
Descartes Network Infrastructures
(DNI) Manual

Meta-models, Transformations, Examples

Piotr Rygielski, Samuel Kounev
{piotr.rygielski, samuel.kounev}@uni-wuerzburg.de

Technical Report

University of Würzburg

Version 0.3

November 2014

About this Document

Goals
The goal of this document is to present the DNI Meta-Model, its instances, sub-meta-
models, and model transformations in more details than in an usual conference or
journal paper. We describe the Meta-models and the transformations in details, give
examples of systems modeled using the meta-models, and present the transformations
in a step-by-step manner.

Version of the DNI Package
The Manual in its current version (0.3) describes the DNI package (i.e.: models,
meta-models and the transformations) version 2.3.

Executive Summary
This document is updated on a regular basis. In the table below, we summary the
recent changes.

Document
Version

Date DNI Version Introduced changes

0.3 Nov 2014 2.3 Polishing the DNI Manual, improving
diagrams, adding examples.

0.2 Sep 2014 2.3 Initial version of the DNI Manual is
published online. Introducing changes
in the routing (classical vs. flow-based).

0.1 Jul 2014 2.2 Improvements and optimization for
SimQPN transformation. Introducing
miniDNI meta-model and its related
transformations. First sketch of the
DNI Manual.

— Feb 2014 2.0 Improvements for OMNeT++. Trans-
formation to SimQPN.

— Jun 2013 1.0 Finalized first version of the DNI meta-
model. Transformation to OMNeT++.

— Jan 2013 0.1 Initial version of the DNI meta-model

1

Contents

1 Introduction 1

2 Meta-Models 3
2.1 DNI . 3

2.1.1 Network Configuration . 3
2.1.2 Network Structure . 5
2.1.3 Network Traffic . 6

2.2 Example of a DNI Model: SBUS . 7
2.2.1 Notation . 7
2.2.2 SBUS System . 7
2.2.3 Model of the Network Structure 8
2.2.4 Model of the Network Traffic 10
2.2.5 Model of the Network Configuration 10

2.3 miniDNI . 11
2.4 Example of a miniDNI Model: SBUS 11

3 Transformations 15
3.1 Map of the Transformations . 15

3.1.1 General Remarks . 15
3.2 DNI-to-OMNeT++ . 17

3.2.1 Pre-transformation Operations 17
3.2.2 Transformation Rules . 17
3.2.3 Post-transformation Operations 22

3.3 DNI-to-miniDNI . 23
3.3.1 Pre-transformation Operations 23
3.3.2 Transformation Rules . 23
3.3.3 Post-transformation Operations 25

3.4 DNI-to-QPN . 26
3.4.1 Pre-transformation Operations 26
3.4.2 Transformation Rules . 26
3.4.3 Post-transformation Operations 34

3.5 miniDNI-to-QPN . 36
3.5.1 Pre-transformation Operations 36
3.5.2 Transformation Rules . 36
3.5.3 Post-transformation Operations 38

3.6 Routing-format-conversion . 39

3

Contents

4 Conclusion 45

Bibliography 47

4

Chapter 1

Introduction

Approach
The modeling approach we propose is based on a new meta-model for modeling network
infrastructures in virtualized data centers. This meta-model, which we refer to as
Descartes Network Infrastructure (DNI) meta-model, is part of our broader work in
the context of the Descartes Modeling Language (DML) [BHK13], an architecture-level
modeling language for dynamic IT systems and services.
Our approach assumes that instances of the DNI Meta-model are automatically

transformed to predictive stochastic models (e.g., product-form queueing networks or
stochastic simulation models) by means of model-to-model transformations. Thus, our
modeling approach does not require explicit knowledge and expertise in stochastic
modeling and analysis. The DNI Meta-model has been designed to support describing
the most relevant performance influencing factors that occur in practice while abstract-
ing fine-granular low level protocol details. Our approach is designed to support the
implementation of different transformations of the high-level DNI models to underlying
predictive stochastic models (by abstracting environment-specific details, transforma-
tions to multiple predictive models are possible), thereby providing flexibility in the
trade-off between the overhead and accuracy of the analysis.

1

Chapter 2

Meta-Models

2.1 DNI
The DNI meta-model (Descartes Networking Infrastructures) covers three main parts
of every data center network infrastructure: structure, traffic and configuration. It
is implemented in Ecore using the Eclipse Modeling Framework (EMF). An initial
preliminary version of the DNI Meta-model was presented as a work-in-progress paper
in [RZK13]; since then, the meta-model has evolved significantly and therefore we
present a brief overview of its major parts in the following.
The root element of the DNI Meta-model (NetworkInfrastructure) connects three

main parts: network structure, traffic and configuration (see Fig. 2.1). To analyze
the performance of any network infrastructure, one must know how the network is
physically built (NetworkStructure), how it is configured (NetworkConfiguration) and
how it is used (NetworkTraffic). Every numeric value in the model is modeled as a
Dependency (Fig. 2.3). The Dependency represents a Variable (constant or random) or a
Function. Additionally, each Dependency can be accompanied with a Unit . Examples
of a Dependency can be the following descriptions of a parameter: “exponentially
distributed with mean value of 100ms”, or just “5Mbps”.

2.1.1 Network Configuration
The network-configuration meta-model is presented in Figure 2.4. Currently, the
NetworkConfiguration contains information about routes, protocols and protocols
stacks. In the model, we describe a snapshot of the current routes in the system; we

– datacentername: String

NetworkInfrastructure

Structure Traffic Configuration

111

Figure 2.1: Root of the DNI meta-model.

3

Chapter 2: Meta-Models

– address: String
– protocolRef: Protocol

Address
AddressableEntity

Entity

– name: String

NamedElement

– id: String

Identifier

0..*

Figure 2.2: Common classes used in the DNI meta-model.

– unit: DNIUnit

Dependency
– prefix: UnitPrefix
– value: double

Unit

– data[]: double

DataSerie

– equation: String

Continuous

– value: Double

Constant

FunctionVariable

Random Discrete

0..1

1

y x

1..*cdf 1

arg1..*

Figure 2.3: In the DNI meta-model, Dependencies are used to model numeric values
and functions.

4

2.1 DNI

routes

1

Configuration

NetworkInterface

nextHop0..1

ProtocolStack

1..*

– numHops: Integer

Route– numHops: Integer

FlowRoute

– distance: long
– isDefault: bool

Direction

0..*
– mtu: Integer
– headersLength: Integer
– dataUnitLength: Integer
– connectionless: bool
– deliveryGuaranteed: bool

NetworkProtocol

1..*

ProtocolLayer

1implements

carries0..1

RoutingRepresentation

–

Hop

startend 1

ref
1

NetworkInterface

Flow

end start11

1flow

Node

Flow

NetworkInterface

onNode

1

flow

1

via

1

Figure 2.4: Meta-model of Network configuration. Entities in the dashed box represent
a intermediary step for transforming Routes info Directions. Dotted entities represent
the entities form the otehrs parts of the DNI meta-model (Infrastructure or Traffic).

do not explicitly consider dynamic routing as this would require detailed information
about routing algorithms which is abstracted here. In the meta-model, a Route
consists of Hops and each Hop references a NetworkInterface. The term route is
an abstraction; we do not store information about dynamic routing protocols. A
ProtocolStack is an ordered set of ProtocolLayers, where each ProtocolLayer references
a single NetworkProtocol . The NetworkProtocol itself is described by a generic set of
parameters such as, for example, overheads introduces by the data unit headers.

2.1.2 Network Structure

The part of the meta-model representing the network structure is depicted in Figure
2.5. The NetworkStructure is a graph consisting of Nodes and Links connected through
NetworkInterfaces. All nodes, links and interfaces can be either physical or virtual;
each virtual network element is hosted on a PhysicalNode. The performance-relevant
influencing factors of every element in the NetworkStructure are described using
*Performance entities, both for physical and virtual elements. We distinguish end
nodes (e.g., virtual machine, server) and intermediate nodes (e.g., switch, router),
because their performance descriptions are different, e.g., end nodes do not utilize
information about forwarding performance.

5

Chapter 2: Meta-Models

1

forwarding
performance

1..* 0..*

hostedOn
1..*

0..1 1

1 1

performance

software

1 1 1 1

– processingLatency:
Dependency
– processingBandwidthReqPS:
Dependency

ControlPlanePerformance

Structure

PhysicalNode

NodeSoftwareComponent

VirtualNode

PhysicalInterface

Interface

VirtualInterface

PhysicalLink

Link

VirtualLink

1..*

connects

connects2

2

– softwareLayerDelay:
Dependency

EndNodePerformance

NodePerformance

IntermediateNodePerformance

– forwardingLatency:
Dependency
– forwardingBandwidthPPS:
Dependency
– forwardingBandwidthBPS:
Dependency

DataPlanePerformance

– MTU: integer
– isUp: bool
– packetProcessingTime:
Dependency

InterfacePerformance

– speed: SpeedUnit

PhysicalInterfacePerformance
VirtualInterfacePerformance

LinkPerformance

– propagationDelay: Dependency
– maximalSupportedBandwidth:
Dependency

PhysicalLinkPerformance

– bandwidth: Dependency

VirtualLinkPerformance

ProtocolStack
stack

0..* 1

Figure 2.5: Meta-model of Network structure.

2.1.3 Network Traffic
In a data center, most of the network traffic is generated by deployed applications.
This includes also the hypervisors (applications) which can trigger, e.g., VM migrations
(traffic). As depicted in Figure 2.6, the DNI meta-model, network traffic is generated
by TrafficSources that originate from SoftwareComponents. Software components are
deployed on end nodes. Each TrafficSource generates traffic Flows that have exactly
one source and possibly multiple destinations. The Flow destinations are located
in Nodes and can be uniquely identified by a set of protocol-level addresses. Each
TrafficSource can generate a specified set of flows. The information about the precise
transmission time of a flow is modeled in the workload model (GenericWorkload). Each
flow can be described by means of various flow descriptions; in this paper, we use a
GenericFlow description capturing the amount of transferred data. The meta-model
can be extended to support other traffic models that can be found in the literature,
e.g., [FHH02, KMF04].

6

2.2 Example of a DNI Model: SBUS

deployedOn 1

Traffic

– size: Dependency

GenericFlow

SoftwareComponent Node

software0..*

TrafficSource

trafficSources

originatesFrom 0..1

1..*

Workload

GenericWorkload

Action

0..*

– numIterations: Dependency

Loop

– numSlots: Dependency

Branch

– numSlots: Dependency

Sequence

– waitTime: Dependency

Wait

Transmit

Stop

Start

1..*

1
1..*

0..* 0..*

Flow

destination

1

0..*

1

transmits

Figure 2.6: Meta-model of Network traffic.

2.2 Example of a DNI Model: SBUS

An instance of the DNI Meta-model can be called a DNI model. A DNI model represents
a concrete infrastructure and setup of a real system that is being modeled. To ease the
understanding of the DNI meta-model, we propose an example that models the SBUS
scenario [Ing09].

2.2.1 Notation

To present DNI models we use diagram similar to the Object diagram known from
UML. Due to size of the diagrams, we connect the parts of a single diagrams using a
connector 2.7. The connector is represented by a circle with a name that eases to map
it to the objects that it is connecting. Additionally, in the diagrams we use colors to
make the reading of the diagram easier. Node objects are cloured gray, traffic-related
objects and connectors are light-blue, and finally, the objects related to performance
descriptions are marked in green.

The entities marked with dotted lines represent entities form other parts of the given
meta-model. We do not present the whole meta-model in one diagram to not decrease
the readability. The dashed frames are used to highlight selected parts of a model.

2.2.2 SBUS System

The SBUS system is a traffic monitoring application based on results from the Transport
Information Monitoring Environment (TIME) project [BBE+08] at the University of
Cambridge. The system consists of multiple distributed components and is based on
the SBUS/PIRATES (short SBUS) middleware [Ing09].

7

Chapter 2: Meta-Models

Structure Object Diagram: Part 2 Structure Object Diagram: Part 1

–

Server1: PhysicalNode

Performa
nce S1

-performance
-forwardingPerformance

–

: IntermediateNodePerformance

– forwardingLatency: 10us
– forwardingBandwidthPPS: 1Gpps
– forwardingBandwidthBPS: 21Gbps

: DataPlanePerformance

– processingLatency: 1us
– processingBandwidthReqPS: 100000

: ControlPlanePerformance

-forwardingPerformance

– softwareLayerDelay: 7ms

: EndNodePerformance -performance

Figure 2.7: The representation of the connector of two parts of a diagram. Here the
performance descriptions of the Server1 are located in a separate diagram (Structure
Object Diagram: Part 2) and connected to the other diagram (Structure Object
Diagram: Part 1) using the Performance S1 connector.

Server2Switch2Switch1Server1

VM1 VM2

Figure 2.8: The overview on the network structure.

In the case study, we consider two kinds of components: cameras and license plate
recognition (LPR). The cameras are located in the city and take pictures of cars that
are speeding or entering a paid zone. Each camera is connected to an SBUS component
that sends the picture together with a time stamp to the predefined LPR components.
The LPR components are deployed in a data center due to their high consumption
of computing resources. LPRs receive the pictures emitted by cameras and run a
recognition algorithm to identify the license plate numbers of the observed vehicles.

2.2.3 Model of the Network Structure

The modeled system consists of two physical servers: Server1 and Server2. Server2 is
virtualized and hosts two virtual machines VM1 and VM2. The two physical servers are
connected with 1G Ethernet data center network. There are two switches located on
the network path between Server1 and Server2—Switch1 and Switch1. The simplified
schematic overview of the network structure is presented in Figure 2.8.

8

2.2 Example of a DNI Model: SBUS

Configuration Object Diagram

–

Switch1: PhysicalNode

–

p0: PhysicalNetworkInterface

–

p1: PhysicalNetworkInterface

–

Switch2: PhysicalNode

–

p0: PhysicalNetworkInterface

–

p1: PhysicalNetworkInterface

–

Server1: PhysicalNode

–

eth0: PhysicalNetworkInterface

–

S1_SW1: PhysicalLink

–

SW1_SW2: PhysicalLink

–

SW2_S2: PhysicalLink

-interfaces[]
-nodeOf

–

Server2: PhysicalNode

–

eth0: PhysicalNetworkInterface

-interfaces[]
-nodeOf

–

VM1: VirtualNode

–

veth0: VirtualNetworkInterface

-interfaces[]

-nodeOf

–

VM2: VirtualNode

–

veth0: VirtualNetworkInterface

-interfaces[]

-nodeOf

-hostedOn -hostedOn

–

veth0: VirtualNetworkInterface

-interfaces[]

-nodeOf

–

br0: VirtualNode
–

veth0: VirtualNetworkInterface
–

veth1: VirtualNetworkInterface

–

veth2: VirtualNetworkInterface

– VirtualLinPerformance:
bandwidth: 6Gbps

: VirtualLink

– VirtualLinPerformance:
bandwidth: 6Gbps

: VirtualLink

– VirtualLinPerformance:
bandwidth: 6Gbps

: VirtualLink

-connects[0]-connects[0]

-connects[0]

-connects[1]

-connects[1] -connects[1]

-hostedOn

-connects[0]-connects[1] -interfaces[]

-nodeOf-nodeOf

-interfaces[]

-nodeOf -nodeOf

-connects[0]

-connects[1] -connects[0]

-connects[1]

Software
S1

Software
VM1

Software
VM2

-software

-software -software

Performa
nce S1

Performa
nce VM1

Performa
nce VM2

-performance -performance

-performance

– isUp: true
– MTU: 1500
– packetProcessingTime: 7us
– speed: 1Gbps

: PhysicalNetworkInterfacePerformance-performance

-performance

-performance -performance -performance

-performance

-forwardingPerformance

-forwardingPerformance -forwardingPerformance

–

: IntermediateNodePerformance

– forwardingLatency: 10us
– forwardingBandwidthPPS: 1Gpps
– forwardingBandwidthBPS: 21Gbps

: DataPlanePerformance

– processingLatency: 1us
– processingBandwidthReqPS: 100000

: ControlPlanePerformance

-forwardingPerformance -forwardingPerformance
– propagationDelay: 1ns
– maximalSupportedBandwidth: 3Gbps

PhysicalLinkPerformance

– isUp: true
– MTU: 1500
– packetProcessingTime: 3ms

: VirtualNetworkInterfacePerformance

– propagationDelay: 1ns
– maximalSupportedBandwidth: 3Gbps

PhysicalLinkPerformance

Performa
nce br0

-forwardingPerformance

–

<<for each>>
: NetworkInterface

–

TCP/IP: ProtocolStack

–

TCP: ProtocolLayer

–

IP: ProtocolLayer

–

ETH: ProtocolLayer

– mtu: 8936
– headersLength: 20
– dataUnitLength: 46
– connectionless: true
– deliveryGuaranteed: true

TCP: NetworkProtocol

– mtu: 8960
– headersLength: 20
– dataUnitLength: 68
– connectionless: true
– deliveryGuaranteed: false

IP: NetworkProtocol

– mtu: 9000
– headersLength: 38
– dataUnitLength: 46
– connectionless: true
– deliveryGuaranteed: false

ETH: NetworkProtocol

– propagationDelay: 1ns
– maximalSupportedBandwidth: 3Gbps

PhysicalLinkPerformance

Figure 2.9: The DNI model representing the structure of the network used in the
SBUS scenario. For brevity, we presented the relation between each NetworkInterface
and Protocol stack separately. The entities enclosed in the dashed frame come from
the configuration part of the DNI meta-model.

9

Chapter 2: Meta-Models

Performa
nce br0–

: IntermediateNodePerformance

– forwardingLatency: 1ms
– forwardingBandwidthPPS: 300Mpps
– forwardingBandwidthBPS: 4Gbps

: DataPlanePerformance

– processingLatency: 10ms
– processingBandwidthReqPS: 10000

: ControlPlanePerformance

-forwardingPerformance

Performa
nce VM1

–

: IntermediateNodePerformance

– forwardingLatency: 1ms
– forwardingBandwidthPPS: 300Mpps
– forwardingBandwidthBPS: 4Gbps

: DataPlanePerformance

– processingLatency: 10ms
– processingBandwidthReqPS: 10000

: ControlPlanePerformance

-forwardingPerformance

– softwareLayerDelay: 17ms

: EndNodePerformance -performance

Performa
nce VM2

–

: IntermediateNodePerformance

– forwardingLatency: 1ms
– forwardingBandwidthPPS: 300Mpps
– forwardingBandwidthBPS: 4Gbps

: DataPlanePerformance

– processingLatency: 10ms
– processingBandwidthReqPS: 10000

: ControlPlanePerformance

-forwardingPerformance

– softwareLayerDelay: 14ms

: EndNodePerformance -performance

Figure 2.10: The continuation of the DNI model presented in Fig. 2.9. Performance
descriptions for nodes br0, VM1, and VM2.

2.2.4 Model of the Network Traffic
The overview of the network traffic model is presented in Figure. 2.11, whereas the model
in Figure. 2.12. In the example, there are four software components involved: Camera1,
Camera2, LPR1 (license plates recognition), and LPR2. The cameras generate traffic
by sending pictures to the LPRs. Each camera generates a picture of a given size in
regular time periods and sends it to the respective LPR component using the network.

2.2.5 Model of the Network Configuration
The model of the network configuration is presented in Figure 2.13. It consist of two
protocol stacks: TCP+IP+Ethernet for node-to-node communication, and IP+Ethernet
for inter-switch communication. The two protocol stacks reference the protocols that
are specified using the NetworkProtocol classes.

Configuration of the network includes also data about the routes. In Figure 2.13, we
present a single route with it list of hops. The other routes in the model are defined
analogously.

10

2.3 miniDNI

Server2Switch2Switch1Server1

VM1 VM2LPR1 LPR2

Camera1

Camera2

-deployedOn

-deployedOn -deployedOn

Transmit 400KBTransmit 4MB

Wait exp(50ms) Wait exp(10ms)

x5000 x5000

-workload-workload

-deployedOn

Figure 2.11: The overview on the network traffic. Software components (Camera,
LPR) are deployed on nodes and generate traffic according to their workloads.

2.3 miniDNI
Despite the high level of abstraction of DNI, it still requires many parameters to be
provided as input. To reduce the amount of input data, we provide a smaller version
of the DNI meta-model; we call it miniDNI. The entities included in the miniDNI are
depicted in Figure 2.14.

In the miniDNI meta-model, we abstract the following information. First, we aban-
don the virtual entities (links and nodes) and provide only one generic representation
of them. Second, we remove the NetworkInterfaces; the information included in a
NetworkInterface is now merged into the Link . Third, we simplify the descriptions
of the traffic sources and workflows. In miniDNI, a workflow specifies only a size of
a message and the number of messages per second without defining what a message
actually is. Finally, we abstract out all information about protocols used in the network.
From the DNI ’s NetworkConfiguration, we keep only simplified information about
routes in the network. The routes are flow-based, which means that there is at least
one route defined for every traffic source (in contrary to the classical approach, where
routes are defined for all source-destination pairs).

2.4 Example of a miniDNI Model: SBUS
The model presented in Figure 2.15 represents the same network, as the model described
in Section 2.2.

11

Chapter 2: Meta-Models

–

LPR1: SoftwareComponent

-deployedOn

Software
S1

Software
VM1

Software
VM2

-generates

-destination
–

LPR2: SoftwareComponent

–

Cam1: SoftwareComponent

–

Cam2: SoftwareComponent

-deployedOn -deployedOn -deployedOn

–

LPR1: TrafficSource

–

LPR2: TrafficSource

–

Cam1: TrafficSource

–

Cam2: TrafficSource

– dataSize: 400KB

transmit-1: GenericFlow

– dataSize: 4MB

transmit-2: GenericFlow

-destination

-generates

–

Cam1: GenericWorkload

–

: Start

– numIterations: 5000

: Loop

–

: Stop

-actions[] {ordered}

– numSlots: 2

: Sequence

– waitTime: Random: Exponential(10ms)

: Wait

–

: Transmit

-intern[] {ordered}
-flow

–

Cam2: GenericWorkload

–

: Start

– numIterations: 5000

: Loop

–

: Stop

-actions[] {ordered}

– numSlots: 2

: Sequence

– waitTime: Random: Exponential(50ms)

: Wait

–

: Transmit

-intern[] {ordered}
-flow

-workload

-workload

Figure 2.12: The DNI model representing the traffic in the network used in the SBUS
scenario.

12

2.4 Example of a miniDNI Model: SBUS

Structure Object Diagram

–

TCP/IP: ProtocolStack

–

TCP: ProtocolLayer

–

IP: ProtocolLayer

–

ETH: ProtocolLayer

– mtu: 8936
– headersLength: 20
– dataUnitLength: 46
– connectionless: false
– deliveryGuaranteed: true

TCP: NetworkProtocol

– mtu: 8960
– headersLength: 20
– dataUnitLength: 68
– connectionless: true
– deliveryGuaranteed: false

IP: NetworkProtocol

– mtu: 9000
– headersLength: 38
– dataUnitLength: 46
– connectionless: true
– deliveryGuaranteed: false

ETH: NetworkProtocol

–

: Configuration

–

IP: ProtocolLayer

–

ETH: ProtocolLayer

–

IP: ProtocolStack

-stacks[]

-protocols[]

-carries -carries

-carries

-implements

-implements

-implements

-implements

-implements

– numHops: XX

SRV1-to-VM1: Route

-routes[]

– nodeOf: Server1

eth0: PhysicalNetworkInterface

-start

-end

–

: Hop

– nodeOf: Switch1

p0: PhysicalNetworkInterface

– nodeOf: Switch1

p1: PhysicalNetworkInterface

– nodeOf: Switch2

p0: PhysicalNetworkInterface

– nodeOf: Switch2

p1: PhysicalNetworkInterface

– nodeOf: VM1

veth0: VirtualNetworkInterface

– nodeOf: Server2

eth0: PhysicalNetworkInterface

– nodeOf: Server2

veth0: VirtualNetworkInterface

– nodeOf: br0

veth0: VirtualNetworkInterface

– nodeOf: br0

veth1: VirtualNetworkInterface

–

: Hop

–

: Hop

–

: Hop

–

: Hop

–

: Hop

–

: Hop

–

: Hop

-hop

-nextHop

-nextHop

-nextHop

-nextHop

-nextHop

-nextHop

-nextHop

-interfaceReference

-interfaceReference

-interfaceReference

-interfaceReference

-interfaceReference

-interfaceReference

-interfaceReference

-interfaceReference

Figure 2.13: The DNI model representing the configuration of the network used in
the SBUS scenario.

1..* 0..*
2

connects

destination 1

end
start

1

0..*

1

1

0..*

– forwardingThroughput: Dependency
– softwareLayerDelay: Dependency

NodePerformance

Network

Node Link

– throughput: Dependency
– delay: Dependency

LinkPerformance

Route

1
1

via 1..*

– bytesPerMessage: Dependency
– messagesPerSecond: Dependency

Workload
Traffic source

flow

1

Figure 2.14: miniDNI meta-model

13

Chapter 2: Meta-Models

–

Server1: Node

–

Server2: Node

–

VM1: Node

–

VM2: Node

–

Switch1: Node

–

br0: Node

– VirtualLinPerformance:
bandwidth: 6Gbps

: Link

– VirtualLinPerformance:
bandwidth: 6Gbps

: Link

– VirtualLinPerformance:
bandwidth: 6Gbps

: Link

–

S1_SW1: Link

–

SW1_SW2: Link

–

SW2_S2: Link

–

Switch2: Node

– start: Node: Server1
– end: Node: VM1
– via: {Node: Switch1,
Node: Switch2,
Node: Server2,
Node: br0,
Node VM1}

S1_to_VM1: Route

– start: Node: Server1
– end: Node: VM2
– via: {Node: Switch1,
Node: Switch2,
Node: Server2,
Node: br0,
Node: VM2}

S1_to_VM2: Route

– throughput: 1Gbps
– delay: 6ms

LinkPerformance

– forwardingThroughput: 24Gbps
– softwareLayerDelay: 7us

: NodePerfomance

– forwardingThroughput: 24Gbps
– softwareLayerDelay: 7us

: NodePerfomance

– throughput: 1Gbps
– delay: 6ms

LinkPerformance

– throughput: 1Gbps
– delay: 6ms

LinkPerformance

– forwardingThroughput: 2Gbps
– softwareLayerDelay: 13ms

: NodePerfomance

– forwardingThroughput: 2Gbps
– softwareLayerDelay: 13ms

: NodePerfomance

– throughput: 4Gbps
– delay: 17ms

LinkPerformance

– forwardingThroughput: 2Gbps
– softwareLayerDelay: 5ms

: NodePerfomance

– throughput: 4Gbps
– delay: 17ms

LinkPerformance

– forwardingThroughput: 900Mbps
– softwareLayerDelay: 25ms

: NodePerfomance
–

Cam1: TrafficSource

–

Cam2: TrafficSource

– bytesPerMessage: 400KB
– messagesPerSecond: 1/
(exponential: 10ms)

: Workload

– forwardingThroughput: 900Mbps
– softwareLayerDelay: 25ms

: NodePerfomance

-trafficSources[]

-destination -destination

-performance

-performance

-performance

-performance

-performance -performance

-performance

-connects[0]-connects[0]

-connects[1]-connects[1]

-destination

-destination

-workload

-workload

-performance

-performance

– throughput: 4Gbps
– delay: 17ms

LinkPerformance

-performance

-performance-connects[0]

-connects[0]

-connects[1]

-performance

-performance
-connects[0]

-connects[1]

Figure 2.15: The miniDNI model representing the network used in the SBUS scenario.

14

Chapter 3

Transformations

3.1 Map of the Transformations

User Input
(Model Extraction)

DNI Model Routing format
coversionDNI-to-mDNI

DNI-to-OMNeT++DNI-to-QPNminiDNI Model

mDNI-to-QPN

Input

Descriptive Model

Transformation

Predictive Model

QPN (DNI) OMNeT++ (DNI)

QPN (mDNI)

User Input
(Model Extraction)

XOR

Figure 3.1: Models and model transformations

3.1.1 General Remarks

We use the Epsilon Transformation Language (ETL) [KPP08] for transforming the
models into other models. According to, [DK14] „ETL has been designed as a hybrid
language that implements a task-specific rule definition and execution scheme but also
inherits the imperative features of EOL to handle complex transformations where this
is deemed necessary.”

15

Chapter 3: Transformations

The transformations are executed in the following order: pre-blocks, rules, post-
blocks. The pre-blocks are used for preparation tasks, post-blocks for final linking after
the transformation is ready and the rules transform the given source object into the
destination object. In the descriptions of the transformations, we refer to the pre and
post transformation blocks because not every transformation can be handled by the
transformation rules.

16

3.2 DNI-to-OMNeT++

3.2 DNI-to-OMNeT++

3.2.1 Pre-transformation Operations
In the DNI-to-OMNeT++ (short DNI-to-OMNeT) transformation, the pre-blocks
contains the predefined names of object modules that should be applied to respective
DNI entities in case a direct mapping in ambiguous.

3.2.2 Transformation Rules
The rules execute in the order of appearing.

Rule DNI2ned

In this rule, a global Ned file is added to the OMNeT model, global variables (for
OMNeT scope) are declared, ands the necessary OMNeT imports are added to enable
the use of OMNeT modules form the INET library.

Rule NetworkInfrastructure2Network

In this rule, we add and configure the OMNeT Network to the NedFile. Additionally,
the IPNetworkConfigurator module is added to the OMNeT Network.

Rule PhysicalEndNode2Network

This rule is executed for all DNI Nodes that does host other nodes and have the
performance description of type EndNodePerformanceSpecification.
For every PhysicalNode a new OMNeT (sub-)Network is generated. That network

contains the following OMNeT Modules: VMM bridge (of type as defined globally—
currently EtherSwitch), the VMM host (e.g., dom0 in Xen) of type StandardHost,
set of StandardHosts representing the VirtualNodes that are hosted on the given
PhysicalNode.
In OMNeT one does not specify the performance of a NetworkInterface (except of

specifying its type that depends on the protocol of the second layer). The perfor-
mance is encoded in communication channels whereas the contention that happens in
interfaces is modeled internally in the respective OMNeT module that represents the
NetworkInterface. The resulting sub-network with single VirtualNode, a VMM bridge
and VMM host is presented graphically in Fig. 3.2. The respective ned code is listed
in Listing 3.1.

1 network type_relate6
2 {
3 @display("bgb=246,167");
4 gates:
5 inout ethg[];
6
7 types:
8 channel IDCHANNEL__KD7zsBmlEeSnOoFTf1SkPw extends DNIThruputMeteringChannel
9 {

10 //arificial 1 gig channel

17

Chapter 3: Transformations

Figure 3.2: OMNeT representation of a hypervisor (PhysicalEndNode that hosts
VirtualNodes).

11 datarate = 1.0Gbps;
12 thruputDisplayFormat = "b";
13 delay = 1.0E-7s;
14 }
15
16 channel IDCHANNEL__JPjwcBmlEeSnOoFTf1SkPw extends DNIThruputMeteringChannel
17 {
18 //relate6 iface veth0<--->relate6_vm1 iface veth0
19 datarate = 10000.0Mbps;
20 thruputDisplayFormat = "b";
21 delay = 9.99999993922529E-9s;
22 }
23
24 submodules:
25 bridge: EtherSwitch {}
26 relate6: StandardHost {}
27 relate6_vm1: StandardHost {}
28 connections allowunconnected:
29 bridge.ethg++ <--> ethg++;
30 bridge.ethg++ <--> IDCHANNEL__KD7zsBmlEeSnOoFTf1SkPw <--> relate6.ethg++;
31 bridge.ethg++ <--> IDCHANNEL__KD7zsBmlEeSnOoFTf1SkPw <--> relate6_vm1.ethg++;
32 relate6.ethg++ <--> IDCHANNEL__JPjwcBmlEeSnOoFTf1SkPw <--> relate6_vm1.ethg++;
33
34 }

Listing 3.1: Ned languange representation of a PhysicalEndNode hosting VirtualNodes

Rule PhysicalLink2Channel

This rule is executed for all DNI PhysicalLinks. In OMNeT, we create a new Channel
(meta class for a connection) for every link to be able to specify its performance-related
parameters. The Channel description is added to the OMNeT Network.

Rule VirtualLink2Channel

This rule is executed for all DNI VirtualLinks. In OMNeT, we create a new Channel
(meta class for a connection) for every link to be able to specify its performance-related

18

3.2 DNI-to-OMNeT++

parameters. The created channel is added to a respective sub-network that represents
a given hypervisor (create using the rule PhysicalEndNode2Network).

Rule PhysicalEndNode2Submodule

This rule is executed for all DNI Nodes that do not host other nodes and have the
performance description of type EndNodePerformanceSpecification. In that case, the
StandardHost module is created for the given PhysicalNode.

Rule PhysicalIntermediateNode2Submodule

This rule is executed for all DNI Nodes that have the performance description of type
IntermediateNodePerformanceSpecification or the type of the performance description
cannot be derived.
Based on the NetworkProtocol used by the NetworkInterfaces of that Node, an

EtherSwitch (protocol has 2 layers), Router (protocol has 3 layers), or StandardHost
(protocol has >3 layers) module is created. In case the performance description is of
unknown type, an EtherSwitch is generated to provide the basic connectivity.

Rule VirtualEndNode2Submodule

This rule in its current form annotates the VMs that are hosted in a hypervisor. This
rule will be removed in future versions of the transformations as it was replaced by
more complex rule PhysicalEndNode2Network.

Rule VirtualIntermediateNodeNode2Submodule

This rule creates a new EtherSwitch (or Router, or StandardHost respectively, based on
the NetworkProtocol used by the NetworkInterfaces) inside the sub-network representing
a hypervisor.

Rule Link2ChannelConnectionItem

One all nodes of the OMNeT network are ready (sub-networks, StandardHosts, Routers,
or EtherSwitches), the nodes can be connected. Proper connections between interfaces
are added in the connections section of every OMNeT network. The names of the
interfaces are not transformed from DNI to OMNeT! We use the default names (e.g.,
ethg) with a numerical postfix, because the names have semantics that are already
encoded inside the INET library (e.g., the StandartHost must have interfaces named
ethg). If custom names of interfaces are required, then the code of modules provided
in the INET library must be adapted manually.
For every DNI Link, a ChannelConnectionItem is created. The ChannelConnec-

tionItem instantiates respecite Channel generated before by the Physical-/Virtual-
Link2Channel rule.

19

Chapter 3: Transformations

Rule PhysicalLink2ChannelConnectionItem (extends Link2ChannelConnectionItem)

The rule adds the ChannelConnectionitem (created in super-rule Link2ChannelConnectionItem)
to the connections section of the OMNeT NedFile.

Rule VirtualLink2ChannelConnectionItem (extends Link2ChannelConnectionItem)

The rule adds the ChannelConnectionitem (created in super-rule Link2ChannelConnectionItem)
to the connections section of the proper sub-network in the OMNeT NedFile.

Rules DNI2IniFile + DNI2IniGroup + DNI2RoutingFile

All the rules of the DNI-to-OMNeT presented up to that point are responsible for
generating the NedFile of the OMNeT simulation. The configuration and the parameters
of the simulation are stored in configuration files: omnetpp.ini (configuration and
parameters) and ipconfig.xml (routing and addressing).
The three rules generate the missing configuration files. Technically the rules call

specified operations of the transformation language, because the procedure involves
creation of multiple detailed objects what would be difficult to implement in a rule.
Moreover, the meta-model that specifies these configuration files is simplified.
To transform the remainder of the model, the following operations are executed:

1. For all receiving nodes, receiver applications are added. We use INET model
of TCPSinkApp for this purpose. We set the respective configuration of the
omnetpp.ini file by using code as shown in Listing 3.2.

2. For all generator nodes, sending applications are added. We use INET model of
DNITCPSessionApp that is a modified version of the TCPSessionApp available
in INET. The modifications concern only the change of format that is passed to
the .sendScript parameter—we add a new .specialSendScript that is much shorter
than the original representation, for example: "send 1265000 every 0.01 for
5000 times;", which means send 1265000 bytes every 0.01 seconds; repeat 5000
times. The original .sendScript representation of this example would be presented
as a long list of pairs (time + data). Example: "0.0 1265000; 0.01 1265000;
0.02 1265000; ... 49.99 1265000;. Exemplary configuration of a sending
application is presented in Listing 3.3.

3. To produce the .specialSendScript, every workload of each traffic source is con-
verted to a respective time series (pairs of tuples: time, data). For LoopActions,
one can benefit of the compact textual representation of the .specialSendScript
parameter.

4. For every NetworkInterface, the protocol addresses are extracted and stored in
the ipconfig.xml file. An exemplary content of the ipconfig.xml file that describes
interfaces addressing is shown in Listing 3.4.

20

3.2 DNI-to-OMNeT++

5. For every Route, the list of hops is extracted and stored in the ipconfig.xml file.
An exemplary content of the ipconfig.xml file that describes routing is shown in
Listing 3.5.

1 ###################################
2 ##### config of node relate4_vm1
3 ###################################
4 **.relate4_vm1.numTcpApps = 1
5 ##### RCV APP. App id 0
6 **.relate4_vm1.tcpApp[0].typename = "TCPSinkApp"
7 **.relate4_vm1.tcpApp[0].localPort = 1000

Listing 3.2: Fragment of the omnetpp.ini file. Description of a receiver application.

1 ###################################
2 ##### config of node relate2
3 ###################################
4 **.relate2.numTcpApps = 2
5 ##### SEND APP. App id 0
6 **.relate2.tcpApp[0].typename = "DNITCPSessionApp"
7 **.relate2.tcpApp[0].casual_name = "TS_Cam2to4vm1 ==> lpr411 on relate4.relate4_vm1"
8 **.relate2.tcpApp[0].connectAddress = "relate4.relate4_vm1"
9 **.relate2.tcpApp[0].connectPort = 1000

10 **.relate2.tcpApp[0].tOpen = 0s
11 **.relate2.tcpApp[0].tSend = 0s
12 **.relate2.tcpApp[0].sendBytes = 0B
13 **.relate2.tcpApp[0].tClose = 0s
14 **.relate2.tcpApp[0].specialSendScript = "send 1265000 every 0.1 for 5000 times;"
15
16 ##### SEND APP. App id 1
17 **.relate2.tcpApp[1].typename = "DNITCPSessionApp"
18 **.relate2.tcpApp[1].casual_name = "TS_Cam2to5vm1 ==> lpr511 on relate5.relate5_vm1"
19 **.relate2.tcpApp[1].connectAddress = "relate5.relate5_vm1"
20 **.relate2.tcpApp[1].connectPort = 1000
21 **.relate2.tcpApp[1].tOpen = 0s
22 **.relate2.tcpApp[1].tSend = 0s
23 **.relate2.tcpApp[1].sendBytes = 0B
24 **.relate2.tcpApp[1].tClose = 0s
25 **.relate2.tcpApp[1].specialSendScript = "send 1265000 every 0.1 for 5000 times;"

Listing 3.3: Fragment of the omnetpp.ini file. Description of a node that has two
sender applications.

1 <interface hosts=’*HL4’ names=’eth0’ address=’10.0.1.4’ netmask=’255.255.255.0’ metric=’20’/>
2 <interface hosts=’*HL5’ names=’eth0’ address=’10.0.1.5’ netmask=’255.255.255.0’ metric=’20’/>
3 <interface hosts=’*HR0’ names=’eth0’ address=’10.0.100.0’ netmask=’255.255.255.0’ metric=’20’/>
4 <interface hosts=’*HR1’ names=’eth0’ address=’10.0.100.1’ netmask=’255.255.255.0’ metric=’20’/>

Listing 3.4: Fragment of the ipconfig.xml file. Description of addresses of interfaces.

1 <route
2 hosts=’relate2’
3 destination=’10.0.1.6’
4 netmask=’255.255.255.0’
5 gateway = ’*’
6 interface=’eth0’
7 metric=’2’/>
8 <route
9 hosts=’relate6’

10 destination=’10.0.1.2’
11 netmask=’255.255.255.0’
12 gateway = ’*’

21

Chapter 3: Transformations

13 interface=’eth0’
14 metric=’2’/>

Listing 3.5: Fragment of the ipconfig.xml file. Description of routes.

Rule NetworkInfrastructure2Network

1. Determine the DNI Flows that are used in the DNI Workloads for the given DNI
TrafficSource.

2. For each Flow, estimate the amount of data and the total wait time using the
following procedure:

a) For the workload graph (represented as a set of Actions connected with
edges that represent the order), apply the GraphFold procedure [RS10] to
calculate the total time of the execution of the DNI Workload.

b) For the workload graph, sum the amount of data that is produced by the
given DNI TrafficSource

3. Divide the amount of the transmitted data by the duration of the workload (in
second).

4. For the miniDNI TrafficSource, set the values of the parameters: bytesPerMessage
to the average amount of data sent in a second, and the messagesPerSecond to 1;

5. Set the source and destination node of the flows exactly as in the DNI model.

6. Add the generate TrafficSource entity to the root element of the miniDNI.

3.2.3 Post-transformation Operations
In the DNI-to-OMNeT transformation two post-blocks are used. First is responsible
for renaming the entities (character „-” is not allowed in OMNeT and is replaced by
„_”). Second post-block adds the OMNeT Network to the NedFile entity and adds the
respective configuration files (routing and omnetpp.ini).

22

3.3 DNI-to-miniDNI

3.3 DNI-to-miniDNI

3.3.1 Pre-transformation Operations

In the DNI-to-miniDNI transformation, no the pre-blocks are used.

3.3.2 Transformation Rules

The rules execute in the order of appearing.

Rule NetworkInfrastructure2Network

This is a root-rule that creates the Network entity and assigns the data center name to
it.

Rule Node2Node

Every DNI Node is translated to a respective miniDNI Node. In this rule, the Node
object is crated and the default values describing the performance are assigned.
The performance of the Node is calculated as follows:

• softwareLayerDelay of miniDNI = softwareLayerDelay of the EndNodePerfor-
mance in DNI if the DNI node is EndNode

• softwareLayerDelay of miniDNI = forwardingLatency of the DataPlanePerfor-
mance in DNI if the DNI node is IntermediateNode

• forwardingThroughput of miniDNI = minimum of the following values:

– forwardingBandwidthBPS of DataPlanePerformance

– deriverd bandwidth in bytesPerSecond for the average data unit size (e.g.,
MTU for Ethernet frame) and the forwardingBandwidthPPS parameter
of the DataPlanePerformance. Example: for average MTU = 9000 bytes,
and forwardingBandwidthPPS: 300Mpps, the forwardingThroughput equals
270000 MBps (megabytes per second) = 21 Tbps (tera bits per second).

– deriverd bandwidth in bytesPerSecond for the average data unit size (e.g.,
MTU for Ethernet frame) and the forwardingLatency parameter of the
DataPlanePerformance. Example: for average MTU = 9000 bytes, and
forwardingLatency: 1ms, the forwardingThroughput equals: 9000 * 1s/for-
wardingLatency = 9 MBps (megabytes per second) = 72 Mbps (mega bits
per second).

Rule PhysicalNode2Node (extends Node2Node)

In this rule adds the generated Node to the root element of the miniDNI. Except the
performance description, no other assignments are made.

23

Chapter 3: Transformations

Rule VirtualNode2Node (extends Node2Node)

In this rule adds the generated Node to the root element of the miniDNI. Except the
performance description, no other assignments are made. The miniDNI model does
not distinguish the physical and the virtual nature of a DNI Node.

Rule Link2Link

To transform the DNI Link into the miniDNI Link, the following procedure is executed.

1. We take the DNI Link and the NetworkInterfaces that it connects.

2. The nodes of the DNI NetworkInterfaces are determined.

3. The miniDNI Link is set to connect the nodes.

4. The LinkPerformance entity is calculated as sum of the: propagation delay of
the DNI Link, the packetProcessingTime parameter of the first NetworkInterface,
and the packetProcessingTime of the second NetworkInterface.

Rule Physical2Link (extends Link2Link)

In this rule adds the generated Link to the root element of the miniDNI. Except the
performance description, no other assignments are made. The miniDNI model does
not distinguish the physical and the virtual nature of a DNI Link.

Rule Virtual2Link (extends Link2Link)

In this rule adds the generated Link to the root element of the miniDNI. Except the
performance description, no other assignments are made. The miniDNI model does
not distinguish the physical and the virtual nature of a DNI Link.

Rule TrafficSource2TrafficSource

For each DNI TrafficSource the following procedure is applied:

1. Determine the DNI Flows that are used in the DNI Workloads for the given DNI
TrafficSource.

2. For each Flow, estimate the amount of data and the total wait time using the
following procedure:

a) For the workload graph (represented as a set of Actions connected with
edges that represent the order), apply the GraphFold procedure [RS10] to
calculate the total time of the execution of the DNI Workload.

b) For the workload graph, sum the amount of data that is produced by the
given DNI TrafficSource

24

3.3 DNI-to-miniDNI

3. Divide the amount of the transmitted data by the duration of the workload (in
second).

4. For the miniDNI TrafficSource, set the values of the parameters: bytesPerMessage
to the average amount of data sent in a second, and the messagesPerSecond to 1;

5. Set the source and destination node of the flows exactly as in the DNI model.

6. Add the generate TrafficSource entity to the root element of the miniDNI.

Rule FlowRoute2Route

This rule transforms a single DNI route in the FlowRoute format (see Fig. 2.4) to a
single miniDNI Route. In the DNI, each FlowRoute is defined as a list of interfaces that
need to be traversed to get form source node to the destination. In the miniDNI, each
route is a ordered set of nodes to be traversed. The transformation procedure traverses
the DNI route and selects the node that belongs to a given interface referenced in
each Hop element. The List of nodes is stored and the duplicate nodes that appear
one-by-one are removed as this redundancy is not needed; on a given node, for each
flow, there is one receive (rx) and one transmit (tx) interface that both belong to the
same node. This causes that there may appear two nodes in a row.

3.3.3 Post-transformation Operations
In the DNI-to-miniDNI transformation, no the post-blocks are used.

25

Chapter 3: Transformations

3.4 DNI-to-QPN

3.4.1 Pre-transformation Operations
In the DNI-to-QPN transformation, the pre-block is used for declaration of global
variables that need to be accessible for the whole transformation, e.g., mapping of
DNI-flows to QPN-colors, defining global QPN-colors (ether-color).

3.4.2 Transformation Rules
The rules execute in the order of appearing.

Rule DNI2QPN

This is a root-rule that creates an empty QpmeDocument and initializes containers for
queues, places, colors, transitions.

Rule DNI2QPN-findColors

This is a preconfiguration-rule that reads the DNI model and searches for Flow instances.
For every instance found, a QPMEColor is generated and saved. The mapping of
DNI-flows to QPN-colors is stored in global variables. Additionally, the unique global
color called ether is generated and stored.

Rule IntermediateNode2Place

In this rule, a SubnetPlace is generated for every instance of the IntermediateNode.
The actions are executed in the following order.

1. The constant Input and Output places are added to the Subnet. The ether color
is assigned to the places.

2. The following transitions are added to the subnet: input, output, switching. The
input transition is connected to the input place and the output transition to the
output place.

3. For each NetworkInterface of the IntermediateNode, a pair of QueueingPlaces is
created (tx and rx).

4. We gather all colors that represent the flows traversing the Node.

5. For each traversing color a color reference is added to the places: all tx-, and rx-
places, input, output, the subnet.

6. The rx and tx places with no color references are removed (no traffic flows through
the interfaces).

7. We add mode to the input transition that consumes one token of color ether and
deletes it.

26

3.4 DNI-to-QPN

8. We add mode to the input transition that consumes one token of every traversing
color and forwards it to the respective rx-place. The selection of the place
(=network interface) is taken directly from the routing information.

9. For every traversing color, for every rx place, for every tx place a mode is created
in the switching transition if the traversing color is routed through the given
pair of rx/tx interfaces. The exemplary modes of the switching transition are
presented in Figure 3.4.

10. For every traversing color a new mode is added to the output transition if the
preceding tx place has the reference to the given color (i.e., if the given flow is
transmitted using the respective tx interface).

11. The value of the delay parameter for the rx- and tx- queueing places is calculated

a) Flow size is calculated based on the parameters of the Flow entity in the
DNI model

b) Interface maximal throughput is calculated based on the interface perfor-
mance description

c) Protocols overheads are added to the flow size

d) Processing delay is calculated as bruttoFlowSize/interfaceMaxThroughput

e) Switching delays (described in IntermediateNodePerformance) are added to
the delays of the rx queueing places.

f) If the parameters are modeled as probabilistic functions, then the respective
average values are taken for the calculation (transformation without this
simplification is possible as an extension)

Rule EndNode2Place

In this rule, a SubnetPlace is generated for every instance of the EndNodeNode. The
actions are executed in this rule are similar to the IntermediateNode2Place. The main
difference is lack of the switching transition and the presence of the traffic sources. In
the list of transformations steps, we focus on the differences.

We distinguish four types of an EndNode: Generator (produces the traffic), Receiver
(receives the traffic), Traversal (acts as IntermediateNode), Hypervisor (hosts Virtu-
alNodes). The rule is divided into four parts that implement the functionalities related
to the respective node types.

1. Determine which subset of types apply for this node.

2. For traversal node.

a) Between the rx and tx queueing places, add Bridge QueueingPlace. Connect
the rx ququeing places to the Bridge queueing place using a new transition
called RXSW. Repeat for SWTX transition for connecting the Bridge with
the tx queueing places.

27

Chapter 3: Transformations

Figure 3.3: Example of a QPN representation of an IntermediateNode.

b) Using the routing information, assign the respective traversing colors to the
proper pairs of rx, tx queueing places.

c) For each traversing color, add reference to the SubnetPlace, input, output
and bridge place.

d) Using the routing information (get the rx place for a given color), add a
new mode to the input transition. The tokens of that color will be routed
through the given rx place.

e) Repeat for the RXSW, SWTX, and output transitions.

3. For generator node.

a) Get all colors for which the given node servers as beginning of route (starting
colors).

b) For each starting color create a new TrafficSource SubnetPlace. Connect
the subnet place to the RXSW and the SWTX transitions.

c) Using the routing information, assign the respective starting colors to the
respective tx queueing places.

28

3.4 DNI-to-QPN

Figure 3.4: The modes for an exemplary switching transition of an IntermediateNode.

d) Add a new mode to the RXSW transition to connect the tx queuing places
with all traffic sources. Set the mode to consume one ether token, produce
on ether token, and to produce zero tokens for each starting color and traffic
source (see Fig. 3.5). This step is required for the QPN to be valid and has
no influence on the simulation.

e) For each starting color, add a new mode to the SWTX transition to connect
the TrafficSource with the respective tx queueing place.

f) For each starting color, add a new mode to the output transition to connect
the respective tx queueing place with the output place.

4. For receiver node.

a) Get all colors for which the given node servers as route termination (ending
colors).

b) For each ending color add the color references to the SubnetPlace, input,
and the dummy place.

c) For each ending color add a new mode to the input transition.

d) For each ending color add a new mode to the RXSW transition. Set the
mode to remove all incoming tokens.

29

Chapter 3: Transformations

5. For hypervisor node.

a) Based on routing information derive starting and ending colors of the
VirtualNodes that are hosted on the hypervisor node.

b) Derive colors that start and end in the virtual nodes hosted on this node
(inner-node-traffic).

c) Create VMMIntermediateNode SubnetPlace. Apply the rule IntermediateN-
ode2Place. Connect the VMMIntermediateNode place to the RXSW and
SWTX transitions.

d) Add new mode to the RXSW transition so that the colors that end in the
virtual nodes are directed to the VMMIntermediateNode.

e) Add new mode to the SWTX transition so that the colors that start in the
virtual nodes and do not end in the virtual nodes are directed to the proper
tx queueing place.

f) Create the virtual nodes SubnetPlaces. Apply the rule EndNode2Place
or IntermediateNode2Place based on the performance descriptions of the
virtual nodes.

g) For the connection between the virtual node and the VMMIntermediateN-
ode apply the rule Link2Transitions. Refer to Figure 3.6 for graphical
representation of the hypervisor node.

6. Calculate delays for the queueuing places analogously to the procedure for the
IntermediateNode.

7. Add the SubnetPlace to the QPMEDocument.

Rule Link2Transitions

In this rule, a pair of transitions is generated. Each transition forwards the tokes
from source SubnetPlace to the destination SubnetPlace—each transition in opposite
direction. We assume, that the contention in the network happen in the software or in
the network interfaces. Thus, we model links as a pair of immediate transitions (one in
each direction).

1. Based on the routing information, determine the colors that traversing the given
link. For each color, determine direction. Assume abstract directions: e.g., L, R.
(SubnetPlace1 → SubnetPlace2 == R, otherwise L).

2. For each color traversing the link in R direction, add a new mode to the R
transition. The mode consumes single token on the input and generates single
token on the output.

3. For each color traversing the link in L direction, add a new mode to the L
transition. The mode is configured exactly as in R transition.

30

3.4 DNI-to-QPN

Figure 3.5: The mode of the RXSW transition for a generator node. The incoming
ether tokens do no trigger firing of the tokens that represent traffic.

Operation createTrafficSourceSubnet

This operation creates a new SubnetPlace that represents a traffic source. The Subnet-
Place is used later in the EndNode2Place rule (by nodes of type generator). The steps
are the following.

1. Based on the traffic model, derive the node on which the traffic source is deployed.

2. Derive the color for the traffic that is generated in the given traffic source
(generated color).

3. Create new WorkloadControl color.

4. For the ending colors of this node, add color references to the input place of
the traffic source. Add respective modes to the input transition to destroy all
incoming tokens.

5. Add the reference to the generated color to the output place. Add respective
mode to the output transition. Set the mode to consume single token and produce
single token.

31

Chapter 3: Transformations

Figure 3.6: The QPN representation of a PhysicalNode that hosts a sin-
gle VirtualNode (named VM_relate5_vm1_ON_relate5). The VMMSwitch
(VMM_IntermediateNode) is added between the RXSW and SWTX transitions.

6. Create WorkloadControl queueing place. Add reference to the WorkloadControl
color. Set initial marking to 1 token of the WorkloadControl color.

7. Add a new mode to the input transition to destroy the tokens with Workload-
Control color.

8. Add ordinary places WorkloadStart and WorkloadStop. Connect them with
transitions (called dummy) to the WorkloadControl queueing place. In each
transition add a single mode that passes the tokens with WorkloadControl color.

9. Derive the workload actions based on the WorkloadDescription. Follow the order
of the actions stored in the DNI model.

10. For StartAction.

a) Ignore all actions that are preceding the StartAction. StartAction is also
ignored.

11. For StartAction.

32

3.4 DNI-to-QPN

a) Ignore all actions that are preceding by the StopAction. StopAction is also
ignored.

12. For WaitAction.

a) Create new queueing place that hold the WorkloadControl token for the
time defined in the WaitAction entity.

13. For TransmitAction.

a) Create new transition with a single mode. The transition consumes a single
WorkloadControl token, and produces simultaneously two tokens. First, the
consumed WorkloadControl that is passed to the next abstract action in
the workload. Second, the token representing the traffic (see example in
Fig. 3.7). Connect the transition to the output place of the SubnetPlace.

14. For BranchAction.

a) Add a new transition that consumes the token generation color and produces
single token generation color on each of the outputs. The number of outputs
equals the number of branches.

b) On each branch add a dummy ordinary place.

c) On end of each branch add a transition that joins all branches. Add new
mode that consumes a single token on all inputs of the transition and
produces a single token on the output (synchronization point).

d) For each branch process its sub-actions recursively.

15. For SequenceAction.

a) Get the sub-actions.

b) Process sub-actions recursively.

c) Each sub-action should be connected with the preceding action using a
dummy transition that passes the token generation color.

16. For LoopAction.

a) Create new Loop SubnetPlace according to the createLoopSubnet operation.

b) Connect the Loop SubnetPlace with the preceding action using a dummy
transition that passes the token generation color.

c) Connect the Loop SubnetPlace with the output transition for all colors
different to the token generation color.

Operation createLoopSubnet

The Loop SubnetPlace is created to repeat the given sub-workload for a given amount of
repetitions. At the input of the Loop, the single WorkloadControl token is transformed
into X LoopControlTokens, where X equals to the number of iterations of the loop.

33

Chapter 3: Transformations

Figure 3.7: The QPN representation of a TransmitAction. A single WorkloadControl
token triggers generation of a new token representing the traffic (named ONOFF-
Cam2to5vm1_to_lpr511 in this example). The WorkloadControl token is passed
further tho the next AbstractAction.

Once the sub-workload is executed, a single LoopControlToken is deposited in the
LoopIterDone ordinary place. Once the LoopIterDone place collects X LoopControlTo-
kens, the tokens are consumed, and a single WorkloadControl token is produced and
passed to the output of the SubnetPlace. All tokens representing the traffic (i.e., with
color other to the WorkloadControl and LoopControlToken) are passed directly to the
output place of the Loop SubnetPlace (see Fig. 3.8).

3.4.3 Post-transformation Operations
In the DNI-to-QPN transformation, the post-block is used for renaming the resulting
entities (to ensure uniqueness of the objects) and to connect the objects that couldn’t
be connected within the rules. The following actions are run in the post-block.

1. Every input and output place of a subnet is locked

2. Every Place becomes a SimqpnPlaceConfiguration object where the gathered
statistics are specified

34

3.4 DNI-to-QPN

Figure 3.8: The QPN representation of a LoopSubnet. The sub-workload of the
loop is included between the WaitAction and the LoopWrkldEnd places—in this
example, the sub-workload of the loop consist of a single TransmitAction named
ONOFFCam2to5vm1).

3. Every unused Queue is removed (e.g., for NetworkInterfaces that are down
[isUp=false])

4. The output model is validated, especially:

a) We check if every transition connects only with places, and every place
connects only with transitions

b) We remove places without color reference (they are simply unused)

c) We check if the set of color references of a Subnet is equal to the sets of
color references of the input and output places of that Subnet.

35

Chapter 3: Transformations

3.5 miniDNI-to-QPN

3.5.1 Pre-transformation Operations
In the miniDNI-to-QPN transformation, the pre-block is used for declaration of global
variables that need to be accessible for the whole transformation, e.g., mapping of
DNI-flows to QPN-colors, defining global QPN-colors (ether-color).

3.5.2 Transformation Rules
The rules execute in the order of appearing.

Rule Network2Document

This is a root-rule that creates an empty QpmeDocument and initializes containers for
queues, places, colors, transitions. Additionally, it discovers all Flows in the miniDNI
model and creates colors for them.

Rule Node2Subnet

In this rule, a SubnetPlace is generated for every instance of the Node. The actions
are executed in the following order.

1. The constant Input and Output places and transitions are added to the Subnet.
The ether color is assigned to the places.

2. If there exist traversing colors (colors for flows that do not start nor end in this
Node), the pass transition is created, and for each traversing color a mode is
added (see Fig. 3.9).

3. The dummyTrafficSource is created between the input and output transitions.
The ether color reference is added to the place.

4. For each TrafficSource entity, the following procedure is executed
a) A loop_sw queueing place is added to control the messages generation. The

delay for the queueing place is calculated based on the number of messages
per second (a parameter of the Workload entity in miniDNI).

b) The initial marking for the loop_sw place is set to one token of Workload-
Control color.

c) A sw (software) transition is added. This transition consumes single Work-
loadControl token from the loop_sw place, then immediately returns the
same token to the loop_sw back and generates a single token that represents
a single message of the Workload of a given Flow.

d) The sw transition is connected to the output transition using a dummy
ordinary place. Only the tokens that represent traffic are passed to the
output. The WorkloadControl tokens are passed only between the loop_sw
and the sw transition.

36

3.5 miniDNI-to-QPN

e) An example of the QPN representation of a Node with two traffic sources is
presented in Figure 3.10.

5. The input transition destroys each token for which the given node is marked
as destination. The input transition receives a mode that consumes any tokens
on the input and produces zero tokens on the output. No tokens arrive to the
traffic sources as those are only responsible for generating the traffic. Colors that
should be forwarded (traversing) do not arrive to the input transition; they are
passed from the input place directly to the pass transition (see Fig. 3.9).

Figure 3.9: example of a QPN representation Node that does not generate any traffic,
but only forwards (pass transition) or acts as a termination node .

Rule Link2PT

In this rule, a Link is transformed into a pair of „transition-queueing place-transition”
objects. Each pair of such objects represents a single direction in which a flow can
traverse the link. Conceptually, it can be presented as in Figure 3.11. In the QPME, it
looks like presented in Figure 3.12.

Further in this rule, the colors are divided into those traversing the link in different
directions. For each direction the proper modes are added to the transitions. For each

37

Chapter 3: Transformations

Figure 3.10: The example of a QPN representation Node that acts as a traffic source
or terminating node. The missing pass transition means that this node is not traversal
for any flow.

color traversing the link, an appropriate delay is calculated for the queueing place. The
delay is stored in the LinkPerformance entity in the miniDNI model and it combines
the delays expressed in the DNI as the sum of delays for the NetworkInterfaces and
the Link itself.
Finally, the Links are connected to the Nodes by adding proper modes to the four

transitions that are present in the QPN representation of a Link. A mode is created
only if a given color is traversing the selected link in a selected direction (see Fig. 3.14).
In case of an unused link, the link might be deleted (this is possible only in some special
cases) or ether color is the only color that traverses the link (see Fig. 3.13).

3.5.3 Post-transformation Operations
In the miniDNI-to-QPN transformation, the post-block is used for renaming the
resulting entities (to ensure uniqueness of the objects) and to configure the statistics of
the objects.

38

3.6 Routing-format-conversion

transmission-delay

transmission-delay

node node

link

Figure 3.11: A pair of transition-queueing place-transition objects representing a
Link in QPN. Conceptual presentation.

Figure 3.12: A pair of transition-queueing place-transition objects representing a
Link in QPN. Representation in the QPME user interface.

3.6 Routing-format-conversion

The routing format conversion is done in three steps. For each step a separate part of
the meta-model is designed. The three representations of routing in the DNI meta-
model are redundant. The redundancy is caused by the evolution of the meta-model.
The redundancy will be removed in the future version of the meta-model. The three
steps of conversion can be schematically presented as in Figure 3.15 and described as
follows.
For transformation of classical to flow-based routing:

1. Input is a classical routing scheme (see Fig. 3.16)

2. Duplicate each route that is used by more than a single flow.

3. Assign a single flow to each route that is used by that flow (see Fig. 3.17)

39

Chapter 3: Transformations

Figure 3.13: One of the four transitions included in the QPN representation of a
Link. The link in the picture does not carry any traffic in the given direction. Only
the mode for the ether color is added to guarantee the liveness of the QPN.

4. For every Node that the route connects, create a Direction entity, that stores the
current node, next interface, flow, and the destination of the flow (see Fig. 3.18).

5. Remove duplicate direction entries. Remove routes without flow assigned.

For transformation of flow-based to classical routing (data is being lost in this
transformation):

1. Input is a set of Direction entities.

2. For each flow, derive the source and destination node. Create an empty route.

3. Follow every empty route beginning from the starting node and processing the
path that is derived by the Direction entities. Add respective hops to the route
until the destination node is reached.

4. Intermediate result: set of FlowRoutes with flows assigned to each FlowRoute.

5. Group the FlowRoute entities by a tuple: source node, destination node. For
each group that has more than one route (i.e., there are more routes between
the given pair of nodes), select the route with the shortest number of hops and
remove the rest (here, the information about redundant routes is lost).

6. Remove flows descriptions from the FlowRoutes. The result is a set of Route
entities.

7. (optional) For every Route entity, create a reverse route if such route does not
exist yet.

40

3.6 Routing-format-conversion

Figure 3.14: One of the four transitions included in the QPN representation of a
Link. The link in the picture does carry traffic in the given direction.

Step 3: Flow-based Format

Step 2: Classical Format + Flow InformationStep 1: Classical Format

– distance: long
– isDefault: bool

Direction

Flow

1flow

Node

Flow

NetworkInterface

onNode

1

flow

1

via

1

1

NetworkInterface

nextHop
0..1

– numHops: Integer

Route

–

Hop

startend 1

ref
1

1

NetworkInterface

nextHop

– numHops: Integer

FlowRoute

–

Hop

startend 1

ref
1

0..1

Figure 3.15: The meta-models of the initial, intermediate, and final step of the
routing conversion procedure.

41

Chapter 3: Transformations

Step 1: Classical Format

Structure Object Diagram

– numHops: XX

SRV1-to-VM2: Route

– nodeOf: Server1

eth0: PhysicalNetworkInterface

-start

-end

–

: Hop

– nodeOf: Switch1

p0: PhysicalNetworkInterface

– nodeOf: Switch1

p1: PhysicalNetworkInterface

– nodeOf: Switch2

p0: PhysicalNetworkInterface

– nodeOf: Switch2

p1: PhysicalNetworkInterface

– nodeOf: VM2

veth0: VirtualNetworkInterface

– nodeOf: Server2

eth0: PhysicalNetworkInterface

– nodeOf: Server2

veth0: VirtualNetworkInterface

– nodeOf: br0

veth0: VirtualNetworkInterface

– nodeOf: br0

veth2: VirtualNetworkInterface

–

: Hop

–

: Hop

–

: Hop

–

: Hop

–

: Hop

–

: Hop

–

: Hop

-hop

-nextHop

-nextHop

-nextHop

-nextHop

-nextHop

-nextHop

-nextHop

-interfaceReference

-interfaceReference

-interfaceReference

-interfaceReference

-interfaceReference

-interfaceReference

-interfaceReference

-interfaceReference

Figure 3.16: Step 1: Example of transformation Route via FlowRoute to a set of
Destination entities.

Step 2: Classical Format + Flow Information

Structure Object Diagram

– numHops: XX

SRV1-to-VM2: FlowRoute

– nodeOf: Server1

eth0: PhysicalNetworkInterface

-start

-end

–

: Hop

– nodeOf: Switch1

p0: PhysicalNetworkInterface

– nodeOf: Switch1

p1: PhysicalNetworkInterface

– nodeOf: Switch2

p0: PhysicalNetworkInterface

– nodeOf: Switch2

p1: PhysicalNetworkInterface

– nodeOf: VM2

veth0: VirtualNetworkInterface

– nodeOf: Server2

eth0: PhysicalNetworkInterface

– nodeOf: Server2

veth0: VirtualNetworkInterface

– nodeOf: br0

veth0: VirtualNetworkInterface

– nodeOf: br0

veth2: VirtualNetworkInterface

–

: Hop

–

: Hop

–

: Hop

–

: Hop

–

: Hop

–

: Hop

–

: Hop

-hop

-nextHop

-nextHop

-nextHop

-nextHop

-nextHop

-nextHop

-nextHop

-interfaceReference

-interfaceReference

-interfaceReference

-interfaceReference

-interfaceReference

-interfaceReference

-interfaceReference

-interfaceReference

– dataSize: 400KB

transmit-1: GenericFlow

-flow

Figure 3.17: Step 2: Example of transformation Route via FlowRoute to a set of
Destination entities.

42

3.6 Routing-format-conversion

Step 3: Flow-based Format

Traffic Object Diagram

Structure Object Diagram

– distance: 5
– isDefault: true

: Direction

– dataSize: 400KB
– destination: LPR2

transmit-1: GenericFlow

– nodeOf: Server1

eth0: PhysicalNetworkInterface

–

Server1: PhysicalNode

-flow -via
-onNode

– distance: 4
– isDefault: true

: Direction-flow -via
-onNode

–

Switch1: PhysicalNode

– nodeOf: Switch1

p1: PhysicalNetworkInterface

– distance: 3
– isDefault: true

: Direction-flow -via
-onNode

–

Switch2: PhysicalNode

– nodeOf: Switch2

p0: PhysicalNetworkInterface

– distance: 2
– isDefault: false

: Direction-flow -via
-onNode

–

Server2: PhysicalNode

– nodeOf: Server2

veth0: VirtualNetworkInterface

– distance: 1
– isDefault: false

: Direction-flow -via
-onNode

–

br0: VirtualNode

– nodeOf: br0

veth2: VirtualNetworkInterface

Figure 3.18: Step 3: Example of transformation Route via FlowRoute to a set of
Destination entities.

43

Chapter 4

Conclusion

45

Bibliography
[BBE+08] Jean Bacon, Alastair Beresford, David Evans, David Ingram, Niki Trigoni,

Alexandre Guitton, and Antonios Skordylis. TIME: An open platform for
capturing, processing and delivering transport-related data. In Proceedings
of the 5th IEEE Consumer Communications and Networking Conference
(CCNC), Las Vegas, 2008. [see page 7]

[BHK13] Fabian Brosig, Nikolaus Huber, and Samuel Kounev. Architecture-Level
Software Performance Abstractions for Online Performance Prediction.
Elsevier Science of Computer Programming Journal (SciCo), 2013. [see
page 1]

[DK14] Antonio Garcia-Dominguez Richard Paige Dimitris Kolovos, Louis Rose. The
epsilon Book. 2014. Available online http://www.eclipse.org/epsilon/
doc/book/. [see page 15]

[FHH02] A. J. Field, Uli Harder, and Peter G. Harrison. Network Traffic Behaviour
in Switched Ethernet Systems. In MASCOTS 2002, 10th IEEE Interna-
tional Symposium on Modeling, Analysis, and Simulation of Computer and
Telecommunications Systems, pages 32–42, October 2002. [see page 6]

[Ing09] David Ingram. PIRATES Data Representation. http://www.cl.cam.ac.
uk/research/time/pirates/docs/datarepr.pdf, 2009. Accessed July 11,
2013. [see page 7]

[KMF04] Thomas Karagiannis, Mart Molle, and Michalis Faloutsos. Long-range de-
pendence: Ten years of internet traffic modeling. IEEE Internet Computing,
8(5):57–64, 2004. [see page 6]

[KPP08] DimitriosS. Kolovos, RichardF. Paige, and Fiona A.C. Polack. The Epsilon
Transformation Language. In Theory and Practice of Model Transformations,
vol. 5063 of LNCS, pages 46–60. Springer, 2008. [see page 15]

[RS10] Piotr Rygielski and Pawel Świątek. Graph-fold: an Efficient Method for
Complex Service Execution Plan Optimization. Systems Science, 36(3):25–
32, 2010. [see pages 22 and 24]

[RZK13] Piotr Rygielski, Steffen Zschaler, and Samuel Kounev. A metamodel for
Performance Modeling of Dynamic Virtualized Network Infrastructures
(Work-in-progess paper). In Proc. of the 4th ACM/SPEC Int. Conf. on
Performance Engineering, pages 327–330. ACM, 2013. [see page 3]

47

http://www.eclipse.org/epsilon/doc/book/
http://www.eclipse.org/epsilon/doc/book/
http://www.cl.cam.ac.uk/research/time/pirates/docs/datarepr.pdf
http://www.cl.cam.ac.uk/research/time/pirates/docs/datarepr.pdf

	Introduction
	Meta-Models
	DNI
	Network Configuration
	Network Structure
	Network Traffic

	Example of a DNI Model: SBUS
	Notation
	SBUS System
	Model of the Network Structure
	Model of the Network Traffic
	Model of the Network Configuration

	miniDNI
	Example of a miniDNI Model: SBUS

	Transformations
	Map of the Transformations
	General Remarks

	DNI-to-OMNeT++
	Pre-transformation Operations
	Transformation Rules
	Post-transformation Operations

	DNI-to-miniDNI
	Pre-transformation Operations
	Transformation Rules
	Post-transformation Operations

	DNI-to-QPN
	Pre-transformation Operations
	Transformation Rules
	Post-transformation Operations

	miniDNI-to-QPN
	Pre-transformation Operations
	Transformation Rules
	Post-transformation Operations

	Routing-format-conversion

	Conclusion
	Bibliography

