
Architectural Concerns in Multi-Tenant SaaS Applications

Rouven Krebs1, Christof Momm1 and Samuel Kounev2

1SAP AG, Dietmar-Hopp-Allee 16, 69190 Walldorf, Germany
2Karlsruhe Institute of Technology, Am Fasanengarten 5, 76131 Karlsruhe, Germany

{rouven.krebs, christof.momm}@sap.com, kounev@kit.edu

Keywords: Multi-tenancy; SaaS; Platform; Resource Sharing; Affinity; Performance Isolation

Abstract: Multi-tenant applications serve different customers with one application instance. This architectural style
leverages sharing and economies of scale to provide cost efficient hosting. As multi-tenancy is a new concept,
a common definition of the word and related concepts is not yet established and the architectural concerns are
not fully understood. This paper provides an overview of important architectural concerns and there mutual
influences. Beside that, it defines multi-tenancy and differentiates it from several related concepts.

1 INTRODUCTION

Software-as-a-Service (SaaS) is a cloud service offer-
ing comprising a ready to run, hosted application like
a CRM1 or a Web mailer2. To reduce the total costs of
ownership (TCO), some of these SaaS offerings allo-
cate users of different customers to the same applica-
tion instance. If the users of one customer represent a
closed group, which is usually charged and handled as
a single entity, they are referred as a tenant. Applica-
tions designed to serve multiple tenants with a single
runtime instance are referred as multi-tenant applica-
tions (MTA).

Sharing resources in general yields cost benefits
in cloud environments (Schuller, 2009). This is most
efficient on the level of application instances (Momm
and Krebs, 2011), since in this case the general over-
head is minimal and it is possible to perform a very
fine grained workload and resource management (e.g.
requests, threads).

To still meet customers’ expectations regarding
the service levels, systems have to ensure a functional
and non-functional isolation of the tenants, which is a
major challenge, especially when the application in-
stance itself is shared.

However, from a research point of view multi-
tenancy is a field that still introduces many undefined
concepts and acronyms. This causes confusion, not
only because of different definitions of multi-tenancy
but also because of various biased assumptions about

1e.g. http://www.salesforce.com
2e.g. http://www.googlemail.com

its implementation.
The major contribution of this paper is a dis-

cussion of software architecturel concerns for im-
plementing multi-tenant applications by pointing out
characterizing features and differentiating aspects
from other related concepts such as system virtual-
ization.

The remainder of the paper is structured as fol-
lows. Section 2 provides a definition of multi-tenancy,
including a discussion of related concepts. Section 3
points out the major architectural concerns when de-
signing MTAs and section 4 discusses the relation-
ships between these concerns. Section 5 presents the
related work, while section 6 concludes this paper.

2 SHARING CONCEPTS AND
MULTI-TENANCY

This section introduces different approaches for shar-
ing resources in cloud environments and concise def-
initions for the terms tenant and multi-tenancy.

The following section briefly explains different
commonly used sharing mechanisms based on (Os-
ipov et al., 2009) (Guo et al., 2007) and discuss their
relationship to our notion of multi-tenancy.

2.1 Different Layers

When a single code base is shared between differ-
ent customers/tenants it comes up with some require-
ments for the code. If one single code base is used



the application has to be widely configurable to be
adapted for customer specific needs. Sharing the code
base yields reuse and is omnipresent. Nevertheless, a
single code base is not sufficient enough to reduce the
operational costs. Developing widely configurable
software instead of customer specific branches is a
question related to product line engineering and not
specific for MTAs.

Sharing a data center is the lowest level of re-
source sharing one could imagine. Reusing the facil-
ities environment like air conditioner or network in-
frastructure is the simplest way of decreasing costs.
Application Service Providers already have adopted
this concepts for years. However, sharing the data
center only has a very limited cost saving poten-
tial, e.g. workload fluctuations of different customers
can’t be considered for resource optimization.

Virtualization provides an easy way for sharing a
single server. Running a separate instance of the ap-
plication within one VM for each customer is a first
step towards efficient operation and probably todays
most widely adopted sharing approach. In opposite to
a shared data center, virtualization allows leveraging
workload fluctuations by overcommitting the servers,
while allowing a good isolation. However, the over-
head of this solution per customer is still quite high.
Virtualization is a well established field of research
with challenges and goals on a hardware related level
and should not be referred to multi-tenancy which is
a concept on the applications level.

Another approach shares the middleware. In this
scenario the middleware becomes shared by several
application instances. This means, that the implemen-
tation of the application itself has low or no overhead
regarding multi-tenancy. The disadvantages are the
challenges regarding isolation of tenants and the over-
head due to separated application instances. Hosting
different applications within one middleware is not
different than hosting the same application multiple
times, which is a topic that is already discussed ex-
tensively in the literature.

A Multi-tenant Application (MTA) shares one ap-
plication instance among different customers to re-
duce overhead the most. Handling different tenants
within one application instance requires several mod-
ifications as every tenant needs its own view. MTAs
started to become of interest as SaaS technologies
arose and thus multi-tenancy is still not clearly de-
fined. Therefore, we provide a definition of the terms
tenant and multi-tenancy in the next section.

2.2 Definition of Multi-tenancy

A tenant is a group of users sharing the same view
on an application they use. This view includes the
data they access, the configuration, the user man-
agement, particular functionality and related non-
functional properties. Usually the groups are mem-
bers of different legal entities. This comes with re-
strictions (e.g. data security and privacy).

Multi-tenancy is an approach to share an appli-
cation instance between multiple tenants by provid-
ing every tenant a dedicated ”share” of the instance,
which is isolated from other shares with regard to per-
formance and data privacy. A commonly used anal-
ogy for explanation is a living complex where differ-
ent parties share some of their resources like heating
to reduce costs, but also love to enjoy their privacy
and therefore demand a certain level of isolation (in
particular when it comes to noise).

Besides multi-tenancy there is also the notion of
tenant space. A tenant space refers to the situation
where customers rent a predefined space of resources
in which they can run different application instances.
One example is a IaaS offering where a customer buys
resources in which he installs the applications of his
choice.

Scenarios where multiple applications run in one
instance of the same runtime environment, some-
times are also referred to as multi-tenancy, in par-
ticular from the perspective of PaaS providers, be-
cause their customers deploy several applications.
This concept we call multiple application deploy-
ment and not multi-tenancy, because the entities to be
separated have different characteristics and the chal-
lenges in this scenario are of different nature. Thus,
multi-application deployment should not be equated
to multi-tenancy.

Data center-, virtualization- and middleware shar-
ing are sometimes seen as one approach to achieve
a multi-tenant like behavior for the tenant. All these
approaches base on one application instance for each
tenant and some references (e.g. (Calvin and Friedl,
2009)) call them multi-instance solutions. Conse-
quently, they lack in sharing resources and in effi-
ciency. The development of such applications cannot
be considered to be something special. As all of these
concepts for sharing resources are covered by a sep-
arate scientific field with its own challenges we pro-
pose to clearly distinguish all the mentioned concepts
for the sake of differentiation.



3 HIGH LEVEL DESIGN
CONCERNS

When developing an MTA one has to tackle mul-
tiple challenges (Bezemer and Zaidman, 2010) and
has to find a balance between several architectural
trade-off decisions (Koziolek, 2011). In the follow-
ing we present different high level design concerns
influencing the architecture. First, we discuss affinity
and persistence concerns, which are usually transpar-
ent to the tenants. Second, we focus on three con-
cerns that might be key differentiators for competi-
tors: performance-isolation, service-differentiation
and customizability. For each design concern we pro-
vide examples from real-life applications.

3.1 Affinity

One could easily think of applications where hun-
dreds or even thousands of application instances
serve several tens of thousands of tenants (Schonfeld,
2009). In this situation, the way the users of one ten-
ant are distributed becomes a significant issue in the
design of a MTA. Affinity defines how the requests
of different users of a tenant are bound to process-
ing nodes. Contrary to traditional request/response
based systems the method is based on tenant specific
attributes for the routing of requests and not user spe-
cific ones. In the following, we introduce the different
types of tenant affinity and explain reasons for using
them.

Figure 1: Different Affinities in a Multi-tenant Landscape.

In a tenant Non-affine application a number of ap-
plication instances exist and every incoming request
could be handled by any of the instances without at-
tention to the tenant from which the request origins.

In Server-affine cases the requests from one ten-
ant must be handled by the same application instance.

This means, that users from one tenant cannot be dis-
tributed among several application instances but one
instance can handle multiple tenants. A possible rea-
sons for such behavior is a tenant context whereby
sharing among instances is not feasible. Furthermore,
a weak affinity, artificially introduced, might increase
the cache hit rate.

In Cluster-affine situations the users of one tenant
could be served by a fixed subgroup of all application
instances, whereby one subgroup serves several ten-
ants. This scenario also implies that each application
instance is only part of exactly one subgroup. Keep-
ing a tenants context, state or locking in sync among
several instances or a long logical network distance
could influence the performance negative and restrict
the distribution.

Inter-cluster-affine is the same as the cluster affin-
ity, but one application instance could be part of sev-
eral groups. For the tenant specific context, state and
locking the same arguments as for the Cluster-affine
behavior arise. Legal restrictions are other aspects.
For example, a server which is located in Germany is
also located in the EU and thus part of two groups.

Examples The SAP Business ByDesign solu-
tion was developed with an affine behavior in mind
due to a high amount of caching. Other applications
like those based on the Google’s App Engine base on
low tenant specific context. This means, that one ten-
ant might be distributed over several instances of the
application.

3.2 Persistence Design

Multi-tenant database designs are widely discussed
(Wang et al., 2008) (Chong et al., 2006). In the fol-
lowing we give a short summary of the different ap-
proaches. In a dedicated database system, every ten-
ant uses its own completely separated database. A
dedicated table/schema approach shares one database
which contains a separate table or schema for each
tenant. In such a scenario one achieves at least a
partial sharing. The shared table/schema approach
shares the same tables and schemas, a differentiation
of the data is usually provided by adding a tenantId
column.

Examples SAP’s systems use relational data bases
with a tenentId column. In contrast, Calvin (Calvin
and Friedl, 2009) describes a solution using a separate
database within Windows Azure3.

3http://www.windowsazure.com



3.3 Performance Isolation

The lack of performance guarantees is one of the
major obstacles for potential cloud users (bitcurrent,
2011). Performance related issues are often caused
by a minority of tenants with a high workload. In
the following we define performance-isolated, -weak
isolated and unisolated systems with respect to perfor-
mance measured and the quota each tenant has. In this
case quota means the workload a tenant is allowed to
produce.

Performance-isolation exists if for tenants work-
ing within their quota the SLAs are fulfilled, even if
other tenants exceed their quotas. If this is met within
all conditions a system is performance-isolated. An
increased response time RA for tenant A because of
a high workload for tenant B is acceptable if RA is
still within the SLAs. A related concept is resource
isolation, it isolates the existing resources like CPU
time or memory. Thus resource isolation is one way
to achieve performance isolation.

Weak isolation is achieved if performance isola-
tion is achieved within a limited number of requests
sent by disruptive tenants. An overcommitted sys-
tem, for example, might have the chance to restrict
the load of a disruptive tenant to the amount allowed
by the SLAs, but because of the overcommitment sev-
eral tenants using their entire quota at one time, might
infer with the other tenants.

An unisolated system does not provide any of the
aforementioned features. This means, that tenants
working within their quoata directly suffer from ten-
ant exceeding their quota.

Examples Google’s App Engine provides auto-
mated horizontal elasticity for the application. How-
ever, it is not tenant specific and does not ensure per-
formance isolation if elasticity is restricted. Lin’s (Lin
et al., 2009) approach ensures performance isolation
within one single MTA.

3.4 QoS Differentiation

QoS differentiation provides one tenant another ser-
vice quality than another tenant. QoS differentiation
is not directly related to isolation aspects. It’s easy
to think of a system which can not isolate, but guar-
antees one tenant always better performance than an-
other one. An example is a system where tenant A
has higher thread priorities than tenant B. This en-
sures different response times. Nevertheless, the per-
formance is not isolated as tenant B could still trash
the system by increasing his workload. We also dif-
fer, between input and output related service differ-

entiation, which are not mutual exclusive. The input
related differentiation promises the same behavior re-
garding non-functional properties for all tenants by
allowing different amount of workload. In the out-
put case, the system allows the same amount of load
for every tenant but differs in the output related prop-
erties, like response time.

Examples In the academic community service
differentiation in multi-tenant environments started to
become of interest. Lin (Lin et al., 2009) for example
provides an approach to differ response times within
MTAs.

3.5 Customization

The ability to handle different tenant specific configu-
rations regarding the UI, the systems functional/non-
functional behavior and the services referenced is a
key enabler for MTAs. In Kozioleks (Koziolek, 2011)
architecture a separate Meta-Data Manager provides
the customization information to adapt the applica-
tion. Mietzner (Mietzner et al., 2009) created some
patterns for multi-tenant services and service compo-
sitions. Based on these patterns they built up a service
oriented system allowing extensive modifications in-
cluding tenant specific developments.

We will take these two ideas to differentiate the
degree a multi-tenant systems could be customized. A
configurable application is one which provides tenant
specific behavior or appearance, whereby this behav-
ior is configured without tenant specific code. Thus,
every tenant access the same code base. Such config-
urations might be provided by configuration files for
each tenant or by tenant specific admin UIs. A change
of a configuration for one tenant should not influence
the behavior or appearance of the application for an-
other tenant.

An application allowing tenant specific code ex-
tensions provides the most powerful way to adapt it to
customers’ needs. This leads to significant technical
challenges in the multi-tenant scenario. Mietzner’s et
al. (Mietzner et al., 2008) SOA based approach of
MTAs provides one way in which a tenant might re-
place or extend pieces of code without influencing the
others.

Examples Google Docs4 provides office appli-
cations for private usage or companies with lim-
ited opportunities for customer specific customiz-
ing. Other SaaS providers like Salesforce provide a

4https://docs.google.com/



wide range of options including tenant specific code
(Weissman and Bobrowski, 2009).

4 MUTUAL INFLUENCES AND
INTERDEPENDENCIES

This section sets the aforementioned concepts and ar-
chitectural concerns in relation to each other. First,
we show an overview in figure 2 followed by a tex-
tual description which contains the rationale for the
interdependencies.

Figure 2: Interdependencies between different architectural
concerns.

Basically it would be possible to use every type
of affinity independently from the expected customiz-
ability, QoS differentiation or performance-isolation.
However, choosing the one or the other approach
might lead to more or less sophisticated implemen-
tations. The customizability feature for example re-
quires a mechanism to deploy changes over all nodes.
It is very similar to the performance-isolation and
QoS differentiation aspects as both need a centralized
mechanism to ensure their goals. All these aspects in-
fluence the decission to prefer the one type of affinity
or the other.

The QoS differentiation’s impact on the persis-
tence layer is because one could achieve it by lever-
aging database features like different storage capaci-
ties. Another point is to provide every tenant its sin-
gle database with different hardware settings or to use
database features to prefer one tenant’s requests in-
stead of those sent by another one. The QoS differen-
tiation implicates that one must configure the differ-
ences between the tenants, thus a tenant aware con-
figuration is required. Beside that direct implication a
particular configuration or extension might influence
the tenants QoS. We do not see this as a problem for
the QoS differentiation as the tenant perceives differ-
ent functionality.

Extending or customizing the application signif-
icantly influences different aspects. In a non-server
affine situation one has to synchronize changes in
the configuration across the boundaries of the appli-
cation instances. Nevertheless, solving this problem

is part of the extensibility topic and not part of the
affinity. Tenant specific code extensions or modifi-
cations might rely on a customer specific database
schema. There are some approaches (Weissman and
Bobrowski, 2009) to solve this problem without cre-
ating a separate database model. Nevertheless, one
has to think about different databases for each tenant,
if such extensive modifications are offered.

The decision about the chosen persistency concept
might influence the level of performance-isolation
which could be achieved. Independently from the ten-
ant’s restrictions at the application level, one single
query on the database might cause significant perfor-
mance issues for all tenants. This is why performance
isolation is a major challenge when the database is
shared and no isolation techniques applied on persis-
tency. Beside that, we have the already discussed re-
lations with respect to the customizability, the QoS
differentiation and the performance impact on differ-
ent affinities.

Performance isolation is influenced by many other
aspects. As discussed before one has to make dis-
tributed control mechanisms available in non-server
affine situations. Besides that, sandbox approaches
isolating the code extensions are required as without
providing sandboxes, a user could easily deploy code
affecting other tenants. Another issue is the database
which needs to provide adequate mechanisms to en-
sure isolation.

5 RELATED WORK

Multi-tenancy is a new field of research and started to
get in focus with the arising of enterprise SaaS appli-
cations.

Koziolek (Koziolek, 2011) describes an architec-
tural style of MTAs called SPOSAD based on the
well-known multi-tier web application model with its
architectural constraints and tradeoffs. Mietzner et al.
(Mietzner et al., 2009) describes a multi-tenant archi-
tecture based on the Service Component Architecture
(SCA).

We instead focus on the most important features
for the tenant and its implications to some architec-
tural concerns. Furthermore, our assumptions and re-
strictions regarding the architectural style are not as
restrictive as presented by Koziolek.

A list of some key characteristics, a conceptual
architecture of MTAs and the resulting challenges is
listed in (Bezemer and Zaidman, 2010). Nevertheless,
the challenges are rather discussed on a technical level
and the authors did not discuss how one challenge in-
fluences conceptual architectural decisions.



There are publications (e.g. (Chong et al., 2006),
(Osipov et al., 2009)) discussing how to separate the
tenant’s data and how to create tenant specific data
models. Wang (Wang et al., 2008) also did some per-
formance related research. Nevertheless, there is no
discussion about mutual influences of non-database
and database related concepts.

Besides that, a number of publications associated
with performance and resource optimization (Fehling
et al., 2010), (Lin et al., 2009) exist.

6 CONCLUSION

In this paper we defined the concept of multi-tenancy
from a vendor’s point of view as sharing an appli-
cation instance for several customers with their own
private view onto it and motivated the approach by
increased efficiency. Furthermore, we provided an
overview and a discussion of concepts and architec-
tural concerns of interest. In particular, these are
performance-isolation, persistency, QoS differentia-
tion and customizability. We presented a classifica-
tion schema within each of these topics and added the
discussion of different affinities. Based on the defini-
tion of these concepts we show, how these concepts
how the different aspects are related.

7 ACKNOWLEDGEMENTS

The research leading to these results has re-
ceived funding from the European Unions Seventh
Framework Programme (FP7/2007-2013) under grant
agreement No 258862.

REFERENCES

Bezemer, C.-P. and Zaidman, A. (2010). Multi-tenant
saas applications: maintenance dream or nightmare?
In Proceedings of the Joint ERCIM Workshop on
Software Evolution (EVOL) and International Work-
shop on Principles of Software Evolution (IWPSE),
IWPSE-EVOL ’10, pages 88–92, New York, NY,
USA. ACM.

bitcurrent (2011). Bitcurrent cloud computing survey 2011.
Technical report, bitcurrent.

Calvin, P. and Friedl, S. (2009). Lessons leraned: Build-
ing multitenant applications with the windows azure
platform. video.

Chong, F., Carraro, G., and Wolter, R. (2006). Multi-tenant
data architecture. website.

Fehling, C., Leymann, F., and Mietzner, R. (2010). A
framework for optimized distribution of tenants in

cloud applications. In Cloud Computing (CLOUD),
2010 IEEE 3rd International Conference on, pages
252 –259.

Guo, C. J., Sun, W., Huang, Y., Wang, Z. H., and Gao, B.
(2007). A framework for native multi-tenancy appli-
cation development and management. In E-Commerce
Technology and the 4th IEEE International Confer-
ence on Enterprise Computing, E-Commerce, and E-
Services, 2007. CEC/EEE 2007. The 9th IEEE Inter-
national Conference on, pages 551 –558.

Koziolek, H. (2011). The sposad architectural style for
multi-tenant software applications. In Proc. 9th
Working IEEE/IFIP Conf. on Software Architecture
(WICSA’11), Workshop on Architecting Cloud Com-
puting Applications and Systems, pages 320–327.
IEEE.

Lin, H., Sun, K., Zhao, S., and Han, Y. (2009). Feedback-
control-based performance regulation for multi-tenant
applications. Parallel and Distributed Systems, Inter-
national Conference on, 0:134–141.

Mietzner, R., Leymann, F., and Papazoglou, M. (2008).
Defining composite configurable saas application
packages using sca, variability descriptors and multi-
tenancy patterns. In Internet and Web Applications
and Services, 2008. ICIW ’08. Third International
Conference on, pages 156 –161.

Mietzner, R., Unger, T., Titze, R., and Leymann, F.
(2009). Combining different multi-tenancy patterns
in service-oriented applications. In Enterprise Dis-
tributed Object Computing Conference, 2009. EDOC
’09. IEEE International, pages 131 –140.

Momm, C. and Krebs, R. (2011). A Qualitative Discus-
sion of Different Approaches for Implementing Multi-
Tenant SaaS Offerings. In Proceedings of Software
Engineering 2011 (SE2011), Workshop(ESoSyM-
2011).

Osipov, C., Goldszmidt, G., Taylor, M., and Poddar,
I. (2009). Develop and deploy multi-tenant web-
delivered solutions using ibm middleware: Part 2:
Approaches for enabling multi-tenancy. website.
http://www.ibm.com/developerworks/webservices/library/ws-
multitenantpart2/index.html visited 23.Nov. 2011.

Schonfeld, E. (2009). The efficient cloud: All of salesforce
runs on only 1,000 servers. website.

Schuller, S. (2009). What if salesforce.com werent multi-
tenant? visited on 23. Nov. 2011.

Wang, Z. H., Guo, C. J., Gao, B., Sun, W., Zhang, Z., and
An, W. H. (2008). A study and performance evalu-
ation of the multi-tenant data tier design patterns for
service oriented computing. In e-Business Engineer-
ing, 2008. ICEBE ’08. IEEE International Conference
on, pages 94 –101.

Weissman, C. D. and Bobrowski, S. (2009). The de-
sign of the force.com multitenant internet application
development platform. In Proceedings of the 35th
SIGMOD international conference on Management of
data, SIGMOD ’09, pages 889–896, New York, NY,
USA. ACM.


