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Abstract

Context: Recent developments in modern IT systems including internet of things, edge/fog computing, or cyber-
physical systems support intelligent and seamless interaction between users and systems. This requires a reaction to
changes in their environment or the system. Adaptive systems provide mechanisms for these reactions.

Objective: To implement this functionality, several approaches for the planning of adaptations exist that rely on
rules, utility functions, or advanced techniques, such as machine learning. As the adaptation space with possible
options is often extensively huge, optimization techniques might support efficient determination of the adaptation
space and identify the system’s optimal configuration. With this paper, we provide a systematic review of adaptation
planning as the optimization target.

Method: In this paper, we review which optimization techniques are applied for adaptation planning in adaptive
systems using a systematic literature review approach.

Results: We reviewed 115 paper in detail out of an initial search set of 9,588 papers. Our analysis reveals that
learning techniques and genetic algorithms are by far dominant; in total, heuristics (anytime learning) are more fre-
quently applied as exact algorithms. We observed that around 57% of the approaches target multi-objectiveness and
around 30% integrate distributed optimization. As last dimension, we focused on situation-awareness, which is only
supported by two approaches.

Conclusion: In this paper, we provide an overview of the current state of the art of approaches that rely on
optimization techniques for planning adaptations in adaptive systems and further derive open research challenges, in
particular regarding the integration of distributed optimization and situation-awareness.
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1. Introduction1

Cyber-physical systems, industrial internet/industry 4.0, internet of things, smart city, smart grid, and self-driving2

vehicles are only a few examples showing that the world is transitioning towards integrating adaptive systems into3

our everyday life. Those systems inherently require interacting with the environment and reacting autonomously to4

changes in the environment for fulfilling service-level agreements or maintaining a sufficient Quality of Service level.5

Therefore, those systems must be adaptive.6

Self-adaptive (software) systems are able to change their behavior at runtime as a response to changes in their7

environment or in the system itself [1, 2]. Those systems can work in dynamic and uncertain environments. They are8

often divided into a managed subsystem, i.e., software and hardware resources that interact with the users or back-9

end systems, and a managing subsystem, which is able to control and adapt the managed subsystem. As a de facto10

standard, the managing subsystem implements the Monitor-Analyze-Plan-Execution (MAPE) system model [3] for11
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structuring the management functionality into (i) monitoring the environment and the system resources, (ii) analyzing12

if an adaptation is required, (iii) planning the necessary adaptation actions, and (iv) executing those actions.13

However, the planning process can be complex due to several circumstances. First, a large configuration space of14

the parameters of self-adaptive systems [4] complicates describing and testing all possible adaptation options. Second,15

an unpredictable number of possible environmental situations prohibits testing all adaptation options at design time16

and necessitates planning at run time to identify an appropriate configuration for a given situation dynamically [5].17

Classical, non-iterative machine learning techniques (e.g., for classification or clustering) can only support this insuf-18

ficiently because they require a large training set. Further, learning on-the-fly might decrease the availability of the19

systems because this includes that the systems come into a situation where adaptation is required because the learner20

can only learn from situations. As a result, adaptation planning must rely on simple models that capture a system’s21

adjustable input parameters and possible observations (output parameters). Following this idea, we proposed in [6]22

planning as optimization: the use of optimization strategies to discover optimal system configurations.23

This paper aims to provide a systematic overview and analysis of the current state of the art of planning as op-24

timization, i.e., the application of mathematical, statistical, or nature-inspired optimization techniques for adaptation25

planning. First, this work provides a general overview of the used techniques. Second, the environment of self-26

adaptive systems might change frequently requiring anytime learning supported techniques [7], i.e., techniques that27

constantly provide a usable solution. Hence, anytime algorithms which are able to achieve this in case of optimiza-28

tion [8] should be applied. Third, adaptive systems are often composed of several sub-systems, as most adaptive29

systems at least separate the adaptation logic from the managed elements as this improves maintainability [9]. Addi-30

tionally, adaptive systems are often highly distributed [10] and have multiple stakeholders with (potentially conflict-31

ing) objectives. This might demand integrating distributed optimization techniques in case that the adaptation control32

cannot be centralized. Lastly, the “No-Free-Lunch-Theorem” [11] describes that there is no general optimization ap-33

proach that performs best in all scenarios; rather the pattern of data highly influences the choice of the optimization34

technique. Based on this theorem, we showed in our previous works [6, 12] the necessity to provide a situation-aware35

change of the used adaptation techniques, as different situations might have other characteristic data patterns. Ac-36

cordingly, we discuss the current integration of situation-awareness. In summary, this paper contributes to the body37

of research by addressing:38

• Overview of the application of optimization techniques for adaptation planning in adaptive systems.39

• Analysis of anytime learning supported applications for adaptation planning in adaptive systems.40

• Analysis of multi-objectiveness supported applications for adaptation planning in adaptive systems.41

• Analysis of distributed optimization supported applications for adaptation planning in adaptive systems.42

• Discussion of situation-awareness support for adaptation planning in adaptive systems.43

The remainder of this paper is structure as follows. Section 2 explains several fundamentals related to optimization44

in general and the specifics of self-adaptive systems. Section 3 presents the methodological approach for the literature45

review. Subsequently, Section 4 provides an overview of the identified optimization techniques for answering research46

question RQ1. In Section 5, we discuss the results of the literature review with respect to anytime learning [7], multi-47

objectiveness, distributed optimization, and situation-awareness for answering the research questions RQ2, RQ3,48

RQ4, and RQ5. Further, Section 6 discusses threats to validity. We distinguish our work against other surveys in the49

field in Section 7. Finally, Section 8 concludes this paper with a summary of our results.50

2. Fundamentals51

In the following section, we provide a short overview of the terminology and selected methods for solving op-52

timization problems relevant for the remainder of this work. Furthermore, we provide a definition of self-adaptive53

(software) systems as the targeted system domain for this study.54

2.1. General Terminology of Optimization Problems55

In an optimization problem, we aim to find an optimal system state x∗ using a set of influenceable variables [13].56

These variables x1, x2, ..., xn are composed into the design vector X. The set of all possible values of X is called57

design space D, while the subset of D, where we are looking for an optimal configuration, is called search space. We58
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determine the quality of a state X using an objective function f (X) : D→ R. Depending on the actual formulation of59

the problem, a state x∗ is globally (locally) optimal if f (x∗) is a global (local) maximum or minimum of f . Note that if60

x∗ is a maximum of f , then x∗ is a minimum of − f so that a maximization problem is transformed into a minimization61

problem. For practical reasons, a minimum is usually targeted. We can state an optimization problem as:62

Find X =


x1
x2
...

xn

 which minimizes f (X) (1)

The problem denoted in (1) is called an unconstrained optimization problem. In contrast, a constrained opti-63

mization problem is present if the design variables have to fulfill several constraints g1(X), g2(X), ..., gm(X). This is64

often the case in practical-oriented applications. Additionally, an optimization problem with more than one objective65

function or an objective function which combines several objectives is called a multi-objective optimization problem.66

2.2. Self-Adaptive Systems and Related Concepts67

In this paper, we mainly target the domain of self-adaptive (software) systems. However, several closely related68

concepts provide similar approaches. Hence, we also included those in the literature review. In the following, we69

present the basics of those different research streams.70

2.2.1. Self-Adaptive Systems71

The literature provides several definitions for the term self-adaptive (software) systems [1, 14, 15, 16, 17] as well72

as different terms that are used interchangeably: Dynamically Adaptive Systems (e.g., [18]), Autonomic Systems73

(e.g., [16]), Self-managing Systems (e.g., [16]), Self-adaptive Systems (e.g., [1]), or Self-adaptive Software Systems74

(e.g., [15]). This paper consistently uses the term self-adaptive system and follows the definition of the first Dagstuhl75

Seminar on Software Engineering for Self-Adaptive Systems:76

77

[Self-adaptive systems] are able to adjust their behaviour in response to their perception of the environ-78

ment and the system itself. The ”self” prefix indicates that the systems decide autonomously (i.e., without79

or with minimal interference) how to adapt or organize to accommodate changes in their contexts and80

environments. ([1, p. 1];[17, p. 49])81

From an architectural point of view (see Figure 1), a self-adaptive system is composed of two parts [1, 19]: a82

managing system – the adaptation logic – that controls the second part, the managed resources, a set of software83

and hardware resources, e.g., servers, laptops, smartphones, robots, or unmanned vehicles. Therefore, the adaptation84

logic observes the environment and the managed resources, analyzes the need for adaptation, plans such adaptations85

and controls the execution of the adaptation. These four steps (also called MAPE or MAPE control feedback loop)86

may share and/or exploit the knowledge (becoming MAPE-K) built from the monitored environment, the analyzed87

information, the planned changes, and the result of the execution of the changes. This knowledge may grow in88

time, being enriched with new information about the environment and the applied adaptations. The MAPE control89

feedback loop is the de facto standard for the design of the adaptation logic for self-adaptive systems [16]. Other90

authors propose similar feedback structures, such as the sense-plan-act control [20], the autonomic control loop [21],91

or the observer/controller architecture [22]. The authors of [2] discuss properties of self-adaptation that influence the92

implementation of self-adaptive systems.93

2.2.2. Related Research Streams94

Other research streams focus on systems with similar properties as self-adaptive systems. The most related concept95

is Autonomic Computing [3]. Researchers in the Autonomic Computing domain integrate principles from biology,96

mainly from the autonomous nervous system, to equip systems with autonomic capabilities. The MAPE control loop97

arose in the Autonomic Computing area.98
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Figure 1: A conceptual model of a self-adaptive system.

The authors of [23] define self-aware computing systems as systems that (i) reason on the knowledge of self-99

awareness and (ii) act accordingly. This makes their definition of self-aware computing systems identical to this100

paper’s view on self-adaptive systems. One has to distinguish this concept from self-awareness as defined in [16]:101

There, self-awareness – capturing knowledge on itself – is seen as underlying system property for self-adaptation, i.e.,102

acting on self-awareness and context-awareness.103

Babaoglu and Shrobe [24] see self-adaptive systems as top-down systems with central control, whereas self-104

organizing systems are dedicated units that organize themselves bottom-up without a central instance. However,105

reviewing the current literature of self-adaptive systems shows that self-adaptive systems offer both centralized and106

decentralized system control [10, 2]. Consequently, we do not distinguish self-organizing systems and self-adaptive107

systems in this work as a self-organizing system can be composed of self-adaptive systems.108

Organic Computing is associated with systems that use bio-inspired concepts to implement organic behavior [25].109

Similar to self-adaptive systems, Organic Computing systems try to achieve self-* properties. In contrast, they fo-110

cus on (i) the integration of principles from nature-inspired computing, (ii) the emergence of systems for shifting111

design activities to runtime, and (iii) the human-in-the-loop as a first-class entity rather than an element to avoid.112

Pervasive/Ubiquitous Computing [26] aims at the seamless integration of information technology and everyday de-113

vices to support humans by smart information technology. These systems are often context-aware (i.e., they react114

to changes in their environment; similar to situation-awareness) and adaptive. However, they target solutions in the115

Internet-of-Things domain rather than generic systems.116

Collective Adaptive Systems (CAS) integrate evolutionary self-organization (i.e., controllability of long-term au-117

tonomy), driven forces behind evolution (i.e., coping with the complexity of “natural chemistry”), developmental118

drift (i.e., incorporating artificial sociality), and long-term homeostasis self-identification (i.e., the emergence of self-119

organization) [27]. As being a similar research stream, we also included CAS as well as the domain of multi-agent120

systems in our review.121

122

3. Methodology123

Our methodology for the survey adapts some methods from the guidelines of Webster and Watson [28] for a124

structured literature review and Petersen et al. [29] for systematic mapping studies. Our research is based on the steps125

shown in Figure 2. In the beginning, we framed our aim in the form of research questions and identified relevant126

venues. We defined exclusion and inclusion criteria and performed keyword-based searches for filtering the articles127

based on their titles and abstracts. After identifying the set of relevant papers, descriptions and properties of the128

optimization techniques as well as bibliography data have been extracted. In the following, we describe these steps.129

3.1. Definition of Research Questions130

The primary aim of this work is to provide an overview of optimization techniques in the context of adaptive131

systems. According to this goal, we derived our research questions. To get a picture of used optimization techniques,132

we divided the optimization approaches into categories adapted from [13] within research question RQ1. Further133

anytime learning techniques [7] (e.g., using anytime algorithms [8]), provide a solution for adaptation planning using134
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Figure 2: Overview of the methodology for the classification in this survey. An initial search and preliminary selection of venues is followed by an
iterative process.

intermediate solutions of the optimizer in contrast to exact algorithms, such as Integer Programming, which only135

provide a final solution. Those intermediate solutions can fasten the reaction to changes as adaptations can be applied136

faster compared to exact algorithms which include waiting for the final solution. Because of the dynamics of the137

environment and system composition of self-adaptive systems, we postulate that anytime learning might be benefi-138

cial as research question (RQ2). As self-adaptive systems, especially self-organizing systems such as self-organizing139

networks or autonomous vehicles that adjust their behavior, might be composed of several different subsystems with140

many stakeholders, multi-objective scenarios with even potentially conflicting objectives are feasible. Hence, with141

research question RQ3 we study to what extent multi-objective approaches are present. Additionally, adaptive sys-142

tems are often distributed [10]. In combination with the mentioned various stakeholders / users, this might demand143

for the application of distributed optimization techniques in case that the adaptation control cannot be centralized.144

Accordingly, distributed optimization techniques might support the decision making in distributed adaptive systems.145

Hence, we formulated research question RQ4. Lastly, the “No-Free-Lunch-Theorem” [11] states that there is no gen-146

eral optimization approach that outperforms all other techniques in all possible use cases because the pattern of data147

determine the performance of an optimization technique. Based on this theorem, we have shown in [6] and [12] that148

a meta-adaptation of the optimization technique used for adaptation planning might be beneficial as different system149

situation reflect the required for different optimizers due to the different data patterns in a specific situation. Accord-150

ingly, we added this circumstance in research question RQ5. These considerations lead to the following research151

questions:152

153

RQ1 - Which optimization techniques are applied for adaptation planning in adaptive systems?154

RQ2 - To what extent is anytime learning supported?155

RQ3 - To what extent is multi-objectiveness supported?156

RQ4 - To what extent are distributed optimization techniques integrated?157

RQ5 - Does the used techniques for planning as optimization support situation-awareness?158

3.2. Selection Method159

We investigate how optimization techniques can be used for adaptation planning in self-adaptive systems and re-160

lated concepts. As the terms “optimization”, “optimize”, “adaptation planning”, and similar terms are often used in161

the context of self-adaptive system research, we avoided a fully open search term-based literature search as this would162

result in misleading result (e.g., all papers using self-optimize or self-optimization would be included). Hence, we163

used a focused, systematic mapping study. In the following, we describe the selection method for building our set of164

relevant papers. The process is similar to the one used in [30], in which the authors studied the application of learning165

in collective adaptive systems.166

167

(1) Identification of Relevant Sources. To identify relevant conferences and journals, we performed some initial168

searches and consolidated experts in the field of study. The selected venues are shown in Table 1. Those include the169
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conferences AMAAS, ASE, FSE, ICAC, SASO, ACSOS, and SEAMS as well as the journals JAAMAS, IEEE Soft-170

ware, TAAS, TOSEM, and TSE. We focus on reviewing advanced and high-quality studies published in the leading171

conferences and journals in the self-adaptive systems domains and closely related research communities. Addition-172

ally, we included top venues researching autonomous and multi-agent systems (e.g., AAMAS, JAAMAS). However,173

we do not exhaustively search the entire multi-agent system domain. Accordingly, we used the databases DBLP,174

IEEExplore, ACM DL, and SpringerLink to access the publications of the venues. We analyzed papers from January175

2004, the year in which the International Conference on Autonomic Computing (ICAC) took place the first time, to176

December 2020. We only analyzed full research papers or articles for this survey and excluded texts such as editorials,177

demonstrations, short papers, workshop contributions, letters, or posters because those often report work-in-progress.178

Table 2 shows the initial number of articles after this filtering process.179

180

Table 1: Selected Venues for the Survey.

Type Acronym Full Name

Conference AAMAS International Conference of Autonomous Agents and Multi-Agent Systems
ASE International Conference on Automated Software Engineering
FSE ACM SIGSOFT International Symposium on the Foundations of Software Engineering
ICAC IEEE International Conference on Autonomic Computing
SASO IEEE International Conference on Self-Adaptive and Self-Organizing Systems
ACSOS IEEE International Conference on Autonomic Computing and Self-Organizing Systems
SEAMS ICSE Symposium on Software Engineering for Adaptive and Self-Managing Systems

Journal JAAMAS Springer Autonomous Agents and Multi-Agent Systems
Softw. IEEE Software
TAAS ACM Transactions on Autonomous and Adaptive Systems
TOSEM ACM Transactions on Software Engineering and Methodology
TSE IEEE Transactions on Software Engineering

(2) Definition of Coarse-Grained Exclusion and Inclusion Criteria. First, a set of keywords was defined for an181

initial screening. This set was continuously updated with further relevant keywords found during this screening. The182

set contained two groups of keywords: The first group concerned the term “optimization” consisting of the keywords183

with prefixes optim-, maxim-, minim- and best-. The second group providing the relation to adaptive systems is cap-184

tured with prefixes including adapt-, self-, aware, transform- and autonom- among others, caused by the variety of185

terms. However, even if we detected no match with this second group of search targets, we included the paper in our186

analysis in case we observed a high match with the specified terms. Consequently, we excluded (i) papers without a187

hit of a keyword, (ii) works focusing on self-optimization or (iii) that did not explicitly address the adaptation planning.188

189

(3) Study Selection Procedure. Based on the mentioned criteria, we performed a rough filtering of the articles190

considering their titles, abstracts, and, if applicable, linked keywords. For each paper fitting the scope of the inclusion191

criteria, we conducted a full-text filtering. Two reviewers conducted the paper selection and analyzed the sampled192

studies to confirm their relevance. In case of doubt, advice from the other co-authors was taken into account.193

3.3. Analysis Method194

For each remaining article, we extracted the used optimization technique as well as the specific method/algorithm195

for planning as optimization in the adaptation planning step based on the categories for optimization techniques196

from [13]. These categories were convex programming as classic optimization technique; nonlinear programming197

in general and heuristic methods in particular as nonlinear optimization techniques; integer programming optimiza-198

tion techniques; stochastic programming and Markov processes as stochastic optimization techniques; and genetic199

algorithms and learning techniques as further optimization techniques. This information is used to answer research200

question RQ1 (see Section 4). Additionally, we extracted the following categories (see Section 5):201

• Anytime Algorithm (RQ2): Does an approach support anytime learning?202
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Table 2: Overview of analyzed and included publications per year and venue. Gray cells mean that the venue was not available. Note that in 2020
the gray cells indicate the ACSOS, which is a merge of ICAC and SASO and replaces them.

Year

Venue 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

AAMAS
273 130 250 126 254 260 163 125 282 140 167 166 146 160 194 193 194 3223

1 1 - 3 - - 2 1 2 - - 4 1 - - - 1 16

ASE
25 28 22 36 36 38 34 37 21 73 82 76 71 83 76 91 93 922

- - - - - - - - - - - - - 1 1 1 - 3

FSE
26 29 25 49 32 35 33 45 46 72 61 97 74 99 104 95 127 1049

- - - - - 1 1 1 - - - - 1 - - - - 4

ICAC
31 25 26 15 18 15 23 20 18 35 29 37 23 27 15 16 18 391

2 1 6 2 1 3 3 1 2 1 - 1 3 1 1 - 3 31

SASO
28 42 27 25 21 26 26 16 14 14 14 15 12 280

- - 3 2 1 1 1 - - 1 1 - 1 11

SEAMS
13 18 17 17 13 26 19 19 18 19 18 21 29 23 26 296

- - 1 1 - - - 2 1 1 2 2 2 1 2 15

JAAMAS
16 24 25 26 29 31 30 32 32 30 30 36 38 48 25 25 55 532

- 2 1 1 1 - - 3 2 1 - - 1 - - 1 2 15

Softw.
76 74 74 63 60 69 64 69 66 61 78 68 77 74 78 81 80 1212

- - - 1 - - - 1 - - - - - - - - - 2

TAAS
8 14 19 21 14 27 39 14 25 19 26 20 19 16 7 288
- - 1 1 1 - 1 2 - 1 1 2 1 2 - 13

TOSEM
10 12 12 15 20 13 13 18 18 35 44 22 16 12 23 23 31 337

- - - - - - - - - - - - - - 1 - - 1

TSE
71 73 58 53 52 51 49 48 80 95 63 67 60 60 58 58 62 1058

- - - - 1 - - 1 - 2 - - - - - - - 4

528 395 513 443 579 577 461 468 647 600 613 621 563 618 636 633 693 9588
3 4 7 7 5 9 9 9 8 9 1 7 10 7 6 6 8 115

• Single/Multi-objectiveness (RQ3): Does an approach support single- or multi-objectiveness?203

• Distributed Optimization (RQ4): Is the optimization technique distributed on several subsystems, i.e., for204

distributed adaptive systems?205

• Situation-awareness (RQ5): Is the approach situation-aware, i.e., is it possible to switch or adjust the opti-206

mization algorithm depending on the environment/system situation?207

3.4. Selected Studies208

As mentioned, we focus on seven conferences and five journals (see Table 1) as those provide high-quality pub-209

lications in the research field. The publication range spanned works from 2004 to 2020. In total, we analyzed 9,588210

publications, from which we included 115 after the application of the inclusion and exclusion criteria. From the211

selected publications, around 70% were originally published at conferences (see Figure 3). Having only very few212

articles in the main software engineering journals might be surprising at first. However, we think that this is not213

too surprising as those journals cover a broad range of topics besides adaptive systems engineering. In contrast, the214

conference are more focused to either adaptive systems or optimization procedures in general, which can explain the215

higher amount of relevant publications.216

4. Using Optimization in Self-adaptive Systems217

Many approaches apply optimization techniques in self-adaptive systems to generate new system configurations218

or adaptation plans, mainly within the planning procedure. To provide an overview of the applied techniques, we219

performed an analysis of these techniques based on approaches published since 2004 in highly rated conferences and220

journals related to the research communities of adaptive systems (see Table 1). The techniques were classified into a221
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Figure 3: Share of the publication type

set of previously defined categories and the resulting frequencies were compared answering the first research question:222

223

RQ1 - Which optimization techniques are applied for adaptation planning in adaptive systems?224

225

Depending on the types of the objective function, design variables, and constraints, multiple variants of opti-226

mization problems emerge. There is no known method which produces solutions for all those variants efficiently.227

In adaptive systems, we often have to deal with limited computational power and bounded reaction times. Thus, an228

optimization technique, which suits the application context and requirements, has to be found. As shown in Figure 4,229

we classified the techniques into 11 categories: Learning Techniques, Genetic Algorithms, Integer Programming,230

Markov Decision Process Planning, Greedy Algorithms, Heuristic Algorithms, Stochastic Optimization, Convex Op-231

timization, Metaheuristic Algorithms, Nonlinear Programming and Miscellaneous Approaches (Others), which could232

not be assigned to the categories previously mentioned.233

Next, we summarize the findings of the literature review w.r.t. the identified optimization techniques. The classifi-234

cation of optimization techniques is often not disjoint as many approaches use techniques from several categories. We235

classified them according to their primary technique used. Nevertheless, we assigned some publications in multiple236

categories because they were using several optimization techniques (e.g., [6]) or combining several of the mentioned237

techniques, such as [31], in which the authors proposed a hybrid approach combining Learning Techniques and238

Markov Decision Process Planning. In other publications, the optimization technique depends on the specific con-239

cerns targeted for planning or the system design integrates different optimization techniques on different layers of the240

adaption (e.g., for global versus local optimization) [32, 33, 34, 35]. Further, optimization techniques for adaptation241

planning are often influenced by dynamic environment handling theories as game theory [36], control theory [37], and242

graph theory [38]. A reason for this could be that adaptive systems have to react on changes in their environment. Ac-243

cordingly, those systems must take the influence of activities of other systems in the shared environment into account244

for an optimal adaptation decision. The mentioned dynamic environment handling theories supports this.245

Figure 4 provides an overview of the absolute frequency of papers per optimization technique. The investigations246

have shown that Learning Techniques and Genetic Algorithms are the most frequently used optimization techniques247

accounting for 19.5% and 17.9%, respectively, and as a result, the authors of this work conclude that these are the most248

important types of optimization techniques for adaptive systems. Further important techniques are Integer Program-249

ming (8.1%), Markov Decision Process Planning (8.1%), Greedy Algorithms (7.3%), Heuristic Algorithms (7.3%),250

Stochastic Optimization (7.3%), Convex Optimization (6.5%), Metaheuristic Algorithms (4.9%) and Nonlinear Pro-251

gramming (8.9%). Miscellaneous techniques that could not be assigned to one of those categories were summarized252

as “Others” accounting for 8.9%.253

Additionally, Figure 5 provides a detailed overview of optimization techniques in application domains. We ob-254

served that cloud computing (22.50%), web services (14.63%), multi-robot systems (10.83%), autonomous vehi-255

cles (8.33%), energy provision (6.67%), commerce (6.67%), and intelligent traffic management (5.83%) are the most256
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Figure 4: Results of the literature review – Frequency of optimization techniques found in 115 papers. As there were a few publications (namely [6,
31, 32, 33, 34, 35, 39, 40]) which we categorized into several techniques, the total number of counts is 123.

dominant applications areas. These areas are typical domains for adaptive systems due to their dynamic environments.257

Further, we clustered several less present applications: (i) energy provision includes smart grids (5.83%) and device258

power management (0.83%); (ii) commerce subsumes e-commerce (4.17%), a travel reservation system, and task259

allocations in supply chains and within social networks (0.83% each); (iii) health services composed of remote health260

services and regional emergency management+(1.67% each); (iv) security services represented by mobile application261

reconfiguration and security management (0.83% each); and (v) smart city includes smart cities in general and shared262

mobility (0.83% each). Further, some use cases have not been described in detail; hence, these approaches were263

counted as abstract domains. In [45], the authors present a solution for the optimization/coordination of adaptations264

in multi-agent systems; however, the authors do not describe a specific application. Additional, in three publications265

authors apply there approaches within service-oriented architecture, but also abstract service definition rather than a266

specific service-oriented system [42, 46, 47].267

However, it is not possible to determine or identify the over-proportional use of an optimization technique in a268

specific domain. Additionally, as the number of approaches is in general rather small and having a diverse distribution269

for the application domains we will discuss details of the application domains only for Learning Techniques (see270

Section 4.1) and Genetic Algorithms (see Section 4.2) and rather focus in this paper on an analysis of the details of271

the approaches for planning as optimization. In this section, we present the publications of these categories and name272

important fields of application and optimization targets. The first two subsections (Section 4.1 and Section 4.2) cover273

the most two relevant optimization techniques – Learning Techniques and Genetic Algorithms – including a more274

detailed description of the application domains, while Section 4.3 covers all other techniques.275

4.1. Learning Techniques276

Although machine learning is actually not an optimization technique, we include the Learning Technique ap-277

proaches Reinforcement Learning (RL) and Learning Classifier Systems (LCS) since those target optimization [48].278

For that reason, we observed that Learning Techniques are the most applied optimization techniques used for planning279

in adaptive systems (see Figure 4). Our analysis reveals that approximately 70% of the identified approaches that use280

learning-based optimization apply RL techniques. This seems not to be surprising, as those approaches can cope281

with the dynamics in the environment of adaptive systems due to their iterative nature. 5 approaches (approx. 22%)282

apply statistical / machine learning techniques, mainly artificial neural networks; 2 approaches (approx. 8%) use283

LCS. Still, one has to keep in mind, that we target in this paper planning as optimization for adaptation planning,284

not learning itself. We identified the presence of the following application domains in our literature review: cloud285

computing (30.8%), multi-robot systems (23.1%), intelligent traffic management (11.5%), web services (11.5%), e-286

commerce (7.7%), games (7.7%), intelligent workflow management (3.8%), and smart grids (3.8%). On the one hand,287

those are typical system domains for adaptive systems. On the other hand, the application of the mentioned learning288

techniques, especially RL, was often successfully applied in those domains. Reasons for that are that the domains can289

be easily simulated (e.g., gaming, traffic management, or robots) or those support a clear mapping of adjustments in290

the system to the resulting performance (e.g., cloud computing, web services, or e-commerce).291
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Figure 5: Results of the literature review – Mapping of optimization techniques vs. application domains found in 115 papers. As there were a few
publications (namely [6, 31, 32, 33, 34, 35, 39, 40]), which we assigned to several techniques, and some of the publications (namely [31, 41, 42,
43, 44]) applied their approaches in several domains, the total number of counts is 129.

RL methods, such as Q-Learning [49], are rather an universal optimization technique but suitable in adaptive sys-292

tems to achieve (near-)optimal control. The system learns optimal actions for each environment state using feedback293

and the action history. Convergence for this technique can be shown for many domains, but not for all real-world ap-294

plications [50]. The concept of Markov Decision Processes is a foundation for decision-making in adaptive systems.295

RL can be understood as a solution to problems modeled as such processes. Therefore, some RL approaches make use296

of Markov Decision Processes. Moreover, this theoretical framework can be extended to more practical cases using297

(Decentralized) Partially Observable Markov Decision Processes [51].298

As primary optimization targets, organization procedures in distributed systems (e.g., task allocation [52, 53] and299

coalition formation [34, 54, 55]), as well as the handling of environment changes [56, 57, 58], evolved. Distributed300

systems or applications are characterized by the fact that adaptations or performed actions influence the environment or301

surrounding systems. These effects are often hard to predict at design time. Hence, RL is suitable in such cases because302

runtime feedback for performed actions is used to derive future actions. For instance, Wang et al. [56] present an RL-303

based approach, how a service-oriented and adaptive web application can handle changes in the Quality of Service of304

connected services. More general machine learning approaches address the control of workload distribution [59] and305

fault detection and diagnosis in distributed systems [60].306

Examples for applying RL for planning and decision-making in adaptive systems are [36, 51, 61, 62, 41]. At this307

point, the works [61] and [31] are particularly worth mentioning. Kim and Park [61] focus on online planning, where308

relationships between system configuration and environment settings are learned at runtime, while Pandey et al. [31]309

propose a hybrid planning approach using a LCS to decide whether a quick reactive adaption or a deliberative adaption310

is to be preferred. In general, LCS or Learning Techniques are suitable for generating and maintaining adaptation311
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rules at runtime, as shown in the works of Kramer and Karl [63], Zeppenfeld and Herkersdorf [64], and Zhao et312

al. [65], respectively. Moreover, Learning Techniques can also be used in the fields of policy-focused systems [66],313

practical applications like auto-configuration of virtual machines [67], and resource allocation in data centers [68].314

RL techniques are also a natural choice for multi-agent or multi-robot navigation [69] or collaboration [58, 70], as315

interactions and useful behavior can be learned at runtime.316

4.2. Genetic Algorithms317

Genetic Algorithms (GA), introduced by Holland [71], are suited in cases when some of the design variables are318

continuous and others are discrete, as well as when the design space is discontinuous and non-convex [13]. Genetic319

or more general evolutionary algorithms or programming techniques can be used to optimize the planning of adaptive320

systems. Like Learning Techniques, they are in particular present in self-organization and coordination in distributed321

systems [72, 73, 74, 75]. Genetic Algorithms are applied in cloud computing (26.1%), data diffusion (17.4%), multi-322

robot systems (17.4%), autonomous vehicles (8.7%), e-commerce, intelligent traffic management, mobile application323

reconfiguration, regional emergency management, remote health service, smart city, and an abstract service-oriented324

architecture (4.4%). Especially, to illustrate autonomous organization based on Genetic Algorithms, different authors325

select network operation as an example application [76, 77, 78]. This finding is in line with the “traditional” optimiza-326

tion approaches, e.g., vehicular routing or graph-based network optimization, such as in manufacturing. Approaches327

concerning the planning, decision-making, and reconfiguration of adaptive systems as main targets are given by sev-328

eral examples [79, 80, 81, 82, 83, 84, 85]. Both application scenarios are characterized by a large design space and a329

complex optimization process. Genetic Algorithms are an excellent choice in these areas, as traditional mathematical330

optimization techniques would need a lot of computing resources and time for the solution process. They are able to331

deliver near-optimal solutions in these application scenarios while consuming much fewer resources.332

Further usages of Genetic Algorithms include runtime testing [86] and workflow optimization [87]. The works [6]333

and [88] are focused on the reaction of an adaptive system to sudden changes in its environment. Kinneer et al. [89]334

propose an approach using reusable repertoires of adaption strategies to improve planning effectiveness. The paper of335

Andrade et al. [90] examines architectural design aspects with regard to feedback loop control. Therefore, NSGA-II,336

a commonly used evolutionary algorithm, is used. Caldas et al. [33] use NSGA-II to optimize a strategy manager337

and a strategy enactor by finding the optimal configuration. Another widely used algorithm of this type is SPEA2,338

which has been applied to adaptive systems by Kinneer et al. [84]. We identified that most approaches (37.04%)339

implemented their own version of a genetic algorithm. From the available “out-of-the-box” algorithms / implementa-340

tions, the already mentioned approaches NSGA-II (14.81%) and SPEA2 (7.41%) are most commonly used together341

with novelty search (7.41%). Besides, several approaches are used once: clonal plasticity, D-STM, IBEA, GPM, ISL,342

1+1 ONLINE EA, fish schools, Bayesian optimization, and artificial bee colony. As one can see, around one third343

of the approaches integrate an individual version of a Genetic Algorithm. There are arguments for and against such344

an individual implementation. It seems to be a rational choice as it provides the possibility to adjust the optimization345

procedure to the specifics of the underlying use case, e.g., omit mutations and highlight cross-overs if those are more346

applicable. However, this comes with the likelihood that implementations errors might occur. “Out-of-the-box” ap-347

proaches provide the advantage to use an existing algorithm or even an implementation (e.g., provided as a specific348

library), which simplifies the integration of the approach but also facilitates the mapping of the specific components349

and parameters of the use case system to the task of optimization as planning.350

4.3. Further Optimization Approaches351

In this section, we describe the remaining categories shown in Figure 4. Some of the mentioned categories might352

often be included in others (e.g., Markov Decision Process as part of Stochastic Optimization [6]), but we want to353

point out the intensified number of use cases.354

Integer Programming. An optimization problem where all components of the design vector are restricted to355

discrete (integer) values can be solved with Integer Programming (IP) techniques. If some of the design variables356

are discrete, other continuous, Mixed Integer Programming can be applied. In adaptive systems and their applica-357

tions, some problems may be formulated roughly as “How many?”-questions, e.g., “How many servers do I have to358

provide?”, which have only integer answers and thus, might be solved with IP. As a standard form, an Integer Pro-359

gramming problem can be expressed as a constrained optimization problem: Find x, which maximizes f (x) = cT x,360
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subject to g1(x) = Ax ≤ b and g2(x) = x ≥ 0, where x ∈ Zn, cT ∈ Rmxn, A ∈ Rrxn and b ∈ Rr. In practical applications,361

the IBM ILOG CPLEX1 optimization framework or similar tools are often used to solve this category’s problems. For362

instance, we find approaches of this type in service or feature selection [91, 92] and load balancing or distributing363

applications [37, 40]. Moreover, the works of Wu et al. [93, 94] use Mixed Integer Programming for optimal resource364

allocation in multi-agent systems and show how tasks can be decomposed into phases. Feo Flushing et al. [95] focus365

on optimal decentralized task allocation in multi-robot systems and use Mixed Integer Programming for adaptive re-366

planning at runtime. Other usages of IP can be found in the fields of resource scheduling [96] and item assignment in367

general [97] in adaptive or multi-agent systems.368

Markov Decision Process Planning. Markov Decision Processes (MDP) are commonly used for modeling369

decision-making and planning tasks in adaptive systems. In general, they describe discrete-time stochastic control370

processes. In the fields of adaptive systems, they are used to model and optimize decision-making with probabilistic371

environment behavior and/or uncertainty [98, 99, 100, 101, 102]. As an advantage of this approach, Markov Decision372

Processes can be used as offline planning support tools and might be combined with other strategies (e.g., determin-373

istic [98] or learning-based planning [31]). To solve optimization problems based on Markov Decision Processes,374

often dynamic programming techniques are suitable. For example, Angelidakis and Chalkiadakis [103] use a dy-375

namic programming algorithm based on value iteration for an optimization problem in power distribution networks.376

Other applications take place in the field of autonomous vehicles. Basich et al. [104] optimize the decision-making377

through human feedback, while Bouton et al. [34] address the decision-making in pedestrian collision avoidance.378

Scheerer et al. [105] focus on validating adaption strategies at design time to ensure system performance.379

Greedy Algorithms. Greedy Algorithms have numerous applications in different fields of computer science.380

Many Greedy Algorithms appear in graph-theoretic problems, e.g., the algorithms of Kruskal [106] and Prim [107]381

for solving the minimum spanning tree problem. In general, they follow the heuristic to select the (locally) optimal382

solution out of a candidate set at each iteration. As an advantage, Greedy Algorithms terminate after a reasonable383

number of steps and approximate at least a local optimum in most cases, especially if a global optimum is hard to384

compute. Hence, they often reach an acceptable solution with limited resource consumption. However, the quality of385

the result and convergence speed often depends on the starting value. Often, a supporting heuristic is used to determine386

a suitable initialization. Distributed systems are generally an application area with these characteristics. Especially387

relevant for practical or industrial use cases are hereby optimization algorithms in the fields of task allocation [108,388

109] and resource allocation [110, 111]. Further applications of Greedy Algorithms can be found in the areas of389

computing clusters [112] and web databases [113]. Fritsch et al. [114] show that Greedy Algorithms can also be390

used for scheduling adaptations in cases when these adaptations are time-bounded or underlying other constraints.391

As mentioned before, Greedy Algorithms are often used for solving graph-theoretic problems. Escoffier et al. [45]392

present greedy solutions based on graph theory, which can be applied in the fields of adaptive systems.393

Heuristic Algorithms. Heuristics try to guide a way through the search space to find an optimal solution faster394

than classical mathematical optimization methods. In contrast to Metaheuristics, they are domain-specific. Therefore,395

the concrete appearance is highly dependent on the application scenario. We use Heuristic Algorithms as a generic396

term in this work to indicate that the optimization process is based on a domain-specific heuristic. In some cases,397

a Heuristic Algorithm does not guarantee to find a globally optimal solution. This is often caused by the use of398

random variables, non-deterministic behaviors, or the choice of starting values. However, Heuristic Algorithms are399

suited for problems when a globally optimal solution is expensive to compute and/or a solution is required within400

a bounded time interval. Our investigation has revealed that Heuristic Algorithms are mostly used in the fields of401

resource provisioning, allocation, and planning [32, 115, 116, 117, 118] as well as coalition formation [119]. In these402

scenarios, the reason for this is that application-specific characteristics can be added to the algorithm and improve403

or accelerate the optimization process. Further practical use cases of Heuristic Algorithms can be found in the fields404

of supply chains [120] and web search engines [121]. Cooray et al. [122] introduce a Heuristic Algorithm for self-405

adaptation to increase the reliability of an adaptive mobile emergency response system.406

Stochastic Optimization. In real-world applications, adaptive systems often deal with non-deterministic quanti-407

ties, like environment variables or even internal parameters. Stochastic Optimization techniques deal with such cases,408

where the use of random or stochastic variables is mandatory, and uncertainty is present and not negligible. In gen-409

eral, adaptive systems might use stochastic programming or often Bayesian optimization for decision-making and410

1https://www.ibm.com/analytics/cplex-optimizer
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control [6, 123, 124, 125, 126, 127]. For instance, Esfahani et al. [128] focus on decision-making for self-adaptive411

software in the presence of uncertainty, as the work of Mikic-Rakic and Medvidovic [35] describes a way of han-412

dling downtimes of dependent software components. Palmerino et al. [129] consider tactic volatility using multiple413

regression analysis and autoregressive integrated moving average.414

Convex Optimization. Convex Optimization approaches target problems where the objective function is a convex415

function2, and the design space is a convex set3. Many solution methods for these problems are based on linear or416

quadratic programming. In the fields of adaptive systems, Convex Optimization techniques are often used in general417

control mechanisms [121, 130, 43, 131]. They have applications in cloud environments [132] and service-oriented418

architectures [46]. Javed and Arshad [40] use a linear programming based algorithm and case-based reasoning for419

self-optimization and evaluate their framework on an electricity distribution system.420

Metaheuristic Algorithms. In contrast to Heuristics, Metaheuristics are domain-independent. Metaheuristic421

Algorithms often perform a local or neighborhood search, which means using a given solution X1, a better solution422

X2 in the neighborhood4 of X1 is searched. This limits the computational effort, but the algorithm might not guarantee423

to find a globally optimal solution. Similar to Greedy Algorithms, these approaches are suitable in applications424

where time-bounded reactivity or limited computational resources are challenges. For instance, Zhang et al. [133]425

use simulated annealing for task allocation in a distributed system. Other variants of local search found in adaptive426

systems literature include hillclimbing [134], neighborhood search [38, 135], and tabu search [136, 137].427

Nonlinear Programming. In general, Nonlinear Programming (NLP) techniques are suitable if the solution428

of an optimization problem cannot be determined analytically. Therefore NLP techniques are applied in constrained429

optimization problems, where the constraints are not explicit functions of the design vector [13]. Lama and Zhou [138]430

use complex, non-differentiable objective functions solved by a pattern search algorithm for optimizing automated431

resource allocation in cloud environments. Jung et al. [139] use offline gradient-based optimization as a basis of432

adaptation policy generation. Other applications of nonlinear optimization approaches can be found in the fields of433

power management [140], decentralized planning [44], and web services [141].434

Miscellaneous Approaches. In this category, we describe approaches, which cannot be assigned clearly to one435

of the categories above. For instance, Chuang et al. [142] use hierarchical fuzzy systems to optimize the Quality of436

Service of mobile adaptive software. Lee and Fortes [32] use fuzzy logic to control the number of concurrent jobs in437

big-data analytics. Control theory principles and techniques are utilized in the work of Caldas et al. [33] for adaptive438

performance control. Wang et al. [143] expand this utilization to power management. Other optimization approaches439

include combinatorial optimization [144, 145, 146], weighted sum search [147], and distributed constraint optimiza-440

tion [148, 149, 150], which is a general problem representation framework widely used for multi-agent systems. As441

we are interested in providing a complete picture of the landscape rather than a detailed discussion of each approach,442

we do not discuss these approaches that do not fit in one of the optimization categories.443

5. Planning Optimization in Dynamic, Competitive, and Distributed Environments444

As presented in Section 3, we included 115 papers from our initial set of 9,588 papers. In the previous section,445

we presented the set of identified optimization techniques that are applied for adaptation planning in self-adaptive446

systems. In this section, we detail our discussion and focus on the specific aspects: anytime learning (see Section 5.1),447

multi-objectiveness (see Section 5.2), distributed optimization (see Section 5.3), and situation-awareness for switching448

the optimization techniques (see Section 5.4). This answers the research questions RQ2, RQ3, RQ4, and RQ5. Figure 6449

provides an overview of the presence of papers concerning the topics anytime learning and distributed optimization450

over the relevant time frame.451

5.1. Anytime Learning452

The possibly rapid and frequent changes in the environment of a self-adaptive system might significantly decrease453

the available time for an optimization technique for adaptation planning. This means that those techniques sometimes454

2A function f (x) : D → R is called convex if f (αx1 + (1 − α)x2) ≤ α f (x1) + (1 − α) f (x2) for all x1, x2 ∈ D and all α ∈ [0; 1], where D is a
convex set

3A set D is called convex, if (1 − α)x1 + αx2 ∈ D for all x1, x2 ∈ D and all α ∈ (0; 1)
4Therefore a neighborhood relation on the design space D must be defined, e.g., using a norm || · || and a threshold ε: A solution X2 is a neighbor

of solution X1, if ||X2 − X1 || < ε
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Figure 6: Results of the literature review – Number of all included publications in this survey, number of publications supporting anytime learning,
supporting distributed optimization, and supporting multi-objectiveness per year

need to focus on searching for fast and “good enough” solutions rather than for “optimal” ones. Hence, self-adaptive455

systems need to focus on anytime learning algorithms that can provide intermediate solutions and do not have to wait456

until the optimization process finally reaches a (successful) end [7]. From an implementation point of view, this can457

be achieved using anytime algorithms for optimization [8]. Accordingly, the second research question addresses the458

presence of anytime learning in the identified set of literature:459

460

RQ2 - To what extent is anytime learning supported?461

462

When investigating the existing literature regarding anytime learning in self-adaptive systems, we identified that463

56.1% of the studied works (69 publications) integrated approaches that support anytime learning. The papers show464

a diverse set of used optimization techniques. The most common techniques that support anytime learning include465

Genetic Algorithms (21 papers), Learning Techniques (16 papers), and (Meta)Heuristics (12 papers). Applied tech-466

niques include (but are not limited to) SPEA2, Stochastic Search, NSGA-II, Q-Learning, Markov Chains, Multi-agent467

RL, and Greedy Algorithms. Table 3 shows an overview of the application of anytime learning.468

Table 3: Overview of anytime learning used within optimization techniques.

Optimization Technique No. of publications References

total anytime

Learning Techniques 24 16 [31][34][36][51][52][54][56][57][59][61][63][65][66][67][69][70]
Genetic Algorithms 22 21 [33][72][73][74][75][76][77][78][79][80][81][82][83][84][85][86][87][88][89][90][42]
Integer Programming 10 0
Markov Decision Process Planning 10 4 [31][34][101][104]
Greedy Algorithms 9 3 [110][112][114]
Heuristic Algorithms 9 6 [32][115][116][119][120][122]
Stochastic Optimization 9 2 [127][129]
Convex Optimization 8 1 [130]
Metaheuristic Algorithms 6 6 [38][133][134][135][136][137]
Nonlinear Programming 5 4 [139][140][44][141]
Others 11 6 [32][33][144][145][146][150]

We already argued that anytime learning [7] techniques might be beneficial as those techniques constantly provide469

a solution for adaptation planning in contrast to exact algorithms, such as Integer Programming. Consequently, any-470

time learning can increase the robustness of the system as those techniques provide intermediate solutions which can471

fasten the reaction to changes rather than waiting until the final solution is found, which is the case for exact solutions.472

On the other hand, anytime learning techniques might have disadvantages that system designers and developers473

have to take into account. As those techniques do not explicitly search for an exact solution, hence, the globally474
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Table 4: Overview of optimization techniques supporting multi-objectiveness. All approaches not supporting multiple objectives are single-
objective approaches.

Optimization Technique No. of publications References

total multi-obj.

Learning Techniques 24 17 [31][34][36][51][52][54][55][56][57][62][41][64][65][66][67][69][70]
Genetic Algorithms 22 15 [6][76][77][78][79][80][82][83][84][86][87][88][89][90][42]
Integer Programming 10 6 [37][92][94][95][97][153]
Markov Decision Process Planning 10 8 [31][34][99][100][101][102][103][105]
Greedy Algorithms 9 5 [108][110][112][113][45]
Heuristic Algorithms 9 5 [117][118][119][121][122]
Stochastic Optimization 9 3 [6][123][125]
Convex Optimization 8 6 [130][43][131][46][47]
Metaheuristic Algorithms 6 1 [136]
Nonlinear Programming 5 1 [44]
Others 11 4 [142][143][146][147]

optimal solution, it might be possible that only a “good enough” solution is found and the optimizer returns a local475

optimum. Additionally, one has to take into account that the result of the optimizer has to be mapped to a system476

configuration. The iterative nature of the algorithms might lead to constant adjustments in the system, which can477

influence the system performance and in the worst case also lead to adaptation oscillation [151]. Often, it might be the478

case that there is a direct mapping, i.e., the configuration parameters are used in the optimization. However, this is not479

always the case. Either way, as each newly identified solution of the optimization process triggers a new adaptation480

solution. If this is frequently the case, the system might suffer from adaptation oscillation [151]. This means that481

the system configuration is frequently adjusted through adaptation, resulting in undesired behavior, such as the user482

getting irritated when the system behavior constantly changes.483

Consequently, we propose to identify and work on approaches that combine exact techniques with anytime learn-484

ing. This way, it might be possible to run both optimizations in parallel and – in case the exact algorithms cannot485

return a solution fast enough – to have the anytime learning results as a backup solution, e.g., in situations where the486

system is running without negative impacts and the adaptation focuses on further improving the system performance.487

Those approaches might also be highly interesting in distributed settings by having a central instance for the exact488

optimization and many decentralized ones that react to small changes by applying anytime learning techniques.489

5.2. Multi-objectiveness490

In general, objective functions can be single- or multi-objective. Regarding multi-objectiveness, Pareto optimality491

is a highly relevant concept. Pareto optimality is defined as “analytic tool for assessing social welfare and resource492

allocation [where an] allocation is considered Pareto optimal if no alternative allocation could make someone better493

off without making someone else worse off” [152]. Transferred to the optimization of adaptive systems, this means494

that it is not possible to achieve a globally optimal setting through increasing the utility of one objective if the utility495

of one or several of the other objectives gets decreased. For a self-adaptive system with its large amount of subsystems496

and heterogeneous user groups, multi-objective settings are highly relevant, especially to find cost-benefit trade-offs497

regarding the system performance. Hence, we formulated a third research question:498

499

RQ3 - To what extent is multi-objectiveness supported?500

501

Table 4 shows the results of our analysis for RQ3. We observed that around 57% of the identified approaches (71502

approaches) target multi-objectiveness. This seems natural for the characteristics of self-adaptive systems. Especially503

for Learning Techniques (17 papers) and Genetic Algorithms (15 papers), multi-objective approaches are frequently504

present. However, the results show that with the exception of Stochastic, Metaheuristic, and Nonlinear Programming505

approaches, more than half of the identified approaches are multi-objective in all other categories.506
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Table 5: Overview of the usage of distributed optimization techniques.

Optimization Technique No. of publications References

total distributed

Learning Techniques 24 11 [34][36][51][52][53][56][57][58][66][69][70]
Genetic Algorithms 22 5 [72][74][77][78][42]
Integer Programming 10 0
Markov Decision Process Planning 10 1 [34]
Greedy Algorithms 9 3 [108][109][111]
Heuristic Algorithms 9 4 [32][117][119][120]
Stochastic Optimization 9 1 [129]
Convex Optimization 8 1 [47]
Metaheuristic Algorithms 6 3 [133][136][137]
Nonlinear Programming 5 2 [44][141]
Others 11 5 [143][145][148][149][150]

As mentioned, multi-objectiveness is especially relevant for evaluating possible adaptations, i.e., system setting,507

with regard to their cost-performance ratio. However, as those optimizations often return Pareto optimal solutions,508

potentially many different solutions might have the same impact with regard to the global utility. This complicates509

the choice of the system configuration. Further, sometimes single-objectiveness is achieved as the relation of different510

important parameters, which might represent objectives, are expressed differently, e.g., by a weighted utility function.511

The definition of such a utility function is highly complicated and requires a lot of domain knowledge. Especially, the512

definition of the weights might be challenging and use case-specific. Additionally, the definition of objectives requires513

the definition of usable metrics to operationalize those objectives. Optimization functions will use those metrics to514

calculate the utility of an identified solution. The definition of those metrics can be another challenge.515

Multi-objectiveness requires a trade-off of different objectives. Often, this leads to Pareto optimal solutions,516

as it is often not possible to optimize several goals simultaneously. One solution can be approaches that focus on517

many-objectiveness – which refers to the optimization tasks involving several (conflicting) objectives to be optimized518

concurrently [154]. Such approaches enable also to integrate user-specific, differing goals. Further, such approaches519

might also support situation-awareness, as depending on the situation one or another objective can be favored.520

5.3. Distributed Optimization521

Many self-adaptive systems are distributed [10]. First of all, mostly the adaptation logic which controls adaptation522

is encapsulated from the managed subsystem [9]. Additionally, many adaptive systems are often integrated into a523

composition of different (sub)systems. Such system are naturally acting in a distributed fashion, either cooperatively524

or competitively, e.g., if they are (maybe implicitly) competing for resources in a shared environment. In such set-525

tings, particularly in cooperative settings, a distributed optimization might be beneficial. This can be achieved by526

either distributing the decision-making or achieving a global optimization through a central planner. However, such527

a central planer has to achieve a trade-off between local objectives and needs to take local constraints into account.528

Hence, we formulated the following research question which especially targets those adaptive system from our iden-529

tified literature that are distributed:530

531

RQ4 - To what extent are distributed optimization techniques integrated?532

533

In our literature analysis, approximately 30% of the identified papers rely on distributed optimization (36 papers).534

One has to note that distributed optimization approaches are only present for distributed adaptive systems, e.g., CAS.535

This includes local (non-coordinated) adaptation planning, decentralized optimization techniques, i.e., multi-agent536

RL, as well as hybrid planning, e.g., combining a central optimization with local adjustments through the application537

of a local optimizer or a learning mechanism. Table 5 shows that the large amount of distributed optimization uses538

Learning Techniques (11 papers). Further, Genetic Algorithms (5 papers), (Meta-) Heuristic Algorithms (7 papers),539

or Greedy Algorithms (3 papers) were frequently used for distributed adaptation planning as optimization.540
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Furthermore, central optimization could deliver a global optimal solution. Such central decision-making would541

be also possible in distributed adaptive systems. However, it comes with the costs for collecting the required data542

from the local subsystems. Additionally, it might introduce a single point of failure and, especially in large systems,543

the decision-making can be complex. The mentioned decentralized optimization techniques help to distribute the544

workload for adaptation control. This local decision-making also takes local constraints into account.545

Related to local constraints is the achievement of fairness. When focusing on global concerns only, it might be546

possible that single instances are disadvantaged for the sake of global utility. Accordingly, mechanisms for achieving547

fairness and concerning local constraints might be important. Alternatively, it is possible to have degrees of freedom548

that the instances can locally optimize. This results in a hybrid optimization approach which integrates macro-level549

planning under longer time requirements with micro-level (local) decisions that obey local objectives and constraints.550

Such an approach would result in (i) increased robustness as adaptation decision can obey local constraints, (ii) an551

improved utility of both the autonomous subsystems and the overall system, (iii) and a fast adaptation to changes in552

the characteristics of the optimization problem (e.g., in terms of concept drift/shift). However, implementations of553

such approaches cannot be found in literature yet.554

5.4. Situation-awareness555

In [6, 12], we showed that (i) different optimization techniques might be superior depending on the characteris-556

tics of the situational characteristic or that (ii) different algorithms might deliver the same quality with respect to the557

objectives but might have different performance implication (e.g., faster computation or less required memory). This558

conforms to other observations: It will not be feasible to define the best-fitting strategy for each situation [155] as559

those situations are determined by various parameters, each having at minimum two possible manifestation (in case560

of binary value) up to an incredible large number (e.g., in case of 64 bit numbers). Testing all those configuration561

options is not possible [4]. Additionally, according to the “No-Free-Lunch-Theorem” from 1997 [156], there is no562

general optimization method that performs best in all scenarios. Instead, expert knowledge is needed to decide which563

optimization method to choose for a specific situation with its own (data pattern) characteristics. Accordingly, in such564

systems it seems beneficial to link the choice of the optimization technique to the current situation, i.e., switching the565

adaptation technique and/or adjusting the parameters of a technique (e.g., through hyper-parameter tuning). Hence,566

we further address with our literature study the following research question:567

568

RQ5 - Does the used techniques for planning as optimization support situation-awareness?569

570

However, we identified only two approaches that provide a situation-aware switch of the optimization technique.571

AdOpt [40] provides “an adaptive self-optimization approach which uses multiple optimization techniques to incorpo-572

rate a resilient self-optimization in a given system”. Instead of directly planning the adaptation, the planner in AdOpt573

first identifies the appropriate optimization technique for the given system state and then generates a runtime model574

for adaptation planning as optimization. The authors of [31] provide a hybrid planning approach that “can combine575

reactive planning (to provide an emergency response quickly) with deliberative planning that takes time but determine576

a higher-quality plan”. As fast, reactive planning might also deliver adaptation plans to potentially decrease the quality577

of the system’s performance, the challenge in this approach lies in deciding when to use which planning approach. In578

the paper, the authors present several learning-based strategies for this decision.579

We want to stress that we focus on the switch of the optimization technique or its parameters within this section.580

Additionally, several works (e.g., [61], [63], [118], or [121]) combine different optimization techniques in hybrid581

approaches. This might be beneficial for fine-grade planning or combinations of different time horizons for planning,582

e.g., proactive planning with reactive planning as a backup. Further, it might be used for situation-aware planning as583

optimization as well. However, none of the identified publications do so. Hence, we did not include this perspective584

when we talk about situation-awareness.585

6. Threats to Validity586

We used a well-structured approach for our literature review to provide a structured analysis and eliminate bias in587

the process. However, some threats to validity still exist, which we discuss in the following. Each paper was analyzed588
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by one of the authors of this publication. As humans are involved, the presence of subjective bias cannot be entirely589

excluded. To limit this risk, we double-checked each analysis by at least a second reviewer for each paper.590

The choice of the venues might be biased. We rely on discussion with experts to identify the relevant venues.591

Still, it might be possible that other conferences and journals provide relevant work that we did not take into account.592

However, as mentioned in Section 3, the application of a term-based literature search is complicated as the term593

“optimization” is often used in another context. Thus, to achieve high quality and still following a structured search594

process, we limit the set of possible papers to the list of venues.595

Even if the number of included works from IEEE Software and TOSEM is very low, we think that it is still596

necessary to consider those journals as several publications of the field of self-adaptive systems originate in those597

journals, even if the actual number of publications that target optimization as planning is very low. We decided to not598

include additional general purpose journals (such as IEEE Access) as we do not want to widen the scope too much for599

keeping the focus on the important venues of our targeted system domains. We acknowledge that this can be a threat600

to validity, but we act in line with other review papers in the field (e.g., [30]).601

Similarly, through reducing the search to a defined list of venues, we also have implicitly covered a set of concepts602

that are related to self-adaptive systems. This coverage is rather extensive. However, it might be possible that a603

specific system domain is not taken into account.604

Further, we focused on optimization techniques for adaptation planning. However, we included techniques based605

on RL and LCS as those are optimization-based, iterative approaches following the taxonomy from [13]. Accordingly,606

some might argue that the border towards techniques that fall into the category of machine learning might be blurred607

here. Others might argue that machine learning techniques also support planning as an optimization idea. However,608

we clearly focus on the mathematical and stochastic optimization procedures in this paper and clearly distinguish609

them from the classical application of machine learning with classification and clustering, which is mainly used in610

self-adaptive systems for analyzing.611

Additionally, we omit search-based software engineering (SBSE) approaches used in adaptive systems for adap-612

tation planning. SBSE [157] aims at applying search-based Metaheuristic techniques to software engineering. Search613

techniques such as genetic programming examine large search spaces of candidate solutions to find a (near) optimal614

solution to problems concerning requirements, design, or testing [158]. Traditionally, SBSE is used at design time.615

Contrary to the traditional approach, dynamic SBSE applies the principle of SBSE at runtime to determine the most616

suitable system configuration during the planning phase of self-adaptation [159, 160]. Approaches that use dynamic617

SBSE in self-adaptive systems can be found in the literature (e.g., [130, 134, 161, 162, 163, 164]). However, as we618

follow the classification of optimization from [13], we did not include SBSE as a specific category.619

7. Related Work620

This survey connects methods from optimization processes with the application areas of adaptive systems and621

studies the use of optimization techniques in self-adaptive systems. To the best of our knowledge, there is no survey,622

which discusses this combination of issues explicitly and to the full extent. In this section, we provide an overview of623

related surveys from the area of adaptive systems.624

There are many literature reviews and summaries in the research field of adaptive systems, which focus on either625

the general topic or special system aspects. Salehie and Tahvildari [16] broach the issue of self-adaptive systems as626

such, provide a taxonomy and describe possible realizations of adaptation actions. Further introduction material and627

reference work in the area of adaptive systems is provided by Krupitzer et al. [2], Macias-Escriva et al. [165], or more628

recently by Wong et al. [166].629

The work of Weyns [167] provides an overview of adaptive systems with a focus on software engineering aspects.630

Findings in the fields of task automation, architecture-based adaptation, runtime models, goal-driven adaptation, un-631

certainty management, and control-based adaptation are summarized. It is concluded that control theory can act as a632

theoretical foundation for adaptations and decision-making. The surveys of Patikirikorala et al. [168] and Shevtsov et633

al. [169] take a closer look at this issue.634

More closely to the topic of this paper, Saputri et al. [170] presented an overview on the application of machine635

learning in self-adaptive systems, which is used to handle self-adaptation, but also for analyzing the requirement for636

adaptation. As an outcome of the 2018 GI-Dagstuhl Seminar “Software Engineering for Intelligent and Autonomous637
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Systems”, D’Angelo et al. discuss the current state of the art for learning in complex self-adaptive systems in [30].638

In addition, Gheibi et al. [171] investigated the application of machine learning in self-adaptive systems based on639

the MAPE feedback loop. Their results showed a major proportion of machine learning taking place in the analysis640

phase (83 studies), followed by the planning phase (57 studies), the monitoring phase (23 studies) and the execution641

phase (one study). The authors further revealed that machine learning is mainly used to “update/change adaptation642

rules/policies” and “predict/analyze resource usage”. However, they only focused on machine learning and did not643

include other techniques to optimize the adaptation planning.644

8. Conclusion645

This article investigated the use of optimization techniques for adaptation planning in self-adaptive systems. For646

this, we looked at 115 publications out of 12 selected venues with 9,588 publications in total. Next, we briefly647

summarize our results of the literature analysis. Afterwards, we present identified research challenges.648

As a first result of our literature review, we found optimization methods belonging to 11 categories according649

to [13]. We found that Learning Techniques and Genetic Algorithms are the most applied techniques for optimization650

in adaption planning (RQ1). Additionally, we hypothesized that anytime learning can be helpful for adaptive systems,651

as anytime learning returns intermediate solutions (in contrast to exact algorithms). This better fits the dynamics652

of the environment and the requirement for fast adaptations. The results comply with our hypothesis: Heuristics653

(corresponding to anytime learning, e.g., using anytime algorithms for optimization [8]) are more frequently applied654

than exact algorithms (see RQ2). Multi-objective optimization helps to incorporate various objectives (but also con-655

straints), and also supports the process of adaptation planning in large, distributed adaptive systems. We observed that656

around 57% of the approaches support multi-objectiveness (see RQ3). As adaptive systems often are distributed [10],657

we further investigated the presence of distributed optimization. Regardless the benefits of distributed optimization658

(e.g., the integration of local constraints), distributed optimization can be highly complex, as it might results in local659

optima which are conflicting. Hence, it is not surprising that distributed optimization are only present in around a660

third of the approaches (see RQ4). According to the “No-Free-Lunch-Theorem” [11] there is no general optimization661

method that performs best in all scenarios. In the context of adaptive system this requires to potentially switch the662

optimizer after a change in the context as this triggers a change in the data pattern [6, 12]. Consequently, we focused663

on situation-awareness as last dimension, which is only supported by two approaches (see RQ5).664

Based on our results, we derive several research challenges related to anytime learning , many-/multi-objectiveness,665

distributed optimization, and situation-awareness that have potential for further research. We identified many anytime666

learning approaches are present in the literature (see RQ2) as those approaches fit the dynamic nature of self-adaptive667

systems and their environment. However, as those approaches might also deliver system configurations that have a668

negative impact of system performance, we propose to work on approaches that combine exact optimization tech-669

niques with anytime learning. Most of the identified approaches support multi-objectiveness (see RQ3). We further670

propose to apply many-objectiveness [154] -— which refers to the optimization tasks involving several (conflict-671

ing) objectives to be optimized concurrently – to support a user-specific, system-specific, or situation-aware choice672

of the specific objective technique. Additionally, around one third of the approaches support distributed optimiza-673

tion (see RQ4). We expect that system models for hybrid optimization for adaptation planning—which combine674

global optimized planning with degrees of freedom with local decision-making— will result in (i) an increased ro-675

bustness against intentionally wrong or even faulty behavior, (ii) an improved utility, (iii) and a fast adaptation to676

changes in the characteristics of the optimization problem. However, due to the distribution of the relevant data, those677

approaches are highly complex. Still, the study of those distributed optimization approaches might be beneficial. In [6]678

and [12], we showed that different optimization techniques might be superior depending on the characteristics of the679

situation or might be more efficient in terms of computation. Accordingly, switching the adaptation technique and/or680

adjusting the parameters of a technique depending on the current situation (see RQ5), e.g., through hyper-parameter681

tuning, might be desirable. However, this is not well presented yet in literature. We recommend for the future to study682

such approaches for providing the best optimization technique for a specific situation (which comes with a specific683

data pattern). In the past, we presented such studies in the area of intelligent traffic management systems [6, 12] and684

smart health [172] which might be an inspiration.685
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Kephart, A. Zisman, The Notion of Self-aware Computing, in: Self-Aware Computing Systems, Springer, Cham, 2017, pp. 3–16.
[24] O. Babaoglu, H. E. Shrobe, Foreword from the General Co-Chairs , in: Proceeding of the International Conference on Self-Adaptive and

Self-Organizing Systems (SASO), IEEE, 2007, pp. ix–x.
[25] C. Müller-Schloer, H. Schmeck, T. Ungerer (Eds.), Organic Computing – A Paradigm Shift for Complex Systems, Springer, 2011.
[26] M. Weiser, The Computer for the 21st Century, Scientific American 265 (1991) 94–104.
[27] A. Ferscha, Collective adaptive systems, in: Adjunct Proceedings of the 2015 ACM International Joint Conference on Pervasive and

Ubiquitous Computing and Proceedings of the 2015 ACM International Symposium on Wearable Computers, UbiComp/ISWC’15 Ad-
junct, Association for Computing Machinery, 2015, p. 893–895. URL: https://doi.org/10.1145/2800835.2809508. doi:10.1145/
2800835.2809508.

[28] J. Webster, R. T. Watson, Analyzing the past to prepare for the future: Writing a literature review, MIS Q. 26 (2002) xiii–xxiii. URL:
http://dl.acm.org/citation.cfm?id=2017160.2017162.

20



[29] K. Petersen, R. Feldt, S. Mujtaba, M. Mattsson, Systematic mapping studies in software engineering, in: Proceedings of the 12th Interna-
tional Conference on Evaluation and Assessment in Software Engineering, EASE’08, BCS Learning & Development Ltd., Swindon, UK,
2008, pp. 68–77. URL: http://dl.acm.org/citation.cfm?id=2227115.2227123.

[30] M. D’Angelo, S. Gerasimou, S. Ghahremani, J. Grohmann, I. Nunes, E. Pournaras, S. Tomforde, On learning in collective self-adaptive
systems: State of practice and a 3d framework, in: 2019 IEEE/ACM 14th International Symposium on Software Engineering for Adaptive
and Self-Managing Systems (SEAMS), 2019, pp. 13–24. doi:10.1109/SEAMS.2019.00012.

[31] A. Pandey, I. Ruchkin, B. Schmerl, D. Garlan, Hybrid planning using learning and model checking for autonomous systems, in: 2020 IEEE
International Conference on Autonomic Computing and Self-Organizing Systems (ACSOS), 2020, pp. 55–64. doi:10.1109/ACSOS49614.
2020.00026.

[32] G. J. Lee, J. A. B. Fortes, Improving data-analytics performance via autonomic control of concurrency and resource units, ACM Trans.
Auton. Adapt. Syst. 13 (2019). URL: https://doi.org/10.1145/3309539. doi:10.1145/3309539.

[33] R. D. Caldas, A. Rodrigues, E. B. Gil, G. N. Rodrigues, T. Vogel, P. Pelliccione, A hybrid approach combining control theory and ai
for engineering self-adaptive systems, in: Proceedings of the IEEE/ACM 15th International Symposium on Software Engineering for
Adaptive and Self-Managing Systems, SEAMS ’20, Association for Computing Machinery, New York, NY, USA, 2020, p. 9–19. URL:
https://doi.org/10.1145/3387939.3391595. doi:10.1145/3387939.3391595.

[34] M. Bouton, K. D. Julian, A. Nakhaei, K. Fujimura, M. J. Kochenderfer, Decomposition methods with deep corrections for reinforcement
learning, Autonomous Agents and Multi-Agent Systems 33 (2019) 330–352. doi:https://doi.org/10.1007/s10458-019-09407-z.

[35] M. Mikic-Rakic, N. Medvidovic, Support for disconnected operation via architectural self-reconfiguration, in: International Conference on
Autonomic Computing, 2004. Proceedings., 2004, pp. 114–121. doi:10.1109/ICAC.2004.1301354.

[36] J. Hao, H.-F. Leung, Achieving socially optimal outcomes in multiagent systems with reinforcement social learning, ACM Trans. Auton.
Adapt. Syst. 8 (2013) 15:1–15:23. URL: http://doi.acm.org/10.1145/2517329. doi:10.1145/2517329.

[37] E. Incerto, M. Tribastone, C. Trubiani, Software performance self-adaptation through efficient model predictive control, in: Proceedings of
the 32Nd IEEE/ACM International Conference on Automated Software Engineering, ASE 2017, IEEE Press, Piscataway, NJ, USA, 2017,
pp. 485–496. URL: http://dl.acm.org/citation.cfm?id=3155562.3155624.

[38] A. Chmielowiec, M. v. Steen, Optimal decentralized formation of k-member partnerships, in: 2010 Fourth IEEE International Conference
on Self-Adaptive and Self-Organizing Systems, 2010, pp. 154–163. doi:10.1109/SASO.2010.14.

[39] Y. He, Z. Ye, Q. Fu, S. Elnikety, Budget-based control for interactive services with adaptive execution, in: Proc. ICAC, 2012, pp. 105–114.
[40] F. Javed, N. Arshad, Adopt: An adaptive optimization framework for large-scale power distribution systems, in: 2009 Third IEEE

International Conference on Self-Adaptive and Self-Organizing Systems, 2009, pp. 254–264. doi:10.1109/SASO.2009.26.
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