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SOFTWARE PERFORMANCE EVALUATION

INTRODUCTION

Performance and quality of service (QoS) aspects of mod-
ern software systems are crucially important for their
successful adoption in the industry. Most generally, the
performance of a software system indicates the degree to
which the system meets its objectives for timeliness and
the efficiency with which it achieves this. Timeliness is
normally measured in terms of meeting certain response
time or throughput requirements and scalability goals.
Response time refers to the time required to respond to a
user request, for example a Web service call or a database
transaction, and throughput refers to the number of
requests or jobs processed per unit of time. Scalability,
on the other hand, is understood as the ability of the
system to continue to meet its objectives for response
time and throughput as the demand for the services it
provides increases and resources (typically hardware) are
added.

Numerous studies, for example, exist in the areas of
e-business, manufacturing, telecommunications, military,
health care, and transportation that have shown that a
failure to meet the performance requirements can lead to
serious financial losses, loss of customers and reputation,
and in some cases even to loss of human lives. To avoid the
pitfalls of inadequate QoS, it is important to evaluate the
expected performance characteristics of systems during all
phases of their lifecycle. The methods used to do this are
part of the discipline called software performance engineer-
ing (SPE) (1,2). Software performance engineering helps to
estimate the level of performance a system can achieve and
provides recommendations to realize the optimal perfor-
mance level (3).

However, as systems grow in size and complexity,
estimating their performance becomes a more and more
challenging task. Modern software systems are often
composed of multiple components deployed in highly dis-
tributed and heterogeneous environments. Figure 1
shows a typical architecture of a multitiered distributed
component-based system (4). The application logic is par-
titioned into components distributed over physical tiers.
Three tiers exist: presentation tier, business logic tier,
and data tier. The presentation tier includes Web servers
hosting Web components that implement the presenta-
tion logic of the application. The business logic tier
includes a cluster of application servers hosting business
logic components that implement the business logic of the
application. Middleware platforms such as Java EE (5),
Microsoft .NET (6), or CORBA (7) are often used in this
tier to simplify application development by leveraging
some common services typically used in enterprise appli-
cations. The data tier includes database servers and
legacy systems that provide data management services.

The inherent complexity of such architectures makes it
difficult to manage their end-to-end performance and
scalability. To avoid performance problems, it is essential
that systems are subjected to rigorous performance eva-
luation during the various stages of their lifecycle. At
every stage, performance evaluation is conducted with a
specific set of goals and constraints. The goals can be
classified in the following categories, some of which par-
tially overlap:

Platform selection: Determine which hardware and
software platforms would provide the best scalability
and cost/performance ratio. Software platforms
include operating systems, middleware, database
management systems, and so on. Hardware plat-
forms include the type of servers, disk subsystems,
load balancers, communication networks, and
so on.

Platform validation: Validate a selected combination
of platforms to ensure that taken together they pro-
vide adequate performance and scalability.

Evaluation of design alternatives: Evaluate the
relative performance and scalability of alternative
system designs and architectures.

Performance prediction: Predict the performance of
the system for a given workload and configuration
scenario.

Performance tuning: Analyze the effect of various
deployment settings and tuning parameters on the
system performance and find their optimal values.

Performance optimization: Find the components
with the largest effect on performance and study
the performance gains from optimizing them.

Scalability and bottleneck analysis: Study the per-
formance of the system as the load increases and
more hardware is added. Find which system compo-
nents are most utilized and investigate whether they
are potential bottlenecks.

Sizing and capacity planning: Determine the
amount of hardware that would be needed to guar-
antee certain performance levels.

Two broad approaches help conduct performance eva-
luation of software systems: performance measurement and
performance modeling. In the first approach, load testing
tools and benchmarks are used to generate artificial work-
loads on the system and to measure its performance. In the
second approach, performance models are built and then
used to analyze the performance and scalability character-
istics of the system. In both cases, it is necessary to char-
acterize the workload of the system under study before
performance evaluation can be conducted. The workload
can be defined as the set of all inputs that the system
receives from its environment during a period of time (3).
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In performance evaluation studies normally workload
models are used that are representations of the real system
workloads.

WORKLOAD MODELS

A workload model is a representation that captures the
main aspects of the real workload that have effect on the
performance measures of interest. We distinguish
between executable and nonexecutable models. Executa-
ble models are programs that mimic real workloads and
can be used to evaluate the system performance in a
controlled environment. For example, an executable
model could be a set of benchmark programs that emulate
real users sending requests to the system. Nonexecutable
models, on the other hand, are abstract workload descrip-
tions normally used as input to analytical or simulation
models of the system. For example, a nonexecutable model
could be a set of parameter values that describe the types
of requests processed by the system and their load inten-
sities. Workload models are aimed to be as compact as
possible and at the same time representative of the real
workloads under study.

As shown in Fig. 2, workload models can be classified
into two major categories: natural models and artificial
models (3). Natural models are constructed from real
workloads of the system under study or from execution
traces of real workloads. In the former case, they are called
natural benchmarks, and in the latter case they are called
workload traces. A natural benchmark is a set of programs
extracted from the real workload such that they represent
the major characteristics of the latter. A workload trace is

a chronological sequence of records describing specific
events that were observed during execution of the real
workload. For example, in the three-tier environment
described earlier, the logs collected by the servers at
each tier (Web servers, application servers and database
servers) can be used as workload traces. Although traces
usually exhibit good representativeness, they have the
drawback that they normally consist of huge amounts of
data and do not provide a compact representation of the
workload.

Unlike natural models, artificial workload models are
not constructed using basic components of real workloads
as building blocks, however, they try to mimic the real
workloads. Artificial models can be classified into syn-
thetic benchmarks, application benchmarks, and abstract
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workload descriptions. Synthetic benchmarks are artifi-
cial programs carefully chosen to match the relative mix of
operations observed in some class of applications. They
usually do no real, useful work. In contrast, application
benchmarks are complete real-life applications. They are
normally designed specifically to be representative of a
given class of applications. Finally, abstract workload
descriptions are nonexecutable models composed of a
set of parameter values that characterize the workload
in terms of the load it places on the system components.
Such models are typically used in conjunction with ana-
lytical or simulation models of the system. Depending on
the type of workload, different parameters may be used,
such as transaction/request types, times between succes-
sive request arrivals (interarrival times), transaction
execution rates, transaction service times at system
resources, and so on. As an example, an e-commerce work-
load can be described by specifying the types of requests
processed by the system (e.g., place order, change order,
cancel order), the rates at which requests arrive, and the
amount of resources used when processing requests, that
is, the time spent receiving service at the various system
resources such as central processing units (CPUs), input–
output (I/O) devices, and networks. For additional exam-
ples and details on executable and nonexecutable work-
load models, the reader is referred to Refs. 8 and 9, as well
as 3 and 10, respectively.

PERFORMANCE MEASUREMENT

The measurement approach to software performance eva-
luation is typically applied in three contexts:

– Platform benchmarking: Measure the performance
and scalability of alternative platforms on which a
system can be built and/or deployed.

– Application profiling: Measure and profile the perfor-
mance of application components during the various
stages of the development cycle.

– System load testing: Measure the end-to-end system
performance under load in the later stages of devel-
opment when a running implementation or a proto-
type is available for testing.

In all three cases, executable workload models are used.
In this section, we briefly discuss the above three contexts
in which performance measurements are done. A more
detailed introduction to performance measurement tech-
niques can be found in Refs. 1, 8, 9, 11 and 12. The
Proceedings of the Annual Conference of the Computer
Measurement Group (CMG) are an excellent source of
recent publications on performance measurement tools,
methodologies, and concepts.

Platform Benchmarking

While benchmarking efforts have traditionally been
focused on hardware performance, over the past 15 years,
benchmarks have increasingly been used to evaluate the
performance and scalability of end-to-end systems includ-

ing both the hardware and software platforms used to build
them (9). Thus, the scope of benchmarking efforts has
expanded to include software products like Web servers,
application servers, database management systems, mes-
sage-oriented middleware, and virtual machine monitors.
Building on scalable and efficient platforms is crucial to
achieving good performance and scalability. Therefore, it is
essential that platforms are validated to ensure that they
provide adequate level of performance and scalability
before they are used to build real applications. Where
alternative platforms are available, benchmark results
can be used for performance comparisons to help select
the platform that provides the best cost/performance ratio.
Two major benchmark standardization bodies exist, the
Standard Performance Evaluation Corporation (SPEC)
(13) and the Transaction Processing Performance Council
(TPC) (14). Many standard benchmarks have appeared in
the last decade that provide means to measure the perfor-
mance and scalability of software platforms. For example,
SPECjAppServer2004 and TPC-App for application
servers, SPECjbb2005 for server-side Java, TPC-W and
SPECweb2005 for Web servers, TPC-C, TPC-E and TPC-H
for database management systems, and SPECjms2007
for message-oriented middleware. Benchmarks such as
these are called application benchmarks because they are
designed to be representative of a given class of real-world
applications.

Although the main purpose of application benchmarks is
to measure the performance and scalability of alternative
platforms on which a system can be built, they can also be
used to study the effect of platform configuration settings
and tuning parameters on the overall system performance
(9,15,16). Thus, benchmarking not only helps to select
platforms and validate their performance and scalability,
but also helps to tune and optimize the selected platforms
for optimal performance. The Proceedings of the Annual
SPEC Benchmark Workshops are an excellent source on the
latest developments in benchmarking methodologies and
tools (17).

Application Profiling

Application profiling is conducted iteratively during the
system development cycle to evaluate the performance of
components as they are designed and implemented. Design
and implementation decisions taken at the early stages of
system development are likely to have a strong impact on
the overall system performance (1). Moreover, problems
caused by poor decisions taken early in the development
cycle are usually most expensive and time-consuming to
correct. Therefore, it is important that, as components are
designed and implemented, their performance is measured
and profiled to ensure that they do not have any internal
bottlenecks or processing inefficiencies. Software profilers
are normally used for this purpose.

Software profilers are performance measurement tools
that help to gain a comprehensive understanding of the
execution-time behavior of software components. They
typically provide information such as the fraction of time
spent in specific states (e.g., executing different subrou-
tines, blocking on I/O, running operating system kernel
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code) and the flow of control during program execution. Two
general techniques are normally used to obtain such infor-
mation, statistical sampling and code instrumentation
(11,12). The statistical sampling approach is based on
interrupting the program execution periodically and
recording the execution state. The code instrumentation
approach, on the other hand, is based on modifying
the program code to record state information whenever
a specified set of events of interest occur. Statistical
sampling is usually much less intrusive; however, it only
provides statistical summary of the times spent in different
states and cannot provide any information on how the
various states were reached (e.g., call graphs). Code instru-
mentation, on the other hand, is normally more intrusive;
however, it allows the profiler to precisely record all the
events of interest as well as the call sequences that show the
flow of control during program execution. For example,
in CPU time profiling, statistical sampling may reveal
the relative percentage of time spent in frequently-called
methods, whereas code instrumentation can report the
exact number of times each method is invoked and the
calling sequence that led to the method invocation.

System Load Testing

Load testing is typically done in the later stages of system
development when a running implementation or a proto-
type of the system is available for testing. Load-testing tools
are used to generate synthetic workloads and measure the
system performance under load. Sophisticated load-testing
tools can emulate hundreds of thousands of ‘‘virtual users’’
that mimic real users interacting with the system. While
tests are run, system components are monitored and per-
formance metrics (e.g., response time, throughput and
utilization) are measured. Results obtained in this way
can be used to identify and isolate system bottlenecks,
fine-tune system components, and measure the end-to-
end system scalability (18). Unfortunately, this approach
has several drawbacks. First of all, it is not applicable in
the early stages of system development when the system is
not available for testing. Second, it is extremely expensive
and time-consuming because it requires setting up
a production-like testing environment, configuring load
testing tools, and conducting the tests. Finally, testing
results normally cannot be reused for other applications.

PERFORMANCE MODELING

The performance modeling approach to software perfor-
mance evaluation is based on using mathematical or
simulation models to predict the system performance
under load. Models represent the way system resources
are used by the workload and capture the main factors
that determine the system behavior under load (10). This
approach is normally much cheaper than load testing and
has the advantage that it can be applied in the early stages
of system development before the system is available for
testing. A number of different methods and techniques
have been proposed in the literature for modeling software
systems and predicting their performance under load.
Most of them, however, are based on the same general

methodology that proceeds through the steps depicted in
Fig. 3 (1, 3, 19–21).

First, the goals and objectives of the modeling study are
specified. After this, the system is described in detail in
terms of its hardware and software architecture. The aim is
to obtain an in-depth understanding of the system archi-
tecture and its components. Next, the workload of the
system is characterized and a workload model is built.
The workload model is used as a basis to develop a perfor-
mance model. Before the model can be used for performance
prediction, it has to be validated. This is done by comparing
performance metrics predicted by the model with measure-
ments on the real system. If the predicted values do not
match the measured values within an acceptable level of
accuracy, then the model must be refined and/or calibrated.
Finally, the validated performance model is used to predict
the system performance for the deployment configurations
and workload scenarios of interest. The model predictions
are analyzed and used to address the goals set in the
beginning of the modeling study. We now take a closer
look at the major steps of the modeling process.

Workload Characterization

Workload characterization is the process of describing the
workload of the system in a qualitative and quantitative
manner (20). The result of workload characterization is a
nonexecutable workload model that can be used as input to
performance models. Workload characterization usually
involves the following activities (1, 22):

– The basic components of the workload are identified.

– Basic components are partitioned into workload
classes.

– The system components/resources used by each work-
load class are identified.

Figure 3. Performance modeling process.
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– The inter-component interactions and processing
steps are described.

– Service demands and workload intensities are quan-
tified.

In the following, we discuss each of these activities in
turn.

The Basic Components of the Workload are Identified.
Basic component refers to a generic unit of work that
arrives at the system from an external source (19).
Some examples include HTTP requests, remote procedure
calls, Web service invocations, database transactions,
interactive commands, and batch jobs. Basic components
could be composed of multiple processing tasks, for exam-
ple client sessions that comprise multiple requests to the
system or nested transactions (open or closed). The choice
of basic components and the decision how granular they
are defined depend on the nature of the services provided
by the system and on the modeling objectives. Because, in
almost all cases, basic components can be considered as
some kind of requests or transactions processed by the
system, they are often referred to as requests or transac-
tions1.

Basic Components are Partitioned into Workload Classes.
To improve the representativeness of the workload model,
the basic components are partitioned into classes (called
workload classes) that have similar characteristics. The
partitioning can be done based on different criteria, depend-
ing on the type of system modeled and the goals of the
modeling effort (19, 23). The basic components should be
partitioned in such a way that each workload class is as
homogeneous as possible in terms of the load it places on the
system and its resources.

The System Components and Resources Used by Each
Workload Class are Identified. For example, an online
request to place an order might require using a Web
server, application server, and backend database server.
For each server, the concrete hardware and software
resources used must be identified. It is distinguished
between active and passive resources (10). An active
resource is a resource that delivers a certain service to
transactions at a finite speed (e.g., CPU or disk drive). In
contrast, a passive resource is needed for the execution of a
transaction, but it is not characterized by a speed of
service delivery (e.g., thread, database connection or
main memory).

The Intercomponent Interactions and Processing Steps are
Described. The aim of this step is to describe the proces-
sing steps, the inter-component interactions, and the flow
of control for each workload class. Also for each processing
step, the hardware and software resources used are
specified. Different notations may be exploited for this
purpose, for example client/server interaction diagrams

(20), execution graphs (1), communication-processing delay
diagrams (19), as well as conventional UML sequence and
activity diagrams (24).

Service Demands and Workload Intensities are Quanti-
fied. The goal is to quantify the load placed by the workload
components on the system. Service-demand parameters
specify the average total amount of service time required
by each workload class at each resource. Most techniques
for obtaining service-demand parameters involve running
the system or components thereof and taking measure-
ments. Some techniques are also available that can
be used to estimate service-demand parameters in the
early stages of system development before the system is
available for testing (25). Workload-intensity parameters
provide for each workload class a measure of the number of
units of work (i.e., requests or transactions), that contend
for system resources. Depending on the way workload
intensity is specified, it is distinguished between open
and closed classes. For open classes, workload intensity
is specified as an arrival rate, whereas for closed classes it is
specified as average number of requests served concur-
rently in the system.

The product of the workload characterization steps
described above (i.e., the workload model) is sometimes
referred to as software execution model because it repre-
sents the key facets of software execution behavior (1).

Performance Models

A performance model is an abstract representation of the
system that relates the workload parameters with the
system configuration and captures the main factors that
determine the system performance. Performance models
can be used to understand the behavior of the system and
predict its performance under load. Figure 4 shows the
major types of performance models that are available in the
literature for modeling computer systems. Note that this
model classification is not clear cut because some model
types partially overlap. Performance models can be
grouped into two main categories: simulation models and
analytical models. One of the greatest challenges in build-
ing a good model is to find the right level of detail. A general
rule of thumb is: ‘‘Make the model as simple as possible, but
not simpler!’’ Including too much detail might render the
model intractable, on the other hand, making it too simple
might render it unrepresentative.

Simulation Models. Simulation models are software pro-
grams that mimic the behavior of a system as requests
arrive and get processed at the various system resources.
Such models are normally stochastic because they have one
or more random variables as input (e.g., the request inter-
arrival times). The structure of a simulation program is
based on the states of the simulated system and events that
cause the system state to change. When implemented,
simulation programs count events and record the duration
of time spent in different states. Based on these data,
performance metrics of interest (e.g., the average time a
request takestocompleteor theaveragesystemthroughput)
can be estimated at the end of the simulation run. Estimates

1The term transaction here is used loosely to refer to any unit of
work or processing task executed in the system.

SOFTWARE PERFORMANCE EVALUATION 5



areprovidedin the formofconfidence intervals.A confidence
interval is a range with a given probability that the esti-
mated performance metric lies within this range. The main
advantage of simulation models is that they are very general
and can be made as accurate as desired. However, this
accuracy comes at the cost of the time taken to develop
and run the models. Usually, many long runs are required
to obtain estimates of needed performance measures with
reasonable confidence levels.

Several approaches to developing a simulation model
(22) exist. The most time-consuming approach is to use a
general purpose programming language such as C++ or
Java, possibly augmented by simulation libraries (e.g.,
CSIM or SimPack). Another approach is to use a specialized
simulation language such as GPSS/H, Simscript II.5, or
MODSIM III. Finally, some simulation packages
support graphical languages for defining simulation mod-
els (e.g., Arena, Extend, SES/workbench). A comprehensive
treatment of simulation techniques can be found in Refs. 26
and 27.

Analytical Models. Analytical models are based on math-
ematical laws and computational algorithms used to derive
performance metrics from model parameters. Analytical
models are usually less expensive to build and more
efficient to analyze compared with simulation models.
However, because they are defined at a higher level of
abstraction, they are normally less detailed and accurate.
Moreover, for models to be mathematically tractable,
usually many simplifying assumptions need to be made
impairing the model representativeness.

Queueing networks and generalized stochastic Petri nets
are perhaps the two most popular types of models used in
practice. Queueing networks provide a very powerful

mechanism for modeling hardware contention (contention
for CPU time, disk access, and other hardware resources)
and scheduling strategies. A number of efficient analysis
methods have been developed for a class of queueing net-
works called product-form queueing networks, which enable
models of realistic size and complexity to be analyzed (28).
The downside of queueing networks is that they are not
expressive enough to model software contention accurately
(contention for processes, threads, database connections,
and other software resources), as well as blocking, simulta-
neous resource possession, asynchronous processing, and
synchronization aspects. Even though extensions of queue-
ing networks, such as extended queueing networks (29) and
layered queueing networks (also called stochastic rendez-
vous networks) (30–32), provide some support for modeling
software contention and synchronization aspects, they are
often restrictive and inaccurate.

In contrast to queueing networks, generalized stochastic
Petri net models easily can express software contention,
simultaneous resource possession, asynchronous proces-
sing, and synchronization aspects. Their major disadvan-
tage, however, is that they do not provide any means for
direct representation of scheduling strategies. The
attempts to eliminate this disadvantage have led to the
emergence of queueing Petri nets (33–35), which combine
the modeling power and expressiveness of queueing net-
works and stochastic Petri nets. Queueing Petri nets enable
the integration of hardware and software aspects of system
behavior in the same model (36, 37). A major hurdle to the
practical use of queueing Petri nets, however, is that their
analysis suffers from the state space explosion problem
limiting the size of the models that can be solved. Currently,
the only way to circumvent this problem is by using simula-
tion for model analysis (38).

Details of the various types of analytical models shown in
Fig.4arebeyondthescopeof thisarticle.Thefollowingbooks
canbeusedasreference foradditional information (3,12,28,
35, 39–42). The Proceedings of the ACM SIGMETRICS
ConferencesandthePerformanceEvaluationJournalreport
recent research results in performance modeling and eva-
luation. Further relevant information can be found in the
Proceedings of the International Conference on Quantitative
Evaluation of SysTems (QEST), the Proceedings of the
Annual Meeting of the IEEE International Symposium on
Modeling, Analysis, and Simulation of Computer and Tele-
communicationSystems (MASCOTS), theProceedingsof the
International Conference on Performance Evaluation Meth-
odologies and Tools, (VALUETOOLS) and the Proceedings
of the ACM International Workshop on Software and Per-
formance (WOSP).

Model Validation and Calibration

Before a model can be used for performance prediction, it
has to be validated. We assume that the system modeled or
a prototype of it is available for testing. The model is said
to be valid if the performance metrics (e.g., response time,
throughput, and resource utilization) predicted by the
model match the measurements on the real system within
a certain acceptable margin of error (3). As a rule of thumb,
errors within 10% for utilization and throughput, and
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Figure 4. Major types of performance models.
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within 20% for response time are considered acceptable
(10). Model validation is normally conducted by compar-
ing performance metrics predicted by the model with
measurements on the real system. This testing is per-
formed for several different scenarios varying the model
input parameters. If the predicted values do not match the
measuredvalueswithinanacceptablelevelofaccuracy, then
the model must be refined. Otherwise, the model is deemed
validandcanbeusedforperformanceprediction.Thevalida-
tion and refinement process is illustrated in Fig. 5. It is
important that the model predictions are verified for several
scenarios under different transaction mixes and workload
intensities before the model is deemed valid. The model
refinement process usually involves the following activities:

– The model input parameters are verified.

– Assumptions and simplifications made when building
the model are revisited.

– The system is monitored under load to ensure that all
critical aspects of its behavior are captured by the
model.

– It is considered to increase the level of detail at which
the system is modeled.

If after refining the model, predicted metrics still do not
match the measurements on the real system within an
acceptable level of accuracy, then the model has to be
calibrated. Model calibration is the process of changing
the model to force it to match the actual system (43). This
is achieved by changing the values of some model input or
output parameters. The parameters may be increased or
decreased by an absolute or percentage amount. Normally,
input parameters are changed (e.g., service demands); how-
ever, in certain cases, also output parameters might be
changed. If an output parameter is altered when calibrating

the baseline model, then it must be altered in the same
manner whenever the model is used for performance pre-
diction. After the model is calibrated, the validation proce-
dure must be repeated to make sure that the calibrated
model now accurately reflects the real system and workload.
For a detailed discussion of model calibration techniques,
the reader is referred to Refs. 10 and 44.

The extent to which a model can be validated quantita-
tively as described above depends on the availability of an
implementation of the system components. In the initial
phases of system development when no implementation is
available, model validation would be limited to revisiting
the assumptions made when building the model. If a system
or a prototype with a similar architecture to the one mod-
eled is available, then it could be used to provide some rough
measurement data for quantitative validation.

Software Performance Engineering

Over the last 15 years, a number of approaches have been
proposed for integrating performance evaluation and
prediction techniques into the software engineering process.
Efforts were initiated with Smith’s seminal work pioneered
under SPE (45). Since then many meta-models for describ-
ing performance-related aspects (46) have been developed
by the SPE community, the most prominent being the UML
SPT profile and its successor the UML MARTE profile, both
of which are extensions of UML as the de facto standard
modeling language for software architectures. Other pro-
posed meta-models include SPE-MM (47), CSM (48), and
KLAPER (49). The common goal of these efforts is to enable
the automated transformation of design-oriented software
models into analysis-oriented performance models, which
make it possible to predict the system performance. A recent
servey of model-based performance prediction techniques
was published in Ref. 50. Many techniques that use a range
of different performance models have been proposed includ-
ing standard queueing networks (3, 25, 47, 51), extended
queueing networks (49, 52, 53), layered queueing networks
(48), stochastic Petri nets (54, 55), and queueing Petri nets
(4, 21). In recent years, with the increasing adoption of
component-based software engineering, the performance
evaluation community has focused on adapting and extend-
ing conventional SPE techniques to support component-
based systems. For a recent survey of performance predic-
tion methodologies and tools for component-based systems,
refer to Ref. 56.

OPERATIONAL ANALYSIS

An alternative approach to performance evaluation known
as operational analysis is based on a set of basic invariant
relationships between performance quantities (57). These
relationships, which are commonly known as operational
laws, can be considered as consistency requirements for the
values of performance quantities measured in any parti-
cular experiment. We briefly present the most important
operational laws. Consider a system made up of K resources
(e.g., servers, processors, disk drives, network links). The
system processes transactions requested by clients. It is
assumed that during the processing of a transaction,

Figure 5. Model validation and refinement process.
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multiple resources can be used and at each point in time the
transaction is either being served at a resource or waiting
for a resource to become available. A resource might be used
multiple times during a transaction, and each time a
request is sent to the resource, we will refer to this as
the transaction visiting the resource. The following nota-
tion will be used:

Vi the average number of times resource i is visited
during the processing of a transaction.

Si the average service time of a transaction at resource i
per visit to the resource.

Di the average total service time of a transaction at
resource i.

Ui the utilization of resource i (i.e., the fraction of time
the resource is busy serving requests).

Xi the throughtput of resource i (i.e., the number of
service completions per unit time).

X0 the system throughput (i.e., the number of transac-
tions processed per unit time).

R the average transaction response time (i.e., the aver-
age time it takes to process a transaction including
both the waiting and service time in the system).

N the average number of active transactions in the
system, either waiting for service or being served.

If we observe the system for a finite amount of time T,
assuming that the system is in steady state, then the
following relationships can be shown to hold:

Utilization Law:

Ui ¼ Xi � Si

Forced Flow Law:

Xi ¼ X0 � Vi

Service Demand Law:

Di ¼ Ui=X0

Little’s Law:

N ¼ X0 � R

The last of the above relationships, Little’s Law, is one of
the most important and fundamental laws in queueing
theory. It can also be extended to higher moments (58).
If we assume that transactions are started by a fixed set of
M clients and that the average time a client waits after
completing a transaction before starting the next transac-
tion (the client think time) is Z, then using Little’s Law, the
following relationship can be easily shown to hold:

Interactive Response Time Law:

R ¼ M

X0
� Z

Although operational analysis is not as powerful as
queueing theoretic methods for performance analysis, it
has the advantage that it can be applied under much more
general conditions because it does not require the strong
assumptions typically made in stochastic modeling. For a
more detailed introduction to operational analysis, the
reader is referred to Refs. 3, 10, and 22.

SUMMARY

In this article, an overview of the major methods and
techniques for software performance evaluation was pre-
sented. First, the different types of workload models that
are typically used in performance evaluation studies were
considered. Next, an overview of common tools and tech-
niques for performance measurement, including platform
benchmarking, application profiling, and system load
testing, was given. Then, the most common methods for
workload characterization and performance modeling of
software systems were surveyed. The major types of per-
formance models used in practice were considered and
their advantages and disadvantages were discussed. An
outline of the approaches to integrating model-based per-
formance analysis into the software engineering process
was presented. Finally, operational analysis was intro-
duced briefly as an alternative to queueing theoretic
methods.
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19. D. Menascé and V. Almeida, Capacity Planning for Web Per-
formance: Metrics, Models and Methods, Upper Saddle River,
NJ: Prentice Hall, 1998.
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