
Utilizing Clustering to Optimize
Resource Demand Estimation Approaches
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Abstract—Resource demands are crucial parameters for mod-
eling and predicting the performance of software systems. Direct
measurement of these resource demands is usually infeasible due
to instrumentation overheads causing measurement interferences
and perturbation in production environments. Thus, a number
of statistical estimation approaches (e.g., based on optimization,
regression or Kalman filters) have been proposed in the literature.
Most of these approaches are parameterized. These parameters
influence the estimation quality and the required computation
time. Existing work uses historical data as training sets to opti-
mize those parameters and to minimize the estimation error of
those approaches. However, if the data traces are fundamentally
different, the optimal parameter settings are different as well.

In this paper, we propose to use automated clustering in order
to group training sets into groups of similar optimization behav-
ior. This way, optimization can be specifically tailored to certain
groups of traces in a self-aware manner. During run-time, every
trace is first sorted into a cluster, where the respective cluster-
wide parameter optimum can be applied. A preliminary case
study shows that clustering can provide promising improvements.

Index Terms—self-adaptive systems; resource demand estima-
tion; optimization; clustering; machine learning

I. INTRODUCTION

A resource demand (or service demand) is the average

time a unit of work (e.g., request or transaction) spends

obtaining service from a resource (e.g., CPU or hard disk)

in a system over all visits excluding any waiting times [1].

Timely and precise resource demand estimates are a crucial

input to auto-scaling mechanisms [2] or performance modeling

techniques [3], [4] used for elastic resource provisioning

and therefore different self-aware computing systems [5],

[6]. Hence, it has been shown that statistical estimation of

resource demands is a valid and useful tool enabling elastic

cloud environments [2], [7]. Over the years, a number of

approaches to resource demand estimation have been proposed

using different statistical estimation techniques (e.g., linear

regression [8], [9] or Kalman filters [10], [11]) and based on

different laws from queueing theory.

Resource demand estimation approaches need to be parame-

terized in order to adapt their behavior to the specific problem

instance and to improve estimation accuracy. Examples of

such parameters include the step size, i.e., the aggregation

interval of measurements, the window size, i.e., the amount

of historical information to consider or hyper-parameters of,

e.g., Kalman filters or optimization engines. However, it is

challenging to manually determine sensible parameter settings

as the relationship between the parameters and the accuracy

is not always trivial. A poor choice of parameter values

can drastically decrease the estimation accuracy of some ap-

proaches, while others may remain relatively unaffected [12].

This complexity hinders the adoption of resource demand

estimation techniques in practice [13].

Our previous work introduces a self-tuning approach based

on discrete optimization that can be used to automatically

tune the parameters of resource demand estimation meth-

ods, provided sample measurement traces from the given

application domain are available [14]. This approach finds

a single parameter setting minimizing the estimation error

over all given traces. However, as the given traces have

different characteristics, they might be impacted by different

parameter settings in different ways. This implies that an

accuracy increase for one measurement trace can mean a

decrease for another one. As the algorithm can only optimize

the average estimation error, the optimization must settle for

a compromise.

In this paper, we propose to utilize clustering in order to

separate the training traces into different groups. These clus-

ters are formed based on the optimization behavior of those

traces. Each of these clusters is then optimized individually,

improving the estimation accuracy. Any new trace is grouped

into one of the existing clusters and then estimated using the

recommended optimized parameterization. By clustering the

traces, we can improve the estimation error of the resulting

groups by optimizing each of them separately.

Based on the number of resulting clusters or the distin-

guishing features between them, we can deduce the important

parameters having the biggest influence on the optimization

These can be used to extract some meta-knowledge about

the optimization behavior of different traces. As the approach

works fully autonomous, it can be seamlessly integrated with

existing resource demand estimation techniques. Therefore,

our approach is step forward towards our vision of self-aware

performance models [15] as well as the general vision self-

aware computing [5].

II. RELATED WORK

There are several works introducing resource demand es-

timation approaches. Rolia and Vetland [8], [16] first did

some experiments for linear regression techniques. Pacifini et

al. [17], Casale et al. [18], [19] and Stewart et al. [20] extend

this by investigating limitations of linear regression in resource
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Fig. 1. Estimation error for different traces in dependence of a configurable
parameter. Each color represents a different trace, the black line represents
the total mean.

demand estimation and the impact of different factors. The

performance of Kalman filters for resource demand estimation

is researched by Zheng et al. [11], [21], Kumar et al. [22] and

Wang et al. [10], [23]. Kraft et al. [24] and Sharma et al. [25]

both compare least-squares regression with their maximum

likelihood estimation [24] and independent component analy-

sis [25] approach, respectively. None of these works performs

an automatic and systematic optimization of the best parameter

settings for a given data set, since these approaches only do

manual testing and develop rules of thumb for a chosen small

set of parameters.

Our previous work [14] proposed an algorithm optimizing

the hyper-parameters of each approach for that data set.

Another work deals with the selection of the best approach for

a given scenario [26]. However, both works assume the test

set to be indivisible. Therefore, the approaches have to search

a single configuration for the complete training set, resulting

in sub-optimal decisions for individual traces.

III. MOTIVATING EXAMPLE

This section describes an example optimization motivating

the need for clustering algorithms, when optimizing different

traces for resource demand estimation. Figure 1 shows the

optimization behavior of different traces for a certain scenario.

In this example, we show the relative estimation errors for each

training trace of a Kalman filter implementation based on the

utilization law [10] in dependence on the so-called bounds

factor, a parameter of the Kalman filter. Every line represents

one specific estimation problem, i.e., one measurement series

used for estimating resource demands.

We observe that the arithmetic average over all traces (black

line) decreases monotonously with increasing values of the

Bounds Factor parameter. Almost any optimization algorithm

would therefore select a parameter value close to 1.0. However,

by analyzing the individual traces we can observe at least two

clusters, exhibiting different properties. The first group reacts

sensitive to the bounds factor and drastically decreases its error

for increasing values of the bounds factor. Another relatively
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Fig. 2. The standard optimization approach [14].

compact group has a low error anyway and is therefore not

sensitive to changes in the bounds factor. Hence, the second

group does not profit from an increased bounds factor. We

can identify more clusters based on how steep the accuracy

increase is, or when the optimal value is reached.

This cluster separation can be important if the optimized

parameters have an impact on the performance of the resource

demand estimation and/or if two or more cluster optima are

different from each other. Since the current optimization has

to choose one optimum for all traces, a compromise has to be

reached. Instead, we propose to split the total set of training

traces into different clusters. This way, every cluster can be

optimized separately.

IV. APPROACH

In this section, we describe two possibilities of clustering

a set of training traces based on their optimization properties.

We already outlined the envisioned benefit of the proposed

clustering in Section III. The respective advantages and dis-

advantages are discussed in Section V-C.

We first discuss the traditional approach to parameter opti-

mization, in order to highlight our improvements to the current

process. Our previous paper [14] envisioned the optimization

process as depicted in Figure 2. The approach uses a set of

training traces as input. Each trace represents one problem

instance, for which a resource demand estimation is required.

Executing the estimation requires to parameterize a given

approach with specific values.

The optimization algorithm explores different (multi-

dimensional) parameter configurations and select the best one

based on minimizing the estimation error calculated using k-

fold cross-validation. Therefore, the optimization algorithm

returns a set of tuned parameter settings that have empirically

proven to be optimal for the respective training set. As this is

a general multi-parameter optimization problem, a multitude

of different optimization approaches can be applied. Our

previous work [14] explored different algorithms, namely one

hill-climber algorithm, a variant of stepwise sampling search

(S3) [27] and a brute force algorithm.

The found parameter set can now be used for any other

trace. One core assumption is that the new trace has some-

what similar properties to the traces used during the train-

ing/optimization phase. If so, all succeeding estimation traces

will benefit from optimized parameter settings and therefore

improved accuracy. It is hence beneficial to augment the

135



Brute Force
Optimization

Training Traces

Clustering

Optimized
Clusters

Optim. Traces

Fig. 3. Clustering traces using brute force optimization.

training set as much as possible, in order to include as many

different traces as possible. However, as outlined in Section III,

different groups of traces react differently to changes in pa-

rameter settings. Therefore, the optimized parameter is always

the result of a compromise.

We address this issue by clustering the training set into

different groups and optimize their parameters separately. For

every new trace, we calculate a set of features and assign it

to a cluster based on these features. Now, the parameter set of

the given cluster is used for the new trace.

A. Feature set

In the following, we introduce the feature set, we consider

to be important for the clustering of different resource demand

estimation traces. We experimented with different feature

settings and combinations. In total, we evaluated 24 different

features. They were gathered based on other results from

previous work [12], [26]. In order to keep the feature space

small, we finally decided to reduce the relevant feature set to

the following four features:

• Number of resources: The number of processing units,

e.g., CPUs, of the given trace.

• Number of workload classes: The number of different

request classes or workload classes of the trace.

• Variance inflation factor: A measure for collinearity be-

tween the measurement series of one trace [28].

• Arithmetic mean for each resource utilization: The aver-

age resource utilizations per resource.

We aim for a trade-off between small feature size and high

cluster quality, where the presented set has empirically proven

to be sufficient, as most bigger feature sets actually result

in a worse clustering. Reducing the feature set as much as

possible is desirable, since it reduces the risk of over-fitting

and furthermore increases explainability and interpretability

for the human.

B. Brute force clustering

Our first approach utilizes clustering, based on the actual

optimization behavior of the traces. Intuitively, we could say

we cluster based on the graphical clusters, observable in

Figure 1. However, note that this can be time intensive as

this requires one execution for each parameter set for every

training trace to generate the corresponding estimation error.

As depicted in Figure 3, our approach therefore first exe-

cutes a brute force optimization algorithm. The brute force

algorithm, as the name already suggests, iterates over the

whole parameter space to find the best parameter setting.

Additionally, we store the optimal parameter setting for each

trace.

We now apply the clustering based on the actual optimiza-

tion behavior of these traces. Each found cluster gets optimized

separately. However, as we already went through all traces

with our brute-force approach, it is trivial to choose the optimal

values for each cluster. Additionally, we calculate the features

for the resulting clusters. For every unseen trace, we calculate

the required features for the given trace and assign it to the

cluster with the closest feature distance. The estimation of

that trace will then be executed with the respective optimal

parameter setting of that cluster.

C. Feature-based clustering

A downside of brute force clustering is the computational

intensity of the training phase. As applying brute force is part

of the clustering process itself, this method can easily become

infeasible in practical settings, since brute force is not always

applicable [14]. We therefore introduce the so-called feature-

based clustering, depicted in Figure 4.

In contrast to the brute force clustering, we firstly extract

the features for each of the traces. Now, the actual clustering

process is based on these feature distances, instead of the

optimization behavior. The resulting clusters can now be

optimized separately, to obtain an optimal parameter setting

for each of the individual clusters. As the brute force search

is no longer required to generate the clustering itself, we

can choose more efficient optimization algorithms that do no

longer guarantee an optimal solution, but consume much less

computation power. As the S3 algorithm [27] has proven to be

sufficient [14], we will use S3 in the following experiments.

V. CASE STUDY

This section presents a preliminary case study using the

proposed clustering methods. We first describe the experiment

setup, then present results of the two proposed techniques and

finally discuss our findings.

A. Setup

The considered training set consists of measurements ob-

tained from running micro-benchmarks on a real system. In

total, 210 traces of approximately one hour run time were

collected, resulting in a total experiment time of around 210

hours. The micro-benchmarks generate a closed workload with

exponentially distributed think times and resource demands.

As mean values for the resource demands, we selected 14

different subsets of the base set [0.02s; 0.25s; 0.5s; 0.125s;

0.13s] with number of workload classes C = {1; 2; 3}. The

subsets were arbitrarily chosen from the base set so that the

resource demands are not linearly growing across workload

classes. The subsets intentionally also contained cases where

two or three workload classes had the same mean value as

resource demand. We varied the number of workload classes

136



Feature  
Extraction

Training Traces

FeaturesFeaturesFeatures Clustering Clusters Optimization

Optimized
Clusters

Fig. 4. Clustering traces using features.

C = {1; 2; 3} and the load level U = {20%; 50%; 80%} be-

tween experiments. These traces were already used in previous

studies [12], [14], [26].

The error of a resource demand estimate is defined by the

sum of the relative response time error ER and the absolute

utilization error EU :

ER =
1

C

C∑

c=1

∣∣∣∣∣
R̃c −Rc

Rc

∣∣∣∣∣ ,

EU =

∣∣∣∣∣

C∑

c=1

(Xc · D̃c)− U

∣∣∣∣∣ ,
(1)

with C being the number of workload classes, Rc the

average measured response time of workload class c over all

resources, R̃c the predicted average response time based on

the estimated resource demands, Xc the measured throughput

of workload class c, D̃c the estimated resource demand of

workload class c and U the average measured utilization over

all resources.

We experimented with different variants of the iterative k-

means [29], the iterative k-medoids [30] and DB-SCAN [31].

In the following, we present our results based on the iterative

k-means using the silhouette coefficient [32] as stopping

criterion for evaluating the cluster quality for a given k. The

silhouette coefficient is a measure of how similar an object

is to its own cluster compared to how similar it is to the

other clusters [32]. Note that this implies that not all parameter

optimizations result in the same amount of clusters, since we

do not want to restrict the clustering process to any specific

cluster number k. As distance measure, we use the sum of all

point-wise distance of the optimization curves for the brute-

force clustering, and the euclidean feature distance for feature

clustering.

B. Results

Figure 5 shows the clustering of the brute-force clustering

approach. It shows the clustered traces for the bounds factor

of two different Kalman filters: (1) KF1 by Wang et el. [10]

to the left and KF2 by Zheng et al. [11] on the right. The left

figure represents the clustered version of Figure 1. A visual

inspection confirms that the algorithm identified reasonable

clusters. Furthermore, we note that the black cluster means

show different behaviors. Therefore, we conclude that the idea

of clustering different estimation traces is feasible, as we can

TABLE I
SILHOUETTE COEFFICIENT OF THE TWO CLUSTERING APPROACHES FOR

THE OPTIMIZABLE PARAMETERS.

Parameter Brute-force Feature-based

KF1 Step Size 0.74 0.12
KF1 Observe Noise Co-variance 0.71 -0.07
KF1 State Noise Co-variance -0.21 -0.63
KF1 State Noise Coupling 0.01 -0.68
KF1 Initial Bounds Distance 0.20 -0.21
KF1 Bounds Factor 0.64 0.20

KF2 Step Size 0.74 0.02
KF2 Observe Noise Co-variance 0.73 0.04
KF2 State Noise Co-variance 0.72 -0.06
KF2 State Noise Coupling 0.72 0.13
KF2 Initial Bounds Distance 0.55 0.15
KF2 Bounds Factor 0.56 -0.03

separate different groups of behavior. On KF2 optimization

(right), we can see that the two clusters have two different

optima. The turquoise cluster has its optimum at approx. 0.1,

while the red cluster has its optimum at 1.0. For a human,

finding these clusters graphically can be challenging, as the

clusters found by the clustering approach are not trivial to

observe.

Table I compares the silhouette coefficient of both clustering

approaches for six different parameter clusterings of both

Kalman filters. For the brute-force algorithm, we conclude that

there are some parameters with good clustering results. How-

ever, there are also other examples, i.e., KF1 State Noise Co-

variance and KF1 State Noise Coupling, where the resulting

clusters are not very useful. For the feature-based clustering,

we observe that the quality of the found clusters decreases.

This is expected, as the feature-based clustering has less input

information available; however, the accuracy degradation is

unexpectedly drastic. Additionally, Figure 6 shows the found

clusters of the feature-based algorithm of the same traces as

in Figure 1. We can confirm our observation from Table I that

the clustering of the feature-based approach is significantly

worse than the brute force approach. Especially the clustering

of the KF2 (right) looses its expressiveness in comparison to

the clusters found by the brute force approach. For KF1 (left)

however, we still observe a reasonable clustering, although

there are some wrong assignments especially in the yellow

and the turquoise clusters.

137



Fig. 5. Results of the brute force clustering for the bounds factor parameter of KF1 (left) and KF2 (right). Each color represents a different cluster, black
lines represent the respective cluster means.

Fig. 6. Results of the feature-based clustering for the bounds factor parameter of KF1 (left) and KF2 (right). Each color represents a different cluster, black
lines represent the respective cluster means.

C. Discussion

Summarizing, we can say that there is a clear trade-off

between accuracy and required computation time. While the

brute force approach produces significantly better clusters, it

has severe conceptual disadvantages over the feature-based

clustering, including higher and unpredictable computation

time.

Both approaches determine different clusters in the opti-

mization behaviors that can be used to systematically optimize

the groups separately in order to improve estimation accuracy

of the individual cluster. Additionally, both approaches are

able to quickly optimize new traces, by assigning them to

the closest cluster and applying the optimal parameter set

for the respective cluster. The brute force clustering leads to

better clusters and optimal parameter settings of that clusters,

but takes significantly more time. The main advantage of the

feature-based clustering is its lower and configurable run-time,

as any optimization algorithm can be used to optimize the

clusters separately.

VI. FUTURE WORK

We see a significant decrease of the cluster quality using

the feature-based approach. We are currently investigating

two possibilities to increase clustering accuracy. First, the

performance of the feature-based approach naturally depends

on the quality of the chosen features, the clustering algorithm

and its hyper-parameters. Hence, an in-depth study of the

different influencing factors could lead to significant accuracy

gains. Second, in the current version, we calculate the pairwise

euclidean difference of the optimization behavior. However,

we are usually more interested in the relative increase or

decrease in accuracy than the actual distance of the errors.

Hence, a comparison based on the slope of the functions could

be meaningful, i.e., of the first derivative.

Additionally, we want to investigate the trade-off between

computation time and cluster quality in more depth by analyz-

ing additional optimizable parameters as well as a larger set of

measurement traces. By systematically analyzing the trade-off

between computation time and increased accuracy, we want to

derive a more conclusive assessment of the two approaches. A

larger data set furthermore enables us to find further examples

of clusters with opposed parameter optima. This helps to

convincingly demonstrate the benefit of clustering traces.

The presented case study focuses on optimizing a single

parameter at a time. However, in practice, the parameters can

not be analyzed in isolation as they also impact each other.

Therefore, the clustering – as well as the underlying opti-

mization – should analyze the multiple parameter dimensions
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together. This multi-dimensional cluster analysis practically

prohibits the use of the brute force clustering, as the search

space grows exponentially. Hence, increasing the effectiveness

of the feature-based approach is of paramount importance.
Lastly, we want to transfer the proposed techniques to other

domains of self-aware computing. Apart from the domain-

specific feature set, the proposed techniques should be easily

transferable.

VII. CONCLUSION

In this paper, we propose two different automated ap-

proaches of clustering measurement traces for resource de-

mand estimation. This knowledge about clusters can be used to

improve the hyper-parameter tuning of the different estimation

approaches in a self-aware manner for the given set of traces

by either (1) reducing the estimation error or (2) accelerating

the online optimization of those traces. We present a prelimi-

nary case study that demonstrates how the clustering of trace

groups can be performed. We use these results to derive a set

of open issues and challenges to address in future work.
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