
Monitorless: Predicting Performance Degradation in Cloud
Applications with Machine Learning

Johannes Grohmann
johannes.grohmann@uni-wuerzburg.de

University of Würzburg
Würzburg, Germany

Patrick K. Nicholson
pat.nicholson@nokia-bell-labs.com

Nokia Bell Labs
Dublin, Ireland

Jesus Omana Iglesias
jesus.omana@telefonica.com

Telefonica Alpha
Barcelona, Spain

Samuel Kounev
samuel.kounev@uni-wuerzburg.de

University of Würzburg
Würzburg, Germany

Diego Lugones
diego.lugones@nokia-bell-labs.com

Nokia Bell Labs
Dublin, Ireland

Abstract
Today, software operation engineers rely on application key perfor-
mance indicators (KPIs) for sizing and orchestrating cloud resources
dynamically. KPIs are monitored to assess the achievable perfor-
mance and to configure various cloud-specific parameters such as
flavors of instances and autoscaling rules, among others. Usually,
keeping KPIs within acceptable levels requires application expertise
which is expensive and can slow down the continuous delivery of
software. Expertise is required because KPIs are normally based on
application-specific quality-of-service metrics, like service response
time and processing rate, instead of generic platform metrics, like
those typical across various environments (e.g., CPU and memory
utilization, I/O rate, etc.)

In this paper, we investigate the feasibility of outsourcing the
management of application performance from developers to cloud
operators. In the same way that the serverless paradigm allows the
execution environment to be fully managed by a third party, we dis-
cuss a monitorless model to streamline application deployment by
delegating performance management. We show that training a ma-
chine learning model with platform-level data, collected from the
execution of representative containerized services, allows inferring
application KPI degradation. This is an opportunity to simplify oper-
ations as engineers can rely solely on platform metrics – while still
fulfilling application KPIs – to configure portable and application
agnostic rules and other cloud-specific parameters to automatically
trigger actions such as autoscaling, instance migration, network
slicing, etc.

Results show that monitorless infers KPI degradation with an ac-
curacy of 97% and, notably, it performs similarly to typical autoscal-
ing solutions, even when autoscaling rules are optimally tuned with
knowledge of the expected workload.

CCS Concepts • Computer systems organization → Cloud
computing; Self-organizing autonomic computing; • Com-
puting methodologies → Supervised learning by classification.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or
a fee. Request permissions from permissions@acm.org.
Middleware ’19, December 8–13, 2019, Davis, CA, USA
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-7009-7/19/12. . . $15.00
https://doi.org/10.1145/3361525.3361543

Keywords Cloud computing, Machine learning, Monitoring, De-
vOps.

ACM Reference Format:
Johannes Grohmann, Patrick K. Nicholson, Jesus Omana Iglesias, Samuel
Kounev, and Diego Lugones. 2019. Monitorless: Predicting Performance
Degradation in Cloud Applications with Machine Learning. In 20th In-
ternational Middleware Conference (Middleware ’19), December 8–13, 2019,
Davis, CA, USA. ACM, New York, NY, USA, 14 pages. https://doi.org/10.
1145/3361525.3361543

1 Introduction
Bringing new applications or product features to production re-
quires time and expertise to properly manage the tradeoff between
agility and reliability or product stability. One reason for delays is
the extensive testing required to assess performance; for example,
telecommunication operators can spend up to 40% of their time
on testing activities [37]. Performance behavior is tightly related
to the amount of resources allocated to applications [43]. There-
fore, as software development progressively adopts loosely coupled
architectures (e.g., microservices) to speedup continuous delivery
and integration, operation engineers struggle to cope with the pace
at which new features can be integrated into production [31]. Oper-
ation requires significant testing, which involves collecting metrics
as well as analyzing and correlating resource usage with applica-
tion key performance indicators (KPIs) to understand performance
bottlenecks, scalability issues and degradation of service quality.

However, as the scale of cloud environments continues to grow
and applications are built with tens or hundreds ofmicroservices [4],
the number of metrics increases drastically [18, 35, 51, 57], which
makes the process of gaining performance insights very complex.
To cope with such complexity, operation engineers need to design
and architect frameworks to automate or even substitute the testing
pipelines and streamline KPI control to fulfill service level objectives
(SLOs) [3].

Recent research work relies on specific application KPIs for au-
tomating performance analysis and orchestration [38, 63, 65, 71].
We argue that application-specific metrics limit the generality of
solutions and their applicability across applications and platforms.
That is, operation teams need to proficiently re-evaluate and con-
trol critical KPIs and keep track of their specific target operating
range for each running application, which reduces the agility of
deployment.

In this paper, we leverage machine learning to loosen the de-
pendencies between operation tasks and application-specific KPIs.

149

https://doi.org/10.1145/3361525.3361543
https://doi.org/10.1145/3361525.3361543
https://doi.org/10.1145/3361525.3361543

Middleware ’19, December 8–13, 2019, Davis, CA, USA Grohmann et al.

Intuitively, the idea is to use historical data from various typical ser-
vices, labeled with information about bottlenecked resources and
hardware configuration, to infer service degradation without the
need to specifically monitor or analyze any KPIs during production.
Thus, our approach uses only a standard set of application-agnostic,
hypervisor-level, platform metrics (e.g., CPU and memory utiliza-
tion) to infer KPI degradation. Analogous to the serverless paradigm,
in which servers are hidden to end-users, our approach still has
metrics, but only generic platform metrics, instead of application-
specific ones. These metrics are autonomously processed by a ma-
chine learning algorithm to predict performance issues and ac-
celerate the pace at which performance insights are obtained in
production. We therefore call our approach “monitorless”.

The reasoning behind monitorless is motivated by: 1) new soft-
ware architectural patterns such asmicroservices that allow building
applications from a collection of loosely coupled and fine-grained
services; 2) cloud commodity hardware that allows for a more con-
crete and homogeneous set of platform-level metrics; and 3) the
fact that application KPIs are directly related to the usage of un-
derlying platform resources (physical or virtual), and finding this
relation is a realistic machine learning task. In our proof-of-concept,
monitorless relies on a binary classifier that works with a large set
of features derived from combinations of platform-level metrics.
The classifier is trained with data obtained during the execution
of typical microservices, widely used by application developers
(e.g., databases, load balancers, messaging, etc.), monitored as they
experience resource saturation as well as in normal operation.

This paper introduces themonitorless framework and shows that
one resource saturation model allows for detecting performance
degradation of several complex applications, even when such appli-
cations are unknown to the trained model. We note this represents
a significant divergence between monitorless and other solutions
based on KPIs as we propose a generic approach with a single
resource saturation model working for a heterogeneous set of dif-
ferent applications. Moreover, monitorless can be used as a building
block that enables black-box services and applications deployed on
a cloud platform to be autonomously managed. In particular, since
our framework can be used to detect performance degradation in
a service-agnostic way based on generic platform-level metrics, it
can be used as a basis for autoscaling and consolidation decisions,
as well as performance bottleneck analysis. Thus, we posit that
in many cases monitorless can eliminate the need for (i) dedicated
tests to analyze performance behavior and, (ii) specialized online
service-level monitoring of KPIs.

In summary, the key paper contributions are the following:

• Amethodology for creating the appropriate feature set for the ro-
bust operation of cloud environments driven by generic platform
data. Features are selected according to the USE (Utilization, Sat-
uration, Error) method [32] and extracted with the Performance
Co-Pilot [10] tool.
• A pipelined architecture for model training and validation, as
well as the components required to infer performance degrada-
tion without monitoring application KPIs, and to integrate the
monitorless model into the cloud orchestrator.

The rest of the paper is organized as follows. Section 2 presents
an overview of the monitorless architecture and design, whereas
Section 3 elaborates on the feature selection and methodology used
to create a robust machine learning model. Results are presented in

Node

Service A

Service E Service D

Infer Application
Performance

Predict Service
Saturation

Orchestrator

Monitors

Predict Service
Saturation

Node

Service B
Monitors

Service A Service C

Reports

Monitoring Agent

Monitoring Agent

Figure 1. Overview of the monitorless components on a two-nodes
platformwith three applications composed of several microservices.

Section 4.We discuss the limitations ofmonitorless, and the research
needed to address them, in Section 5. In Section 6 we provide a
taxonomy of related work and, finally, we conclude in Section 7.

2 Monitorless Design
Figure 1 illustrates the components ofmonitorless in a simple deploy-
ment with two physical nodes running three applications (indicated
with different colors), each composed of one or many instances
of different microservices. Monitorless introduces two key compo-
nents: a monitoring agent deployed on each cloud node, and the
orchestrator function serving as a centralized repository for data
collection and training. Both components can be integrated into an
existing cloud environment to augment its functionality.

The monitoring agents run on each physical host to collect a set
of predefined platform metrics, using standard monitoring tools.
Examples of these metrics include CPU usage, RAM usage, and
throughput of I/O-devices; all of them are measured at operating
system level and include hypervisor information, e.g., namespace
and cgroups interfaces for Linux containers. The orchestrator peri-
odically receives metrics from the agents. First, the data collected
is used to make performance prediction at each container to detect
resource saturation; see section 3 for more details on the prediction
model. Second, the orchestrator infers the overall application per-
formance from the predictions at individual containers composing
the application. Third, based on the inference, the orchestrator can
decide to adapt the current deployment by migrating or scaling
applications automatically as a remediation for performance prob-
lems. The orchestrator operates online, repeating the steps above
at regular intervals.

Next, we describe the nomenclature used throughout the paper
(§2.1), themethodology proposed for detecting saturation (§2.2), and

150

Monitorless: Predicting Performance Degradation Middleware ’19, December 8–13, 2019, Davis, CA, USA

a formal definition of the machine learning problem monitorless is
designed to solve (§2.3).

2.1 Nomenclature and definitions
A cloud is a set of connected nodes C = {c1, . . . , c |C |} in which
multiple applications are executed, and where each node c ∈ C
is a computing entity able to host service instances in a virtual-
ized environment (as VMs or Linux containers). An application
A = {S1, . . . ,S |A |} is composed of interconnected services run-
ning in the cloud, where each service S = {I1, . . . ,I|S |} consists
of one or more service instances. These service instances are func-
tionally identical but can differ in terms of which node they are
assigned to, the resources at that node, and the workload sent to
the instance. Thus, each service instance I is assigned to run inside
its own virtual environment on exactly one node c of the cloud
environment.

At each point in time t , the monitoring agents collect a set of kH
host metrics,Hc,t , as well as a set of kV virtual metrics,VI,t , for
each service instance I running on node c . Moreover, at each point
in time t , it is possible to observe a Key Performance Indicator (KPI)
value PA (t), which represents the performance of application A
at time t . Each service instance I is associated with one set of host
metrics Hc,t ∈ R

kH as well as one set of virtual metrics VI,t ∈
RkV for a given time t (of course assuming that I was running at
time t). We denote the vector representing the concatenation of
metricsHc,t andVI,t , asMI,t .

2.2 Labeling resource saturation
We consider service instances (i.e., microservices composing the
application) to be either saturated or non-saturated at a given time,
and define the saturation state of an applicationA at time t accord-
ing to its PA (t). We use application KPIs only for labeling data to
train our models – note, though, that such KPIs are not required for
using the resulting model. Depending on the application, examples
of KPIs can be: response time or throughput of a web service, jitter
in a video streaming application, or availability indicators in com-
munication systems. In the following, we present a methodology for
labeling throughput. However, this step can be analogously applied
to similar KPIs; for other more sophisticated KPIs, manual modeling
might be necessary. Note that this labeling is only required during
training of different applications and implies the abstraction from
the KPIs of the used application. Therefore, this abstraction of dif-
ferent KPIs enables monitorless to act application-agnostically. The
actual training is done using labeled (and therefore KPI-indepedent)
historical data from a set of selected representative applications
without assuming that the target application is also used for train-
ing. Although for common use-cases (e.g., autoscaling) a binary
classification is enough, note that one can also apply more complex
state descriptions based on multiple classes.

In practice, finding resource saturation is difficult as metrics can
have non-deterministic or noisy behavior – see observed throughput
(blue dots) in Figure 2 – or important points in the dataset can be
missing or not sampled frequently enough. Usually, an application
serving increasing workloads will show a proportional increase
in throughput until a saturation point is reached, from which a
non-linear behavior is expected – see the elbow/knee around 700
requests/sec in the smoothed curve (orange line) of Figure 2. This be-
havior can be correlated to other KPIs; for example, the response time

0 500 1000 1500 2000 2500
Workload Intensity (R/s)

0

1000

T
hr

ou
gh

pu
t

(R
/s

)

Throughput

Figure 2. Observed throughput (blue), smoothed curve (orange)
and differences βi − αi (green) of an example run.

would rapidly increase when the throughput reaches the non-linear
region; or there would be an increase in the number of dropped
requests.

To label the dataset properly, it is critical to ensure that the non-
linear behavior of KPIs is due to resource saturation when detecting
elbows or knees in KPIs. Although there is no mathematically
unique “elbow” in an exponential curve, we use Satopaa’s et al. [59]
definition based on curvature and employ their Kneedle approach
to find it.

Therefore, to create training and test data, we linearly increase
the workload of a given target application A. While applying the
workload, we monitor the KPI PA (t). Relating this KPI to the
workload intensity for time step i defines a discrete function f
with f (αi) = βi , where αi is the workload intensity and βi the
corresponding KPI. Our implementation of Kneedle for the purpose
of labeling the training and test data is outlined below:
1. Smooth f by applying a Savitzky-Golay filter [60] (see orange

curve in Figure 2), or any similar filter.
2. We normalize the points of f to the unit square by setting:

αi ← (αi −minj {α j })/(maxj {α j } −minj {α j }), and βi ← (βi −
minj {βj })/(maxj {βj } −minj {βj }).

3. We calculate the differences between βi and αi by setting: βi ←
βi − αi . This yields the green curve in Figure 2.

4. The set of candidate saturation points are local maxima of this
curve defined by the differences above, and we manually choose
the local maximum (such as in Figure 2), defining the correspond-
ing βi as our threshold ϒ.
Hence, we obtain a function P̃A : R→ {0, 1}, with

P̃A (t) =

{
0 if PA (t) ≤ ϒ (no saturation)
1 otherwise (saturation)

The function f above is assumed to have positive concavity.
If the opposite is true, the same technique can be applied by set-
ting βi ← maxj (βj) − βi and αi ← maxj (α j) − αi . We note that
Savitzky-Golay filters have tunable parameters that should be ad-
justed depending on input data. However, its purpose is to provide
a smoothed curve from which we can identify a knee or elbow
in a reproducible manner, as we are applying machine learning
algorithms to the function f . Thus, the procedure above need not
be fully automated for arbitrary input data, and, indeed, we recom-
mend that f is visually inspected as a sanity check.

2.3 A machine learning problem
The training dataset T is built from multiple instances running
various services on different deployments and serving diverse work-
loads to increase themodel robustness.We define themachine learn-
ing problem as follows.T is partitioned inmany subsetsTI for each

151

Middleware ’19, December 8–13, 2019, Davis, CA, USA Grohmann et al.

instanceI fromwhichwe generated labeled data. EachTI is a set of
pairs TI,t = {(MI,t , P̃A,t)}. The vectorMI,t represents the sys-
tem state of service instance I at time t , andHc,t ⊂ MI,t are the
platform metrics obtained from each host. Instead,VI,t ⊂ MI,t
are metrics specific to the service running in the instance I. In case
of a Linux container, this could be the CPU-time relative to the
allocated maximum. Thus, multiple containers running on machine
c at time t share the same feature values forHc,t but have different
values forVI,t . Note that this architecture enables the model to
handle any variable number of service instances on different hosts.

Then, solving the machine learning problem consists of: i) pro-
cessingMI,t first to extract feature vectors xI,t and ii) training a
binary classifier mapping xI,t to yI,t = P̃A,t .

3 Modeling Process
This section provides implementation details of the prototyped
monitorless binary classifier.

3.1 Metric collection
The USE method [32] allows for detecting performance bottlenecks
by examining the Utilization, Saturation and the Errors of each
relevant platform resource. We include as much of the USE met-
rics as possible to detect resource bottlenecks without incurring
monitoring overhead.

For collecting such metrics, we use the Performance Co-Pilot
(PCP) monitoring tool [10], which provides a wide set of platform
metrics, while being lightweight. PCP gathers usage and saturation
indicators of CPUs (incl. vCPUs), memory, network and storage
devices, controllers and buses, as well as interrupts and network
errors. As a preprocessing step, metrics reporting counters must
be converted into rates, and utilization metrics to a relative scale
(i.e., percentage value). These steps are necessary to avoid overfit-
ting our model to a particular hardware configuration, or system
state (see Section 3.3 for more details). Measurements are produced
every second, a default interval of PCP [10] and the Docker stats
command [15]. This is a reasonable sampling time as it enables the
algorithms to react quickly and start/stop Linux containers that
usually instantiate in a few seconds.

3.2 Training data
The idea of the monitorless model is to classify service performance
without any prior knowledge. For this purpose, it is necessary to
create training data using services with different resource utiliza-
tion patterns, performance demands, diverse usage of resource (e.g.,
CPU-bound) and intensity of traffic. In this work, we created train-
ing data using a small set of services widely used by application
developers and discuss how to extend it in section 5.

3.2.1 Services and applications used for training
We used three different applications for training: Solr [48], Mem-
cache [39], and Cassandra [21]. We selected these applications for
two reasons: i) they are representative services in Cloudsuite [53],
and; ii) they show different resource usage profiles and therefore
different resource bottlenecks. To improve the reproducibility of
our results, we used the Cloudsuite benchmarking tools to run
these services [20, 53].

Apache Solr is an enterprise search platform. We use an index
size of 12GB of content crawled from the Internet that comes with

Cloudsuite, and the HTTPLoadGenerator [66] to generate HTTP
varying workloads as specified by LIMBO [68]. The individual
response times and failed request rates are logged every second to
label the training data.

During the load generation, clients send search requests with a
range between one and five terms. Each term is randomly selected
from the top 10,000 most frequent words in the index. The server
outputs a list of the top-10 relevant documents according to these
terms. Our hardware configuration allows the index to fit into
main memory, thus eliminating page faults and minimizing disk
activity [40]. With this configuration, the benchmark is mostly
CPU-bound. In addition, however, we also conduct experiments
with different configurations in which the container resources were
limited in the server to alter such CPU-bound behavior.

Memcache is a distributed memory object system, usually used
to alleviate database loads via caching. Again, we used the load
generator provided by Cloudsuite that uses a 10GB Twitter dataset
to populate the cache. It then applies a constant target throughput
with a configurable get/set rate parameter. Memcache is configured
to be memory-bound. Thus, in our setup, we constrained CPU
resources in the containers just for one dataset, and changed the
memory configuration to either 8GB, 4GB, or unlimited.

Apache Cassandra is a large-scale NoSQL database system. We
generate database workloads with the Yahoo! Cloud Serving Bench-
mark (YCSB) [13]. The database is populatedwith 30million records,
consuming about 30GB (plus additional indexing and log files). Sev-
eral constant target loads are applied by changing the number of
client threads and/or the required target throughput. As Cassandra
stresses several resources, we can tune it to be either CPU or disk-
bound. One setting with 20 cores and 30GB RAM limit creates an
I/O bottleneck, while a setting with 6 cores and unlimited memory
creates a CPU-bottleneck.

3.2.2 Generated datasets
Each application is monitored under different workloads and re-
source constraints. They run both in isolation, as the only instance
running on the host, as well as in combination with other instances.
The purpose of the latter is to create a model robust to interference
caused by resource sharing in the physical host. Table 1 lists all the
configurations used for training. All experiments were conducted
on HP ProLiant DL380 Gen9 servers provisioned with a 48 Core
Intel® Xeon® CPU E5-2680 v3 @ 2.50GHz processor and 125G of
memory, connected by a 10Gbps switch and running CentOS 7.3.
with Docker 17.06.1-ce and PCP 3.12.1.

The master orchestrator collects throughput, response times,
and platform metrics generated throughout the execution of the
specified workloads. An additional experiment with linear increas-
ing load is conducted in order to determine the threshold value ϒ,
defined in Section 2.2. After acquiring this threshold, the labeling
(saturated or not saturated) of samples is performed as described
in Section 2.3.

If a test runs in parallel with other tests to create interference, we
indicate this in the Par column, e.g., Solr (test 3) was run in parallel
with Cassandra (test 18). For Memcache, we show the minimum and
maximum request rate used. Cassandra workloads can be divided
into four different classes: A, B, D, and F. These correspond to
core workloads available in YCSB. A is an update-heavy workload
(Read/Write: 0.5/0.5), B is read-heavy (Read/Write: 0.95/0.05), D is
constantly inserting records and reading the most recent, and F

152

Monitorless: Predicting Performance Degradation Middleware ’19, December 8–13, 2019, Davis, CA, USA

Table 1. List of datasets for the benchmarked services, CPU and
Memory limits (CPU/MEM, a dash "–" indicates no container limita-
tion), whether they ran in parallel (Par), the traffic pattern (Traffic)
and the resource bottleneck.

Service CPU, MEM Par Traffic Bottleneck

1 Solr 3/– – sin1000 Container-CPU
2 Solr –/– – sin1000 Host-CPU
3 Solr –/8 GB 18 sinnoise1000 IO-Bandwidth
4 Solr –/8 GB 19 sinnoise1000 IO-Bandwidth
5 Solr 3/8 GB 20 sinnoise1000 IO-Bandwidth
6 Solr 1.5/8 GB 22 sinnoise1000 Container-CPU
7 Memc. –/– – 2K-50K R/s Mem-Bandwidth
8 Memc. 1/– – 20K-85K R/s Container-CPU
9 Memc. –/8 GB – 39K-45K R/s IO-Queue
10 Memc. –/4 GB 23 10K-65K R/s IO-Queue
11 Cass. –/– – A: 30K-100K R/s Network-Util.
12 Cass. –/– – B: 20K-70K R/s Host-CPU
13 Cass. –/– – D: 40K-90K R/s Network-Util.
14 Cass. 20/30 GB – A: 300-1200 R/s IO-Bandwidth
15 Cass. 20/30 GB – B: 100-900 R/s IO-Bandwidth
16 Cass. 20/30 GB – B: 700 -1000 R/s IO-Bandwidth
17 Cass. 20/30 GB – B: 100-1000 R/s IO-Bandwidth
18 Cass. 6/– 3 A: 15K-25K R/s Container-CPU
19 Cass. 6/– 4 B: 10K-15K R/s Container-CPU
20 Cass. 6/– 5 D: 10K-25K R/s Container-CPU
21 Cass. 6/– – A: 5K-20K R/s Container-CPU
22 Cass. 6/– 6 B: 5K-20K R/s Container-CPU
23 Cass. 6/– 10 B: 10K R/s Container-CPU
24 Cass. 1/– – F: 200 R/s IO-Wait
25 Cass. 1/– – F: 20 R/s IO-Wait

reads a record, modifies it and then writes it. For Solr, we have two
workload curves generated by LIMBO. The first (sin1000) is a simple
sine function with a minimum request rate of 1 and a maximum
request rate of 1000 requests per second. The second (sinnoise1000)
has the same base structure but was massively modified by adding
random noise to increase variability. For the sake of simplicity,
we describe the used workload patterns in a very concise matter.
However, we configured the different runs such that the training
sets capture as many different contention scenario as possible.

Furthermore, we give an indication of the limiting factors and
critical metrics in each dataset. If two datasets run in parallel, the
goal is to learn also the isolation effects, i.e., how resource sharing
impact multiple running applications.

3.2.3 Iterative improvement of the training set
We repeated the tests outlined in Table 1 multiple times, iterating
over the various stack configurations, to improve the datasets with
more representative use cases stressing most of the resources in the
platform. As a result, we devised the following structure to create
a robust and accurate model.
1. Normalize our training data and save the normalizing instance –

We use the MinMaxScaler in Scikit-Learn [56].
2. Use the normalizing instance to analyze with a validation dataset.

This is done by scaling the validation set with the known scaler
instance. If any feature has its maximum or its minimum outside
the scaling range of the trained scaler, we know that this feature
was not sufficiently trained.

3. Analyze the features not covered by the training set and decide
if they are critical for the model performance.

4. Design additional training cases in order to include other feature
values in the training set and perform the additional measure-
ments.

5. Add the training set to the others and repeat from step 1 in order
to validate that the training has now improved.

3.3 Feature selection and optimization
We collect 1040 platform metrics using the PCP monitoring tool as
described in Section 3.1. 952 of these platform metrics consider the
host, 88 are specific to service instances (i.e., containers) running
on the host. As expected, not all the metrics are relevant for the
machine learning model and in many cases metric preprocessing
is required such that they can be useful or leveraged by the algo-
rithm. Next, we describe the preprocessing performed on these raw
metrics.

3.3.1 Binary features
CPU and memory utilization are important indicators of saturation;
thus, in order to improve the accuracy of the model, we introduce
three additional boolean-valued (i.e., hot-encoded) features for both
of these metrics. Namely: LOW indicates whether utilization is un-
der 50%; MED indicates whether utilization is in the 50-80% range;
and HIGH indicates whether it is above 80%. For CPU utilization,
we also introduced two other boolean features called VERYHIGH, in-
dicating utilization above 90%, and EXTREME indicating utilization
above 95%. These new metrics are inserted both for the host and for
the container-specific metrics resulting in a total of 16 additional
binary features.

3.3.2 Scaling
All metrics having units in byte-values like KB or MB, and which
are not convertible to a relative scale, e.g., the number of bytes read
by an I/O-device where the maximum capacity is not known, are
transformed to a logarithmic scale. The goal of this transformation
is to improve accuracy by emphasizing the magnitude rather than a
specific value and thus reduce hardware dependency. Nevertheless,
these metrics are still prone to overfit to a specific hardware con-
figuration as they are not on a normalized, and therefore portable,
scale and need to be handled carefully.

3.3.3 Normalization
As the maximum values of some features are undefined, we opt
to artificially limit the possible values to a range. We used the
StandardScaler function of SciKit to transform feature values such
that their distribution has amean value of 0 and a standard deviation
of 1. Hence, each monitored value would have the sample mean
value subtracted and then divided by the standard deviation of all
existing samples.

3.3.4 Filtering with random forest or PCA
We use the random forest algorithm [6] to filter the most relevant
metrics, as it allows for a simple computation of the information
gain of each feature and ranks them by importance. We trained the
random forest on each of the datasets shown in Table 1 and took
the union of the top 30 most important features of each dataset –
below the top 30, the algorithm assigns features a weight lower
than 1/#Features . This union set consists of 117 unique features.

We make three observations about this filtering step. The first is
that the filtering does not decrease the cross-validation accuracy,
which implies that resource saturation is detectable by looking
at a small set of platform metrics; this finding is consistent with
related work [11]. Second, while there is overlap between most

153

Middleware ’19, December 8–13, 2019, Davis, CA, USA Grohmann et al.

top-30 feature lists (e.g., CPU utilization), there are also metrics
that are specific to one dataset, which encourages the inclusion
of many different training applications to stress different platform
resources in the future. Third, the binary features for memory were
filtered out whereas the binary features for CPU were selected as
highly important. The reasons for this can be: (i) the training set
has not enough memory saturation samples, (ii) the binary labels
are not actually required for training because memory problems are
likely to be preceded by other symptoms (e.g., disk usage because of
page thrashing), or (iii) the binary labels are not required because
memory measurements are more insightful with the real values
(i.e., non-binary).

An alternative method for feature selection is the Principle Com-
ponent Analysis (PCA) [55], which provides a linear transformation
to obtain orthogonal features. PCA can reduce the number of fea-
tures in very large platforms. The side effect is that the transformed
features no longer correspond to physical magnitudes, whichmakes
it difficult to fully interpret the resulting model. Using the Scikit-
learn implementation of PCA, we reduced the number of features
to 50, which accounts for 99.99% of variability in the data.

3.3.5 Time-dependent features
Metrics are collected for a fixed time window of one second. How-
ever, time-dependent features can give some insights and reflect
certain dynamics of performance, e.g., having a low CPU-utilization
during the past 15 seconds and a peak at the present time might
not actually imply that the resource is saturated. On the contrary,
if CPU-utilization is high for the last 15 seconds, then the platform
is more likely to be experiencing resource saturation.

Based on this intuition, we create theX -AVG andX -LAG variants
of each metric.X -AVG takes the average over the lastX +1 samples
(seconds) including the current one, while X -LAG contains the
value of the metric X samples ago. This helps to include context
in an otherwise isolated one-second snapshot of the platform. We
include X -AVG and X -LAG for each metric with values X = 1, 5, 15.
A window of 15 seconds proved to be sufficient in our experiments
regarding the applications we considered.

3.3.6 Combining features
It is a common practice in data science to create new features by
multiplying existing features, as this often improves the models
significantly by revealing relationships that are not visible by just
analyzing linear combinations of the features separately. In our case,
we multiply all pairs of features from different domains (e.g., CPU
and memory), but in order to prevent an explosion of the size of
the feature set, we omit all time-dependent features from this step.
This refinement turned out to be crucial to capture performance
problems across features, i.e., detectable by observing combination
of metrics (cf. section 3.5 for more details).

3.3.7 Pipeline optimization
To guarantee the right order and configuration, as well as to stream-
line the execution of the aforementioned steps, we have imple-
mented a pipeline. The pipeline has five steps:

1. Create binary features and scale required features.
2. Normalize the features.
3. Apply a first reduction step (either filtering or PCA).
4. Create new time-dependent and multiplicative features.

5. Apply a second reduction step (either filtering or PCA).
6. Remove features with 0 variance (provide no information).

We perform a grid search on steps 2 to 5 in order to find the best
combination of features. Steps 3 and 5 can either do filtering, PCA,
or none of them, while steps 2 and 4 can perform optional normal-
ization and feature addition.

The grid search is performed with the training set described in
Section 3.4, applying the same cross-validation scheme. We again
use a random forest algorithm with default parameters as a predic-
tion algorithm to evaluate the individual feature engineering steps.
We do not include the combination of not applying a first feature
selection in Step 3 and then adding the multiplicative features in
Step 4, since this is practically unfeasible due to an exponential
increase of the resulting features.

3.4 Training the monitorless model
Combining all datasets from Section 3.2 and the features described
in Section 3.3, we get a total training set of 63086 samples with 4492
features each. The portion of saturated examples in the training set
is 26%.

For algorithm training, we choose to compare six different clas-
sifiers: (1) binary logistic regression [14] based on SAG [61], (2)
Support Vector Classification (SVC) based on LIBLINEAR [19], (3)
AdaBoost [25] with decision trees [7], (4) XGBoost [8], (5) a three-
layer, fully connected, sequential neural network [9], and (6) ran-
dom forest [6]. Note that we use a linear kernel for SVC as any other
kernel function increased the algorithm training time significantly.

We use the Python implementations of XGBoost [12], Keras [9]
with a TensorFlow backend [1] for the neural network, and Scikit-
learn for all other algorithms. We perform a 5-fold cross-validation
with a grid search to select the hyper-parameters of each algorithm.
The 5-fold cross-validation partitions the training sets from Table 1
using 20 sets for training and 5 sets for validation in the fold. By
partitioning the training sets in this way, rather than using the
union of all training sets, we aim to avoid overfitting. Table 2 lists
the parameters considered during the hyper-parameter grid search,
with underlined parameters as the chose ones for all considered
algorithms. The naming of the parameters follows the convention
of Scikit-Learn.

Table 3 lists the training times, the per-sample classification time,
and the F12 score of our first validation set – see Section 4.1 for
scoring metric definitions. Note that the training and classification
time excludes the feature extraction described in the previous sec-
tion, since that takes the same time for all algorithms and only
accounts for ∼ 28ms per prediction on average.

We observe that random forest outperforms all other approaches
with an F1 score of 0.99. There is a clear tradeoff between training
and prediction time, on the one hand, and prediction accuracy, on
the other hand. However, even for the slowest algorithm (random
forest), the prediction time was still only 40ms per prediction on
average. This is sufficiently fast to make such predictions online in
production. Interestingly, we found that Logistic Regression, Neural
Net, and AdaBoost only predict the majority label and, hence, a
classifier that predicts “saturated” for all samples would receive
the same score. While SVC does make some correct predictions, it
does poorly overall and achieves an even lower score than simply
predicting the majority label. The high F1-score of 0.997 can be

154

Monitorless: Predicting Performance Degradation Middleware ’19, December 8–13, 2019, Davis, CA, USA

Table 2. Examined parameter space by the grid search for each
applied algorithm.

Algorithm Parameters Values

Log. Regression
C 0.01, 0.1,1
tol 0.1,0.01,0.001,0.0001
class_weight balanced, None

SVC

C 0.1,1,10
tol 0.01,0.0001, 0.00001
penalty l1, l2
class_weight balanced, None

AdaBoost

n_estimators 50,250,500
algorithm SAMME, SAMME.R
DT_criterion gini, entropy
DT_splitter random, best
DT_min_samples_split 5,10,20

XGBoost
min_child_weight 1,4,16,64
max_depth 1,4,16,64
gamma 0,1,4,16

NN
activation_function1 softmax, relu, sigmoid, linear
activation_function2 softmax, relu, sigmoid, linear
activation_function3 softmax, relu, sigmoid, linear

Random Forest

n_estimators 250,500,1000
min_samples_leaf 5,10,20,30
min_samples_split 5,10,20,30
criterion gini, entropy
class_weight balanced, subsample, None

Table 3. Performance of the applied algorithms.

Algorithm Training Time Class. Time F12
SVC 837.8 s 0.2 ms 0.579
Logistic Regression 3.1 s 0.2 ms 0.858
AdaBoost 250.7 s 0.4 ms 0.858
Neural Net 76154.9 s 4.1 ms 0.858
XGBoost 5140.3 s 6.3 ms 0.944
Random Forest 68.3 s 40.6 ms 0.997

attributed to the amount of training samples including many clearly
saturated or non-saturated examples.

Based on these results, we select the model created by random
forest for the evaluation of monitorless in the next section. The
hyper-parameter tuning of random forest resulted in 250 trees,
trained with 20 samples in a leaf node using the information gain as
splitting criterion and applying no weights to the different classes.

3.5 Model behavior compared to expert decisions
Here we analyze the trained model with focus on the filtered fea-
tures to provide insights from a system perspective and compare
the outcome to expert-made decisions. For this, we use the feature
importances as given by the trained random forest model. Table 4
shows the 30 most important features, based on the trained random
forest model.

First, we can observe that the combination of features is a non-
trivial step as almost all used features are multiplications of two
original metrics. Most of them are the multiplication of CPU-level
metrics with a metric of another resource, e.g., CPU-HIGH multi-
plied with various network or memory related features. Different
metrics like memory utilization are also included, but with a lower
ranking and are therefore not contained in the table. Intuitively, this
means that service saturation is captured analyzing more than one
resource type at the same time. Additionally, lagged and average
features are occasionally used. In fact, raw (un-engineered) metrics

Table 4. Top 30 features sorted by importances assigned by ran-
dom forest. The ×-symbol denotes a multiplication of two features.
The features S-MEM-U, C-CPU-MEDIUM, C-CPU-HIGH, C-CPU-
VERYHIGH are derived relative utilizations, the suffix HIGH and
VERYHIGH are binary features, an AVG-k or LAGGED-k denotes
that the feature was averaged or lagged by k seconds. All other
parameters follow the nomenclature of the monitoring tool (PCP).

Feature name

network.tcp.currestab × C-CPU-HIGH
hinv.ninterface × C-CPU-VERYHIGH
kernel.all.pswitch-AVG14
mem.vmstat.nr_inactive_anon × C-CPU-VERYHIGH
network.tcp.currestab × C-CPU-VERYHIGH
network.tcpconn.established × C-CPU-HIGH
C-CPU-HIGH
network.sockstat.tcp.inuse × C-CPU-VERYHIGH-AVG14
C-CPU-VERYHIGH × C-CPU-VERYHIGH
network.sockstat.tcp.inuse × C-CPU-VERYHIGH
cgroup.cpusched.periods × C-CPU-HIGH
C-CPU-VERYHIGH
C-CPU-SUPERHIGH-AVG14
C-CPU-HIGH-AVG4
mem.vmstat.nr_kernel_stack × C-CPU-VERYHIGH
cgroup.cpusched.throttled × C-CPU-VERYHIGH
kernel.all.nprocs × C-CPU-HIGH
hinv.ninterface × C-CPU-MEDIUM
C-CPU-SUPERHIGH-LAGGED15
S-MEM-U-mapped × C-CPU-VERYHIGH
C-MEM-U-usage × C-CPU-HIGH
cgroup.cpusched.throttled × C-CPU-HIGH
C-CPU-VERYHIGH-AVG4
C-CPU-HIGH × C-CPU-VERYHIGH
vfs.inodes.free × C-CPU-VERYHIGH
mem.vmstat.pgpgin × C-CPU-HIGH
mem.vmstat.nr_inactive_file × C-CPU-VERYHIGH
vfs.inodes.free × C-CPU-HIGH
disk.all.aveq-AVG4
S-MEM-U-active_file × C-CPU-VERYHIGH

are rather low-rated and are used seldomly. However, the chosen
features heavily depend on the CPU-utilizations (in various levels),
the number of network connections, the disk queue, the memory
utilization, the number of throttled cgroup periods, etc, all of which
intuitively make sense to a system engineer. Hence, we conclude
that the system itself does not behave very differently from any
human performance engineer with respect to the set of analyzed
metrics. Nonetheless, there are also some interesting combinations
chosen by the system which are surprising and not directly obvious.
Furthermore, it is impossible for any human to monitor all of the
considered metrics in parallel.

4 Evaluation
We evaluate monitorless with three applications that are not in-
cluded in the training phase: a three-tier web service [53] and two

155

Middleware ’19, December 8–13, 2019, Davis, CA, USA Grohmann et al.

microservice-based e-commerce applications, (i) TeaStore [67] com-
posed of seven microservices, and (ii) Sockshop [69] composed of
sixteen microservices.

To measure the accuracy of monitorless, it is necessary to de-
termine whether a predicted label is correct. The threshold for
determining saturation of the overall application is discovered by
running a linearly increasing load test, as described in Section 2.2,
which yields a set of ground truth labels yA,t = P̃A (t) for each
time t . Contrary to the training phase where only single-container
services were considered, here we apply monitorless to applica-
tions composed of multiple services. For scaling, our strategy to
decide whether the application is experiencing resource satura-
tion is to take the logical OR of the inferences over all instances
of services comprising the application. In other words, our pre-
diction vector is ŷA,t =

∨
I∈S,S∈A ŷI,t . While other use cases

might require different aggregations, OR should be sufficient for
scaling instances. Although application performance may not show
degradation when short saturation occurs in some components,
scaling saturated instances is desirable – even if it does not directly
influence the end-to-end latency.

Metrics We compare the prediction ŷA,t to the ground truth label
yA,t obtained by the threshold analysis P̃A (t), in order to evaluate
the performance of our algorithm. We use the following standard
metrics to assess accuracy:
• True Positives (TPs)/True Negatives (TNs) are correctly classified
saturated/non-saturated samples, respectively.
• False Positives (FPs)/False Negatives (FNs) are incorrectly classi-
fied non-saturated/saturated samples, respectively.
Therefore, the goal is to minimize FPs and FNs. Standard met-

rics to summarize this goal are accuracy, computed as (TP+TN)/
(TP+TN+FP+FN), and the Sørensen-Dice coefficient or F1 score,
computed as 2TP/ (2TP+FP+FN)). Typically, the costs associated
with each FP and FN are inherently asymmetric in practice, because
avoiding increasing latencies (FNs) could be more critical than
avoiding unnecessary scaling decisions (FPs) – or the other way
around. Our solution supports adaptation towards this asymmetry,
by manipulating the prediction threshold of our classifier towards
the direction of preference. In this work, we aim to minimize FNs
by being more conservative with our predictions. Therefore, we set
the prediction threshold of the random forest classifier to 0.4.

A critical issue discovered during the preliminary evaluation
is that many FPs/FNs and ground truth “saturated” samples are
close in time, but not precisely aligned, e.g., many FPs are followed
by an FN within one or two samples. The reason for this delay is
that saturated applications have increased response times. That
is, during peak periods, we observe response times of up to three
seconds. After three seconds a request is usually dropped by our
load generators. Since requests take longer to arrive back to the load
generator during these peak periods, a gap is introduced between
the recorded platform metrics and the ground-truth labels, which
are both monitored at a 1-second interval.

To fix this, we introduce lagged metrics. For a given lagged metric
FPk (to be read as false positives at distance k), a false positive
prediction is classified as such only if there are no ground truth
“saturated” occurrences within the next k samples. Analogously, for
FN k , a false negative for a ground-truth “saturated” sample occurs
only if the previous k samples are predicted as “not saturated”. That
is, if a false positive occurs at time t , and a ground-truth “saturated”

sample occurs in the time range [t + 1, t + k], then the sample
at time t is classified as a true negative TN k . If a false negative
occurs at time t , and a positive prediction occurs in the time range
[t − k, t − 1], then such samples are added to TPk .

This modification allows early “saturated” predictions to be trans-
ferred to later “saturated” ground-truth samples, thereby handling
the above-mentioned application latency issues. Importantly, the
symmetric case of a late prediction, i.e., after the saturation was al-
ready observed at the client, is still classified as incorrect under this
metric. Based on this definition and the fact that our peak response
times were limited to three seconds, we perform our evaluation
with k = 2 (note that k is specific to the applications we use in
this evaluation). Thus, in all subsequent discussions, we use the
F12-score and Acc2, which are defined analogously to the F1-score
and accuracy, but for the lagged metrics. This step is necessary for
coping with monitoring delays in the real system that cause predic-
tions to be misaligned with the ground truth. By doing so, we align
the predicted data with the observed data in order to appropriately
judge the behavior of the system.

Baseline comparisons As approaches from relatedwork (see Sec-
tion 6) follow a different paradigm, we compare monitorless against
four optimal baseline approaches based on static CPU and memory
thresholds. The first is CPU threshold, based on the relative CPU us-
age of each service instance. The second isMEM threshold, based on
the relative memory usage of each service instance. We also look at
a disjunctive CPU-OR-MEM and conjunctive CPU-AND-MEM com-
binations, where instances are predicted saturated if CPU or/and
MEM indicate saturation, respectively.We use CPU andmemory for
demonstration as they are sufficient for the evaluated applications,
but any other resource threshold can be used.

We note that the considered baseline approaches have an unfair
advantage over monitorless in that they are configured with knowl-
edge of the entire input data in advance, including ground-truth
labels. These ground-truth labels are then used to choose the opti-
mal threshold that maximizes the F1 score. The presented baselines
therefore represent the best possible outcome for threshold-based
approaches, given that the threshold would be optimally config-
ured. In practice, these thresholds are unrealistic to find, since the
need to be configured before deployment based on expertise and
understanding the relationship between application performance
and resource usage. This task is not needed by monitorless as it
works application agnostic. In addition to the four platform-metric
baselines, we use one application-specific baseline based on actual
KPI-measurements in Table 7 serving as upper bound.

4.1 Evaluation using a three-tier web application
The first validation application is based on the social networking
engine Elgg [23] included in Cloudsuite.

4.1.1 Setup of the three-tier web application
The hardware used was identical to that described in Section 3.2.2.
The application consists of three tiers, each deployed in their own
service instance: (1) the front-end Elgg web-server, (2) the Inn-
oDB database, and (3) Memcache to speed up the database-driven
application [50].

Given thatMemcache and a similar database are used for training
(see Section 3.2), we stressed the front-end tier by sending static
requests to access the web-server’s index page.

156

Monitorless: Predicting Performance Degradation Middleware ’19, December 8–13, 2019, Davis, CA, USA

Table 5. Comparison of the baseline approaches to monitorless
using a three-tier web-serving application.

Algorithm TN 2 FP2 FN 2 TP2 F12 Acc2
CPU (97%) 610 8 0 1838 0.999 0.997
MEM (43%) 544 74 14 1824 0.976 0.964
CPU-OR-MEM 538 80 0 1838 0.978 0.967
CPU-AND-MEM 616 2 14 1824 0.995 0.993
monitorless 607 11 0 1838 0.997 0.995

We deploy all service instances as containers using Docker on
one physical machine. The Elgg-container is assigned with one
CPU core and 4GB of memory. The PCP monitoring agent is run-
ning on this machine and sends metrics to a second orchestrator
machine. The workload is generated by a third machine running
HttpLoadGenerator [66]. The workload pattern is similar to sin-
noise1000 (see Table 1), but scaled down to 1/10 the intensity, as
the web server could handle fewer requests than Solr.

4.1.2 Results for the three-tier web application
Table 5 shows the results of all baseline approaches compared to our
model evaluated using the lagged metrics. We observe that the test
samples have a saturated/not-saturated ratio of about 75%, which
is the inverse of the one in the training phase for monitorless. This
indicates that the model is not biased towards the majority training
label. As the front-end component is heavily CPU-based, the CPU
detector can effectively flag saturation. Observe that monitorless is
very accurate, achieving no false negatives and only a few false
positives, even without being tuned for the application. However,
as both CPU and CPU-AND-MEM threshold-based approaches also
perform well, we provide next an evaluation with more complex
applications.

4.2 Evaluation of a multi-tenant, microservice-based
environment

In this section, we evaluate monitorless in a more realistic multi-
tenant scenario, where several microservice-based applications are
running in a distributed environment. We aim to show the accuracy
of our model, as well as its robustness to changes in the hardware
configuration and underlying operating system, e.g., the services
are running on a different operating system than the one used in
the training phase.

4.2.1 Setup of the multitenant environment
In contrast to the previous experiments, the hardware for this test
is composed of three different HP ProLiant DL360 Gen9 servers
equipped with 32 GB of RAM and a 10 core Intel® Xeon® CPU
E5-2650 v3 (Haswell) @ 2.30GHz (M1), a 12 core Intel® Xeon® CPU
E5-2650 v4 (Broadwell) @ 2.20GHz (M2) and, finally, an 8 core
Intel® Xeon® CPU E5-2640 v3 (Haswell) @ 2.60GHz (M3). M1 and
M2 run Debian 9, whereas M3 is running Ubuntu 16.04. We use
two similar servers as workload drivers (M4, M5). These servers are
connected to a 1Gb LAN; recall that we used a 10Gb network for
training. We distribute the following two test applications among
the three test machines M1, M2, and M3.

(1) TeaStore [67] is a novel open-source, online storefront appli-
cation designed for testing and benchmarking [34]. AWebUI service

replies to HTTP requests and creates a front-end user view sup-
plied with images by a second service called Image Provider. A third
service, Auth, handles data encryption and authentication, while
the fourth service, called Recommender, applies machine learning
algorithms to recommend certain products to specific users. A fifth
Data Persistence service is in charge of giving access to permanent
storage. There is also a Registry service to handle load-balancing
and communication between instances, and a seventh Database
service running MariaDB [24]) used by the persistence layer. All
containers are available as docker images [33].

(2) Sockshop [69] is a similar online storefront application but
larger than TeaStore. It consists of 14 different services: Edge-Router,
Front-end, Payment, Catalogue, Catalogue-DB, Carts, Carts-DB, User,
User-DB, Order, Order-DB, Shipping, Queue, and Queue-Master.

In order to represent a multi-tenant environment, we deployed
all TeaStore and Sockshop services on M1, M2, and M3 servers as
follows – entries marked with (T) are TeaStore services, all others
belong to Sockshop:

• M1: Catalogue, Catalogue-DB, Front-end, Queue,
Recommender (T), Auth (T), Registry (T).
• M2: Edge-Router, Carts, Carts-DB, Order, Order-DB, Payment,
Queue-Master, DB (T), Persistence (T).
• M3: User, User-DB, Shipping, Web-UI (T), and Image-
Provider (T).

All containers have amemory limit of 4GB. The Auth (T), Catalogue-
DB, Carts-DB, Order-DB, and User-DB have 2 CPU cores, all other
services are assigned 1 core.

Load generation for TeaStore. We stressed the TeaStore ap-
plication with the HttpLoadGenerator [66]. User actions, which
generate the content of requests, are defined using stateful user
profiles. Each time a request is sent, an idle user from a pool is
selected to execute a single action on the store. The user performs
that action and returns to the pool. The actions available to the
user are: 1) log in, 2) browse the store for products, 3) add these
products to the shopping cart, and 4) log out. The user’s distinct
actions stress the services in different ways. The number of users
is chosen depending on the maximum load intensity, such that
it guarantees that an idle user is available each time a request is
sent. The arrival rate profile represents a realistic, but worst-case
workload for clouds [62] with more variance and multiple daily
patterns within the experiment. It is depicted in Figure 3 (cf. right
axis). Note that the training is done on mostly smooth workloads;
we purposely choose this challenging workload in order to evaluate
the robustness of monitorless.

Load generation for Sockshop. The load is generated via Lo-
cust [44] using the standard user profile delivered by Sockshop [46].
Users log in, browse the catalog, add items to their cart, and then
place orders. The load intensity is controlled via the number of
concurrent users issuing requests to the system. Locust usually
applies a constant load, once all clients are hatched. In order to
apply varying load patterns, we start three different Locust runs in
parallel. Each run takes 1000 seconds and slowly hatches all clients
until a maximum load of 700 concurrent clients is reached after 700
seconds. A constant load pattern is then applied for the remaining
300 seconds before one run finishes. We start such runs after 1000,
3000, and 5000 seconds.

157

Middleware ’19, December 8–13, 2019, Davis, CA, USA Grohmann et al.

Table 6. Comparing different threshold-based approaches to moni-
torless with the TeaStore dataset.

Algorithm TN 2 FP2 FN 2 TP2 F12 Acc2
CPU (95%) 6805 179 7 202 0.685 0.974
MEM (90%) 228 6756 4 205 0.057 0.060
CPU-OR-MEM 180 6804 1 208 0.057 0.054
CPU-AND-MEM 6853 131 10 199 0.738 0.983
monitorless 6820 164 3 206 0.712 0.977

4.2.2 Results for the TeaStore application
Applications containers are dimensioned such that most of the tar-
get load can be handled; that is, only large load peaks cause the ap-
plication to saturate. This leads to a saturation/non-saturation ratio
of 2.9%, far lower than the training data. By analyzing the predic-
tions ofmonitorless, we note that mostTP2 are for the Auth service,
the Web-UI, and the Recommender service. Figure 3 displays a de-
tailed breakdown of the predictions made by monitorless over time,
showing also the injected workload and the measured response
times.

We observe thatmonitorless is able to detect saturation occurring
in the different types of services (Web-UI, Recommender, Auth, Reg-
istry and Persistence), each with their own bottlenecks. Note that
we cannot determine the distribution of FN2 among the individual
services as the KPI function PA is only observable at the appli-
cation level, and not at the service level. However, we verify that
the services that monitorless predicted to be saturated were indeed
saturated, by subsequently scaling the saturated components and
re-injecting the same load pattern. Thus, we repeat the same test
with additional instances (scaling) of theWeb-UI, the Recommender
and the Auth service on M2, since those were the three services
causing the most saturation predictions.

Table 6 shows the comparison between monitorless and the
baseline approaches for the run in Figure 3. Note that monitor-
less achieves an F12-score of 0.712 compared to the best baseline
approach with 0.738. Although the F12-score is lower than in the
previous examples, it still amounts to 0.977 with only 3 false nega-
tives. In contrast to the previous experiment, the CPU-AND-MEM
has the best score but at expenses of a higher FN 2 count, which
implies that it fails to detect crucial saturation samples.

To show this effect in more detail, we analyze the application
performance end-to-end for an autoscaling scenario. We start with
baseline deployment of each service and scale-out when saturation
is predicted (see Figure 3). All replicated services have a lifespan
of 120 seconds, after which scale-in occurs again in order to avoid
the issue of endless out-scaling. This is the same for all analyzed
approaches. Results are shown in Table 7, which reports the ad-
ditional container provisioning related to the baseline non-scaled
application (see second column), and the number of SLO violations
(see third column) incurred by each technique (see first column).
Using the approach in section 2.2, we indicate SLO violations when
the average response time of all requests is higher than 750 ms, or
if any request is dropped due to overload, or if more than 10% of
requests fail during each one-second interval.

Note that we add the baseline worst-case "No Scaling" for ref-
erence. This baseline has static resources over the execution and

Table 7. Comparing different approaches to monitorless scaling on
the TeaStore dataset. The average provisioning is calculated as the
percentage of containers elastically added to the baseline case (i.e.,
the non-scaled initial deployment).

Algorithm Provisioning (Ave) SLO viol. (#)

A-posteriori CPU (95%) +12% 12
A-posteriori MEM (90%) +33% 9
CPU-OR-MEM +39% 4
CPU-AND-MEM +9% 17
monitorless +10% 7
No Scaling (baseline) 0% 183
RT-based (optimal) +7% 1

allows to understand how the different techniques provision con-
tainers upon scaling out events. Intuitively, the number of SLO vio-
lations should decrease with a larger provisioning (i.e., the system
is more elastic); however a larger provisioning incurs a larger cost.
Similarly, we also include the optimal response-time auto-scaler,
which is based on postmortem end-to-end latency measurements.
As the optimal auto-scaler does not know which instance causes a
latency increase, we use our application knowledge to scale both
the Recommender and the Auth service when the latency increases.
For a fair comparison, all approaches are tied to scaling both Rec-
ommender and Auth at the same time, i.e., they scale both if one of
them is predicted saturated.

Results are inline with Table 6. The optimal approach is able
to reduce the SLO violations from 183 to 1 sample by using 7%
more resources. This is expected as the RT-based approach directly
observes the response time that is used as SLO. The remaining
violations are due to the natural reaction time of the approaches
and is therefore unavoidable.

We observe that monitorless manages to effectively reduce viola-
tions, while provisioning only 10% additional resources – consider
that the optimal approach provisions 7% in excess. The only ap-
proach that is ’cheaper’, in terms of resource provisioning, is the
CPU-AND-MEM approach. However, CPU-AND-MEM allows more
than twice as much SLO violations, while saving only 1% in com-
parison to monitorless, which is not a favorable trade-off. Both
CPU-OR-MEM scaler and the MEM-based scaler provision 3 to 4
times more containers than monitorless due to the higher number
of FPs2 as shown in Table 6. The CPU-based scaler makes a rea-
sonable trade-off between cost and SLO violations, but performs
considerably worse than monitorless in both dimensions.

Although there is room for improvement with monitorless, we
believe its performance on the TeaStore application is very impres-
sive considering that: 1) it has never been trained with any of the
TeaStore services; 2) it is running on slightly different hardware
and operating systems than what it was trained on, 3) it is not using
application metrics to make predictions; 4) it is operating in the
presence of interference from another application, and, finally; 5)
it achieves this performance with no knowledge of how the TeaSt-
ore behaves for this workload, unlike the threshold-based baseline
approaches. Furthermore, the experiment shows that monitorless
can detect bottlenecks on co-located services stressing different
resources. Scaling these services results in a significant reduction
of response time, where monitorless achieves results comparable to

158

Monitorless: Predicting Performance Degradation Middleware ’19, December 8–13, 2019, Davis, CA, USA

0

50

100

150

W
or

kl
oa

d
In

te
ns

it
y

(R
/s

)

0

1

2

3

4

5

R
es

p
on

se
T

im
e

(s
)

0 1000 2000 3000 4000 5000 6000 7000
Time (s)

Total Prediction

Registry

DB

Persistence

Auth

Recommender

Image-Provider

Web-UI

Figure 3. Predictions by service for the TeaStore over time. Green dots mark TP2, yellow dots mark FP2 and red dots are FN 2. TNs are not
shown since are the most common and easily predicted. The gray curve displays the workload intensity (in requests per second) over time.
The purple curve displays the measured average response time per second.

Table 8. Comparing different threshold-based approaches to moni-
torless using the Sockshop dataset.

Algorithm TN 2 FP2 FN 2 TP2 F12 Acc2
CPU (99%) 2036 657 3 301 0.447 0.780
MEM (10%) 683 2010 8 296 0.227 0.327
CPU-OR-MEM 595 2098 2 302 0.223 0.299
CPU-AND-MEM 2604 89 93 211 0.699 0.939
monitorless 2418 275 57 247 0.598 0.889

a simple autoscaler but without using any application knowledge.
Note that even though the baseline approaches use perfect informa-
tion, i.e., application-level metrics as ground-truth with a-posteriori
knowledge of the evaluation set, there is no approach in the evalu-
ation that outperforms monitorless in all scenarios. Moreover, the
optimally-tuned thresholds differ for each alternative approach,
whereas monitorless performs consistently across all experiments
without tuning.

4.2.3 Results for the Sockshop application
Compared to TeaStore, the performance of the larger and more
complex Sockshop application is more challenging to predict, es-
pecially with interference. The Sockshop runs are similar than
those of TeaStore but contain only 999 samples each, resulting in
a total of 2997 samples. The percentage of saturated samples is
10.1% (cf. Table 8). We observe that both the FP2 and the FN 2 rates
are higher than in the TeaStore experiment for monitorless. Over-
all, monitorless achieves an F12-score of 0.598 together with an
accuracy of 89%, only surpassed by the CPU-AND-MEM baseline,
with an F12-score of 0.699. However, note that the baseline ap-
proaches apply different thresholds than in the other experiments
(97%/43%, 95%/90%, 99%/10%). In contrast, the monitorless model
was unmodified through the evaluation. This illustrates that moni-
torless performs well on significantly more complex applications
without having to manually adapt it different application-level met-
rics.

As our aggregation function over services is the logical OR of
all predictions, this naturally creates more FPs as we increase the
number of services. Hence, in order to tackle larger applications,
this experiment motivates a more sophisticated approach for ag-
gregation.

5 Discussion
We have shown that monitorless is generic and feasible in practice
for predicting performance degradation. However, there are still
some limitations requiring further research. In this section, we
elaborate on how we plan to address them.

Generalize to broader set of services and platforms.We are
aware of the diversity of microservices and cloud platforms that
can generate mixed bottlenecks and more complex resource utiliza-
tion patterns. To further generalize monitorless while improving its
accuracy and robustness, we plan to incorporate datasets with differ-
ent resource saturation samples, together with different and noisy
workload patterns, applications with different resiliency, scaling
and load balancing setups, as well as executions on different hard-
ware platforms (e.g., GPUs and other accelerators). Additionally,
we plan to experiment with different and automatically generated
feature sets.

Refine the architecture. Our ongoing work is to improve the
network overhead for large scale systems. A possible approach is to
offload orchestrator functionality to the agents, e.g., the saturation
prediction in Step 1 (see section 2). This allows network traffic to
be reduced at the expense of higher CPU overhead in the agents
and less data available at the orchestrator, possibly preventing
elaborated decision-making.

Calibration. Monitorless may require additional calibration to
infer the performance of applications with resource usage patterns
significantly different from those in the training set. In machine
learning, this is referred to as domain adaptation [54]. We plan to
experiment with heuristics to best support domain adaptation, in
the case where there there is no labeled data in the target domain
(i.e., the new application) on which to calibrate the model.

Interpretability. A benefit of decision tree-based ensemble
models is the possibility of generating user-interpretable scaling
rules using monitorless. This may be in the interest of the applica-
tion developers to identify bottlenecks in their software and make
design decisions. We plan to experiment with depth-restricted deci-
sion trees or LIME [58] in order to simplify themodel understanding
in future work.

Using monitorless for autoscaling. We applied the predic-
tions of monitorless to auto-scaling policies in the evaluation for
demonstration purposes. Although, scaling down decisions are
less critical from a system perspective, it is possible to extend

159

Middleware ’19, December 8–13, 2019, Davis, CA, USA Grohmann et al.

our approach training an additional classifier for detecting over-
provisioned services and conservatively scale in to reduce costs.
This makes it possible to recommend the exact amount of service
instances required for any particular scenario.

6 Related Work
There are several approaches in both industry and academia for
augmenting cloud operation with machine learning. The following
taxonomy is based on the KPIs required by such approaches.

KPI-driven solutions. These approaches rely on application spe-
cific metrics. For example, Satopaa et al. [59] require KPIs to find
valid operating ranges without resource saturation. In many cases,
additional metrics are required, e.g., the workload type or inten-
sity [26–28, 64, 73], or an indication of SLA fulfillment [29]. Other
proposals [5, 45] need KPIs as input to machine learning models to
predict performance degradation. Instead, our proposal is to infer
KPI degradation without actually measuring it.

Black-box techniques. Other approaches treat applications as a
black-box and use either online (e.g., resource pressure models [49])
or offline analysis (e.g., bytecode benchmarking [41]) to infer per-
formance. Kundu et al. [42] use machine learning to create perfor-
mance models. Yet, these approaches only work for the specific soft-
ware running in the black-box and need to be (re)created for each
target application. Emeakaroha [16, 17] relies on manually created
mappings between low-level metrics and high-level SLAs. Wood
et al. [70] achieve bottleneck detection based on fixed threshold
rules build from a limited set of platform metrics. Similarly, com-
mercial [2, 30, 47] and open-source [22, 52] autoscaling solutions
rely only on platform metrics but require expertise to manually
combine the scaling triggers properly.

Automated andapplication-agnostic approaches. Other sophis-
ticated proposals apply machine learning to application-level met-
rics to predict performance. Hence, they do not need to measure
application KPIs at runtime. These proposals are applied, for exam-
ple, to a web-server for performance modeling during VM migra-
tions [36]; or to a video-streaming service for KPI prediction [71, 72];
or for training Bayesian networks to classify SLO compliance of
web-servers [11]. In contrast to monitorless, there is no evidence
on how generic these models are, and whether they can be used
autonomously across various applications and platforms.

Summarizing, approaches from literature are usually tuned to-
wards a specific application. This is done either by specifically
monitoring KPIs for that application or by analyzing, adapting
and/or training a specific use-case of that application. There is no
evidence that the trained model can be transferred to prior unseen
applications. In contrast, our work aims at predicting application
performance without measuring KPIs or any application-level met-
rics while creating one prediction model transferable to a large set
of different applications.

7 Conclusions
We have introduced monitorless, a method for inferring application
KPI degradation in cloud. The differentiating feature of monitorless
is that only platform-level metrics are required as input, instead
of application-specific metrics, allowing for accelerated software

on-boarding and feature releases. With this approach, operation en-
gineers can rely on a generic and stable set of metrics to streamline
testing without application expertise or handcrafted configurations.

To realize this idea, we use machine learning to correlate KPI
degradation to platform-level metrics and predict whether applica-
tions will exhibit performance bottlenecks. This information can be
used for fast resource provisioning and allocation asmonitorless can
detect such bottlenecks in a matter of seconds.

We trained monitorless using workloads produced by four differ-
ent benchmark services and evaluated its performance with three
unknown applications composed of three, seven, and fourteen ser-
vices, respectively. Even for complex micro-service applications,
operating in the presence of interference, the accuracy achieved by
our approach can be as high as 97%. This motivates the inclusion
of even more test services, with diverse resource boundaries, to
improve predictions and detect performance degradation across
multiple resources.

References
[1] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen,

Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, San-
jay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard,
Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg,
Dandelion Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike
Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul
Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals,
Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng.
2015. TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems.
https://www.tensorflow.org/ Software available from tensorflow.org.

[2] Amazon. 2018. Amazon Web-Services Auto Scaling. Retrieved September 5,
2019 from https://aws.amazon.com/autoscaling/

[3] Amazon. 2018. DevOps and AWS. Retrieved September 5, 2019 from https:
//aws.amazon.com/devops/

[4] Appcentrica. 2016. "Deathstar Diagrams". Retrieved September 5, 2019 from
"https://www.appcentrica.com/the-rise-of-microservices"

[5] Peter Bodík, Rean Griffith, Charles Sutton, Armando Fox, Michael Jordan, and
David Patterson. 2009. Statistical Machine Learning Makes Automatic Control
Practical for Internet Datacenters. In Proceedings of the 2009 Conference on Hot
Topics in Cloud Computing (HotCloud’09). USENIX Association, Berkeley, CA,
USA, Article 12, 5 pages. http://dl.acm.org/citation.cfm?id=1855533.1855545

[6] Leo Breiman. 2001. Random forests. Machine learning 45, 1 (2001), 5–32.
[7] Leo Breiman, Jerome Friedman, Charles J Stone, and Richard A Olshen. 1984.

Classification and regression trees. Routledge, New York, NY, USA.
[8] Tianqi Chen and Carlos Guestrin. 2016. XGBoost: A Scalable Tree Boosting

System. In Proceedings of the 22Nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (KDD ’16). ACM, New York, NY, USA,
785–794. https://doi.org/10.1145/2939672.2939785

[9] François Chollet et al. 2015. Keras. https://keras.io.
[10] Performance Co-Pilot. 2018. Performance Co-Pilot. Retrieved September 5, 2019

from http://pcp.io/
[11] Ira Cohen, Moises Goldszmidt, Terence Kelly, Julie Symons, and Jeffrey S. Chase.

2004. Correlating Instrumentation Data to System States: A Building Block
for Automated Diagnosis and Control. In Proceedings of the 6th Conference on
Symposium on Operating Systems Design & Implementation - Volume 6 (OSDI’04).
USENIX Association, Berkeley, CA, USA, 16–16. http://dl.acm.org/citation.cfm?
id=1251254.1251270

[12] Distributed (Deep) Machine Learning Community. 2018. Scalable, Portable and
Distributed Gradient Boosting (GBDT, GBRT or GBM) Library, for Python, R,
Java, Scala, C++ and more. Runs on single machine, Hadoop, Spark, Flink and
DataFlow. Retrieved September 5, 2019 from https://github.com/dmlc/xgboost

[13] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and Russell
Sears. 2010. Benchmarking Cloud Serving Systems with YCSB. In Proceedings of
the 1st ACM Symposium on Cloud Computing (SoCC ’10). ACM, New York, NY,
USA, 143–154. https://doi.org/10.1145/1807128.1807152

[14] David R Cox. 1958. The regression analysis of binary sequences. Journal of the
Royal Statistical Society: Series B (Methodological) 20, 2 (1958), 215–232.

[15] DZone.com. 2018. Monitoring Docker Containers - Docker Stats, cAdvisor,
Universal Control Plane. Retrieved September 5, 2019 from https://dzone.com/
articles/monitoring-docker-containers-docker-stats-cadvisor

[16] V. C. Emeakaroha, I. Brandic, M. Maurer, and S. Dustdar. 2010. Low level Metrics
to High level SLAs - LoM2HiS framework: Bridging the gap between moni-
tored metrics and SLA parameters in cloud environments. In 2010 International
Conference on High Performance Computing Simulation. IEEE Computer Society,

160

https://www.tensorflow.org/
https://aws.amazon.com/autoscaling/
https://aws.amazon.com/devops/
https://aws.amazon.com/devops/
"https://www.appcentrica.com/the-rise-of-microservices"
http://dl.acm.org/citation.cfm?id=1855533.1855545
https://doi.org/10.1145/2939672.2939785
https://keras.io
http://pcp.io/
http://dl.acm.org/citation.cfm?id=1251254.1251270
http://dl.acm.org/citation.cfm?id=1251254.1251270
https://github.com/dmlc/xgboost
https://doi.org/10.1145/1807128.1807152
https://dzone.com/articles/monitoring-docker-containers-docker-stats-cadvisor
https://dzone.com/articles/monitoring-docker-containers-docker-stats-cadvisor

Monitorless: Predicting Performance Degradation Middleware ’19, December 8–13, 2019, Davis, CA, USA

Washington, DC, USA, 48–54. https://doi.org/10.1109/HPCS.2010.5547150
[17] Vincent C Emeakaroha, Marco AS Netto, Rodrigo N Calheiros, Ivona Brandic,

Rajkumar Buyya, and César AF De Rose. 2012. Towards autonomic detection of
SLA violations in Cloud infrastructures. Future Generation Computer Systems 28,
7 (2012), 1017–1029.

[18] Uber Engineering. 2017. Observability at Uber Engineering: Past, Present, Fu-
ture. Retrieved September 5, 2019 from https://www.youtube.com/watch?v=
2JAnmzVwgP8

[19] Rong-En Fan, Kai-Wei Chang, Cho-Jui Hsieh, Xiang-Rui Wang, and Chih-Jen Lin.
2008. LIBLINEAR: A Library for Large Linear Classification. Journal of Machine
Learning Research 9 (2008), 1871–1874.

[20] Michael Ferdman, Almutaz Adileh, Onur Kocberber, Stavros Volos, Mohammad
Alisafaee, Djordje Jevdjic, Cansu Kaynak, Adrian Daniel Popescu, Anastasia
Ailamaki, and Babak Falsafi. 2012. Clearing the Clouds: A Study of Emerging
Scale-out Workloads on Modern Hardware. SIGPLAN Not. 47, 4 (March 2012),
37–48. https://doi.org/10.1145/2248487.2150982

[21] Apache Software Foundation. 2018. Apache Cassandra. Retrieved September 5,
2019 from http://cassandra.apache.org/

[22] Apache Software Foundation. 2018. Apache CloudStack: Open Source Cloud
Computing. Retrieved September 5, 2019 from https://cloudstack.apache.org/

[23] The Elgg Foundation. 2018. Elgg.org. Retrieved September 5, 2019 from
https://elgg.org/

[24] The MariaDB Foundation. 2018. MariaDB.org - Supporting continuity and open
collaboration. Retrieved September 5, 2019 from https://mariadb.org/

[25] Yoav Freund and Robert E Schapire. 1997. A Decision-Theoretic Generalization
of On-Line Learning and an Application to Boosting. J. Comput. System Sci. 55, 1
(1997), 119 – 139. https://doi.org/10.1006/jcss.1997.1504

[26] Yu Gan, Meghna Pancholi, Siyuan Hu, Dailun Cheng, Yuan He, and Christina
Delimitrou. 2018. Seer: Leveraging Big Data to Navigate the Increasing Com-
plexity of Cloud Debugging. In 10th USENIX Workshop on Hot Topics in Cloud
Computing (HotCloud 18). USENIX Association, Boston, MA, 15. https://www.
usenix.org/conference/hotcloud18/presentation/gan

[27] Anshul Gandhi, Parijat Dube, Alexei Karve, Andrzej Kochut, and Li Zhang. 2014.
Adaptive, Model-driven Autoscaling for Cloud Applications. In 11th International
Conference on Autonomic Computing (ICAC 14). USENIX Association, Philadel-
phia, PA, 57–64. https://www.usenix.org/conference/icac14/technical-sessions/
presentation/gandhi

[28] Anshul Gandhi, Mor Harchol-Balter, Ram Raghunathan, and Michael A. Kozuch.
2012. AutoScale: Dynamic, Robust Capacity Management for Multi-Tier Data
Centers. ACM Trans. Comput. Syst. 30, 4, Article 14 (Nov. 2012), 26 pages. https:
//doi.org/10.1145/2382553.2382556

[29] Daniel Gmach, Stefan Krompass, Andreas Scholz, Martin Wimmer, and Alfons
Kemper. 2008. Adaptive Quality of Service Management for Enterprise Services.
ACM Trans. Web 2, 1, Article 8 (March 2008), 46 pages. https://doi.org/10.1145/
1326561.1326569

[30] Google. 2018. Google Compute Engine Auto Scaler. Retrieved September 5,
2019 from https://cloud.google.com/compute/docs/autoscaler/

[31] Google. 2018. Site Reliability Engineering (SRE). Retrieved September 5, 2019
from https://landing.google.com/sre/

[32] Brendan Gregg. 2013. Thinking Methodically About Performance. Commun.
ACM 56, 2 (Feb. 2013), 45–51. https://doi.org/10.1145/2408776.2408791

[33] Descartes Research Group. 2018. descartesresearch - Docker Hub. Retrieved
September 5, 2019 from https://hub.docker.com/r/descartesresearch/

[34] Descartes Research Group. 2018. A micro-service reference test application
for model extraction, cloud management, energy efficiency, power prediction,
multi-tier auto-scaling. Retrieved September 5, 2019 from https://github.com/
DescartesResearch/TeaStore

[35] B. Harrington and R. Rapoport. 2014. "Introducing Netflix’s Primary Telemetry
Platform". Retrieved September 5, 2019 from "http://techblog.netflix.com/2014/
12/introducing-atlas-netflixs-primary.html"

[36] Helmut Hlavacs and Thomas Treutner. 2011. Predicting web service levels during
vm live migrations. In 2011 5th International DMTF Academic Alliance Workshop
on Systems and Virtualization Management: Standards and the Cloud (SVM). IEEE,
IEEE Computer Society, Washington, DC, USA, 1–10.

[37] Huaweii. 2017. TestCraft. Testing as a Service to Accelerate SDN/NFV Service
Deployment. Retrieved September 5, 2019 from http://carrier.huawei.com/~/
media/CNBG/Downloads/Services/nfv/Testing%20as%20a%20Service%20to%
20Accelerate%20SDN%20NFV%20Service%20Deployment.pdf

[38] Jesus Omana Iglesias, Jordi Arjona Aroca, Volker Hilt, and Diego Lugones. 2017.
ORCA: an ORChestration Automata for Configuring VNFs. In Proceedings of the
18th ACM/IFIP/USENIX Middleware Conference (Middleware ’17). ACM, New York,
NY, USA, 81–94. https://doi.org/10.1145/3135974.3135982

[39] Danga Interactive. 2018. Memcached - A distributed object memory caching
system. Retrieved September 5, 2019 from https://memcached.org/

[40] Vijay Janapa Reddi, Benjamin C Lee, Trishul Chilimbi, and Kushagra Vaid. 2010.
Web search using mobile cores: quantifying and mitigating the price of efficiency.
ACM SIGARCH Computer Architecture News 38, 3 (2010), 314–325.

[41] Klaus Krogmann, Michael Kuperberg, and Ralf Reussner. 2010. Using genetic
search for reverse engineering of parametric behavior models for performance
prediction. IEEE Transactions on Software Engineering 36, 6 (2010), 865–877.

[42] Sajib Kundu, Raju Rangaswami, Ajay Gulati, Ming Zhao, and Kaushik Dutta.
2012. Modeling Virtualized Applications Using Machine Learning Techniques.
In Proceedings of the 8th ACM SIGPLAN/SIGOPS Conference on Virtual Execution
Environments (VEE ’12). ACM, New York, NY, USA, 3–14. https://doi.org/10.
1145/2151024.2151028

[43] Philipp Leitner and Jurgen Cito. 2016. Patterns in the Chaos: A Study of Perfor-
mance Variation and Predictability in Public IaaS Clouds. ACM Trans. Internet
Technol. 16, 3, Article 15 (April 2016), 23 pages. https://doi.org/10.1145/2885497

[44] Locust. 2018. Scalable user load testing tool written in Python. Retrieved
September 5, 2019 from https://github.com/locustio/locust

[45] Andréa Matsunaga and José A. B. Fortes. 2010. On the Use of Machine Learning
to Predict the Time and Resources Consumed by Applications. In Proceedings
of the 2010 10th IEEE/ACM International Conference on Cluster, Cloud and Grid
Computing (CCGRID ’10). IEEE Computer Society, Washington, DC, USA, 495–
504. https://doi.org/10.1109/CCGRID.2010.98

[46] microservices demo. 2018. Deployment scripts and config for Sock Shop.
Retrieved September 5, 2019 from https://github.com/microservices-demo/
microservices-demo

[47] Microsoft. 2018. Microsoft Azure Autoscale. Retrieved September 5, 2019 from
http://azure.microsoft.com/features/autoscale/

[48] Apache Software Foundatio n. 2018. Apache Solr. Retrieved September 5, 2019
from https://lucene.apache.org/solr/

[49] Hiep Nguyen, Zhiming Shen, Xiaohui Gu, Sethuraman Subbiah, and John Wilkes.
2013. AGILE: Elastic Distributed Resource Scaling for Infrastructure-as-a-Service.
In Proceedings of the 10th International Conference on Autonomic Computing (ICAC
13). USENIX, San Jose, CA, 69–82. https://www.usenix.org/conference/icac13/
technical-sessions/presentation/nguyen

[50] Rajesh Nishtala, Hans Fugal, Steven Grimm, Marc Kwiatkowski, Herman Lee,
Harry C. Li, Ryan McElroy, Mike Paleczny, Daniel Peek, Paul Saab, David Stafford,
Tony Tung, and Venkateshwaran Venkataramani. 2013. Scaling Memcache at
Facebook. In Proceedings of the 10th USENIX Conference on Networked Systems
Design and Implementation (nsdi’13). USENIX Association, Berkeley, CA, USA,
385–398. http://dl.acm.org/citation.cfm?id=2482626.2482663

[51] Openstack. 2016. Openstack Kolla. Retrieved September 5, 2019 from http:
//docs.openstack.org/developer/kolla/

[52] OpenStack. 2018. Open Stack is open source software for creating private and
public clouds. Retrieved September 5, 2019 from https://www.openstack.org/

[53] T. Palit, Yongming Shen, and M. Ferdman. 2016. Demystifying cloud benchmark-
ing. In 2016 IEEE International Symposium on Performance Analysis of Systems
and Software (ISPASS). IEEE Computer Society, Washington, DC, USA, 122–132.
https://doi.org/10.1109/ISPASS.2016.7482080

[54] Sinno Jialin Pan andQiang Yang. 2010. A Survey on Transfer Learning. IEEE Trans.
Knowl. Data Eng. 22, 10 (2010), 1345–1359. https://doi.org/10.1109/TKDE.2009.191

[55] Karl Pearson. 1901. LIII. On lines and planes of closest fit to systems of points in
space. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of
Science 2, 11 (1901), 559–572.

[56] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M.
Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cour-
napeau, M. Brucher, M. Perrot, and E. Duchesnay. 2011. Scikit-learn: Machine
Learning in Python. Journal of Machine Learning Research 12 (2011), 2825–2830.

[57] Quantcast. 2014. Monitoring at Quantcast. Retrieved Septem-
ber 5, 2019 from https://www.quantcast.com/wp-content/uploads/2013/10/
Wait-How-Many-Metrics_-Quantcast-2013.pdf

[58] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. 2016. "Why Should I
Trust You?": Explaining the Predictions of Any Classifier. In Proceedings of the
22Nd ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining (KDD ’16). ACM, New York, NY, USA, 1135–1144.

[59] Ville Satopaa, Jeannie Albrecht, David Irwin, and Barath Raghavan. 2011. Find-
ing a "Kneedle" in a Haystack: Detecting Knee Points in System Behavior. In
Proceedings of the 2011 31st International Conference on Distributed Computing
Systems Workshops (ICDCSW ’11). IEEE Computer Society, Washington, DC, USA,
166–171. https://doi.org/10.1109/ICDCSW.2011.20

[60] Abraham Savitzky and Marcel JE Golay. 1964. Smoothing and differentiation of
data by simplified least squares procedures. Analytical chemistry 36, 8 (1964),
1627–1639.

[61] Mark Schmidt, Nicolas Le Roux, and Francis Bach. 2017. Minimizing finite sums
with the stochastic average gradient. Mathematical Programming 162, 1-2 (2017),
83–112.

[62] S. Shen, V. Beek, and A. Iosup. 2015. Statistical Characterization of Business-
Critical Workloads Hosted in Cloud Datacenters. In 2015 15th IEEE/ACM Interna-
tional Symposium on Cluster, Cloud and Grid Computing (CCGrid). IEEE Computer
Society, Los Alamitos, CA, USA, 465–474. https://doi.org/10.1109/CCGrid.2015.60

[63] Praveen Tammana, Rachit Agarwal, andMyungjin Lee. 2015. CherryPick: Tracing
Packet Trajectory in Software-defined Datacenter Networks. In Proceedings of
the 1st ACM SIGCOMM Symposium on Software Defined Networking Research
(SOSR ’15). ACM, New York, NY, USA, Article 23, 7 pages. https://doi.org/10.
1145/2774993.2775066

[64] Beth Trushkowsky, Peter Bodík, Armando Fox, Michael J. Franklin, Michael I.
Jordan, and David A. Patterson. 2011. The SCADS Director: Scaling a Distributed
Storage System Under Stringent Performance Requirements. In Proceedings of the

161

https://doi.org/10.1109/HPCS.2010.5547150
https://www.youtube.com/watch?v=2JAnmzVwgP8
https://www.youtube.com/watch?v=2JAnmzVwgP8
https://doi.org/10.1145/2248487.2150982
http://cassandra.apache.org/
https://cloudstack.apache.org/
https://elgg.org/
https://mariadb.org/
https://doi.org/10.1006/jcss.1997.1504
https://www.usenix.org/conference/hotcloud18/presentation/gan
https://www.usenix.org/conference/hotcloud18/presentation/gan
https://www.usenix.org/conference/icac14/technical-sessions/presentation/gandhi
https://www.usenix.org/conference/icac14/technical-sessions/presentation/gandhi
https://doi.org/10.1145/2382553.2382556
https://doi.org/10.1145/2382553.2382556
https://doi.org/10.1145/1326561.1326569
https://doi.org/10.1145/1326561.1326569
https://cloud.google.com/compute/docs/autoscaler/
https://landing.google.com/sre/
https://doi.org/10.1145/2408776.2408791
https://hub.docker.com/r/descartesresearch/
https://github.com/DescartesResearch/TeaStore
https://github.com/DescartesResearch/TeaStore
"http://techblog.netflix.com/2014/12/introducing-atlas-netflixs-primary.html"
"http://techblog.netflix.com/2014/12/introducing-atlas-netflixs-primary.html"
http://carrier.huawei.com/~/media/CNBG/Downloads/Services/nfv/Testing%20as%20a%20Service%20to%20Accelerate%20SDN%20NFV%20Service%20Deployment.pdf
http://carrier.huawei.com/~/media/CNBG/Downloads/Services/nfv/Testing%20as%20a%20Service%20to%20Accelerate%20SDN%20NFV%20Service%20Deployment.pdf
http://carrier.huawei.com/~/media/CNBG/Downloads/Services/nfv/Testing%20as%20a%20Service%20to%20Accelerate%20SDN%20NFV%20Service%20Deployment.pdf
https://doi.org/10.1145/3135974.3135982
https://memcached.org/
https://doi.org/10.1145/2151024.2151028
https://doi.org/10.1145/2151024.2151028
https://doi.org/10.1145/2885497
https://github.com/locustio/locust
https://doi.org/10.1109/CCGRID.2010.98
https://github.com/microservices-demo/microservices-demo
https://github.com/microservices-demo/microservices-demo
http://azure.microsoft.com/features/autoscale/
https://lucene.apache.org/solr/
https://www.usenix.org/conference/icac13/technical-sessions/presentation/nguyen
https://www.usenix.org/conference/icac13/technical-sessions/presentation/nguyen
http://dl.acm.org/citation.cfm?id=2482626.2482663
http://docs.openstack.org/developer/kolla/
http://docs.openstack.org/developer/kolla/
https://www.openstack.org/
https://doi.org/10.1109/ISPASS.2016.7482080
https://doi.org/10.1109/TKDE.2009.191
https://www.quantcast.com/wp-content/uploads/2013/10/Wait-How-Many-Metrics_-Quantcast-2013.pdf
https://www.quantcast.com/wp-content/uploads/2013/10/Wait-How-Many-Metrics_-Quantcast-2013.pdf
https://doi.org/10.1109/ICDCSW.2011.20
https://doi.org/10.1109/CCGrid.2015.60
https://doi.org/10.1145/2774993.2775066
https://doi.org/10.1145/2774993.2775066

Middleware ’19, December 8–13, 2019, Davis, CA, USA Grohmann et al.

9th USENIX Conference on File and Stroage Technologies (FAST’11). USENIX Asso-
ciation, Berkeley, CA, USA, 12–12. http://dl.acm.org/citation.cfm?id=1960475.
1960487

[65] Shivaram Venkataraman, Zongheng Yang, Michael Franklin, Benjamin Recht,
and Ion Stoica. 2016. Ernest: Efficient Performance Prediction for Large-scale
Advanced Analytics. In Proceedings of the 13th Usenix Conference on Networked
Systems Design and Implementation (NSDI’16). USENIX Association, Berkeley,
CA, USA, 363–378. http://dl.acm.org/citation.cfm?id=2930611.2930635

[66] Jóakim von Kistowski. 2018. HTTP Load Generator for variable load intensi-
ties. Retrieved September 5, 2019 from https://github.com/joakimkistowski/
HTTP-Load-Generator

[67] Jóakim von Kistowski, Simon Eismann, Norbert Schmitt, André Bauer, Johannes
Grohmann, and Samuel Kounev. 2018. TeaStore: A Micro-Service Reference
Application for Benchmarking, Modeling and Resource Management Research.
In Proceedings of the 26th IEEE International Symposium on the Modelling, Analysis,
and Simulation of Computer and Telecommunication Systems (MASCOTS ’18).
IEEE Computer Society, Washington, DC, USA, 223–236. https://doi.org/10.1109/
MASCOTS.2018.00030

[68] Jóakim von Kistowski, Nikolas Herbst, Samuel Kounev, Henning Groenda, Chris-
tian Stier, and Sebastian Lehrig. 2017. Modeling and Extracting Load Intensity
Profiles. ACM Transactions on Autonomous and Adaptive Systems (TAAS) 11, 4,
Article 23 (January 2017), 28 pages. https://doi.org/10.1145/3019596

[69] Inc Weaveworks. 2018. Sock Shop – A Microservices Demo Application. Re-
trieved September 5, 2019 from https://microservices-demo.github.io/

[70] Timothy Wood, Prashant Shenoy, Arun Venkataramani, and Mazin Yousif. 2009.
Sandpiper: Black-box and gray-box resource management for virtual machines.
Computer Networks 53, 17 (2009), 2923–2938.

[71] R. Yanggratoke, J. Ahmed, J. Ardelius, C. Flinta, A. Johnsson, D. Gillblad, and R.
Stadler. 2015. Predicting real-time service-level metrics from device statistics.
In 2015 IFIP/IEEE International Symposium on Integrated Network Management
(IM). IEEE Computer Society, Washington, DC, USA, 414–422. https://doi.org/
10.1109/INM.2015.7140318

[72] Rerngvit Yanggratoke, Jawwad Ahmed, John Ardelius, Christofer Flinta, Andreas
Johnsson, Daniel Gillblad, and Rolf Stadler. 2015. Predicting Service Metrics for
Cluster-based Services Using Real-time Analytics. In Proceedings of the 2015 11th
International Conference on Network and Service Management (CNSM) (CNSM
’15). IEEE Computer Society, Washington, DC, USA, 135–143. https://doi.org/10.
1109/CNSM.2015.7367349

[73] Li Yin, Sandeep Uttamchandani, and Randy Katz. 2006. An Empirical Exploration
of Black-Box Performance Models for Storage Systems. In Proceedings of the 14th
IEEE International Symposium on Modeling, Analysis, and Simulation (MASCOTS
’06). IEEE Computer Society, Washington, DC, USA, 433–440. https://doi.org/10.
1109/MASCOTS.2006.12

162

http://dl.acm.org/citation.cfm?id=1960475.1960487
http://dl.acm.org/citation.cfm?id=1960475.1960487
http://dl.acm.org/citation.cfm?id=2930611.2930635
https://github.com/joakimkistowski/HTTP-Load-Generator
https://github.com/joakimkistowski/HTTP-Load-Generator
https://doi.org/10.1109/MASCOTS.2018.00030
https://doi.org/10.1109/MASCOTS.2018.00030
https://doi.org/10.1145/3019596
https://microservices-demo.github.io/
https://doi.org/10.1109/INM.2015.7140318
https://doi.org/10.1109/INM.2015.7140318
https://doi.org/10.1109/CNSM.2015.7367349
https://doi.org/10.1109/CNSM.2015.7367349
https://doi.org/10.1109/MASCOTS.2006.12
https://doi.org/10.1109/MASCOTS.2006.12

	Abstract
	1 Introduction
	2 Monitorless Design
	2.1 Nomenclature and definitions
	2.2 Labeling resource saturation
	2.3 A machine learning problem

	3 Modeling Process
	3.1 Metric collection
	3.2 Training data
	3.3 Feature selection and optimization
	3.4 Training the monitorless model
	3.5 Model behavior compared to expert decisions

	4 Evaluation
	4.1 Evaluation using a three-tier web application
	4.2 Evaluation of a multi-tenant, microservice-based environment

	5 Discussion
	6 Related Work
	7 Conclusions
	References

