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ABSTRACT
As modern enterprise software systems become increasingly
dynamic, workload forecasting techniques are gaining in im-
portance as a foundation for online capacity planning and
resource management. Time series analysis offers a broad
spectrum of methods to calculate workload forecasts based
on history monitoring data. Related work in the field of
workload forecasting mostly concentrates on evaluating spe-
cific methods and their individual optimisation potential
or on predicting Quality-of-Service (QoS) metrics directly.
As a basis, we present a survey on established forecasting
methods of the time series analysis concerning their benefits
and drawbacks and group them according to their compu-
tational overheads. In this paper, we propose a novel self-
adaptive approach that selects suitable forecasting methods
for a given context based on a decision tree and direct feed-
back cycles together with a corresponding implementation.
The user needs to provide only his general forecasting objec-
tives. In several experiments and case studies based on real-
world workload traces, we show that our implementation of
the approach provides continuous and reliable forecast re-
sults at run-time. The results of this extensive evaluation
show that the relative error of the individual forecast points
is significantly reduced compared to statically applied fore-
casting methods, e.g. in an exemplary scenario on average
by 37%. In a case study, between 55% and 75% of the viola-
tions of a given service level agreement can be prevented by
applying proactive resource provisioning based on the fore-
cast results of our implementation.
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1. INTRODUCTION
Virtualization allows to dynamically assign and release re-

sources to and from hosted applications at run-time. The
amount of resources consumed by the executed software
services are mainly determined by the workload intensity.
Therefore, they both typically vary over time according to
the user’s behavior. The flexibility that virtualization en-
ables in resource provisioning and the variation of the re-
source demands over time raise a dynamic optimisation -
problem. Mechanisms that continuously provide appropri-
ate solutions to this optimisation problem could exploit the
potential to use physical resources more efficiently resulting
in cost and energy savings as discussed for example in [1,
23].

Commonly, mechanisms that try to continuously match
the amounts of demanded to provisioned resources are reac-
tive as they use threshold based rules to detect and react on
resource shortages. However, such reactive mechanisms can
be combined with proactive ones that anticipate changes in
resource demands and proactively reconfigure the system to
avoid resource shortages. For building such proactive mech-
anisms, the time series analysis offers a spectrum of sophis-
ticated forecasting methods. But as none of these methods
is the best performing in general, we work on the idea to in-
telligently combine the benefits of the individual forecasting
methods to achieve higher forecast accuracy independent of
the forecasting context.

In this paper, we present a survey of forecasting meth-
ods offered by the time series analysis that base their com-
putations on periodically monitored arrival rate statistics.
We group the individual forecasting methods according to



their computational overhead, their benefits and drawbacks
as well as their underlying assumptions. Based on this anal-
ysis, we design a novel forecasting methodology that dynam-
ically selects at run-time a suitable forecasting method for
a given context. This selection is based on a decision tree
that captures the users’ forecasting objectives, requirements
of individual forecasting methods and integrates direct feed-
back cycles on the forecast accuracy as well as heuristics
for further optimisations using data analysis. Users need
to provide only their general forecast objectives concern-
ing forecasting frequency, horizon, accuracy and overhead
and are not responsible to dynamically select appropriate
forecasting methods. Our implementation of the proposed
Workload Classification and Forecasting (WCF) approach is
able to continuously provide time series of point forecasts of
the workload intensity with confidence intervals and forecast
accuracy metrics in configurable intervals and with control-
lable computational overhead during run-time.

In summary, the contributions of this paper are: (i) We
identify the characteristics and components of an observed
workload intensity behavior and define metrics to quantify
these characteristics for the purpose of automatic classifica-
tion and selection of a forecasting method. (ii) We provide
a survey of state-of-the-art forecasting approaches based on
time series analysis (including interpolation, decomposition
and pattern identification techniques) focusing on their ben-
efits, drawbacks and underlying assumptions as well as their
computational overheads. (iii) We propose an novel forecast-
ing methodology that self-adaptively correlates workload in-
tensity behavior classes and existing time series based fore-
casting approaches. (iv) We provide an implementation of
the proposed WCF approach as part of a new Workload-

ClassificationAndForecasting (WCF) system1 specifical-
ly designed for online usage. (v) We evaluate our WCF ap-
proach using our implementation in the context of multiple
different experiments and case studies based on real-world
workload intensity traces.

The results of our extensive experimental evaluation con-
sidering multiple different scenarios show that the dynamic
selection of a suitable forecast method significantly reduces
the relative error of the workload forecasts compared to the
results of a statically selected fixed forecasting method, e.g.
in the presented exemplary scenario on average by 37%.
Even when limiting the set of forecasting methods consid-
ered in the dynamic selection, our self-adaptive approach
achieves a higher forecast accuracy with less outliers than
individual methods achieve in isolation. In the presented
case study, we apply proactive resource provisioning based
on the forecast results of the introduced WCF approach and
achieve to prevent between 55% and 75% of the violations
of a given service level agreement (SLA).

The major benefit of our self-adaptive WCF approach is
an enhancement in foresight for any system that is capable
of dynamically provision its resources. In other words, our
WCF approach is able to extend the reconfiguration times a
system needs for its optimisation. Additionally, the forecast
results that are provided by the WCF system can be used
for anomaly detection.

The remainder of the paper is structured as follows: In
Section 2, we define several concepts and terms that are cru-
cial for understanding the presented approach. In the next

1http://www.descartes-research.net/tools/

step, we analyze characteristics of a workload intensity be-
havior and give a compact survey on existing workload fore-
casting methods based on time series analysis. We present
our self-adaptive approach for workload classification and
forecasting in Section 3. In Section 4, we evaluate the WCF
approach by presenting and discussing an exemplary exper-
iment and a case study. We review related work in Section
5, and present some concluding remarks in Section 6.

2. FOUNDATIONS
In this section, we start by defining crucial terms in the

context of software services, workload characterization and
performance analysis that are helpful to build a precise un-
derstanding of the presented concepts and ideas and are used
in the rest of the paper:

We assume that Software services are offered by a com-
puting system to a set of users which can be humans or other
systems. In our context, a software service can be seen as a
deployed software component.

Each Request submitted to the software service by a user
encapsulates an individual usage of the service.

A request class is a category of requests that are charac-
terized by statistically indistinguishable resource demands.

A resource demand in units of time or capacity is a mea-
sure of the consumption of physical or virtual resources in-
curred for processing an individual request.

The term workload refers to the physical usage of the sys-
tem over time comprising requests of one or more request
classes. This definition deviates from the definition in [29],
where workload is defined as a more general term captur-
ing in addition to the above the respective applications and
their SLAs.

A workload category is a coarse-grained classification of a
workload type with respect to four basic application and
technology domains as defined in [29]: (i) Database and
Transaction Processing, (ii) Business Process Applications,
(iii) Analytics and High Performance Computing, (iv) Web
Collaboration and Infrastructures.

A time series X is a discrete function that represents
real-valued measurements xi ∈ R for every time point ti
in a set of n equidistant time points t = t1, t2, ..., tn: X =
x1, x2, ..., xn as described in [26]. The elapsed time between
two points in the time series is defined by a value and a time
unit.

The number of time series points that add up to the next
upper time unit or another time period of interest is called
the frequency of a time series. The frequency attribute of a
time series is an important starting point for the search of
seasonal patterns.

A time series of request arrival rates is a time series whose
values represent ni ∈ N unique request arrivals during the
corresponding time intervals [ti, ti+1).

A workload intensity behavior (WIB) is a description of
a workload’s characteristic changes in intensity over time
like the shape of seasonal patterns and trends as well as the
level of noise and bursts as further described in the following
section. The WIB can be extracted from a corresponding
time series of request arrival rates.

2.1 Workload Intensity Behavior
According the theory of the time series analysis [8, 16,

28], a time series can be decomposed into the following three



components, whose relative weights and shapes characterise
the respective WIB:

The trend component can be described by a monotoni-
cally increasing or decreasing function (in most cases a linear
function) that can be approximated using common regres-
sion techniques. A break within the trend component is
caused by system extrinsic events and therefore cannot be
forecast based on historic observations but detected in retro-
spect. It is possible to estimate the likelihood of a change in
the trend component by analysing the durations of historic
trends.

The season component captures recurring patterns that
are composed of at least one or more frequencies, e.g. daily,
weekly or monthly patterns (but they do not need to be
integer valued). These frequencies can be identified by using
a Fast Fourier Transformation (FFT) or by auto-correlation
techniques.

The noise component is an unpredictable overlay of var-
ious frequencies with different amplitudes changing quickly
due to random influences on the time series. The noise can
be reduced by applying smoothing techniques like weighted
moving averages (WMA), by using lower sampling frequency,
or by a low-pass filter that eliminates high frequencies. Find-
ing a suitable trade-off between the amount of noise reduc-
tion and the respective potential loss of information can en-
hance forecast accuracy.

A time series decomposition into the above mentioned
components is illustrated in Figure 1. This decomposition
of a time series has been presented in [31]. The authors offer
an implementation of their approach for time series decom-
position and detection of breaks in trends or seasonal com-
ponents (BFAST)2. In the first row, the time series input
data is plotted. The second row contains detected (yearly)
seasonal patterns, whereas the third row shows estimated
trends and several breaks within these trends. The remain-
der in the undermost row is the non-deterministic noise com-
ponent computed by the difference between the original time
series data and the sum of the trend and the seasonal com-
ponents.
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Figure 1: Time Series Decomposition into Season,
Trend and Noise Components as presented in [31]

The theory of time series analysis differentiates between
static and dynamic stochastic processes. In static process
models, it is assumed that the trend and season component
remain constant, whereas in dynamic process models, these

2http://bfast.r-forge.r-project.org/

components change or develop over time and therefore have
to be approximated periodically to achieve good quality fore-
casts. Still, the trend and season components are considered
to be deterministic and the quality of their approximation is
important for the workload forecasting techniques. Depend-
ing on the applied stochastic model, the season, trend and
noise components can be considered either as multiplicative
or additive.

A nearly complete decomposition of a time series into the
three components described above using for example the
BFAST approach [31] induces a high computational over-
head. Hence, more easily computable characteristics of a
time series are crucial for efficient workload classification at
run-time as described in the following:

The burstiness index is a measure for the spontaneity of
fluctuations within the time series and calculated by the
ratio of the maximum observed value to the median within
a sliding window.

The length of the time series mainly influences the accu-
racy of approximations for the above mentioned components
and limits the space of applicable forecasting methods.

The number of consecutive monotonic values either up-
wards or downwards within a sliding window indirectly char-
acterises the influence of the noise and seasonal components.
A respective small value can be seen as a sign of a high noise
level and a hint to apply a time series smoothing technique.

The maximum, the median and the quartiles are impor-
tant indicators of the distribution of the time series data and
can be unified in the quartile dispersion coefficient (QDC)
defined as the distance of the quartiles divided by the me-
dian value.

The standard deviation and the mean value are combined
in the coefficient of variation (COV) which characterizes the
dispersion of the distribution as a dimensionless quantity.

Absolute positivity of a time series is an important charac-
teristic because intervals containing negative or zero values
can influence the forecast accuracy and even the applicabil-
ity of certain forecasting methods. As arrival rates cannot
be negative by nature, a time series that is not absolutely
positive should be subjected to a simple filter eliminating
the negative values or analyzed using specialized forecasting
method.

We define a relative gradient as the absolute gradient of
the latest quarter of a time series period in relation to the
median of this quarter. It captures the steepness of the
latest quarter period as a dimensionless value. A positive
relative gradient shows that the last quarter period changed
less than the median value, a negative value indicates a steep
section within the time series (e.g., the limb of a seasonal
pattern).

The frequency of a time series represents the number of
time series values that form a period of interest (in most
cases simply the next bigger time-unit). These values are
an important input as they are used as starting points for
the search for seasonal patterns.

The presented metrics are sufficient to capture the most
important characteristics of a WIB, though they have low
computational complexity. Hence, they are of major impor-
tance for our online workload classification process.

2.2 Survey of Forecasting Methods
In this section, we compare the most common forecasting

approaches based on the time series analysis and highlight



Table 1: Forecasting Methods based in Time Series Analysis
Name Operating Mode Horizon  Requirements Overhead Strengths Weaknesses Optimal Scenario  

Naïve Forecast 
≘ ARIMA 100 

The naïve forecast considers only the value of the most recent 
observation assuming that this value has the highest probability for 
the next forecast point. 

very short term 
forecast (1-2 
points) 

single  
observation  

nearly none  
O(1) 

no historic data 
required,  
reference method 

naïve -> no 
value for 
proactive 
provisioning 

constant arrival 
rates  

Moving Average 
(MA) 
≘ ARIMA 001 

Calculation of an arithmetic mean within a sliding window of the x 
most recent observations. 

very short term 
forecast (1-2 
points) 

two 
observations  

very low  
O(log(n)) 

simplicity  sensitive to 
trends, seasonal 
component 

constant arrival 
rates with low 
white noise  

Simple 
Exponential 
Smoothing 
(SES) 
≘ ARIMA 011 

Generalization of MA by using weights according to the exponential 
function to give higher weight to more recent values.  
1

st
 step: estimation of parameters for weights/exp. function  

2
nd 

step: calculation of weighted averages as point forecasts 

short term 
forecast 
(< 5 points) 

small number 
of historic 
observations  
(> 5) 

experiment:  
below 80ms for 
less than 100 
values 

more flexible 
reaction on 
trends or other 
developments 
than MA  

no season 
component 
modeled,  
only damping , 
no interpolation 

time series with 
some noise and 
changes within 
trend, but no 
seasonal behavior 

Cubic Smoothing 
Splines 
(CS) [18] 
≘ ARIMA 022 
 

Cubic splines are fitted to the one-dimensional time series data to 
obtain a trend estimate and linear forecast function. Prediction 
intervals are constructed by use of a likelihood approach for 
estimation of smoothing parameters. The cubic splines method can 
be mapped to an ARIMA 022 stochastic process model with a 
restricted parameter space. 

short term 
forecast 
(< 5 points) 

small number 
of historic 
observations  
(> 5) 

experiment: 
below 100ms 
for less than 30 
values (no 
improved 
accuracy) 

extrapolation of 
the trend by a 
linear forecast 
function 

sensitive 
seasonal 
patterns  (step 
edges), negative 
forecast values 
possible 

strong trends, but 
minor seasonal 
behavior, low 
noise level 

ARIMA 101 
auto-regressive 
integrated 
moving averages 

ARIMA 101 is an ARIMA stochastic process model instance 
parameterized with p = 1 as order of AR(p) process, d = 0 as order of 
integration, q = 1 as order of MA(q) process. In this case a stationary 
stochastic process is assumed (no integration) and no seasonality 
considered.   

short term 
forecast 
(< 5 points) 

small number 
of historic 
observations  
(> 5) 

experiment: 
below 70ms for 
less than 100 
values 

trend estimation, 
(more careful 
than CS), fast 

no season 
component in 
modeled,  
only positive 
time series 

time series with 
some noise and 
changes within 
trend, but no 
seasonal behavior 

Croston’s 
Method 
intermittent 
demand 
forecasting using 
SES [27] 

Decomposition of the time series that contains zero values into two 
separate sequences: a non-zero valued time series and a second that 
contains the time intervals of zero values. 
Independent forecast using SES and combination of the two 
independent forecasts. No confidence intervals are computed due 
to no consistent underlying stochastic model.  

short term 
forecast 
(< 5 points) 

small number 
of historic 
observations, 
containing 
zero values 
(> 10) 

experiment: 
below avg. 100 
ms for less than 
100 values 

decomposition of 
zero-valued time 
series 

no season 
component, no 
confidence 
intervals (no 
stochastic 
model) 

zero valued 
periods, active 
periods with 
trends, no strong 
seasonal comp., 
low noise 

Extended 
Exponential 
Smoothing 
(ETS) 
innovation state 
space stochastic 
model framework 

1
st

 step: model estimation: noise, trend and season components are 
either additive (A), or multiplicative (M) or not modeled (N)  
2

nd
 step: estimation of parameters for an explicit noise, trend and 

seasonal components  
3

rd
 step: calculation of point forecasts for level, trend and season 

components independently using SES and combination of results 

medium to long 
term forecast 
(> 30 points) 

at least 3 
periods in 
time series 
data with an 
adequate 
frequency of 
[10;65] 

experiment: up 
to 15 seconds 
for less than 
200 values,  
high variability 
in computation 
time 

capturing explicit 
noise, trend and 
season 
component in a 
multiplicative or 
additive model  

only positive 
time series 

times series with 
clear and simple 
trend and 
seasonal 
component, 
moderate noise 
level 

tBATS 
trigonometric 
seasonal model,  
Box-Cox 
transformation,  
ARMA errors,  
trend + seasonal 
components [10] 

The tBATS stochastic process modeling framework of innovations 
state space approach focuses modeling of complex seasonal time 
series (multiple/high frequency/non-integer seasonality) and uses 
Box-Cox transformation, Fourier representations with time varying 
coefficients and ARMA error correction. Trigonometric formulation 
enables identification of complex seasonal time series patterns by 
FFT for time series decomposition. Improved computational 
overhead using a new method for maximum-likelihood estimations. 

medium to long 
term forecast 
(> 5 points) 

at least 3 
periods in 
time series 
data with an 
adequate 
frequency of 
[10;65] 

experiment: up 
to 18 seconds 
less than 200 
values, 
high variability 
in computation 
time 

modeling 
capability of 
complex, non-
integer and 
overlaying 
seasonal patterns 
and trends 

only positive 
time series, 
complex 
process for time 
series modeling 
and  
decomposition 

times series with 
one or more clear 
but possibly 
complex trend 
and seasonal 
components,  
only moderate 
noise level 

ARIMA 
auto-regressive 
integrated 
moving averages 
stochastic 
process model 
framework with 
seasonality  

The automated ARIMA model selection process of the R forecasting 
package starts with a complex estimation of an appropriate  
ARIMA(p,d,q)(P,D,Q)m model by using unit-root tests and an 
information criterions (like the AIC) in combination with a step-wise 
procedure for traversing a relevant model space.  
The selected ARIMA model is then fitted to the data to provide point 
forecasts and confidence intervals. 

medium to long 
term forecast 
(> 5 points) 

at least 3 
periods in 
time series 
data with an 
adequate 
frequency of 
[10;65] 

experiment: up 
to 50 seconds 
for less than 
200 values, 
high variability 
in computation 
time 
 

capturing noise, 
trend and season 
component in 
(multiplicative or 
additive) model, 
Achieves close 
confidence 
intervals 

only positive 
time series,  
complex model 
estimation 

times series with 
clear seasonal 
component 
(constant 
frequency), 
moderate noise 
level 

their requirements, advantages and disadvantages present-
ing a short summary based on [8, 16, 17, 28, 10, 18, 27].
All considered forecasting methods have been implemented
by Hyndman in the R forecast package3 and documented
in [17]. The implemented forecasting methods are based ei-
ther on the state-space approach [16] or the ARIMA (auto-
regressive integrated moving averages) approach for stochas-
tic process modelling [8]. These two general approaches for
stochastic process modeling have common aspects, but are
not identical as in both cases there exist model instances that
have no counterpart in the other approach and both have
different strength and weaknesses as discussed, e.g., in [17].
In Table 1, we briefly describe the considered forecasting
approaches which are ordered according to their computa-
tional complexity. Besides from [17], detailed information
on the implementation, parameters and model estimation
of the individual methods can be taken from cited sources
within Table 1. Capturing the complexity in common O-
notation in most cases is infeasible except for the two first
simple cases. As the shape of seasonal patterns contained in
the data as well as the used optimisation thresholds during
a model fitting procedure strongly influence the computa-
tional costs, the length of time series size represents only
one part of the problem description. Therefore, the compu-

3http://robjhyndman.com/software/forecast/

tational complexity of the individual methods has been eval-
uated based on experiments with a representative amount
of forecasting method executions on a machine with a In-
tel Core i7 CPU (2.7 GHz). The forecasting methods make
use of only a single core as multi-threading is not yet fully
supported by the existing implementations.

2.3 Forecast Accuracy Metrics
A number of error metrics have been proposed to capture

the differences between point forecasts and corresponding
observations. They are summarized, explained and com-
pared in [19]. The authors propose to use the Mean Absolute
Scaled Error (MASE) as forecast accuracy metric to enable
consistent comparisons of forecasting methods across differ-
ent data samples. The MASE metric for an interval [m,n] is
defined as follows with b[m,n] as the average change within
the observation:
(I) errort = forecastt − observationt, t ∈ [m,n]
(II) b[m,n] = 1

n−m
·
∑n

i=m+1 |observationi − observationi−1|
(III) MASE[m,n] = meant=[m+1,n](

∣∣∣ errortb[m,n]

∣∣∣)
Computing the MASE metric enables direct interpretation
whether the forecast accuracy is higher compared to the
naive forecasting approach which typically serves as a ref-
erence. Therefore, we use the MASE metric as the central



element to build a reliable and direct feedback mechanism
for our WCF approach as presented in the following section.

3. APPROACH
As stated in the Introduction, the major contribution of

this paper is the construction of an online workload clas-
sification mechanism for optimized forecasting method se-
lection. In this section, we present the individual concepts
that are incorporated into our WCF approach as sketched
in Figure 2.

Highest 
Overhead 

Group 

Forecasting 
Period 

Forecast 
Horizon  

Confidence 
Level 

Forecasting 
Objectives 

(I) Selection of Forecasting Methods 

Forecasting 
Objectives 

 

Workload 
Intensity 

Trace 

INITIAL 
Methods of 

Group 1 
Naïve, 

Moving 
Averages 

Partitions of the 
Classification Process 

(II) Evaluation  

of Forecasting  

Accuracy 

Forecasting 
Accuracy  
Feedback 

FAST 
Methods of 

Group 2 
Trend 
Inter-

polation 

COMPLEX 
Methods of 
Group 3 & 4   

Decom-
position & 
Seasonal 
Patterns 

Figure 2: Workload Classification Process

We will use the term WIB class to refer to the current
choice of the most appropriate forecasting method. Each
class identifier is equal to the name of the corresponding
forecasting method. A WIB may change and develop over
time in a way that the classification is not stationary and
therefore it needs to be periodically updated. The WIB class
at a time point t corresponds to the currently selected fore-
casting method A providing the best accuracy compared to
the other available forecasting methods. At a later point in
time t + i, the WIB may be reclassified and may now cor-
respond to another forecasting method B. As in some cases
different forecasting methods may possibly deliver identical
results, the class of a WIB is not necessarily unique at each
point in time.

3.1 Overhead of Forecasting Methods
The forecasting methods as presented in Table 1 are grou-

ped into four subsets according to their computational over-
head:

Group 1 stands for nearly no overhead and contains the
Moving Average (MA) and the Naive forecasting methods.

Group 2 stands for low overhead and contains the fast
forecasting methods Simple Exponential Smoothing (SES),
Cubic Spline Interpolation (CS), the predefined ARIMA101
model and the specialized Croston’s Method for intermittent
time series. The processing times of forecasting methods in
this group are below 100ms for a maximum of 100 time series
points.

Group 3 stands for medium overheads and contains the
forecasting methods Extended Exponential Smoothing (ETS)
and tBATS. The processing times are below 30 seconds for
less than 200 time series points.

Group 4 stands for high overheads and contains again
tBATS and additionally the ARIMA forecasting framework

with automatic selection of an optimal ARIMA model. The
processing times remain below 60 seconds for less than 200
time series points.

3.2 Forecasting Objectives
Given that forecast results can be used for a variety of pur-

poses like manual long term capacity planning or short term
proactive resource provisioning, a set of forecasting objec-
tives is introduced to enable tailored forecast result process-
ing and overhead control. The following parameters charac-
terizing the forecasting objectives are defined:

(i) The Highest Overhead Group parameter is a value of
the interval [1, 4] specifying the highest overhead group from
which the forecasting methods may be chosen in the classi-
fication process.

(ii) The Forecast Horizon parameters are defined as a tu-
ple of two positive integer values quantifying the number
of time series points to forecast. The first value defines the
start value, the second value accordingly the maximum fore-
cast horizon setting. Due to the significant differences of
the forecasting methods in term of their processing times
and capabilities for long term forecasts, the start value need
to be increased up to the given maximum value during the
learning phase (until the periods are contained in the time
series data) using multipliers that are defined as part of the
configuration of the classification process.

(iii) The Confidence Level parameter can be a value in the
interval [0, 100) and sets the confidence level alpha as per-
centage for the confidence intervals surrounding the forecast
mean values.

(iv) Forecasting Period is a positive integer parameter i
specifying how often in terms of the number of time series
points a forecasting method execution is triggered. The con-
figuration of the presented parameters allows to customize
the forecasting strategy according to the characteristics of
the considered scenario.

3.3 Partitions of the Classification Process
We partition the classification process according to the

amount of historic data available in the time series to sup-
port an initial partition, a fast partition and a complex parti-
tion. These partitions are connected to the overhead groups
of the forecasting methods. Having a short time series, only
forecasting methods in the overhead group 1 can be applied.
A medium length may allow application of methods con-
tained in the overhead group 2 and a long time series en-
ables the use of the methods in overhead group 3 and 4.
The two thresholds that define when a time series is short,
medium or long can be set as parameters in the classifica-
tion setting. Based on experience gained from experiments,
it is our recommendation to set the initial-fast threshold
to a value between five (as this is the minimal amount of
point needed for Cubic Spline Interpolation) and the value
corresponding to half a period. The fast-complex threshold
should be set to a value as high as covering three complete
time series periods for the simple reason that most methods
in the respective overhead group need at least three pattern
occurrences to identify them.

3.4 Optional Smoothing
A high noise level within the time series of request arrival

rates complicates every forecasting process. To improve the
forecast accuracy it is conducive to observe metrics that cap-
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Figure 3: Decision Tree for Online Classification and Selection of Appropriate Forecasting Methods

ture the noise level within the time series and define thresh-
olds to trigger a smoothing method before the time series is
processed by the forecasting method. However, any smooth-
ing method has to be applied carefully not to eliminate valu-
able information. The four metrics (burstiness index, rela-
tive monotonicity, COV and QDC) introduced in Section
2.1 are suitable and sufficient to quantify noise related char-
acteristics within a time series and therefore are repeatedly
applied to the set of the most recent time series points of
configurable length n. Smoothing of the time series can be
achieved for example using the elementary method Weighted
Moving Averages (WMA) where the level of smoothing can
easily be controlled by the window size and the weights. In
our WCF approach, we observe the four mentioned noise-
related metrics and apply WMA when three of them cross
configurable thresholds. We use a window size of three, a
weight vector w = (0.25, 0.5, 0.25) and a control variable to
assure that no time series value is smoothed more than one
time. With this setting we are carefully smooth out a high
noise level, but avoid the loss of valuable information. Time
series smoothing can also be achieved by far more complex
methods like using a Fast Fourier Transformation to build
a low-pass filter eliminating high frequencies. However, this
would introduce additional overheads and would require an
inadequately high amount of time series data.

3.5 Decisions based on Forecast Accuracy
As mentioned in Section 2.3 and extensively discussed

in [19], the MASE metric is the metric of choice for quan-
tifying the forecast accuracy. We describe in this Section

how the MASE metric is used in our adaptive classification
process to identify and validate the current WIB class.

Given that the MASE metric compares the forecast accu-
racy against the accuracy of the naive forecasting method,
it is directly visible when a method performs poorly. If the
MASE value is close to one or even bigger, the computed
forecast results are of no value, as their accuracy is equal
or even worse than directly using monitoring values. The
closer the metric value is to zero, the better the forecast-
ing method delivers trustworthy forecast results. The fore-
casting method having the smallest MASE value defines the
WIB class of our adaptive classification process.

In our approach, two or more forecasting methods are ex-
ecuted in parallel and compared in configurable intervals to
check whether the recent WIB class is still valid. This WIB
class validation is also triggered when the forecast result
seems implausible or shows low accuracy (MASE value > 1).
The MASE metric is estimated during the forecast execution
itself as at this point in time observation values are not yet
available. This estimation needed when two or more fore-
casting methods are executed in parallel to output the more
promising result. Just before the next forecast execution is
triggered, the MASE metric is then precisely calculated as
observation values and forecast results are available at this
point in time and used to validate the WIB classification.

3.6 Decision Tree with Feedback Cycles
The presented concepts and mechanisms were combined

to build our WCF approach that automatically adapts to
changing WIBs with the result of optimized and more con-
stantly adequate forecasting accuracy. The combination of



a classification process with a set of forecasting methods
enables a configuration according to given forecasting ob-
jectives. Figure 3 illustrates the classification process of the
WCF approach. The classification process can be seen as
independent from the forecasting method executions and is
triggered according to the configuration of the classification
period parameter every n time series points, just before a
forecasting method execution is requested. The classifica-
tion process uses the forecasting objectives specified by the
user and the WIB characteristics to reduce the space of pos-
sible forecasting methods. The suitable forecasting meth-
ods are then processed together and their estimated fore-
cast accuracy is evaluated to output the more promising
result. Before the next forecasting method execution, the
classification (which is the selection of the better perform-
ing method) is validated by the observed MASE metric and
used until the next classification process execution is trig-
gered. The WCF parameter set we propose in this section
follows rules of thumb from time series analysis literature
and has been experimentally calibrated using several inde-
pendent real-world workload traces provided by IBM. These
traces are not used for the evaluation of the WCF approach.
In the presented exemplary scenario and the case study in
Section 4 the recommended parameter set is applied with-
out any changes. For further case specific optimisations, the
WCF approach can be controlled in detail by adjusting the
parameter settings and thresholds.

4. EVALUATION
In this section, we present results of an extensive evalu-

ation of our WCF approach based on real-world scenarios.
Due to the space constraints, we focus on presenting a se-
lected experiment focusing a forecast accuracy comparison
and an exemplary case study where the forecast results are
interpreted for proactive resource provisioning. In general,
real-world WIB traces are likely to exhibit strong seasonal
patterns with daily periods due to the fact that the users
of many software services are humans. The daily seasonal
patterns are possibly overlaid by patterns of a longer periods
such as weeks or months. Depending on the monitoring pre-
cision, a certain noise level is normally observed, but can be
reduced by aggregation of monitoring intervals or smoothing
techniques as discussed in Section 3.4. Deterministic bursts
within a WIB trace are often induced by planned batch tasks
(for example in transaction processing systems). In addition,
a WIB trace can exhibit non-deterministic bursts that can-
not be foreseen by any time series analysis technique due to
system extrinsic influences. For the evaluation of the WCF
approach we used multiple real-world WIB traces with dif-
ferent characteristics representing different types of work-
loads. The results presented in this paper are based on the
following two WIB traces:

(i) Wikipedia Germany Page Requests: The hourly num-
ber of page requests at the webpage of Wikipedia Germany
has been extracted from the publicly available server logs4

for October 2011.
(ii) CICS transaction processing monitoring data was pro-

vided by IBM of an real-world deployment of an IBM z10
mainframe server. The data reports the number of started
transactions during one week from Monday to Sunday in 30
minute windows.

4http://dumps.wikimedia.org/other/pagecounts-raw/

4.1 Exemplary Scenario
In the presented exemplary scenario, the WCF system

uses forecasting methods from all four overhead groups and
is compared to the fixed use of the Extended Exponential
Smoothing (ETS) method. Additionally, the Naive fore-
casting method (which is equivalent to system monitoring
without forecasting) is compared to the other forecasting
methods to quantify and illustrate the benefit of applying
forecasting methods against just monitoring the request ar-
rival rates. The individual forecasting methods have been
executed with identical exemplary forecast objectives on the
same input data and are therefore reproducible. The fore-
cast results are provided continuously over the experiment
duration, which means that at the end of an experiment
there is for every observed request arrival rate a correspond-
ing forecast mean value with a confidence interval. This al-
lows to evaluate whether the WCF system successfully clas-
sifies the WIB. A successful classification would mean that
the forecasting method that delivers the highest accuracy
for a particular forecasting interval is selected by the WCF
system. To quantify the forecast result accuracy, a relative
error is calculated for every individual forecast mean value:

relativeErrort = |forecastV aluet−observedArrivalRatet|
observedArrivalRatet

.
The distributions of these relative errors are illustrated us-
ing cumulative histograms which have inclusive error classes
on the x-axis and the corresponding percentage of all fore-
cast points on the y-axis. In other words, an [x, y] tuple
expresses that y percent of the forecast points have a rela-
tive error between 0% and x%. Accordingly, given that the
constant line y = 100% represents the hypothetical optimal
error distribution, in each case the topmost line represents
the best case of the compared alternatives with the lowest
error. We chose to illustrate the error distribution using cu-
mulative histograms to obtain monotone discrete functions
of the error distribution resulting in less intersections and
therefore in a clearer illustration of the data. To improve
readability, the histograms are not drawn using bars but sim-
ple lines connecting the individual [x, y] tuples. In addition,
statistical key indices like the arithmetic mean, the median
and the quartiles as well as the maximum were computed
to enable direct comparison of the relative error distribu-
tions and rank the forecasting methods according to their
achieved forecast accuracy. Finally, directed paired t-tests
from common statistics were applied to ensure the statis-
tical significance of the observed differences in the forecast
accuracy of the different forecasting methods.

This experiment compares the forecast accuracy of the
WCF approach with the ETS method and the Naive method
during a learning process which means that at the beginning
there is no historical data available to the individual fore-
casting methods that are compared. Concerning the fore-
casting objectives, the forecast horizon (in this scenario iden-
tical to the forecasting frequency) for all forecasting methods
is configured to increase stepwise as shown in Table 2. The
maximum overhead group is set to 4 for an unrestricted set
of forecasting methods. The confidence level is set to 95%,
but not further interpreted in this scenario.

The cumulative error distribution for each of the meth-
ods are shown in Figure 5 as well as in Figure 6 which
demonstrate that the WCF method achieves significantly
better forecast accuracy compared to ETS and Naive. ETS
can only partially achieve slightly better forecast accuracy
than the Naive method, however, it induces processing over-
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Figure 4: Exemplary Scenario: Comparison Chart of WCF and ETS

Table 2: Exemplary Scenario

Experiment Focus Comparison of unrestricted WCF
to static ETS and Naive

Forecasting Methods WCF(1-4), ETS(3), Naive(1)
(overhead group)
Input Data CICS transactions, Monday to Friday,
WIB trace 240 values in transactions per 30 minutes,

frequency = 48,
5 periods as days

Forecast Horizon (h) h = 1 for 1st half period,
(= Forecasting Frequency) h = 2 until 3rd period complete,

h = 12 for 4th and 5th period

heads of 715 ms per forecasting method execution compared
to 45 ms for the Naive method (computation of the confi-
dence intervals). The WCF method has an average process-
ing overhead of 61 ms during the first three periods of the
WIB trace. For the fourth and fifth period (Thursday and
Friday), when forecasting methods of the overhead group
4 are selected, WCF’s processing overhead per forecasting
method execution is on average 13.1 seconds. The forecast
mean values of the individual methods and the respective
actual observed request arrival rates in the course of time
are plotted in Figure 4. In this chart it is visible that the
ETS method forecast values have several bursts during the
first three periods and therefore do not remain as close to
the actual observed values as the WCF forecast values do.
During the last eight forecast executions the WCF approach
successfully detects the daily pattern early enough to achieve
better results than ETS.

The WCF approach shows the lowest median error value
of 20.7% and the lowest mean error value of 47.4%. In addi-
tion, WCF has a significantly smaller maximum error value.
Though the ETS method is a sophisticated procedure on its
own, the results of the presented exemplary scenario demon-
strate that the application of ETS on its own leads to poor

5% 10% 15% 20% 25% 30% 35% 40% 45% 50% 55% 60% 65% 70% 75% 80% 85% 90% 95% 100% >

Naive 10% 19% 23% 28% 34% 41% 46% 49% 51% 56% 59% 62% 67% 68% 69% 71% 79% 80% 85% 87% 100%

ETS 12% 19% 30% 36% 43% 46% 50% 53% 56% 61% 63% 66% 71% 73% 74% 75% 76% 79% 79% 81% 100%

WCF 13% 25% 34% 46% 56% 64% 66% 68% 70% 72% 76% 79% 82% 82% 83% 86% 88% 89% 90% 91% 100%
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Figure 5: Exemplary Results: Cumulative Error
Distribution of WCF, ETS and Naive

forecast accuracy with average errors almost as high as for
the Naive method and even higher maximal errors.

4.2 Case Study
In this section, we present a case study demonstrating

how the proposed WCF method can be successfully used for
proactive online resource provisioning. WCF offers a higher
degree of flexibility due to the spectrum of integrated fore-
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Figure 6: Exemplary Results: Box & Whisker Plots
of the Error Distributions
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Figure 7: Case Study Chart: 21 Days Wikipedia Page Requests, WCF4 approach

cast methods. None of these forecasting methods can offer
this degrees of flexibility on their own. For this case study
scenario, there is no historic knowledge available at the be-
ginning and the WCF has to adapt to this and wait for the
first three periods (Monday, Tuesday, Wednesday) until fore-
casting methods of the overhead group 4 can be applied. For
an arrival rate higher than a given threshold, the SLA of the
average response time is violated. We assume that the un-
derlying system of the analyzed workload intensity behavior
is linearly scalable from zero to three server instances. This
assumption implies a constant average resource demand per
request for all system configurations. Furthermore we as-
sume the presence of a resource provisioning system that
reacts on observed SLA violations as well as on forecast re-
sults. For an arrival rate lower than a given threshold, the
running server instances are not efficiently used and there-
fore one of them is shut down or put in stand by mode. In
this scenario, the WCF system provides forecast mean values
and confidence intervals to the resource provisioning system
which then can proactively add or remove server instances
at that point in time, when the resource or server is needed,
in addition to solely reacting on SLA violations. Details on
the WCF configuration for this case study scenario are given
in Table 3.

In Figure 7, the WCF forecast values are plotted together
with the corresponding confidence intervals and the actual
observed workload intensities. The two dotted lines repre-
sent the given thresholds that define when a server instance
needs to be started or shut down. The upper threshold is
placed in a way that it is not reached constantly in every
daily seasonal period (for example not on the weekends).
The additions or removals of server instances are triggered
either in a reactive manner after an SLA violation or in a

Table 3: Case Study Scenario

Forecast Strategy WCF(1-4)
(overhead group)
Input Data Wikipedia Germany, 3 weeks,
WIB trace 504 values in page requests per hour,

frequency = 24,
21 periods as days

Forecast Horizon h = 1 for 1st half period
(= Forecasting Frequency) h = 3 until 3rd period is complete
(number of forecast points (h)) h = 12 from 4th on
Confidence Level 80 %

proactive fashion anticipating the points in time when SLA
violations would occur. It can be seen that SLA violations
cannot be forecast reliably in the first three daily periods.
For the following daily periods, SLA violations can be cor-
rectly anticipated in the majority of cases. Only when the
amplitude of the daily pattern changes, for example before
and after weekends, the forecast mean values deliver false
positives or do not anticipate the need for additional com-
puting resources on time. To obtain the results summarized

Table 4: Case Study: SLA Violations Summary
Comparison Reactive vs. proactive WCF based

provisioning of server instances
Reactive 76 SLA violations
Proactive 42 SLA violations correctly anticipated
(WCF based) and 15 more nearly correctly

6 cases of false positives
13 cases of false negatives (not detected)



in Table 4, we counted correct, incorrect and nearly correct
forecasts for all threshold crossings of the real workload. In
the worst case 34 and in the best case 19 SLA violations
occur when using the proactive approach based on WCF
compared to 76 SLA violations in the reactive case. 17% of
SLA violations were not anticipated by the proactive WCF-
based approach in addition to 8% reported false positives.

4.3 Result Interpretation
As part of our comprehensive evaluation, we considered a

number of different scenarios under different workloads with
different forecasting objectives and different respective WCF
configurations. The experiment results show that the WCF
system is able to sensitively select appropriate forecasting
methods for particular contexts thereby improving the over-
all forecast accuracy significantly and reducing the number
of outliers as compared to individual forecasting methods
applied on their own. In the presented exemplary scenario,
WCF achieved an improvement in forecast accuracy on av-
erage by 37%. As demonstrated in the case study scenario,
the interpretation of WCF forecast results by proactive re-
source provisioning reduces the number of SLA violations
by between 55% to 75%. In addition, our proposed self-
adaptive WCF approach supports the system users to select
a forecasting method according to their forecasting objec-
tives. Especially at the beginning of a WIB’s lifetime, when
no or few historical data is available, a static decision made
by a user would not fit for the WIB’s lifetime. With its dy-
namic design and the flexibility to react on changes in the
WIB, the WCF system is able to adapt to such changes,
thereby increasing the overall accuracy of the forecast re-
sults. Our WCF system enables online and continuous fore-
cast processing with controllable computational overheads.
We achieve this by scheduling forecasting method execu-
tions and WIB classifications in configurable periods. In all
experiments, the processing times of all forecasting meth-
ods remained within the boundaries specified by their cor-
responding overhead group in such a way that the forecast
results are available before their corresponding request ar-
rival rates are monitored. The latter is crucial especially
for the execution of forecasting methods at a high frequency
with short horizons.

For a WIB with strong daily seasonal pattern and high
amplitude variance due to known calendar effects, the fore-
cast accuracy might be strongly improved by splitting this
WIB into two separate time series: regular working days in
the first and weekends and public holidays in the second.
This can reduce the impact of the possibly strong overlay
of weekly patterns. As part of our future work, we plan to
introduce support for such time series splittings as well as
for the selection of the data aggregation level for varying
forecasting objectives. This can be achieved by a realisation
of an intelligent filter applied to the monitoring data before
it is provided to the WCF system in form of time series.

5. RELATED WORK
We divide related work into the following three groups:

(i) The first group of related work has its focus on evaluating
forecasting methods applied to either workload related data
or performance monitoring data. (ii) In the second group
of related work we consider approaches for workload fore-
casting that are not based on the methods of the time series
analysis, as opposed to our proposed WCF approach.

(iii) In the third group of related work we cover research
that has its focus on approaches for proactive resource pro-
visioning using tailored forecasting methods.

(i) In 2004, Bennani and Menascé have published their re-
search results of an robustness assessment on self-managing
computer systems under highly variable workloads [4]. They
come to the conclusion that proactive resource management
improves a system’s robustness under highly variable work-
loads. Furthermore, the authors compare three different
trend interpolating forecasting methods (polynomial inter-
polation, weighted moving averages and exponential smooth-
ing) that have been introduced as means for workload fore-
casting in [24]. Bennani and Menascé propose to select the
forecasting methods according to the lowest R2 error as ac-
curacy feedback. Still, the focus of this work is more on the
potentials of proactive resource provisioning and the evalu-
ation of forecasting methods is limited to basic trend inter-
polation methods without any pattern recognition for sea-
sonal time series components. In [11], Frotscher assesses the
capabilities to predict response times by evaluating the fore-
cast results provided by two concrete ARIMA models with-
out seasonality, simple exponential smoothing (SES) and the
Holt-Winters approach as a special case of the extended ex-
ponential smoothing (ETS). His evaluation is based on gen-
erated and therefore possibly unrealistic times series data.
The author admits that the spectrum of forecasting meth-
ods offered by time series analysis is not covered and he is
critical about the capability to predict response times of the
evaluated methods as their strengths in trend extrapolation
does not suit to typically quickly alternating response times.

(ii) In [21] and a related research paper [5], the authors
propose to use neuronal nets and machine learning approa-
ches for demand prediction. This demand predictions are
meant to be used by an operating system’s resource man-
ager. Goldszmidt, Cohen and Powers use an approach based
on Bayesian learning mechanisms for feature selection and
short term performance forecasts described in [13]. Short-
coming of these approaches is that the training of the ap-
plied neuronal nets on a certain pattern need to be com-
pleted before the nets can provide pattern based forecasts.
This stepwise procedure limits the flexibility and implies the
availability of high amounts of monitoring data for the min-
ing of possibly observable patterns.

(iii) The authors of [12] use a tailored method to decom-
pose a time series into its dominating frequencies using a
Fourier transformation and then apply trend interpolation
techniques to finally generate a synthetic workload as fore-
cast. Similarly in [14], Fourier analysis techniques are ap-
plied to predict future arrival rates. In [9], the authors base
their forecast technique on pattern matching methods to de-
tect non-periodic repetitive behavior of cloud clients. The
research of Bobroff, Kochut and Beaty presented in [7] has
its focus on the dynamic placement of virtual machines, but
workload forecasting is covered by the application of static
ARMA processes for demand prediction. In [20], an ap-
proach is proposed and evaluated that classifies the gradi-
ents of a sliding window as a trend estimation on which
the resource provisioning decision are then based. The au-
thors Grunske, Aymin and Colman of [3, 2] focus on QoS
forecasting such as response time and propose an automated
and scenario specific enhanced forecast approach that uses a
combination of ARMA and GARCH stochastic process mod-
eling frameworks for frequency based representation of time



series data. This way, the authors achieve improved fore-
cast accuracy for QoS attributes that typically have quickly
alternating values. In [25], different methods of the time se-
ries analysis and Bayesian learning approaches are applied.
The authors propose to periodically selected a forecasting
method using forecast accuracy metrics. But it is not fur-
ther evaluated how significantly this feedback improves the
overall forecast accuracy. No information is given on how
the user’s forecast objectives are captured and on how the
computational overheads can be controlled. In contrast to
our research, the authors concentrate on the prediction of
resource consumptions.

However, besides of [25], a common limitation of the above
mentioned approaches is their focus on individual methods
that are optimised or designed to cover a subset of typical
situations. Therefore, they are not able to cover all pos-
sible situations adequately as it could be achieved by an
intelligent combination of the innovation state space frame-
works (ETS and tBATS) and the auto-regressive integrated
moving averages (ARIMA) framework for stochastic process
modeling. Furthermore, in all mentioned approaches besides
in [14], the resource utilisation or average response times
are monitored and taken as an indirect metric for the recent
workload intensity. But these QoS metrics are indirectly in-
fluenced by the changing amounts of provisioned resources
and several other factors. The forecasting computations are
then based on these values that bypass resource demand esti-
mations per request and interleave by principle performance
relevant characteristics of the software system as they can
be captured in a system performance model.

6. CONCLUSION
Today’s resource managing systems of virtualized comput-

ing environments often work solely reactive using threshold-
based rules, not leveraging the potential of proactive re-
source provisioning to improve a system performance while
maintaining resource efficiency. The results of our research is
a step towards exploiting this potential by computing con-
tinuous and reliable forecasts of request arrival rates with
appropriate accuracy.

The basis of our approach was the identification of work-
load intensity behavior specific characteristics and metrics
that quantify them. Moreover, we presented a survey on the
strengths, weaknesses and requirements of existing forecast
methods from the time series analysis and ways to estimate
and evaluate the forecast accuracy of individual forecast ex-
ecutions. As the major contribution of this paper, we pre-
sented an approach classifying workload intensity behaviors
to dynamically select appropriate forecasting methods. This
has been achieved by using direct feedback mechanisms that
evaluate and compare the recent accuracy of different fore-
casting methods. They have been incorporated into a deci-
sion tree that considers user specified forecasting objectives.
This enables online application and processing of continu-
ous forecast results for a variable number of different WIBs.
Finally, we evaluated an implementation of our proposed ap-
proach in different experiments and an extensive case study
based on different real-world workload traces. Our exper-
iments demonstrate that the relative error of the forecast
points in relation to the monitored request arrival rates is
significantly reduced as in the exemplary scenario by 37%
on average compared to the results of a static application of
the Extended Exponential Smoothing (ETS) method. More

importantly, the major benefit of our approach has been
demonstrated in an extensive case study, showing how it is
possible to prevent between 55% and 75% of SLA violations.

6.1 Future Work
We plan to extend the functionality of the WCF system

to apply it in further areas. One extension is the combina-
tion of the WCF system with an intelligent filter that helps
a system user to fit the aggregation level of the monitored
arrival rates for specific forecasting objectives, e.g, continu-
ous short term forecasts for proactive resource allocation or
manually triggered long term forecasts for server capacity
planning. For divergent forecasting objectives, such a fil-
ter would multiplex an input stream of monitoring data and
provide it as individual WIBs in different aggregation levels
at the data input interface of the WCF system. A second
WCF system application area will be a combination with an
anomaly detection system like ΘPAD as outlined in [6] at
the data output interface of the WCF system. Such a sys-
tem can compute continuous anomaly ratings by comparing
the WCF system’s forecast results with the monitored data.
The anomaly rating can serve to analyze the workload in-
tensity behavior for sudden and unforeseen changes and in
addition as an reliability indicator of the WCF system’s re-
cent forecast results.

Ultimately, we will connect the WCF system’s interface
(data input) to a monitoring framework like Kieker [30] to
continuously provide online forecast results. These forecast
results can then be used as input for self-adaptive resource
management approaches like [15], giving them the ability
to proactively adapt the system to changes in the work-
load intensity. This combination of workload forecasting and
model-based system reconfiguration is an important step to-
wards the realization of self-aware systems [22].
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