we only show some exem-
plary results to illustrate the model accuracy. The measured
and predicted server utilization for the different load levels
are depicted in Figure 19 a). The utilization predictions fit
the measurements very well, both for the WLS instances as
well as for the DBS. Figure 19 b) shows the relative error
of the response time predictions. The error is mostly below
20%, only predictions of operation Browse show a higher er-
ror (30%). The prediction accuracy of the former increases

with the load. This is because Browse has a rather small re-
source demand but includes a high number of round trips to
the server (15 on average) translating in connection delays.

5. RELATED WORK

There have been presented several approaches on QoS and
resource management based on online performance analy-
sis [14, 10]. More recently, also approaches for the adapta-
tion of virtualized systems using performance models have
been proposed [10, 19]. Problem of all the approaches is that
their performance analysis are rather restricted (if any) in
terms of the level of detail. In general, the approaches do
not consider run-time dynamics and aspects relevant to ana-
lyzing the performance behavior in an evolving environment
or do not capture important parametric dependencies.

However, there exist many different design-time (comp-
onent-based) performance modeling approaches that explic-
itly consider the influence of parameters in their performance
analysis [1, 3, 23, 2]. The most advanced approaches con-
cerning parametric dependencies are [1, 3]. Components
and their behavior can be specified in a parameterized way,
considering the dependency of input and deployment spe-
cific parameters to the component’s resource demand, con-
trol flow, etc. The approaches in [2, 23] have less expres-
siveness. For example, they do not consider service in-
put or output parameters or limit the set of parameters to,
e.g., thread pool size or to resource demand parametriza-
tion. Also important to mention are transformation tech-
niques which modify a given performance model by adding
parametric connector behaviors [5] or parameterized perfor-
mance annotations [8].

Orthogonal approaches tackling the challenge of paramet-
ric dependencies in performance analysis are [7, 20]. They
model the component’s internal state which might lead to
state space explosion. Furthermore, the approaches do not
differentiate the execution time on different resources (CPU,
HDD, etc.) or miss the specification of required interfaces.

The main drawbacks of the presented approaches are that
they are either limited to a subset of parameters, try to
abstract from important details or even try to model the
component’s internal state completely instead of modeling
parametric dependencies at a level of detail that is suitable
for online performance analysis.

6. CONCLUDING REMARKS

We analyzed typical online performance prediction scenar-
ios and the requirements on online performance-modeling
approaches at the architecture-level. The analysis revealed
that current approaches to modeling the component exe-
cution context are not suitable for use at run-time. They
do not provide enough flexibility in the way parameter and
context dependencies can be expressed and resolved. To
address this issue, we proposed a novel performance meta-
model for expressing and resolving parameter and context
dependencies, specifically designed for use in online scenar-
ios. We conducted a detailed evaluation of the suitability
of the proposed modeling approach in the context of the
SPECjEnterprise2010 benchmark providing a set of realistic
and representative application scenarios.

As part of our on-going work, we are integrating the pro-
posed meta-model with meta-models for modeling resource
landscapes of distributed virtualized service infrastructures [9].

The presented modeling abstractions are an integral part of
the Descartes Meta-Model (DMM) [11], a new meta-model
that we are developing for run-time QoS and resource man-
agement in virtualized service infrastructures.

7. REFERENCES
[1] S. Becker, H. Koziolek, and R. Reussner. The Palladio

component model for model-driven performance prediction.
Journal of Systems and Software, 82:3–22, 2009.

[2] A. Bertolino and R. Mirandola. Cb-spe tool: Putting
component-based performance engineering into practice. In
CBSE, pages 233–248, 2004.

[3] E. Bondarev, J. Muskens, P. d. With, M. Chaudron, and
J. Lukkien. Predicting real-time properties of component
assemblies: A scenario-simulation approach. In EUROMICRO,
pages 40–47, 2004.

[4] F. Brosig, N. Huber, and S. Kounev. Automated Extraction of
Architecture-Level Performance Models of Distributed
Component-Based Systems. In 26th Int. Conf. on Automated

Software Engineering, 2011.
[5] V. Grassi, R. Mirandola, and A. Sabetta. A model

transformation approach for the early performance and
reliability analysis of component-based systems. In CBSE’06.

[6] V. Grassi, R. Mirandola, and A. Sabetta. Filling the gap
between design and performance/reliability models of
component-based systems: A model-driven approach. Journal

of Systems and Software, 80(4), 2007.
[7] D. Hamlet. Tools and experiments supporting a testing-based

theory of component composition. ACM Trans. Softw. Eng.

Methodol., 18:12:1–12:41, 2009.
[8] J. Happe, H. Friedrichs, S. Becker, and R. Reussner. A

configurable performance completion for message-oriented
middleware. In WOSP, 2008.

[9] N. Huber, F. Brosig, and S. Kounev. Modeling Dynamic
Virtualized Resource Landscapes. In QoSA 2012.

[10] G. Jung, M. Hiltunen, K. Joshi, R. Schlichting, and C. Pu.
Mistral: Dynamically Managing Power, Performance, and
Adaptation Cost in Cloud Infrastructures. In ICDCS, 2010.

[11] S. Kounev, F. Brosig, and N. Huber. Descartes Meta-Model
(DMM). Technical report, Karlsruhe Institute of Technology
(KIT), 2012. To be published.

[12] S. Kounev, F. Brosig, N. Huber, and R. Reussner. Towards
self-aware performance and resource management in modern
service-oriented systems. In SCC 2010.

[13] H. Koziolek. Performance evaluation of component-based
software systems: A survey. Performance Evaluation, 2009.

[14] J. Li, J. Chinneck, M. Woodside, M. Litoiu, and G. Iszlai.
Performance model driven QoS guarantees and optimization in
clouds. In CLOUD ’09, Washington, DC, USA, 2009. IEEE.

[15] D. A. Menascé and H. Gomaa. A method for design and
performance modeling of client/server systems. IEEE Trans.

Softw. Eng., 26(11), 2000.
[16] R. Nou, S. Kounev, F. Julia, and J. Torres. Autonomic QoS

control in enterprise Grid environments using online simulation.
Journal of Systems and Software, 82(3), 2009.

[17] Object Man. Group (OMG). UML Profile for Modeling and
Analysis of Real-Time and Embedded systems (MARTE), 2006.

[18] G. Pacifici, W. Segmuller, M. Spreitzer, and A. N. Tantawi.
Cpu demand for web serving: Measurement analysis and
dynamic estimation. Performance Evaluation, 2008.

[19] P. Padala, K.-Y. Hou, K. G. Shin, X. Zhu, M. Uysal, Z. Wang,
S. Singhal, and A. Merchant. Automated control of multiple
virtualized resources. In Proc. of EuroSys ’09. ACM, 2009.

[20] M. Sitaraman, G. Kulczycki, J. Krone, W. F. Ogden, and
A. L. N. Reddy. Performance specification of software
components. In SSR’01, 2001.

[21] C. U. Smith, C. M. Llado, V. Cortellessa, A. Di Marco, and
L. G. Williams. From UML Models to Software Performance
Results: an SPE Process based on XML Interchange Formats.
In WOSP, 2005.

[22] SPECjEnterprise2010 Design Document. http://www.spec.org/
jEnterprise2010/docs/DesignDocumentation.html. 2011.

[23] X. Wu and M. Woodside. Performance modeling from software
components. In WOSP, pages 290–301, 2004.

