
Chapter 5
Architectural Concepts for Self-Aware
Computing Systems

Holger Giese, Thomas Vogel, Ada Diaconescu, Sebastian Götz, and Samuel
Kounev

Abstract Self-awareness in a computing system is achieved by implementing a
model-based learning, reasoning, and acting loop (LRA-M loop). Similar to feed-
back loops for self-adaptive software, we argue that the LRA-M loop should be
addressed during the architectural design of self-aware computing systems. This al-
lows engineers to explicitly decide and reason about the system’s self-awareness
capabilities. This chapter therefore introduces the relevant architectural concepts to
address and make the LRA-M loop visible in the architectural design. Based on
these concepts, we discuss how context-awareness, self-awareness, and meta-self-
awareness become manifest in an architecture. Finally, we relate the presented archi-
tectural concepts to the definition and framework for self-aware computing systems
introduced in previous chapters.

Holger Giese
Hasso Plattner Institute for Software Systems Engineering at the University of Potsdam, Prof.-Dr.-
Helmert-Str. 2-3, D-14482 Potsdam, Germany, e-mail: holger.giese@hpi.de

Thomas Vogel
Hasso Plattner Institute for Software Systems Engineering at the University of Potsdam, Prof.-Dr.-
Helmert-Str. 2-3, D-14482 Potsdam, Germany, e-mail: thomas.vogel@hpi.de

Ada Diaconescu
Telécom ParisTech, Equipe S3, Departement INFRES, 46 rue Barrault, 75013 Paris, France, e-
mail: ada.diaconescu@telecom-paristech.fr

Sebastian Götz
TU Dresden, Germany, e-mail: sebastian.goetz@acm.org

Samuel Kounev
University of Wrzburg, Department of Computer Science, Am Hubland, D-97074 Wrzburg, Ger-
many e-mail: samuel.kounev@uni-wuerzburg.de

109

P
re

-p
rin

t v
er

si
on

 fo
r p

er
so

na
l u

se
 o

nl
y!



110 Giese et al.

5.1 Introduction

The vision of self-aware computing as introduced in Chapter 1 promises that self-
aware systems achieve their goals in a flexible manner despite the dynamic and un-
certain nature of their environments and goals. To achieve their goals, such systems
continuously learn and reason about themselves, their environment, and their goals,
and if needed, take appropriate actions. For instance, based on their self-awareness,
such systems are able to self-adapt at runtime, steer their behavior directly as re-
quired, or report to their users to explain what happened.

There are a number of initiatives aiming for more flexible software systems such
as autonomic computing [22], self-* systems [3], self-adaptive and self-managing
systems [9,10,13,14,24,34], organic computing [1,29], or cognitive computing [21]
that advocate a paradigm shift for software from design-time decisions and under-
standing toward resolving issues dynamically at runtime—typically by equipping
the system with a feedback loop [7].

While these approaches traditionally looked only into reactive classes of solu-
tions that act at runtime in response to changes without anticipating future changes
or reasoning about the long-term future (cf. [17,24]), recently an additional paradigm
shift from a reactive to a proactive operation can be observed that aims to integrate
the ability to learn, reason, and act at runtime (cf. [8, 11, 19]). This trend is well in
line with the ideas centered around the notion of self-aware computing [1, 2, 20, 23,
25, 27, 43], runtime models [4–6, 39, 41, 42] and related terms [12, 15, 26, 33] that
gained momentum in recent years.1

In this chapter, we will look at the solution space for self-aware computing sys-
tems with the particular focus on software architecture as “a collection of compu-
tational components—or simply components—together with a description of the
interactions between these components—the connectors.” [36, p. 4]. Therefore, this
chapter explores which concepts are required to describe architectures of self-aware
systems. As introduced by the definition of a self-aware computing system, the con-
cepts we address include runtime models of the context and the system itself as
well as learning, reasoning, and acting processes (cf. Chapter 1). In this context, we
consider the pre-reflective and reflective forms of self-awareness (cf. Chapter 3).

It is important to emphasize that the chapter does not propose a dedicated ar-
chitectural language for development or a set of well-established, concrete archi-
tectures but rather aims to provide an initial basis to compare approaches as well
as to explore and discuss the possible solution space. Consequently, the concepts
we discuss and capture in the examples in this chapter need not to be relevant for
every but only for specific applications of self-aware computing systems and often
only depict a fragment of an architecture rather than a complete architecture. Fur-
thermore, the concepts are the building blocks for such systems but not necessary
ingredients. Therefore, they also support modeling architectures of systems that are
yet not self-aware. Our goal is to provide an architectural language that allows us

1 A broader discussion of other related work including also agents and multi-agent systems can be
found in Chapter 2 of this book.

P
re

-p
rin

t v
er

si
on

 fo
r p

er
so

na
l u

se
 o

nl
y!



5 Architectural Concepts for Self-Aware Computing Systems 111

(1) to discuss the whole spectrum of self-aware computing systems (see Chapter 3),
(2) to classify whether a given system is self-aware, (3) to study systems that may
evolve into such self-aware computing systems and (4) to derive steps to adjust the
architecture of a non-self-aware system to migrate it into a self-aware system.

Therefore, we do not claim that these concepts are generally relevant for self-
aware computing systems. In contrast, they should be considered as a source of
inspiration when conducting research or developing an architecture and design for
such a system. Future results, experiments, and solutions may then confirm, refine
or even contradict the usefulness of the various concepts we propose. In any of
these cases, the purpose of the proposed concepts to start-off research and work on
architectures for self-aware computing systems would have largely been fulfilled.

To start-off such research and work, we propose concepts that emerged from the
discussions at the Dagstuhl seminar on self-aware computing system and that make
the specifics of such systems explicit and visible in the architectural design. We ar-
gue that these specifics should become first-class entities of the architectural design
such that they can be properly addressed during development. Similarly, Shaw [35],
Müller et al. [28, 30], and Brun et al. [7] argue that feedback loops as the essential
characteristic of self-adaptive software should be made explicit and visible in the ar-
chitectural design, for instance, to also make design decisions explicit and to enable
reasoning on the design. Consequently, we borrowed several ideas from approaches
of the authors of this chapter. Especially, we borrowed ideas from EUREMA [40],
addressing the explicit modeling of feedback loops in self-adaptive software, as well
as from MechatronicUML [18], supporting collaborations in flexible architectures.
However, none of these approaches targets self-aware computing systems in partic-
ular.2 In the context of this chapter, applying all of the proposed concepts may lead
to a too detailed model that might be considered more like a specific design rather
than a general architecture. However, our intention is to be able to express also sub-
tle differences between solutions in one notation rather than finding an appropriate
compromise between expressiveness and ease of use. Consequently, an important
aspect that will need further attention is to determine under which circumstances
the proposed concepts are really helpful for architecture modeling and when they
are too detailed and rather concerned with the more fine-grained design.

The concepts we propose in this chapter are the foundations for the following
chapters. Particularly, Chapter 6 will explore the specific needs of architectures for a
single self-aware computing system while Chapter 7 will explore collectives of self-
aware systems. Furthermore, Chapter 8 will review the state of the art and contrast it
with the proposals of this chapter and of Chapters 6 and 7. In addition, Chapters 12
and 13 will target the detailed algorithmic questions of how learning, reasoning, and
acting are realized within a single or collective of systems, which is not covered by
the chapters on the architectures for self-aware systems.

This chapter is organized as follows: In Section 6.2, we introduce the running
example we use throughout this chapter as well as basic notational concepts of the
UML to describe software architectures. Then, we discuss the proposed concepts

2 A comparison of these related approaches to self-aware computing systems can be found in
Chapter 8 of this book.

P
re

-p
rin

t v
er

si
on

 fo
r p

er
so

na
l u

se
 o

nl
y!



112 Giese et al.

in terms of elements and relations that are specific to self-aware computing sys-
tems in Sections 5.3 and 5.4. Using these concepts, we describe different cases of
self-awareness in Section 5.5. In Section 5.6, we discuss these concepts concerning
architectural views as well as their coverage of the definition and framework of self-
aware computing systems (see Chapters 1 and 3). Finally, we conclude the chapter
in Section 25.5.

5.2 Preliminaries

In this section, we introduce the running example, a smart home system, that we use
to illustrate the architectural and design concepts for self-aware computing systems.
Then, we introduce basic notational concepts from the Unified Modeling Language
(UML) [32] to describe software architectures, which are extended in this chapter to
address the specifics of self-aware computing systems. Finally, we summarize the
definition and framework for such systems from Chapters 1 and 3.

5.2.1 Running Example: Smart Home

To discuss the architectural concepts for self-aware computing systems, we use a
running example based on the smart home exemplary scenario presented in Chap-
ter 4. In contrast to the original scenario, we use here a smart home system with a
more complicated architecture of pre-reflective components that control devices in
a house and that are coordinated by a house manager (see Figure 5.1).

House
Manager

Temperature Heater

Lights Light/Person
Sensor

Window Shutter Panel

Weather
Forecast Market Prices

Fig. 5.1: Overview of the Smart Home System with a Centralized House Manager.

P
re

-p
rin

t v
er

si
on

 fo
r p

er
so

na
l u

se
 o

nl
y!



5 Architectural Concepts for Self-Aware Computing Systems 113

The house manager reports to the user if something goes wrong (e.g., if failures
are detected), self-adapts (e.g., to optimize energy consumption) and actuates the
device controllers in the house (e.g., in the case of emergencies). Besides a central-
ized house manager that coordinates the device controllers located in the house, we
further consider variants of less hierarchical interaction schemes such as collabora-
tions or self-organization to achieve the coordination among the device controllers.

A house consists of several floors and rooms. Each room is equipped with devices
such as sensors to perceive the in- and outdoor temperature, lighting conditions, and
persons, as well as controllers for the heater (start or stop heating), lights (switch on
or off the lights), windows (tilt, open, or close the window), and shutter panels (open
or close the panels). Each controller works independently, for example, one controls
the heater based on the temperature, another one the windows based on time. This
might result in conflicts such as heating up the room while opening the windows.
The task of the house manager is to coordinate the controllers according to some
goals. Therefore, the manager aims for (1) self-healing and (2) self-optimization
while we leave out other self-* capabilities to keep the example simple.

(1) Self-healing:

a. If a sensor in a certain room is broken, the house manager relies on the
sensor data from the neighboring rooms.

b. If a single point of failure is affected, such as the window cannot be closed
any more, a person in the house who is close to the window is notified.

(2) Self-optimization:

a. The energy consumption should be optimized while achieving the goals
such as maintaining a certain room temperature.

b. Various influencing factors for the optimization can be considered, such as
market prices, weather forecasts, government subsidies, user preferences,
etc.

In this chapter, we illustrate the architectural concepts for self-aware computing
systems with this example. To discuss a particular concept, we often present a frag-
ment of the example emphasizing this concept instead of a complete architecture.

5.2.2 Architectural Modeling with UML

Before we introduce the architectural concepts that are specific to self-aware com-
puting systems, we provide a summary of UML-based concepts [32] for architecture
modeling that serve as a basis for this chapter. These UML concepts are modules

P
re

-p
rin

t v
er

si
on

 fo
r p

er
so

na
l u

se
 o

nl
y!



114 Giese et al.

Example Legend

m:HouseManager
Coord►

house:House

Coord►

rc1:RoomCtrl

Coord► Temp► h1:HeaterTemp►

name:type

type►

Module:

Port:

Connector:
rc2:RoomCtrl

Coord► Temp► h2:HeaterTemp►

Fig. 5.2: Generic UML Elements for Architecture Modeling.

(e.g., components3), ports provided or required by modules, connectors, collabora-
tions, and participation links between modules and collaborations.

Modules have a name and a type and they can be hierarchically composed to
UML hierarchies. If the name of a module is not relevant, we may omit it (cf. anony-
mous module). We may also omit the type of a module if it is not relevant for the
discussion. Modules may provide or require ports that encapsulate functionality and
restrict access. Ports are defined by their types. The direction of the arrows (N, H,
I, J) within a port denotes whether the port is provided or required by a module.4

A module provides (requires) a port if the direction of the port’s arrow points from
the module inwards (outwards). Provided and required ports of the same type are
wired by a connector to visualize interactions among the corresponding modules.

The example depicted in Figure 5.2 shows two modules of different types: m of
type HouseManager and house of type House. The manager m coordinates the con-
trollers rc1 and rc2 that are located in different rooms of the house. Therefore, the
house is hierarchically decomposed into room controllers each with its own heater
to control. The manager requires the port Coord that is provided by the house. Both
ports are connected and the manager coordinates the controllers in the house. The
house forwards the coordination commands from the manager to the individual con-
trollers that eventually set the temperature to the heaters in the corresponding rooms.
The manager’s responsibility is to achieve similar temperatures in both rooms.

In addition to modules with their connectors and hierarchical (de)composition,
more flexible forms of cooperating behavior can be modeled with collaborations.
Collaborations are depicted by ellipses and they are wired to the modules that col-
laborate by participation links. For instance, Figure 5.3 shows a collaboration in
which four room controllers agree on a common temperature for each room.

In general, UML hierarchies with shared aggregation and UML collaborations
may overlap to some extent. For instance, we may employ collaborations to capture
the interaction in a UML hierarchy, but also to capture non-hierarchically struc-
tured compositions. However, participations of elements in UML collaborations

3 Oftentimes the modules may be in fact components [38]. However, as components imply a certain
degree of encapsulation that might not be the case for the system elements considered in this
chapter, we use the more general term of a module here.
4 This can be seen as simple generalization of the different flow properties for ports in SysML [31].

P
re

-p
rin

t v
er

si
on

 fo
r p

er
so

na
l u

se
 o

nl
y!



5 Architectural Concepts for Self-Aware Computing Systems 115

Example

rc1:RoomCtrl

ta:TempAgreement

rc2:RoomCtrl rc3:RoomCtrl

rc4:RoomCtrl

Legend

name:type

Module:

Collaboration:

Participation Link:

name:type

Fig. 5.3: Generic UML Elements for Modeling Collaboration of Modules.

may change rather frequently while memberships in a hierarchy are usually con-
sidered more stable and durable (even though such memberships may also change).

5.2.3 Self-Awareness Terminology and Framework

The terminology and framework for self-aware computing systems introduced in
Chapters 1 and 3 provide a definition and several dimensions spanning the overall
spectrum of such systems. In the following, we briefly summarize the definition and
dimensions since they provide the foundation for the architectural concepts of self-
aware computing systems, which we discuss in this chapter. At first, we recap the
definition of self-aware computing systems given in Chapter 1:

Self-aware computing systems are computing systems that:

1. learn models capturing knowledge about themselves and their environment
(such as their structure, design, state, possible actions, and run-time behavior)
on an ongoing basis and

2. reason using the models (for example predict, analyze, consider, plan) en-
abling them to act based on their knowledge and reasoning (for example ex-
plore, explain, report, suggest, self-adapt, or impact their environment)

in accordance with higher-level goals, which may also be subject to change.

Based on this definition, we may sketch a self-aware computing system with
the conceptual Learn-Reason-Act-Model (LRA-M) loop (see Figure 5.4). This loop
shows the relevant aspects of the definition. Particularly, the system collects em-
pirical observations of the self and of phenomena outside the self. Learning and
reasoning processes produce and use models that capture knowledge derived from
the observations. Based on the knowledge, the system may act upon itself and on its
context. The processes operate according to higher-level goals that may dynamically
change.

Consequently, the definition and the LRA-M loop introduce the concepts of em-
pirical data/observations, models, and goals, which are used by learning, reason-

P
re

-p
rin

t v
er

si
on

 fo
r p

er
so

na
l u

se
 o

nl
y!



116 Giese et al.

Goals

Phenomena
(environment, other systems, humans,...)

Empirical Observations

Models
(self, environment, goals,...)

Learn Act

Actions

Reason

SELF

Fig. 5.4: The LRA-M Loop Introduced in Chapter 1.

ing, and acting processes. We can elaborate this use relationship by describing the
data flow within the LRA-M loop. The system observes itself and its environmental
context, for which models are learned and used for reasoning and acting. Thus, a
system realizing such a loop becomes aware of itself and of its context.

These aspects are refined by Chapter 3 providing several dimensions for self-
aware computing systems, which we consider as a conceptual framework. This
framework covers different levels of self-awareness: A pre-reflective self-awareness
level denoting simple subjective observations, a reflective self-awareness level
if learning and reasoning with awareness models are involved, and a meta-self-
awareness level where the object of the reflection is a reflective self-awareness pro-
cess. Moreover, the framework distinguishes a subject (i.e., the span) and an object
of awareness (i.e., the scope) while the span reflects on the scope. In this context, the
notion of action scope that includes all entities that the system may act directly upon
as well as the notion of influence scope that refers to entities upon which the system
may only act indirectly are introduced. Finally, the framework refines the notion
of awareness by emphasizing different aspects of awareness such as identity, state,
interaction, time, behavior, appearance, goal, expectation, and belief awareness.

In the rest of this chapter, we will discuss architectural concepts for self-aware
computing systems, which address these aspects and dimensions by applying and
extending the generic UML concepts for architecture modeling. To illustrate these
architectural concepts, we use the introduced running example.

5.3 Architectural Elements for Self-Awareness

In this section, we propose general elements (i.e., building blocks) for describing
architectures of self-aware systems, which are motivated by the aspects and dimen-
sions of self-aware computing systems introduced in Chapters 1 and 3. Thereby,
the architectural descriptions target concrete architectures of systems and therefore,

P
re

-p
rin

t v
er

si
on

 fo
r p

er
so

na
l u

se
 o

nl
y!



5 Architectural Concepts for Self-Aware Computing Systems 117

the emphasis is on describing specific instance configurations. An overview of the
proposed elements is given in the appendix.

5.3.1 System, Environmental Context, and Modules

As depicted in Figure 5.5a, we may first distinguish a system from its environmental
context. The environmental context, represented by a cloud, is the fragment of the
environment (including possibly other systems) scoped by the system’s capacities
of sensing and exploration. Furthermore, we may distinguish modules that represent
a system and individual elements that compose the system. Both are depicted by
rectangles but a system is illustrated with a bold border in contrast to an individual
module having only a thin border. If we do not want to distinguish whether we refer
to a system or to a module, we just use a rectangle.

SmartHome:

HouseManager:

Controllers:

HouseEnvCtx:

(a)

SmartHome:

HouseManager:

<<learn>>

<<reason>>

<<act>>

Controllers:

<<observe>>

<<analyze>>

<<react>>

(b)

Fig. 5.5: Notation for System, Modules, Environmental Context, and Processes.

The example shown in Figure 5.5a describes the SmartHome system with two
modules, Controllers and HouseManager, and the environmental context HouseEn-
vCtx.

5.3.2 Reflective and Pre-Reflective Processes

We now show how to model processes within systems and modules. In this con-
text, we will distinguish between processes for pre-reflective and reflective self-
awareness. The former considers basic subjective observations of the system while
the latter additionally considers learning and reasoning activities with awareness
models. An example is given in Figure 5.5b. Processes are labeled with �learn�

P
re

-p
rin

t v
er

si
on

 fo
r p

er
so

na
l u

se
 o

nl
y!



118 Giese et al.

when they capture how models are learned based on observations,�reason� when
they analyze the situation or plan actions, or �act� when they have an external or
internal impact and are driven by the results of reasoning.

In the example depicted in Figure 5.5b, the learning process located in the House-
Manager learns about the underlying Controllers module. Then, a reasoning process
identifies shortcomings of the Controllers and plans their circumvention. Finally, the
act process will enact the planned adaptation by effecting the Controllers accordingly.

These processes can be refined and classified into reflective self-awareness and
self-expression (see Figure 5.6). For self-awareness, we have already introduced the
processes of learning models and reasoning on such models for acting. For self-
expression (i.e., acting), we consider processes that have an external influence such
as adapting the system itself or other systems, effecting the context or other systems,
and reporting to the user or to superordinated system entities.5

<<reflective>> 

<<self-awareness>> 

<<learn>> <<reason>> 

<<act>> / 
<<self-expression>>

<<adapt>> <<effect>> <<report>> 

Fig. 5.6: Classification of Reflective Processes.

Similarly, we may classify the processes for pre-reflective self-awareness (see
Figure 5.7). Observe denotes measuring the system itself, other systems, or the envi-
ronmental context, analyze covers simple variants of analysis based on the observa-
tions, and react describes the reaction to specific situations either directly observed
or identified by the analysis. Such pre-reflective processes can be allocated within
systems and modules as illustrated for the Controllers module in Figure 5.5b.

<<pre-reflective>>

<<observe>> <<analyze>> <<react>> 

Fig. 5.7: Classification of Pre-Reflective Processes.

The classifications of reflective and pre-reflective processes shown in Figures 5.6
and 5.7 are derived from the definition of self-aware computing systems (cf. Chap-

5 We distinguish adapting and effecting an entity as the former involves changing an entity (e.g.,
modifying the entity’s structure) while the latter denotes interactions between entities that do not
require any substantial changes of the entity (e.g., by exchanging knowledge among entities).

P
re

-p
rin

t v
er

si
on

 fo
r p

er
so

na
l u

se
 o

nl
y!



5 Architectural Concepts for Self-Aware Computing Systems 119

ter 1) and should therefore be considered at the conceptual level. In practice, these
classifications can be further refined or extended given the specific problem at hand.

5.3.3 Awareness Models, Empirical Data (Models), and Goal
Models

As described by the learn-reason-act-model (LRA-M) loop for self-aware com-
puting systems sketched in Section 6.2.2, awareness models (AMs) and empirical
data (ED) are used online. To capture the scope that is represented by the model
or data, we use the stereotypes �ctx� in the case of the environmental context and
�sys� in the case of the system itself or parts of it.

AMs are employed online6 and represent originals outside the system (e.g., the
environmental context or other systems) or inside the system (e.g., modules or pro-
cesses of the self). Such models can be subjective and not a perfect representation of
the originals as they might be based on individual measurements as part of specific
learning processes. In general, AMs are usually obtained by�learn� processes and
they are subject to �reason� and �act� processes. AMs are depicted as blue-
shaded, rounded boxes in our notation (see Figure 5.8).

SmartHome:

<<ctx>>

myCtx:

HouseEnvCtx:

(a)

SmartHome:

HouseManager:

RM
<<sys>>

Ctrl:

Controllers:

(b)

SmartHome:

HouseManager:

<<learn>>

<<sys>>

Ctrl:

Controllers:

(c)

Fig. 5.8: Notation for Awareness Models within Systems, Modules, or Processes.

In the example depicted in Figure 5.8a, the system has an AM of its environmen-
tal context. In Figure 5.8b, the HouseManager module has an AM of the Controllers

6 The awareness models (AMs) discussed here overlap with the concept of models@run.time [6]
when there is a causal connection with the system itself. Our assumption is that not every AM
is or needs to be causally connected to the running system. Another view on runtime models
considers any models that are used within the system and that either represent (parts of) the system
or context for reflection or specify (parts of) the system for execution [40, 41]. In this view, the
reflection models correspond to the idea of AMs. In general, we do not restrict the scope of an
AM. If an AM represents the context, it usually supports establishing context-awareness while an
AM representing (parts of) the system supports establishing self-awareness.

P
re

-p
rin

t v
er

si
on

 fo
r p

er
so

na
l u

se
 o

nl
y!



120 Giese et al.

module, which is thus a system model. Finally, in Figure 5.8c, a learning process
within the HouseManager module maintains such a system model locally.

Either a single or a group of models is depicted if one or more models are used
online. An AM or a group of them can be located within a system, a module, or a
process. A group of AMs covers different aspects of the same scope, for instance, a
timing aspect to capture the history of AMs. Otherwise, we use completely separate
boxes for the AMs if they refer to different scopes.

In addition to AMs, the LRA-M loop addresses empirical data (ED) such as
sensor data obtained and used by pre-reflective processes (cf. Chapter 1). Thus,
ED is usually obtained by �observe� processes and subject to �analyze� and
�react� processes. Such data is specified in the notation as blue-shaded, rounded
boxes with a dashed border (see Figure 5.9).

SmartHome:

<<ctx>>

myCtx:

HouseEnvCtx:

(a)

SmartHome:

HouseManager:

RM
<<sys>>

ED1:

Controllers:

(b)

SmartHome:

Controllers:

HouseManager:

<<observe>>

<<sys>>

ED1:

(c)

Fig. 5.9: Notation for Empirical Data within Systems, Modules, or Processes.

As outlined in the definition of self-aware computing systems in Chapter 1, a
self-aware system is driven by goals and it may be necessary to be able to cope
with changing goals or even dynamically generated goals. Such runtime goals can
be explicitly represented in one or more goal models (GMs). Such models are de-
picted as red-shaded, rounded boxes stereotyped with �goal� in the notation (see
Figure 5.10). In our example of Figure 5.10, the GM describes the criteria indicat-
ing the direction that the self-optimization should steer the SmartHome system to,
for instance, reducing the energy consumption while considering constraints such
as “do not shut down the heater in a room if there is a person in this room”.

SmartHome:
<<goal>>

GM:

Fig. 5.10: Notation for Goal Models.

Runtime goals must be explicitly captured by online GMs. In contrast, design-
time goals influence the system during development, for instance, by determining

P
re

-p
rin

t v
er

si
on

 fo
r p

er
so

na
l u

se
 o

nl
y!



5 Architectural Concepts for Self-Aware Computing Systems 121

the type of models and processes to be developed. Some of them may not be explic-
itly represented and they can remain implicit in the implementation—if they do not
change dynamically. Goals that may change dynamically must be explicitly repre-
sented to be able to handle such changes. Thus, if a system needs to be goal-aware,
then the goals are typically explicitly represented, otherwise not necessarily.

If goals of another system or element are derived by observations, we use AMs
rather than GMs to describe these goals. We only use GMs to denote those goals
that are imposed on the system either from the outside (e.g., by the user) or from the
system itself generating the goals (e.g., based on some observations).

Splitting the system into multiple layers, GMs can be part of each layer though
the goals might be of a different kind. Goals in the lowest layer refer to the domain
functionality while goals at higher layers refer to awareness such as to the suc-
cess/failure of lower-layer goals (cf. awareness requirements [37]). For example, a
higher-layer goal may prescribe that the controllers have to achieve the desired room
temperature in 90% of the time. The corresponding lower-layer goal prescribes that
the desired room temperature should be as close to 22 C as possible.

5.4 Architectural Relations for Self-Awareness

Besides the architectural elements for self-aware computing systems discussed in
Section 5.3, the definition for self-aware computing systems given in Chapter 1
and its refinements in Chapter 3 introduce explicitly or implicitly several relations
(cf. Section 6.2.2). These relations seem helpful for architectural considerations and
they are discussed in the following. An overview of the proposed relations is addi-
tionally given in the appendix.

5.4.1 Data Flow Related to Self-Awareness

The first relation we introduce is the data flow between models, empirical data,
processes, modules, other systems, and the environmental context. This is motivated
by the data flow that forms the learn-reason-act-model (LRA-M) loop introduced in
Chapter 1. As shown in Figure 5.11, the data flow is represented by a solid black
arrow whose direction indicates the direction of the data flow. Thus, the data flow
extends the UML connector (see Section 5.2.2) by connecting arbitrary elements
and representing a flow of data. Note that such a data flow may be realized by quite
different technical means such as procedure calls, messages, or flows.

Using the data flow relation, we can describe that a �learn� process obtains
AMs guided by the goals of the self, a�reason� process uses the AMs and GMs to
reason, and finally, that an�adapt� process uses the AMs to dynamically change a
module (see Figure 5.11a).

P
re

-p
rin

t v
er

si
on

 fo
r p

er
so

na
l u

se
 o

nl
y!



122 Giese et al.

HouseEnvCtx:

SmartHome:

HouseManager:

RM
<<sys>>

AM:
<<learn>>

<<reason>>

<<adapt>>

GM

Controllers:

<<goal>>

GM:

Observe▼ Effect▼

(a)

SmartHome:

HouseEnvCtx:

HouseManager:

Controllers:

Observe▼ Effect▼

<<self-awareness>> <<self-expression>>

(b)

Fig. 5.11: Data Flow for Self-Awareness and Self-Expression.

Considering our example and Figure 5.11a, the HouseManager uses the goal
model GM, which may prescribe that the desired room temperature should be
achieved in 90% of the time, to learn about the performance of the Controllers mod-
ule. Learning results in producing a set of awareness models AM describing the Con-
trollers’ performance, which are then used to reason about the performance and the
achievement of the goals. If the goals are not achieved, the HouseManager may adapt
the Controllers module based on the AM, for instance, by changing the control strat-
egy to react more quickly to disturbances of the actual room temperature. For this
example, Figure 5.11b shows an abstraction that only considers the self-awareness
(encapsulating the learning and reasoning) and the self-expression (encapsulating
the acting) processes while hiding the employed models. Consequently, the figure
only captures the data flow between these two processes and the Controllers module.

In general, we can describe detailed views making the data flow between indi-
vidual processes, models, and modules explicit (see Figure 5.11a) or abstract views
that, for instance, hide the models and the detailed processes (see Figure 5.11b).
Thus, a data flow from or to a module or process may be refined to a data flow from
or to an element contained in the module or process. Such contained elements can
particularly be AMs and GMs that are used in architectural views to emphasize the
role of models in self-aware computing. In this sense, the diagram in Figure 5.11a
refines the one in Figure 5.11b. It refines the self-awareness and self-expression pro-
cesses and makes the AMs and GMs explicit. Likewise, we may refine the Controllers
module and denote which processes or ED exist within this module.

When refining a module by describing the contained elements such as processes
and models, we can emphasize the encapsulation and interactions of these elements
by ports. A port describes the functionality that is provided or required by modules
and connected ports make the interaction among modules explicit. The functionality
can be specific to self-aware computing, which we denote by stereotypes. A module
can observe (�O�) and effect (�E�) an element or the context, adapt (�A�)
an element, or report (�R�) to the user or to another element. In this case, the

P
re

-p
rin

t v
er

si
on

 fo
r p

er
so

na
l u

se
 o

nl
y!



5 Architectural Concepts for Self-Aware Computing Systems 123

module requires corresponding ports for these functionalities (see Figure 5.12a).
Moreover, if a module can be observed, effected, adapted, or reported to, it provides
the corresponding ports (see Figure 5.12b). Finally, the ports of a module may be
connected to elements contained in this module (e.g., to delegate incoming reports
to a process).

HouseManager:

GM
<<goal>>

GM:

GM
<<sys>>

AM:

Process

<<O>>▼ <<E>>▼

<<A>>►

<<R>>▲

(a)

<<goal>>

GM:

HouseManager:

GM
<<sys>>

AM:

Process

<<O>>▲ <<E>>▲

◄<<A>>

<<R>>▼

<<goal>>

GM:

(b)

Fig. 5.12: Required (a) and Provided (b) Ports of a Module.

In general, we may omit the ports in the diagrams if they are not relevant for the
selected architectural view. For instance, a view might emphasize the models and
neglect the encapsulation and interaction between modules.

5.4.2 Awareness and Expression Links

Two important aspects of self-aware computing are self-awareness and self-expression.
As discussed in Chapter 3, self-awareness has a domain and enables that a subject of
the awareness (i.e., the span) reflects about an object of awareness (i.e., the scope)
by means of a model employed online. Based on the introduced elements, we can
therefore illustrate with an awareness link that a scope is represented by a model
maintained by a span. Thus, the span is aware of the scope. As shown in Figure 5.13
by the red bold arrow, usually a model or a group of models represents another mod-
ule or the context. If we want to abstract the models in an architectural view, we link
the scope to a process or module containing the (hidden) models.

Additionally, we may have an expression link in the opposite direction. Such a
link is denoted by a blue bold arrow pointing from a model maintained by a span
to the scope (see Figure 5.13). Such a link illustrates that the span’s self-expression
impacts the scope. Again, if we abstract the model in an architectural view, we link
the process or module containing the (hidden) model to the scope.

In our example, the HouseManager has an awareness model of the Controllers
module as illustrated by an awareness link in the diagram of Figure 5.13a. Since
the HouseManager also adapts the Controllers module, we additionally have an ex-
pression link in the opposite direction. For the other three cases in Figure 5.13, an
awareness link illustrates that the context is known by the SmartHome system and
represented in an awareness model, by a process of the system, and by a module

P
re

-p
rin

t v
er

si
on

 fo
r p

er
so

na
l u

se
 o

nl
y!



124 Giese et al.

SmartHome:

HouseManager:

RM
<<sys>>

AM:

Controllers:

(a)

SmartHome:

<<ctx>>

AM:

HouseEnvCtx:

(b)

SmartHome:

Process

HouseEnvCtx:

(c)

SmartHome:

HouseManager:

HouseEnvCtx:

(d)

Fig. 5.13: Notation for Awareness and Expression Links.

of the system. These three diagrams also describe that the expression of the corre-
sponding span impacts the context—as visualized by expression links.

According to Chapter 3, the scope of an awareness can be further refined. In our
example, a group of awareness models maintained by the HouseManager may be
connected via awareness and expression links to dedicated controller modules (see
Figure 5.14). Furthermore, the aspect of the reflection for each element in the scope
may differ (cf. Chapter 3). We therefore attach stereotypes to the awareness links
to distinguish, among others, stimulus awareness (�sa�), interaction awareness
(�ia�), time awareness (�ta�), and goal awareness (�ga�).

<<sys>>

AM:

SmartHome:

Controllers:

HouseManager:
<<sys>>

AM:

Heater
Controller:

Lights
Controller:

Fig. 5.14: Awareness and Expression Links with a Complex Scope.

As depicted in Figure 5.15, besides direct awareness (solid red arrow) and ex-
pression (solid blue arrow) we consider indirect awareness (dashed red arrow) and
expression (dashed blue arrow) to address the action scope and influence scope in-
troduced in Chapter 3. Typical cases where such scopes become relevant is when
modules exploit the awareness and expression capabilities of other modules.

In the example of Figure 5.15a, the Controllers module learns about the context
and produces AMs of the context, which is exploited by the HouseManager by feed-
ing its own AMs from these ones through a data flow (black arrow). Consequently,
the HouseManger’s AMs cover aspects of the environmental context although the
HouseManager does not directly observe the context. The same holds for the expres-
sion. The HouseManager may indirectly effect the context by adapting the Controllers
module. A variant of this example is shown in Figure 5.15b. The Controllers mod-

P
re

-p
rin

t v
er

si
on

 fo
r p

er
so

na
l u

se
 o

nl
y!



5 Architectural Concepts for Self-Aware Computing Systems 125

ule observes the context and only maintains ED, that is, it does not perform any
learning. However, the HouseManager may (re)use this data to perform the learning
and produce AMs. Thus, in the example, a module such as the HouseManager does
not have to perform the observing or learning processes itself but it can rely on the
observations or learned information from other modules such as the Controllers.

Another view of indirect awareness is to derive information about a module by
observing and learning its environmental context. This is illustrated in Figure 5.16
showing two modules that do not explicitly interact with each other. However, the
Optimizing module effects the environment (see expression link) and the result of
its effects may be observed and learned by the Healing module (see awareness link).
The resulting awareness model AM1 is then used to learn about the (behavior of) the
Optimizing module. The learned knowledge is captured in the awareness model AM-
Opt. Consequently, the Healing module is indirectly aware of the Optimizing module
(see indirect awareness link). However, the learned knowledge about the Optimizing
module may not be accurate since it is the result of interpreting and speculating
about changes in the environment and possible causes of these changes.

As depicted in Figure 5.17, the fact that a system/module is indirectly aware of
another system/module can be realized without having to learn a context and system
model. Instead, a phenomenon (bold dot) in the environmental context is connected

HouseEnvCtx:

SmartHome:

HouseManager:

RM
<<ctx>>

AM2:
<<learn>>

<<reason>>

<<act>>

GM

Controllers:

<<goal>>

GM:

<<O>>▼ <<E>>▼

RM
<<ctx>>

AM1:

<<O>>▼ <<A>>▼

<<learn>>

(a)

HouseEnvCtx:

SmartHome:

HouseManager:

RM
<<ctx>>

AM1:
<<learn>>

<<reason>>

<<act>>

GM

Controllers:

<<goal>>

GM:

<<O>>▼ <<E>>▼

RM
<<ctx>>

ED1:

<<O>>▼ <<A>>▼

<<observe>>

(b)

Fig. 5.15: Notation for Direct and Indirect Awareness and Expression.

Healing: Optimizing:

HouseEnvCtx:

<<ctx>>

AM1:
<<ctx>>

AM2:<<learn>>
<<sys>>

AM-Opt:

Fig. 5.16: Indirect Awareness via the Environmental Context.

P
re

-p
rin

t v
er

si
on

 fo
r p

er
so

na
l u

se
 o

nl
y!



126 Giese et al.

to the observed system/module with an expression link and to the observing sys-
tem/module with an awareness link. In the example, the Optimizing module effects
the environment (see the expression link), which causes a phenomenon such as a
huge increase of the room temperature. This phenomenon is the observable frag-
ment of the Healing module in the context. The Healing module is directly aware of
the phenomenon and therefore can be indirectly aware of the Optimizing module.

Healing: Optimizing:

HouseEnvCtx:

<<ctx>>

AM2:
<<sys>>

AM-Opt:

Fig. 5.17: Indirect Awareness via a Specific Environmental Phenomenon.

Finally, the notation can be used similarly to describe direct and indirect aware-
ness if knowledge is obtained through collaborations. This is illustrated in Fig-
ure 5.18 showing the Sensor module that senses and learns about the context, which
results in the awareness model AM. This module shares the learned knowledge
through the collaboration with the other modules. The ReasonC and ReasonE mod-
ules reason about the obtained knowledge independent of each other to identify a
heating configuration that is comfortable for the user respectively energy-efficient.
The LearnUser modules uses the obtained knowledge to learn about the behavior of
the user. Finally, the DecideAct module obtains the knowledge created by the Rea-
sonC, ReasonE, and LearnUser modules to make a decision of how to adjust the
heating configuration in the house and to eventually enact the adjustments. This ex-
ample illustrates that modules can be indirectly aware of the context by obtaining
knowledge about it through a collaboration, one of whose participants is directly
aware of the context.

5.5 Self-Awareness and Architecture

Based on the elements and relations defined in the preceding Sections 5.3 and 5.4,
we now approach the question of when and how self-awareness is denoted by aware-
ness links in an architecture. In this context, we discuss that not every occurrence of
an awareness link needs to result in self-awareness as defined in this book (cf. Chap-
ter 1). In addition, we study the characterization of specific forms of self-awareness
such as meta-self-awareness at the architectural level.

In general, it has to be noted that self-awareness is always relative to a given
scope. Usually, the scope is the considered system and environmental context. How-

P
re

-p
rin

t v
er

si
on

 fo
r p

er
so

na
l u

se
 o

nl
y!



5 Architectural Concepts for Self-Aware Computing Systems 127

SmartHome:

Sensor:

HouseEnvContext:
Sense▼ Effect▼

Sense▼ Effect▼

<<learn>> M1:<<ctx>>

AM:

Exchange 
Knowledge:

ReasonC:
M1:<<ctx>>

C:

LearnUser:

M1:<<ctx>>

U:

DecideAct:

<<effect>> M1:<<ctx>>

M:

ReasonE:
M1:<<ctx>>

E:

Rcv▲ Rcv▲

Rcv▼

Rcv▼

Send▲

Send▼ Send▼

Send▲

Fig. 5.18: Direct and Indirect Awareness with Collaborations.

ever, we may consider just the context, a particular module of a system, or any other
element of a system such as a process.

5.5.1 Self-Awareness: Awareness of the Context

One particular aspect of self-awareness for a system is depicted in Figure 5.19. Ac-
cording to the definition of a self-aware system (cf. Chapter 1), a system must be
aware of its environmental context and must have processes capable of learning
awareness models and reasoning about the context using the learned models. Fur-
thermore, the system may act upon the models to effect the context. In our example,
the SmartHome may have a contextual awareness model of the context capturing
information such as the current outdoor temperature and other weather conditions.

HouseEnvCtx:

SmartHome:

RM
<<ctx>>

AM:
<<learn>>

<<reason>>

<<act>>

GM
<<goal>>

GM:

Sense▼ Effect▼

Fig. 5.19: Self-Awareness: Aspect of Context-Awareness.

P
re

-p
rin

t v
er

si
on

 fo
r p

er
so

na
l u

se
 o

nl
y!



128 Giese et al.

5.5.2 Self-Awareness: Awareness of its own Elements

A key aspect of self-awareness is that the system is aware of itself or elements of
itself, which is illustrated in Figure 5.20. The elements, a system can reflect on
and be aware of, are modules or processes. In contrast, we consider reflecting on an
awareness model, empirical data, or a goal model as insufficient since we require the
existence of the reflective self-awareness processes in terms of learning, reasoning,
and acting.

HouseEnvCtx:

SmartHome:

HouseManager:

RM
<<sys>>

AM:
<<learn>>

<<reason>>

<<act>>

GM

Controllers:

<<goal>>

GM:

<<O>> ▼ <<E>> ▼

<<0>> ▼ <<A>> ▼

(a)

HouseEnvContext:

SmartHome:

HouseManager:

RM
<<sys>>

AM:<<learn>>

<<reason>>

<<act>>

GM
<<goal>>

GM:

<<O>> ▼ <<E>> ▼

process

Controllers:

(b)

Fig. 5.20: External Self-Awareness Concerning Elements of the System.

When a clear separation between the element being the scope and the element
being the span of awareness is given, this is similar to the external approach in self-
adaptive software that separates the managing from the managed element [34]. This
approach may simplify the treatment of self-awareness. First, it promotes separation
of concerns. Second, the scope need not to be altered for realizing self-awareness
(maybe besides adding some sensors and effectors) and the capabilities of learning,
reasoning, and potentially acting have to be established only in the span. We name
this case external self-awareness. In contrast, internal self-awareness describes that
an element can be aware of itself without any architectural separation between the
span and scope. In the context of self-adaptive software, this case is called the inter-
nal approach [34]. We discuss internal self-awareness in the subsequent sections.

Figure 5.20 shows the case of external self-awareness. The HouseManager re-
flects on the Controllers module using several awareness models that the processes
learn, reason, and act upon (Figure 5.20a). In addition, the learning and reasoning
processes take into account the goal model. A variant of this case is shown in Fig-
ure 5.20b, where the HouseManager reflects on a particular process of the Controllers
module. Consequently, the scope of awareness can be individual architectural ele-
ments.

P
re

-p
rin

t v
er

si
on

 fo
r p

er
so

na
l u

se
 o

nl
y!



5 Architectural Concepts for Self-Aware Computing Systems 129

Moreover, multiple awareness links may exist and jointly describe self-awareness.
The scopes of these awareness links may overlap and therefore learning, reasoning
and acting processes refer to overlapping scopes. This is illustrated in Figure 5.21
showing the Optimizing and Healing modules that are both aware of the Controllers
module. While for the awareness links the overlap is generally not a problem, for the
expression links the overlap may require coordination of the individual processes,
for instance, to avoid conflicting adaptations (cf. [16, 40]).

SmartHome:

HouseManager:

HouseEnvCtx:

Optimizing:

<<sys>>

AM1:<<learn>>

<<reason>>

<<act>>

GM

Controllers:

<<goal>>

GM1:

<<O>> ▼ <<E>> ▼

<<O>> ▼ <<A>> ▼

Healing:

<<sys>>

AM2:<<learn>>

<<reason>>

<<act>>

GM
<<goal>>

GM2:

Fig. 5.21: Overlapping Self-Awareness and Self-Expression.

As depicted in Figure 5.21, the HouseManager module consists of two modules,
Optimizing and Healing. The former realizes the self-optimization and the latter the
self-healing capabilities of the smart home (cf. Section 6.2.1). Each of these two
modules runs an LRA-M loop with individual awareness models as well as learning,
reasoning, and acting processes. The independent learning and reasoning in both
modules are not problematic at the conceptual level since the acting processes have
to be coordinated. However, from a practical point of view it may be a waste of
resources to let the optimization run an expensive reasoning process to optimize a
faulty Controllers configuration until this configuration has been healed.

5.5.3 Self-Loops and Cyclic Self-Awareness

In this section, we discuss the notion of self-loops that may occur due to abstraction
or internal self-awareness, as well as the related notion of cyclic self-awareness.
Both notions are neither explicitly covered nor excluded in the Chapters 1 and 3.
However, we consider them here because of their architectural implications.

P
re

-p
rin

t v
er

si
on

 fo
r p

er
so

na
l u

se
 o

nl
y!



130 Giese et al.

5.5.3.1 Self-Loops

The notion of a self-loop is illustrated by the examples of Figure 5.22. A self-loop
denotes that an element is aware of itself, that is, the span and scope of the aware-
ness are not disjoint. For instance, the whole system, a module, or a process can be
aware of itself (see examples from left to right in Figure 5.22). The second exam-
ple additionally emphasizes that the system maintains an awareness model of itself.
Similarly to denoting such kind of self-awareness, if an element acts upon itself, we
use an expression link as a self-loop to describe the self-expression. Moreover, if
an embedded element has a self-loop, we may optionally depict this self-loop at the
level of the embedding element to make it visible at the higher level of abstraction.

SmartHome:

RMAM:

SmartHome:SmartHome:

<<act>>

SmartHome:

aModule:

Fig. 5.22: Examples of Self-Loops.

Self-loops may occur because of two reasons: abstraction or internal self-aware-
ness. For the first reason, we abstract from fine- to coarse-grained architectural
views while during this abstraction step the awareness and expression links can be
lost. However, to make self-awareness and self-expression visible in the architec-
tural views, self-loops are used. For instance, the architecture shown in Figure 5.21
shows that within the SmartHome system, the Optimizing and Healing modules are
aware of and act upon the Controllers module. If we abstract from the submodules of
SmartHome, we can state that the SmartHome is aware of itself although the aware-
ness is partial since its scope is only the Controllers module. To denote this, we use
a self-loop as shown in the leftmost example in Figure 5.22.

The other reason for occurrences of self-loops is more fundamental and based on
design decisions or constraints. In this case, we cannot or do not want to separate
the span and scope of the self-awareness in the architectural design. In the context of
self-adaptive software, this case is called the internal approach [34] as one element
performs both the managing and the managed part of the self-adaptation. For a self-
aware computing system, this results in situations in which one element is (partially)
aware of itself. We call this phenomenon internal self-awareness, which is denoted
by self-loops as depicted in Figure 5.22. Likewise, we may use (blue) expression
self-loops to denote the self-expression of an element, that is, an element acts upon
itself.

P
re

-p
rin

t v
er

si
on

 fo
r p

er
so

na
l u

se
 o

nl
y!



5 Architectural Concepts for Self-Aware Computing Systems 131

5.5.3.2 Cyclic Self-Awareness

Besides self-loops, another variant is cyclic self-awareness. An example is given in
Figure 5.23 depicting two modules that are aware of each other. This constitutes a
cycle since Apartment1Controller is aware of Apartment2Controller and vice versa. In
general, longer/bigger cycles involving more than two modules may exist. More-
over, cycles may exist for awareness or expression links such that we may have ar-
bitrary networks of awareness or expression links forming a directed, cyclic graph.
Such cycles can complicate achieving stable behavior as modules may continuously
be triggered through awareness or expression links. Hence, cycles should be made
visible in the architectural design such that they are explicitly handled.

For our example in Figure 5.23, each apartment controller is aware of itself as
well as of the other controller. Based on this awareness, it controls the heating in its
own apartment and optimizes the energy consumption.

SmartHome:

Apartment1Controller:

RMAp1:
Apartment2Controller:

RMAp2:

Fig. 5.23: Cycles of Awareness Links.

Similar to self-loops, cyclic self-awareness may occur because of two reasons:
abstraction or internal self-awareness. Cyclic self-awareness resulting from abstrac-
tion disappears in the architectural design at a more fine-grained level. For instance,
Figure 5.24a shows the refinements of the apartment controllers into heater con-
troller and heater modules that resolve the cycle existing in the more abstract design
(cf. Figure 5.23). The refinements show that Heater1Controller is aware of Heater2
that has no awareness of Apartment1Controller. The same holds the other way around
such that there is no cyclic self-awareness present. Having awareness of its own and
the other heater, a controller knows about the temperatures in the different apart-
ments and it may act upon this knowledge, especially, to change the heating settings
in its own apartment. This example illustrates that a cyclic self-awareness can be
resolved when refining the architectural design.

However, there is also the case of internal self-awareness where no refinement
of the design exists that resolves the cycles. This is illustrated in Figure 5.24b
showing the persisting cycle of awareness links among the Apartment1Controller and
Apartment2Controller, particularly, among their top submodules Heater1Controller and
Heater2Controller. These submodules are both aware of each other and each of them
can be aware of that the other submodule is aware of it. In this example, a heater
controller adjusts the own heater based on the temperature of the own apartment and
on the behavior of the heater controller of the neighboring apartment.

P
re

-p
rin

t v
er

si
on

 fo
r p

er
so

na
l u

se
 o

nl
y!



132 Giese et al.

SmartHome:

Apartment1Controller: Apartment2Controller:

Heater1Controller:

RMAp1:

Heater2Controller:

RMAp2:

Heater1: Heater2:

(a)

SmartHome:

Apartment1Controller: Apartment2Controller:

Heater1Controller:

RMAp1:

Heater2Controller:

RMAp2:

Heater1: Heater2:

(b)

Fig. 5.24: (a) Resolved and (b) Remaining Cyclic Self-Awareness in a Refined De-
sign.

If a cycle of awareness or expression links remains, the depth of the awareness
is not clear, that is, the extent to which mutual awareness of the awareness exists.
Potentially, there could be an infinite cycle of awareness of awareness, which has to
be handled by the reflective learning and reasoning processes. Despite the infinite
cycle, the processes have to converge and eventually produce knowledge based on
learning and reasoning such that the system may act upon the knowledge.

5.5.4 Meta-Self-Awareness

A particular case of self-awareness is meta-self-awareness, that is, a system is
aware of its self-awareness (see Chapter 3). Considering external and internal self-
awareness, we may combine them to describe meta-self-awareness at the architec-
tural level. Such combinations make the meta-self-awareness explicit in the architec-
tural design. However, to actually realize meta-self-awareness, appropriate reflec-
tions and LRA-M loops are required, which are able to identify the self-awareness
capabilities of the reflected subsystem. In the following, we focus on making meta-
self-awareness visible in the architectural design.

At first, we may combine twice external self-awareness by stacking as depicted
in Figure 5.25. The HouseManagerAdjuster reflects on and is aware of the HouseM-
anager that reflects on and is aware of the Controllers. Especially, the HouseManager-
Adjuster is aware of the self-awareness established by the HouseManager.

To make the meta levels of reflective self-awareness visible in the architecture,
we may stereotype the system with �self-aware� if it has self-awareness and with
�meta-self-aware� if it has meta-self-awareness capabilities (see the SmartHome
Figure 5.25). Similarly, we may stereotype modules if they reflect on other system
elements. Modules that do not reflect on any other element are pre-reflective and
thus stereotyped with �pre-reflective� (see the Controllers in Figure 5.25). Mod-

P
re

-p
rin

t v
er

si
on

 fo
r p

er
so

na
l u

se
 o

nl
y!



5 Architectural Concepts for Self-Aware Computing Systems 133

<<meta-self-aware>> SmartHome:

<<reflective>> HouseManager:

RMCtrl:<<learn>>

<<reason>>

<<adapt>>

GM

<<meta-reflective>> HouseManagerAdjuster:

RMHM:<<learn>>

<<reason>>

<<adapt>>

GM

GM1:

GM2:

EnvContext:
Sense▼ Effect▼

<<pre-reflective>> Controllers:

Fig. 5.25: Meta-Self-Awareness by Combining External Self-Awareness.

ules that reflect on a pre-reflective module are reflective and thus stereotyped with
�reflective� (see the HouseManager in Figure 5.25). Modules that reflect on a re-
flective module are meta-reflective and thus stereotyped with�meta-reflective� (see
HouseManagerAdjuster in Figure 5.25).

A second possible case is that we stack internal self-awareness twice as depicted
in Figure 5.26a. In contrast to the former case, there is no separation between the in-
dividual spans and scopes such that we get a compact visual representation of stack-
ing the self-loops for awareness. Likewise, self-loops for expressions (i.e., blue self-
loops) are conceivable if the meta-self-awareness includes meta-self-expression.

Finally, we may conceive combinations of internal and external self-awareness to
achieve meta-self-awareness. This is illustrated in Figure 5.26b. In general, the self-
awareness relationship is not restricted concerning its depth. Thus, we may apply
the external or internal self-awareness more than twice to obtain meta-meta self-
awareness, meta-meta-meta self-awareness, etc.

5.6 Discussion

In this section, we discuss the proposed architectural concepts for modeling self-
aware computing systems. First, we relate them to architectural views and then we
discuss the coverage of the needs raised by Chapters 1 and 3.

P
re

-p
rin

t v
er

si
on

 fo
r p

er
so

na
l u

se
 o

nl
y!



134 Giese et al.

<<meta-self-aware>>
SmartHome:

EnvContext:
Sense▼ Effect▼

(a)

<<meta-self-aware>> 
SmartHome:

<<pre-reflective>> 
Controllers:

<<meta-reflective>> HouseManager:

RMAM:
<<learn>>

<<reason>>

>>adapt>>

GMGM:

EnvContext:
Sense▼ Effect▼

(b)

Fig. 5.26: Meta-Self-Awareness by Combining (a) Twice Internal and (b) Internal
and External Self-Awareness.

5.6.1 Architectural Views

We have introduced several concepts to describe architectures for self-aware com-
puting systems such as modules, processes, goals, and models. Depending on the
purpose of architecture modeling, we may consider different architectural views
that focus on specific concepts and therefore on specific dimensions of self-aware
systems. In this context, we have already identified the following views/dimensions:

System and Module View: The system and modules form the basic structure
of an architecture such that this view provides an architectural overview. However,
each diagram may consider a different level of abstraction. To avoid too complex di-
agrams, we may omit the breakdown of a system or module into further submodules
by abstracting from the internal design. We rather expect that a diagram of this view
represents the whole architecture while it may support different abstraction levels
for individual parts. A basic example of such a view is shown in Figure 5.5a.

Self-Awareness Process View: In addition to the system and module view, the
pre-reflective and reflective self-awareness processes are an important dimension
of the architecture. Therefore, a process view considers processes in addition to or
instead of the modules. For a process view and a given level of abstraction, we
expect that all processes of the system are covered. A basic example of such a view
is shown in Figure 5.5b.

Self-Awareness and Self-Expression View: This view emphasizes the different
awareness models and the empirical data used within a system as well as the aware-
ness and expression links. This view, thus, focuses on the awareness and expression
relationships potentially neglecting the processes that operate on the models or data.
Basic examples of such a view are shown in Figures 5.8 and 5.9.

P
re

-p
rin

t v
er

si
on

 fo
r p

er
so

na
l u

se
 o

nl
y!



5 Architectural Concepts for Self-Aware Computing Systems 135

Self-Awareness and Goal View: This view emphasizes the different goals that
are used within the system (see Chapter 7 for more architectural concepts concern-
ing goals that may populate the view). This view, thus, focuses on goal models
possibly neglecting the processes and the other models and data. However, a goal
view can be used together with the process view to show the impact of the goals on
the behavior. A basic example of such a view is shown in Figure 5.10.

Such views help in reducing the complexity in the architecture by focusing on the
specific dimensions while abstracting from others. Finally, such views can be com-
bined if multiple dimensions are relevant. For instance, the diagram in Figure 5.27
uses processes and models to describe the LRA-M loop, thus, combining the process
and the self-awareness/self-expression views. In Chapters 6 and 7 we will study in
detail the different concepts and views for various architectural styles.

5.6.2 Coverage

We discuss in the following how the concepts introduced in this chapter cover the
needs of architectures for self-aware computing systems. First, we look at the basic
needs raised by the definition of self-aware computing systems in Chapter 1, then at
the refined needs raised in Chapter 3.

5.6.2.1 Coverage of the Definition of Chapter 1

How self-awareness manifests in the architecture highly depends on the concrete
notion of self-aware computing systems that is employed. Therefore, we first look
at the definition of self-aware computing systems given in Chapter 1 and consider
the related Learn-Reason-Act-Model (LRA-M) loop.

The definition of self-aware computing systems emphasizes that these systems
employ models for capturing knowledge about themselves and their environment,
and that these models are learned and used for reasoning according to their higher-
level goals, which may be subject to change. The reasoning enables these systems
to act (e.g., to report to the user or to self-adapt).

The notation for modeling architectures of self-aware computing systems that
we introduce in this chapter considers the concepts of awareness models, goal mod-
els as well as learning, reasoning, and acting processes. These concepts allow us to
model all the aspects mentioned in the definition as part of an architecture. More-
over, the definition considers models for knowledge that refers to the system itself
or to the system’s environment. Therefore, we distinguish between system and con-
text awareness models, that is, we make explicit whether the scope of reflection is
the system itself or the context by applying corresponding stereotypes to awareness
models. Similarly, we consider further stereotypes to specialize learning, reasoning,
and acting processes. For instance, variations of acting such as explore, explain, re-

P
re

-p
rin

t v
er

si
on

 fo
r p

er
so

na
l u

se
 o

nl
y!



136 Giese et al.

port, suggest, self-adapt, or impact on the environment are captured by correspond-
ing stereotypes.

Consequently, we may conclude that the notation with its concepts covers all
of the aspects mentioned in the definition of self-aware computing systems. These
aspects can be interpreted as basic needs a system has to satisfy to be self-aware.
Hence, our notation with its concepts addresses these needs at the architectural or
design level and is therefore a preliminary approach to model architectures and de-
signs of self-aware computing systems.

Besides the definition of self-aware computing systems, Chapter 1 introduces
the LRA-M loop as depicted in Figure 5.4. This conceptual loop illustrates the ac-
tivities and artifacts that are implemented by a self-aware system. Particularly, the
system (i.e., the self) collects empirical observations of itself and the environment,
uses these observations to learn and reason on models, which eventually enables the
system to act upon itself or the environment.

Using the proposed concepts, we can describe the conceptual LRA-M loop. The
notation supports modeling the system and environment as well as refining the sys-
tem to modules, processes, awareness models, goal models, and empirical data while
wiring all of them with data flow connectors. This is sufficient to model the LRA-M
loop as depicted in Figure 5.27. Compared to Figure 5.4, we extended the LRA-M
loop with a pre-reflective �observe� process to describe how the empirical data is
obtained. That is, this process monitors the self and the environmental context to
obtain the empirical observations. This data is used by a learning process to obtain
awareness models, which is guided by the goals of the self. The reasoning process
uses the awareness and goal models to reason. Finally, the act process may influence
the context or the self, for instance, by performing a self-adaptation.

SELF:

RM
<<sys>>
<<ctx>>

AM:<<learn>>

<<reason>>

<<act>>

GM
<<goal>>

GM:

<<observe>> RM
<<sys>>
<<ctx>>

ED:

EnvContext:

Fig. 5.27: The LRA-M Loop Modeled with the Proposed Concepts.

Using the awareness and expression relations of our notation, the essence of
the LRA-M loop can be captured in a more abstract way—as depicted in Fig-
ure 5.28a—to illustrate the self-awareness and self-expression of the system. Rather

P
re

-p
rin

t v
er

si
on

 fo
r p

er
so

na
l u

se
 o

nl
y!



5 Architectural Concepts for Self-Aware Computing Systems 137

than describing data flows that implement some form of awareness, we model the
self-awareness and self-expression in a declarative way by using awareness and ex-
pression links. Besides being more abstract, this version is also more explicit than
the one in Figure 5.27 in making the self-awareness and self-expression visible.
Thereby, the awareness and expression target the self as well as the context of the
self.

SELF:

EnvContext:

(a)

SELF:

RM
<<sys>>
<<ctx>>

AM:<<learn>>

<<reason>>

<<act>>

GM
<<goal>>

GM:

<<observe>> RM
<<sys>>
<<ctx>>

ED:

EnvContext:

(b)

Fig. 5.28: The LRA-M Loop Extended with Awareness and Expression Links.

In the case of Figure 5.27, the data flow links are required to form a LRA-M
loop that realizes the self-awareness. However, the existence of data flow links does
not necessarily imply that self-awareness has really been realized since such links
may describe quite different data flows (e.g., at the pre-reflective level) that do not
necessarily lead to self-awareness. Therefore, Figure 5.28a explicitly denotes the
existence of self-awareness by awareness and expression links.

Finally, we can combine both, the data flow and the awareness/expression links,
as shown in Figure 5.28b. On the one hand, the data flow among processes and
models makes the realization of the self-awareness (i.e., the internal design of the
system) visible. On the other hand, the awareness and expression links explicitly
emphasizes the self-awareness and self-expression of the system.

5.6.2.2 Coverage of the Framework of Chapter 3

The conceptual framework for self-aware computing systems as introduced in Chap-
ter 3 proposes various dimensions. In the following, we discuss the coverage of these
dimensions by the proposed concepts for architecture modeling.

One dimension is the level of self-awareness, which can be pre-reflective or re-
flective. We address both levels in Section 5.3.2 by considering self-awareness pro-
cesses, especially observe, analyze, and react for the pre-reflective level as well as
learn, reason, and act for the reflective level. Similarly, we support stereotyping of

P
re

-p
rin

t v
er

si
on

 fo
r p

er
so

na
l u

se
 o

nl
y!



138 Giese et al.

systems and modules depending on the level they are operating on (see Section 5.5.4
for the �pre-reflective�, �reflective�, and �meta-reflective� stereotypes). In this
context, we additionally discussed meta-self-awareness by providing stereotypes to
label a system as�self-aware� or�meta-self-aware�.

Concerning goals and goal models introduced in Chapter 1 and addressed here
in Section 5.3.3, Chapter 3 refines this aspect for self-awareness by discussing the
domain of a goal in terms of their span and scope. These refinements are not sup-
ported by the architectural concepts proposed here but we will come back to them
when discussing collective self-aware systems in Chapter 7.

In general, self-awareness has a domain and enables that a subject of the aware-
ness (i.e., the span) reflects about an object of awareness (i.e., the scope) (see Chap-
ter 3). This distinction between a span and a scope is addressed by awareness and
expression links that connect the span and scope of a self-awareness relationship
(see Section 5.4.2). A refinement of such relationships in terms of action scope that
includes all entities that the system may act directly upon and influence scope that
refers to entities upon which the system may only act indirectly is introduced in
Chapter 3. We cover this refinement with direct and indirect expression links (see
Section 5.4.2). Similarly to the expression links, direct and indirect awareness links
are further supported.

Finally, we may further refine the awareness links using stereotypes to distin-
guish, among others, stimulus awareness (�sa�), interaction awareness (�ia�),
time awareness (�ta�), and goal awareness (�ga�). These stereotypes cover dif-
ferent aspects of awareness as discussed in Chapter 3.

Finally, the notion of self-loops discussed in Chapter 3 are addressed by recurrent
or cyclic awareness and expression links in Sections 5.5.3.

5.6.2.3 Summary

The definition and framework for self-aware computing systems (see Chapters 1
and 3) propose several dimensions that we have discussed previously and that we
summarize Table 5.1. These dimensions provide the necessary architectural and de-
sign concepts to explore the solution space of self-aware computing system.

Besides these dimensions that are specific to self-aware computing systems,
we consider general architectural concepts such as systems, modules, composi-
tion/aggregation and collaborations of systems/modules, ports, connectors and so
on to provide the necessary means for describing software architectures. In this con-
text, the dimensions enrich the general concepts, which results in a kind of domain-
specific architectural language for the domain of self-aware computing systems.

P
re

-p
rin

t v
er

si
on

 fo
r p

er
so

na
l u

se
 o

nl
y!



5 Architectural Concepts for Self-Aware Computing Systems 139

Table 5.1: Dimensions and Section of this Chapter Covering each Dimension.

Dimensions Section
Dimensions Introduced in Chapter 1
Awareness Models 5.3.3
Empirical Data 5.3.3
Goal Models 5.3.3
Data Flow 5.4.1
Awareness of Context 5.5.1
Awareness of Itself 5.5.2
Dimensions Introduced in Chapter 3
Pre-Reflective Self-Awareness 5.3.2, 5.5.4
Reflective Self-Awareness 5.3.2, 5.5.4
Meta-Reflective Self-Awareness 5.5.4
Domain (Span and Scope) of Awareness 5.4.2
Direct and Indirect Awareness/Expression 5.4.2
Aspects of Awareness (stimulus, interaction, ...) 5.4.2
Self-loops and Cyclic Self-Awareness 5.5.3

5.7 Conclusion

In this chapter, we developed basic concepts for describing architectures for self-
aware computing systems as defined in Chapters 1 and 3.

First, we identified the core architectural elements required for self-aware com-
puting systems. In addition to the system and its refinement to modules, the rele-
vant environmental context the system is aware of has to be identified. Furthermore,
we noticed and addressed the need to allocate pre-reflective (observe, analyze, and
react) and reflective (learn, reason, and act) self-awareness processes within the ar-
chitecture. Besides processes representing behavior, the models (e.g., awareness,
empirical data, and goal models) have been identified as core ingredients—as they
capture the knowledge of self-aware systems—that should be made visible at the
architectural level and in the refined design. In addition to all these elements, their
linkage is relevant to describe their interactions. The data flow connects modules,
processes, and models, which is required for realizing the LRA-M loop and there-
fore the self-awareness and self-expression. In this context, we aim for making the
self-awareness and self-expression explicit by emphasizing when a span is directly
or indirectly aware of a scope (cf. awareness link) and when a span directly or indi-
rectly acts upon a scope (cf. expression link).

Based on these concepts we studied how context- and self-awareness can be
addressed in the architectural design of self-aware computing systems. Moreover,
we discussed specific cases of self-awareness such as multiple overlapping scopes
and spans, self-loops, cyclic self-awareness, and meta-self-awareness. Finally, we
showed in Table 5.1 that the proposed architectural concepts cover the needs for self-
aware computing systems as raised by Chapters 1 and 3. The main concepts covering
the needs for describing architectures of self-aware computing systems are relevant
for individual (see Chapter 6) as well as collectives of such systems (see Chapter 7).

P
re

-p
rin

t v
er

si
on

 fo
r p

er
so

na
l u

se
 o

nl
y!



140 Giese et al.

The concepts extending the UML offer the necessary elements to discuss specifics
of self-aware computing systems such as the LRA-M loop at the architectural level.
The sketched use of multiple architectural views provide means to emphasize cer-
tain specifics such as the processes, models, or the self-awareness/self-expression in
the architecture. Making such specifics explicit in the architectural design supports
engineers in deciding and reasoning about the system’s self-awareness capabilities,
which eventually supports development.

In this chapter, we motivated the need for the introduced architectural concepts
without an in-depth discussion of their novelty. This discussion will be provided
when reviewing the state of the art and research field of architectures for individual
and collective self-aware computing systems in Chapter 8.

Acknowledgment

This chapter is the result of stimulating discussions among the authors and other
participants, especially Peter Lewis, Nelly Bencomo, Kurt Geihs, Kirstie Bellman,
Chris Landauer, and Paola Inverardi, during the seminar on Model-driven Algo-
rithms and Architectures for Self-Aware Computing Systems at Schloss Dagstuhl in
January 2015 (http://www.dagstuhl.de/15041).

References

1. Anant Agarwal and Bill Harrod. Organic computing. Technical Report White paper, MIT and
DARPA, 2006.

2. Anant Agarwal, Jason Miller, Jonathan Eastep, David Wentziaff, and Harshad Kasture. Self-
aware computing. Technical Report AFRL-RI-RS-TR-2009-161, MIT, 2009.

3. Ozalp Babaoglu, Mark Jelasity, Alberto Montresor, Christof Fetzer, Stefano Leonardi, Aad
van Moorsel, and Maarten van Steen, editors. Self-star Properties in Complex Information
Systems: Conceptual and Practical Foundations, volume 3460 of Lecture Notes in Computer
Science (LNCS). Springer, 2005.

4. Nelly Bencomo, Amel Bennaceur, Paul Grace, Gordon S. Blair, and Valérie Issarny. The role
of models@run.time in supporting on-the-fly interoperability. Computing, 95(3):167–190,
2013.

5. Amel Bennaceur, Robert France, Giordano Tamburrelli, Thomas Vogel, Pieter J Mosterman,
Walter Cazzola, Fbio M. Costa, Alfonso Pierantonio, Matthias Tichy, Mehmet Aksit, Pr Em-
manuelson, Huang Gang, Nikolaos Georgantas, and David Redlich. Mechanisms for Lever-
aging Models at Runtime in Self-adaptive Software. In Nelly Bencomo, Robert France,
Betty H.C. Cheng, and Uwe Assmann, editors, Models@run.time, volume 8378 of Lecture
Notes in Computer Science (LNCS), pages 19–46. Springer, 2014.

6. Gordon Blair, Nelly Bencomo, and Robert France. Models@run.time. Computer, 42(10):22–
27, 2009.

7. Yuriy Brun, Giovanna Di Marzo Serugendo, Cristina Gacek, Holger Giese, Holger Kienle,
Marin Litoiu, Hausi Müller, Mauro Pezzè, and Mary Shaw. Engineering Self-Adaptive Sys-
tems through Feedback Loops. In Betty H.C. Cheng, Rogério de Lemos, Holger Giese, Paola

P
re

-p
rin

t v
er

si
on

 fo
r p

er
so

na
l u

se
 o

nl
y!



5 Architectural Concepts for Self-Aware Computing Systems 141

Inverardi, and Jeff Magee, editors, Software Engineering for Self-Adaptive Systems, volume
5525 of Lecture Notes in Computer Science (LNCS), pages 48–70. Springer, 2009.

8. Radu Calinescu, Lars Grunske, Marta Z. Kwiatkowska, Raffaela Mirandola, and Giordano
Tamburrelli. Dynamic qos management and optimization in service-based systems. IEEE
Trans. Software Eng., 37(3):387–409, 2011.

9. Betty H.C. Cheng, Rogério de Lemos, Holger Giese, Paola Inverardi, Jeff Magee, Jesper An-
dersson, Basil Becker, Nelly Bencomo, Yuriy Brun, Bojan Cukic, Giovanna Di Marzo Seru-
gendo, Schahram Dustdar, Anthony Finkelstein, Cristina Gacek, Kurt Geihs, Vincenzo Grassi,
Gabor Karsai, Holger M. Kienle, Jeff Kramer, Marin Litoiu, Sam Malek, Raffaela Mirandola,
Hausi Müller, Sooyong Park, Mary Shaw, Matthias Tichy, Massimo Tivoli, Danny Weyns,
and Jon Whittle. Software Engineering for Self-Adaptive Systems: A Research Roadmap. In
Betty H.C. Cheng, Rogério de Lemos, Holger Giese, Paola Inverardi, and Jeff Magee, editors,
Software Engineering for Self-Adaptive Systems, volume 5525 of Lecture Notes in Computer
Science (LNCS), pages 1–26. Springer, 2009.

10. Betty H.C. Cheng, Holger Giese, Paola Inverardi, Jeff Magee, and Rogério de Lemos, editors.
Software Engineering for Self-Adaptive Systems, volume 5525 of Lecture Notes in Computer
Science (LNCS). Springer, 2009.

11. Shang-Wen Cheng, VaheV. Poladian, David Garlan, and Bradley Schmerl. Improving
architecture-based self-adaptation through resource prediction. In Betty H.C. Cheng, Rogerio
de Lemos, Holger Giese, Paola Inverardi, and Jeff Magee, editors, Software Engineering for
Self-Adaptive Systems, volume 5525 of Lecture Notes in Computer Science (LNCS), pages
71–88. Springer, 2009.

12. M.T. Cox. Metacognition in computation: A selected research review. Art. Int., 169(2):104–
141, 2005.

13. Rogério de Lemos, Holger Giese, Hausi Müller, and Mary Shaw, editors. Software Engineer-
ing for Self-Adaptive Systems II, volume 7475 of Lecture Notes in Computer Science (LNCS).
Springer, 2013.

14. Rogério de Lemos, Holger Giese, Hausi Müller, Mary Shaw, Jesper Andersson, Marin Litoiu,
Bradley Schmerl, Gabriel Tamura, Norha M. Villegas, Thomas Vogel, Danny Weyns, Luciano
Baresi, Basil Becker, Nelly Bencomo, Yuriy Brun, Bojan Cukic, Ron Desmarais, Schahram
Dustdar, Gregor Engels, Kurt Geihs, Karl Goeschka, Alessandra Gorla, Vincenzo Grassi,
Paola Inverardi, Gabor Karsai, Jeff Kramer, Antónia Lopes, Jeff Magee, Sam Malek, Serge
Mankovskii, Raffaela Mirandola, John Mylopoulos, Oscar Nierstrasz, Mauro Pezzè, Christian
Prehofer, Wilhelm Schäfer, Rick Schlichting, Dennis B. Smith, Joao P. Sousa, Ladan Tahvil-
dari, Kenny Wong, and Jochen Wuttke. Software Engineering for Self-Adaptive Systems: A
second Research Roadmap. In Rogério de Lemos, Holger Giese, Hausi Müller, and Mary
Shaw, editors, Software Engineering for Self-Adaptive Systems II, volume 7475 of Lecture
Notes in Computer Science (LNCS), pages 1–32. Springer, 2013.

15. Marco Dorigo, Vito Trianni, Erol Şahin, Roderich Groß, Thomas H. Labella, Gianluca Bal-
dassarre, Stefano Nolfi, Jean-Louis Deneubourg, Francesco Mondada, Dario Floreano, and
Luca M. Gambardella. Evolving self-organizing behaviors for a swarm-bot. Autonomous
Robots, 17:223–245, 2004.

16. Sylvain Frey, Ada Diaconescu, and Isabelle M. Demeure. Architectural Integration Patterns
for Autonomic Management Systems. In Proc. of the 9th IEEE International Conference and
Workshops on the Engineering of Autonomic and Autonomous Systems (EASe 2012), 2012.

17. David Garlan, Shang-Wen Cheng, An-Cheng Huang, Bradley R. Schmerl, and Peter
Steenkiste. Rainbow: Architecture-based self-adaptation with reusable infrastructure. IEEE
Computer, 37(10):46–54, 2004.

18. Holger Giese and Wilhelm Schfer. Model-Driven Development of Safe Self-Optimizing
Mechatronic Systems with MechatronicUML. In Javier Camara, Rogrio de Lemos, Carlo
Ghezzi, and Antónia Lopes, editors, Assurances for Self-Adaptive Systems, volume 7740 of
Lecture Notes in Computer Science (LNCS), pages 152–186. Springer, 2013.

19. Julia Hielscher, Raman Kazhamiakin, Andreas Metzger, and Marco Pistore. A framework
for proactive self-adaptation of service-based applications based on online testing. In Petri

P
re

-p
rin

t v
er

si
on

 fo
r p

er
so

na
l u

se
 o

nl
y!



142 Giese et al.

Mahonen, Klaus Pohl, and Thierry Priol, editors, Towards a Service-Based Internet, volume
5377 of Lecture Notes in Computer Science (LNCS), pages 122–133. Springer, 2008.

20. Henry Hoffmann, Martina Maggio, Marco D. Santambrogio, Alberto Leva, , and Anant Agar-
wal. Seec: A general and extensible framework for self-aware computing. Technical Report
MIT-CSAIL-TR-2011-046, MIT CSAIL, 2011.

21. John E. Kelly and Steve Hamm. Smart machines : IBM’s Watson and the era of cognitive
computing. Columbia Business School Publishing, 2013.

22. Jeffrey O. Kephart and David M. Chess. The vision of autonomic computing. Computer,
36(1):41–50, 2003.

23. Samuel Kounev. Self-Aware Software and Systems Engineering: A Vision and Research
Roadmap. In GI Softwaretechnik-Trends, 31(4), November 2011, Karlsruhe, Germany, 2011.

24. Jeff Kramer and Jeff Magee. Self-Managed Systems: an Architectural Challenge. In FOSE
’07: Future of Software Engineering, pages 259–268. IEEE, 2007.

25. Peter R. Lewis, Arjun Chandra, Funmilade Faniyi, Kyrre Glette, Tao Chen, Rami Bahsoon,
Jim Torresen, and Xin Yao. Architectural aspects of self-aware and self-expressive computing
systems: From psychology to engineering. IEEE Computer, 48(8):62–70, 2015.

26. Janet Metcalfe and Arthur P. Shimamura, editors. Metacognition: Knowing about knowing.
MIT Press, Cambridge, MA, USA, 1994.

27. Melanie Mitchell. Self-awareness and control in decentralized systems (Tech Report SS-05-
04). In AAAI Spring Symp. on Metacognition in Computation, Menlo Park, 2005. AIII Press.

28. Hausi A. Müller, Mauro Pezzè, and Mary Shaw. Visibility of Control in Adaptive Systems.
In Proceedings of the 2nd International Workshop on Ultra-large-scale Software-intensive
Systems, ULSSIS ’08, pages 23–26. ACM, 2008.

29. Christian Muller-Schloer, Hartmut Schmeck, and Theo Ungerer, editors. Organic Computing
- A Paradigm Shift for Complex Systems. Birkhuser, 2011.

30. Hausi A. Mller, Holger M. Kienle, and Ulrike Stege. Autonomic Computing Now You See
It, Now You Don’t. In Andrea Lucia and Filomena Ferrucci, editors, Software Engineering:
International Summer Schools, ISSSE 2006-2008, Salerno, Italy, Revised Tutorial Lectures,
volume 5413 of Lecture Notes in Computer Science (LNCS), pages 32–54. Springer, 2009.

31. Object Management Group. OMG Systems Modeling Language (OMG SysMLT M), 2015.
Version 1.4, formal/2015-06-03.

32. Object Management Group. OMG Unified Modeling LanguageT M (OMG UML), 2015. Ver-
sion 2.5, formal/2015-03-01.

33. L.D. Paulson. DARPA creating self-aware computing. Computer, 36(3):24, 2003.
34. Mazeiar Salehie and Ladan Tahvildari. Self-adaptive software: Landscape and research chal-

lenges. ACM Trans. Auton. Adapt. Syst., 4(2):1–42, 2009.
35. Mary Shaw. Beyond objects: A software design paradigm based on process control. ACM

SIGSOFT Software Engineering Notes, 20(1):27–38, 1995.
36. Mary Shaw and David Garlan. An Introduction to Software Architecture. volume 2, pages

1–39. World Scientific Publishing Company, 1993.
37. Vı́tor E. Silva Souza, Alexei Lapouchnian, William N. Robinson, and John Mylopoulos.

Awareness requirements for adaptive systems. In Proc. of the 6th International Symposium on
Software Engineering for Adaptive and Self-Managing Systems, pages 60–69. ACM, 2011.

38. Clemens Szyperski, Dirk Gruntz, and Stephan Murer. Component Software Beyond Object-
Oriented Programming. Component Software. Addison-Wesley, New York, NY, USA, 2nd
edition, 2002.

39. Thomas Vogel and Holger Giese. Adaptation and Abstract Runtime Models. In Proceedings of
the 5th Workshop on Software Engineering for Adaptive and Self-Managing Systems (SEAMS
2010), pages 39–48. ACM, May 2010.

40. Thomas Vogel and Holger Giese. Model-driven engineering of self-adaptive software with
eurema. ACM Trans. Auton. Adapt. Syst., 8(4):18:1–18:33, 2014.

41. Thomas Vogel, Andreas Seibel, and Holger Giese. The Role of Models and Megamodels at
Runtime. In Juergen Dingel and Arnor Solberg, editors, Models in Software Engineering,
Workshops and Symposia at MODELS 2010, Reports and Revised Selected Papers, volume
6627 of Lecture Notes in Computer Science (LNCS), pages 224–238. Springer, 2011.

P
re

-p
rin

t v
er

si
on

 fo
r p

er
so

na
l u

se
 o

nl
y!



5 Architectural Concepts for Self-Aware Computing Systems 143

42. Eric Yuan, Naeem Esfahani, and Sam Malek. Automated mining of software component in-
teractions for self-adaptation. In Proceedings of the 9th International Symposium on Software
Engineering for Adaptive and Self-Managing Systems, SEAMS’14, pages 27–36. ACM, 2014.

43. Franco Zambonelli, Nicola Bicocchi, Giacomo Cabri, Letizia Leonardi, and Mariachiara Pu-
viani. On self-adaptation, self-expression, and self-awareness in autonomic service compo-
nent ensembles. In Proc. of the Fifth IEEE Conference on Self-Adaptive and Self-Organizing
Systems Workshops (SASOW), pages 108–113. IEEE, 2011.

Summary of the Notation

The following table provides a summary of the concepts for modeling architectures
of self-aware computing systems. For each concept, its name, syntactic construct
(notational element), description, and rationale are listed.

Table 5.2: Architectural Concepts for Self-Aware Computing Systems.

Name Syntax Description Rationale

System
name:type

A system with a name and type.
We may omit either its name
(anonymous system) or type.
It can be hierarchically decom-
posed into modules. Stereotypes
such as �self-aware�, �meta-
self-aware� and so on indicate
whether a system is self-aware,
meta-self-aware etc.

The entirety of the
modeled system dis-
tinguished from the
environmental context.

Module
name:type

A module with a name and
type. We may omit either its
name (anonymous module) or
type. It can be hierarchically
decomposed into modules.
The stereotypes �reflective�
and �pre-reflective� indicate
whether the module reflects
on any other module or not.
Stereotypes for higher forms of
reflection are �meta-reflective�,
�meta-meta-reflective� etc.

Modules are required
to decompose a system
or other modules.

Environ-
mental
Context

name:type

An environmental context of a
system describes the fragment of
the environment that is scoped by
the system’s capacities of sensing
and exploration. It has a name and
type, one of which we may omit.

The portion of the
overall environment
that is relevant for the
system.

P
re

-p
rin

t v
er

si
on

 fo
r p

er
so

na
l u

se
 o

nl
y!



144 Giese et al.

Port
type ▼

A port describes provided or re-
quired functionality of a system,
module, or context. It is charac-
terized by its type. The direction
of the arrow indicates a required
(arrow points outwards the ele-
ment requiring the functionality)
or provided (arrow points inwards
the element providing the func-
tionality) port. Stereotypes indi-
cate the kind of functionality: ef-
fect �E�, adapt �A�, observe
�O�, and report �R�.

A port supports encap-
sulation of elements
by making the provid-
ing or requiring func-
tionality explicit.

Data Flow

A data flow describes the interac-
tions between systems, modules,
processes, and models by means
of exchanging data.

Data flow connectors
make the compo-
sitional structure
explicit, that is, how
elements are wired.

Composition

name:type

name:type

name:type

In a composition (UML compos-
ite structure diagram), we refine
modules to other modules while
we distinguish between exclu-
sive (solid border of the embed-
ded module) and shared (dashed
border of the embedded mod-
ule) membership of an embedded
module.

A composition allows
us to decompose the
system into modules
and a module into
other modules and to
distinguish the kind of
membership of a con-
tained module.

Collaboration
name:type

A collaboration describes the co-
operating behavior among sys-
tems, modules, and processes.
The concrete behavior of the co-
operation is described within the
collaboration.

A collaboration sup-
ports modeling more
flexible cooperations
among systems, mod-
ules, and processes
compared to wiring all
of the elements using
data flow connectors.

Participation

A participation connects a sys-
tem, module, or process to a col-
laboration such that the system,
module, or process participates in
the collaboration.

A participation makes
explicit which ele-
ments cooperate via
a collaboration in
contrast to directly ex-
changing data through
data flow connectors.

Process
Process

A process describes activities
within a system or module and
therefore emphasizes the behav-
ior within these structural ele-
ments.

Self-aware sys-
tems have specific
processes such as
learning awareness
models, reasoning, or
acting that should be
made visible in the
architecture.

P
re

-p
rin

t v
er

si
on

 fo
r p

er
so

na
l u

se
 o

nl
y!



5 Architectural Concepts for Self-Aware Computing Systems 145

Awareness
Model

name:type

An awareness model represents
learned aspects of a scope. The
scope is often (part of) the sys-
tem itself, other systems, or the
environmental context. In the for-
mer case, the model is stereo-
typed with �sys�, in the latter
case with �ctx�. An awareness
model has a name and type, one
of which can be omitted.

An awareness model
makes explicit that
a span maintains a
model representing
the scope of the
awareness.

Empirical
Data

name:type

Empirical data represents obser-
vations of a scope. The scope is
often (part of) the system itself,
other systems, or the environmen-
tal context. In the former case, the
empirical data model is stereo-
typed with �sys�, in the latter
case with �ctx�. An empirical
data has a name and a type, one
of which we may omit.

An empirical data
model makes explicit
that a span collects
(sensor) data about a
scope.

Goal
Model

<<goal>>
name:type

A goal model describes the goals
(parts of) the system should
achieve. Goals are imposed to the
system from outside (e.g., by the
user) or internally produced. A
goal model has a name and type,
one of which can be omitted. It is
stereotyped with �goal�.

Explicit goal models
are required since
self-aware systems are
driven by goals and
they should be able to
handle dynamically
changing goals.

Awareness
Link

An awareness link denotes that
a span is directly aware of a
scope. If a span exploits aware-
ness knowledge about a scope
that has been established by an-
other span, the former span is in-
directly aware of the scope. In-
direct awareness is transitive and
can be explicitly represented by
dashed awareness links. Aware-
ness links can be specialized by
indicating their type: �sa� for
stimulus, �ia� for interaction,
�ta� for time, and �ga� for
goal awareness.

An awareness link
connects the span and
the scope to make
explicit which element
learns and reasons
about which other ele-
ment, and specifically,
which element is the
original represented in
an awareness model.

P
re

-p
rin

t v
er

si
on

 fo
r p

er
so

na
l u

se
 o

nl
y!



146 Giese et al.

Expression
Link

An expression link denotes that a
span directly impacts a scope. If
a span indirectly impacts a scope
via another span, the former span
can be connected to the scope
to make the indirect expression
visible. Indirect expressions are
transitive and can be explicitly
represented by dashed expression
links. To specialize the expres-
sion type, a link is stereotyped
with effect�E�, adapt�A�, ob-
serve �O�, or report �R�.

An expression link
connects the span and
the scope to make
explicit which element
acts upon another
element.

P
re

-p
rin

t v
er

si
on

 fo
r p

er
so

na
l u

se
 o

nl
y!




