
Data Center Network Throughput Analysis using
Queueing Petri Nets

Piotr Rygielski and Samuel Kounev
Institute for Program Structures and Data Organization,

Karlsruhe Institute of Technology (KIT)
76131 Karlsruhe, Germany

Email: {piotr.rygielski, kounev}@kit.edu

Abstract—In this paper, we contribute performance modeling
and analysis approach in computer networks. We present a
meta-model designed for the performance modeling of network
infrastructures in modern data centers. Instances of our meta-
model can be automatically transformed into stochastic simula-
tion models for performance prediction. In this paper, we present
a transformation to Queueing Petri Nets (QPNs). We show that
despite the high level of abstraction of the QPN models, we are
able to predict the utilization of resources with good accuracy
within a short time.

I. INTRODUCTION

The increasing popularity of Cloud Computing has lead
to the emergence of large virtualized data centers hosting
increasingly complex and distributed IT systems and services.
Due to the common adoption of virtualization technologies,
virtualized data centers are becoming increasingly dynamic.
Virtual machines, data, and services can be migrated on
demand between physical hosts to optimize resource utilization
while enforcing service-level agreements. The dynamics of
modern data center infrastructures makes an accurate and
timely performance analysis a challenging problem [1].

In our research, we focus on network infrastructures of
modern virtualized data centers—that is, networks that are op-
erated by a single administrative unit. Network infrastructures
in such environments introduce several new challenges for
performance analysis. The growing density of modern virtual-
ized data centers (increasing amount of network end-points),
the high volume of intra-data-center traffic, or the new traffic
sources introduced in the management layer of virtualized
environments, are some examples of such challenges.

In this paper, we model the performance-relevant aspects of
the common parts of modern data center network infrastruc-
tures. This includes, among others, network topology, links,
nodes, routes, protocols as well as traffic sources and the
characteristics of the workloads they generate. These and other
basic network elements serve as the basis for building network
infrastructures in virtualized data centers. Modern network vir-
tualization approaches rely on these building elements—thus
appropriate performance modeling at this level is important.

We propose a generic approach to network performance
prediction. We present the Descartes Network Infrastructure
(DNI) meta-model as a part of the Descartes Modeling Lan-
guage (DML) [2]. Network models built using our domain-
specific modeling language (DNI meta-model) can be auto-
matically transformed to various predictive models. Thus, our

approach requires a single input DNI model and offers multiple
predictive models without requiring expertise in each of them.

The main contributions of this work are the following: We
propose a generic approach to network performance prediction
that supports multiple performance analysis techniques based
on models at different levels of abstraction and accuracy.
We contribute a model transformation that translates a DNI
model into a Queueing Petri Net (QPN) model that can be
simulated with the SimQPN simulator [3]. Finally, we validate
the transformation by conducting experiments to evaluate the
prediction accuracy and simulation time.

A novel feature of our approach is the generic character of
the meta-model. We aim to abstract the highly-detailed spec-
ification of network technologies and focus on the modeled
system as a whole accepting the possible loss of accuracy.
Another benefit is the flexibility in selecting the trade-off
between the overhead and accuracy of the analysis (based
on the supported model solving techniques): once a system
is modeled, multiple transformations to predictive models of
different granularity are provided.

The rest of this paper is organized as follows: In Section II,
we briefly review similar model-based performance predic-
tion approaches. In Section III, we introduce our approach
to performance modeling and prediction. Section IV briefly
presents the DNI meta-model. The transformation to the QPN
formalism is described in Section V. In Section VI, we present
our validation of the approach and discuss the evaluation
results. Finally, we conclude the work in Section VII.

II. RELATED WORK

There is a large body of existing work on performance
modeling of communication networks, for example [4], [5].
Existing modeling approaches are mostly based on stochastic
models such as classical product-form queueing networks,
extended or layered queueing networks, stochastic Petri nets,
stochastic simulation models, and so on. Building such models
requires experience and expertise in stochastic modeling and
analysis, which network administrators typically do not have.
Moreover, such models usually capture only selected specific
aspects of the network infrastructure whereas other aspects are
abstracted. To address this issue, the research community has
proposed high-level network modeling approaches that support
automatic generation of low-level predictive models.

Most existing model-based approaches (e.g., [6], [5], [7])
are based either on black-box statistical models or on highly-

detailed protocol-level simulation models (e.g., [8], [9], [10]).
The former do not consider the internal network structure
and topology while the latter focus only on selected parts
of the network infrastructure and do not capture the link to
the running applications and services that generate the traffic.
Other approaches model the network environment without
providing support for performance analysis, e.g., [11], [12].

Regarding the stochastic Petri nets, such as QPNs, and their
usage in a networking context, so far they have mainly been
used to model specific network components at a high level
of detail, for example, [13], [14], [15]. Additionally, in other
works (e.g., [16], [17]), networks appear as a part of a larger
modeling landscape and are typically modeled as a black-box.

In summary, most approaches to performance analysis
of communication networks concentrate on studying specific
networking technologies that are modeled at the protocol level
typically using low level simulation models or highly-detailed
specification languages. Such models are highly specific and
are difficult to use in a different system configurations than the
one for which they have been designed. On the other hand, ex-
isting measurement-based or black-box modeling approaches
are coarse-grained and do not provide means to capture the
effects of the individual performance-influencing factors. We
bridge this gap by providing the trade-off between the two
extremes and allowing flexible performance analysis at the
required abstraction level.

III. APPROACH

The modeling approach we propose is based on a meta-
model for modeling network infrastructures in virtualized data
centers. This metamodel, which we refer to as Descartes Net-
work Infrastructure (DNI) metamodel, is part of our broader
work in the context of the Descartes Modeling Language
(DML) [2], an architecture-level modeling language for mod-
eling Quality-of-Service and resource management related
aspects of modern dynamic IT systems, infrastructures and
services. The DNI metamodel has been designed to support
describing the most relevant performance influencing factors
that occur in practice while abstracting fine-granular low level
protocol details.

Our approach assumes that instances of the DNI metamodel
are automatically transformed to predictive stochastic models
(e.g., product-form queueing networks or stochastic simulation
models) by means of model-to-model transformations. Thus,
our modeling approach does not require explicit knowledge
and expertise in stochastic modeling and analysis. Our ap-
proach is designed to support the implementation of different
transformations of the descriptive DNI models to underly-
ing predictive stochastic models (by abstracting environment-
specific details, transformations to multiple predictive models
are possible), thereby providing flexibility in the trade-off
between the overhead and accuracy of the analysis.

In this paper, we present a transformation that translates
DNI models to QPNs. The QPN models are later simulated
using the SimQPN simulator [3], [18]. In the next section, we
briefly describe the key parts of the DNI metamodel and in
Section V, we provide details about the transformation itself.

IV. NETWORK INFRASTRUCTURE META-MODEL

The DNI meta-model covers three main parts of every data
center network infrastructure: structure, traffic and configura-
tion. The DNI meta-model is described in more details in [19],
[20] and is available online1. In the next paragraphs, we briefly
characterize the main parts of the meta-model.

The first part of the DNI meta-model—network structure—
is intended to model the topology of the network. The meta-
model contains entities such as nodes and links connected
through network interfaces. All nodes, links and interfaces
can either be physical or virtual; each virtual network element
is hosted on a physical node. We describe the performance-
relevant parameters of every element in the model. We distin-
guish end nodes (e.g., virtual machine, server) and interme-
diate nodes (e.g., switch, router), because their performance
descriptions are different.

The configuration of a network contains information about
routes, protocols and protocols stacks. We use this information
to calculate the paths in the topology graph and to coarsely
estimate the overheads introduced by the protocols. In the
model, we describe a snapshot of the current routes in the
system, disregarding if the system uses static or dynamic
routing. In the meta-model, a route consists of a list of
references to network interfaces. The protocols are described
by a set of generic parameters such as, for example, overheads
introduced by the data unit headers.

One cannot analyze network performance without consid-
ering the traffic. In a data center, most of the network traffic
is generated by deployed applications. This includes also the
hypervisors which can trigger, e.g., VM migrations.

In the DNI meta-model, network traffic is generated by
traffic sources that are deployed on end nodes. Each traffic
source generates traffic flows that have exactly one source
and possibly multiple destinations. The flow destinations are
located in nodes and can be uniquely identified by a set of
protocol-level addresses. Flows can be composed in a workload
model that defines how each flow is generated (e.g., with
sequences, loops, or branches). In this paper, we describe a
flow by specifying the amount of transferred data. The meta-
model can be extended to support other flow descriptions that
can be found in the literature, for example, [21].

V. TRANSFORMATION

An instance of the DNI meta model is a descriptive model
of a network. To conduct performance analysis, the DNI model
must be transformed into a predictive model. In this section,
we describe a transformation that transforms an instance of the
DNI meta model to a QPN model that can be simulated using
the SimQPN simulator, which is part of QPME (Queueing Petri
Net Modeling Environment) [3].

The QPN formalism was introduced by Bause in [22].
The graphical notation used in this section is summarized in
Figure 1.

1Auxiliary material on-line: http://bit.ly/DNI-model

Queueing

Place

Subnet

Place

Queue Depository

Ordinary

Place

Nested QPN

oo o o o o

Transition Token

o
o o

Fig. 1: Notation used in QPN diagrams. Excerpted from [17].

EndNode-1
IntermediateNode-1 EndNode-2

EndNode-3

Link-1-R
Link-1-L

Fig. 2: QPN representation of network nodes and links.

A. Top-level Network

The transformation begins with translation of all network
nodes into subnet places. For each Node, a subnet is created.
To reflect the topology, the subnets are connected with links
that are represented by two transitions—each for one of both
directions. The incidence functions for links are defined as
non-blocking, that is, they fire immediately for a single token
of any color and deposit the token in the succeeding place
in the graph. As an example, a QPN representing three end
nodes connected with a single intermediate node is depicted
in Figure 2.

B. End Node

Each EndNode represents a machine that can host a
software stack that may contain multiple traffic sources. An
end node without traffic sources specified in the input DNI
model is transformed to an intermediate node or removed. The
structure of the subnet representing an end node is depicted in
Figure 3 and is described as follows. All the tokens that are
directed to an end node subnet are placed in the input place.
Next, they are forwarded to the queueing places that represent
receive queues of the network interfaces (eth-rx). The input-
trans transition directs the tokes to the proper interface based
on the routing information contained in the DNI model (the
internal structure of the input-trans and other transitions is
abstracted in Figure 3). The tokens wait in the eth-rx queueing
places to be later destroyed in the transition named rx-to-sw.
The destruction of the incoming tokens allows modeling the
open workflows—incoming tokens do not interfere with the
token generation process. The connections between the rx-to-
sw transition and the traffic sources are kept only to guarantee
the liveness of the QPN—no tokens are transmitted there.

Each traffic source deployed on the given node is repre-
sented as a subnet where tokens representing network traffic
are generated. The process of transmitting the generated tokens
is similar—a transition named sw-to-tx selects the appropriate
transmit queue of the network interface etx-tx, tokens wait in

input

input-trans rx-to-sw sw-to-tx

output

output-trans

eth-rx-#

...

eth-tx-#

...

traffic-source-#

...

Fig. 3: QPN representation of an EndNode.

input

port-#-tx

input-trans
routing-

transition

output

output-trans

...

...

port-#-rx

Fig. 4: QPN representation of an IntermediateNode.

the queue and are passed to the output place. After a token is
deposited in the output place, the transition that represents a
respective link (e.g., Link-1-R in Fig. 2) is immediately fired
passing the token to the next node according to the routes
defined in the DNI model.

C. Intermediate Node

Each IntermediateNode represents a forwarding device
(e.g., a switch or a router). Its QPN representation is a subnet
place with the structure that is similar to the end node (see
Fig. 4). The main difference between the end node subnet and
the intermediate node subnet is the lack of traffic sources in
the latter. The rx-to-sw transition, traffic sources subnets, and
the sw-to-tx transition are substituted with a single routing-
transition. The incidence function of the routing-transition is
defined in such a way that tokens incoming from defined
receive ports (port-rx) are forwarded to proper transmit ports
(port-rx). The function is defined uniquely, that is, for each
receive port and for each token color there is maximally one
transmit port where the token should be directed to. In this
subnet, contention takes place only in queues of the ports.

D. Traffic Source

A TrafficSource is represented as a subnet place in the QPN
model. The main responsibility of the traffic source subnet is
the generation of tokens according to the workload defined
in the DNI model. Figure 5 depicts a QPN model of an
exemplary traffic source. All unnamed transitions are generated
as mandatory connections between two consecutive places;
these transitions are passing all token colors in a non-blocking
fashion.

To control the order of actions executed in the workflow the
workload-execution (WE for short) is defined. The workload-
control place contains initial marking (tokens at the start of
the simulation) of a single WE token. Later, the WE token tra-
verses the places and transitions as defined in the DNI model.
The DNI metamodel uses actions for representing workflow
elements: start action, wait action, transmit action, stop action,
sequence, loop, fork/branch actions. The transformation of the
workload is the most challenging part because actions can be
nested and called recurrently.

input
workload-

control

workload-start wait-action

workload-stop

transmit-flow

outputloop

Fig. 5: QPN representation of the TrafficSource.

input 1-to-

num-loop-iter

loop-iter-left loop-control

loop-

start

subworkload

forward-

generated-

traffic

loop-

stop

loop-iter-

done

num-loop-

iter-to-1 output

Fig. 6: QPN representation of the workload loop action.

The traffic generation procedure runs as follows. All tokens
in the input place are ignored and destroyed in the proceed-
ing transition (due to the open workflow model). The WE
token is passed to the workload-start place that stems from
the StartAction defined in the DNI workload model. Each
WaitAction is translated to a queueing place. A TransmitAction
is transformed to transmit-flow transition. A transmit-flow
transition passes WE token and produces a token representing
a flow. That flow token is immediately deposited in the output
place and is ready to be routed and transmitted by the end
node. The WE token is passed further to the next action in the
workflow (loop in this example) until it reaches the workload-
stop place. Then, the whole process is repeated.

The LoopAction is represented as a subnet and its internal
structure is depicted in Figure 6. The single WE token arriving
to the input is later transformed into multiple tokens by the
1-to-num-loop-iter transition. The transition produces exactly
the amount of tokens that corresponds to the number of loop
iterations defined in the DNI model. The next transition—loop-
start—is the synchronization point; it requires one token from
the loop-iter-left and another one from the loop-control place.
The latter has a single WE token set as initial marking so that
subworkload can start as soon as the subnet receives a single
WE token from outside. When all actions of the subworkload
are finished, the loop-stop transition duplicates the WE token
and passes one to the loop-iter-done and the second one to
the loop-control place. Now the next loop iteration can begin,
as long as there are WE tokens in the loop-iter-left place
left. When the loop-iter-done place contains the amount of
tokens equal to the number of iterations, the transition fires and
deposits a single WE token to the output place. The execution
of all loop iterations is finished.

The actions that are looped are represented as a subnet
for brevity. The internal structure of the subworkload subnets
corresponds to the traffic source subnet and can contain multi-
ple nested loops or branches. The tokens that represent traffic
flows are directly sent to the output place to be immediately
passed to the sw-to-tx transition on the respective end node
level.

input

fork-

branch
subworkload

outputworkload-

control

forward-

generated-traffic

Fig. 7: QPN representation of the workload fork and branch
actions.

The structure representing a branch/fork action is depicted
in Figure 7. The only difference between fork and branch
action is the incidence function in the fork-branch transition—
for fork it generates tokens on all output connections, for
branch only on a single one (selected randomly based on
probabilities encoded in the DNI model).

E. Colors Management

The QPME editor and the SimQPN simulator divide tokens
into classes called colors. The tokens having the same color are
indistinguishable. Thus, all important components of the simu-
lated traffic (e.g., flows) must be modeled as separate colors. To
the colors present in every simulation we account WE tokens—
one color for each traffic source. Other colors are automatically
generated based on the traffic model. We generate a separate
color for each flow in the model. Additionally, if there are
multiple flows that have the same source and destination but
different data sizes, we generate separate colors for these flows.

F. QPN Configuration

The generated QPN is setup to reflect the real contention
and synchronization points. Each queue is configured with
the FCFS policy and the service times are calculated based
on the data size and protocols overheads for each network
interface and a color representing a flow. Moreover, each queue
has constant predefined maximum capacity; if the capacity
is exceeded, the incoming tokens are destroyed (drop-tail
queue). SimQPN parameters are set to match the reality so all
transitions have equal priority, all places have normal departure
discipline, that is, any succeeding transition may fire as soon
as all required tokens are available disregarding in which order
they arrived.

VI. VALIDATION

To validate the transformation, we conduct a case study
in a data center hosting a traffic monitoring application. We
first model the deployed system using the DNI metamodel
and then use the SimQPN simulation to predict the network
performance. We compare the SimQPN predictions against
measurements on the real system obtained by running the uperf
benchmark [23].

A. Hardware and Configuration

The system under study was deployed in a local data
center in an environment consisting of seven servers and
three switches. Each server is equipped with four 1Gbps
Ethernet ports. The switches are HP ProCurve 3500yl, each
with 24 1Gbps Ethernet ports. The physical topology and
the configuration of the network environment is depicted in
Figure 8. The host H2 is used to acquire the monitoring data
from switches using SNMP.

S3

S1
S2

H2

H4 H7

H1
H5 H8H3

Fig. 8: Network topology used in the experiment. Dashed links
are used for monitoring, solid links for data traffic.

B. Case Study

The system under study is a traffic monitoring application
based on results from the Transport Information Monitoring
Environment (TIME) project [24] at the University of Cam-
bridge. The system consists of multiple distributed components
and is based on the SBUS/PIRATES (short SBUS) middleware.

In the case study, we consider two kinds of components:
cameras and license plate recognition (LPR). The cameras are
located in the city and take pictures of cars that are speeding
or entering a paid zone. Each camera is connected to an SBUS
component that sends the picture together with a time stamp
to the predefined LPR components. The LPR components are
deployed in a data center due to their high consumption of
computing resources. LPRs receive the pictures emitted by
cameras and run a recognition algorithm to identify the license
plate numbers of the observed vehicles.

C. Experiment

In this paper, we validate the transformation using a setup
where multiple cameras transmit images using UDP to LPRs
deployed on nodes H5 and H8. We consider three scenarios.
In scenario A, two cameras deployed on H1 and H3 are
transmitting images to a single LPR deployed on H5. In
scenario B, we assume that two new cameras (H4 and H7)
are added to the system. Scenario C represents a situation
where an additional LPR was deployed on node H8 to provide
additional image processing resources.

We investigate the following questions. Firstly, how good
the obtained QPN model reflect the real performance be-
havior assuming non-reliable UDP-like communication. And
secondly, the performance of the SimQPN simulation.

D. Measurements

In every scenario, we measure the amount of the traffic
flowing through the network interfaces of all switches. We use
the counters located in the switches to measure the number of
bytes transmitted through each interface. We read the values
of the counters through SNMP every second and calculate
the average throughput for that interval. Host H2 takes the
measurements using an isolated VLAN. The sizes of transmit-
ted messages were constant in all experiments (800KB). The
experimental network was isolated from other networks (e.g.,
the Internet). During the measurements, all intergeneration
times were modeled as exponentially distributed; confidence
intervals are calculated for significance α = 0.05. In every
experiment we send predefined amount of pictures (3 000 for

TABLE I: Measured and predicted throughput between net-
work nodes.

Link uperf SimQPN Relative
(measured) (predicted) error %

Source → Mbps Mbps
Destination lCI uCI average

Scenario A (10ms): (H1, H3) → H5
H1→S1 374 396 400 3.9%
H3→S1 375 396 400 3.8%
S1→S2 605 657 800 26.8%
S2→H5 605 657 800 26.8%

Scenario B (10ms): (H1, H3, H4, H7) → H5
H1→S1 380 392 400 3.6%
H3→S1 380 392 400 3.6%
S1→S2 661 689 800 18.5%
H4→S3 380 391 400 3.8%
H7→S3 380 392 400 3.6%
S3→S2 621 650 800 25.9%
S2→H5 859 889 978 11.9%

Scenario C (10ms): (H1, H3) → H5, (H4, H7) → H8
H1→S1 388 396 400 2.0%
H3→S1 388 396 400 2.0%
S1→S2 681 704 800 15.5%
H4→S3 388 396 400 2.0%
H7→S3 388 396 400 2.0%
S3→S2 642 667 800 22.2%
S2→H5 681 704 800 15.5%
S2→H8 642 667 800 22.2%

each camera) and execute the experiment 30 times for uperf
and once for QPN (SimQPN cares internally about the required
amount of repetitions).

E. Results

The results of the described scenarios are gathered in the
Table I. We present throughputs for the most loaded links in the
system for a selected intergeneration time (one picture every
10ms). The throughputs for uperf are given as confidence
intervals and for SimQPN as averages (SimQPN does not
provide confidence intervals for throughput).

The values reported by SimQPN were close to the real mea-
surements and stable. The stability was expected regarding the
introduced abstractions. For underutilized links, the prediction
errors were lower than 5%, whereas for heavy utilized links,
the errors grew up to 26%. Under heavy load, SimQPN was
overestimating the throughput.

We examined additionally the scenario C for various traffic
intensities. The results for the connection S2 → H5 are
presented in Figure 9. This chart confirms the overestimations
introduced by SimQPN, however, the general trend is followed
correctly. For lower link utilizations the predictions are accu-
rate; for higher link utilizations, the errors are up to 200Mbps
out of 1000 in the worst case. This is a satisfactory prediction
accuracy given the high degree of abstraction in our meta-
model. Moreover, the presented predictions were obtained by
an automatically generated simulation model.

The simulation takes about 7 wall clock seconds on average
(measured for scenario C, intergeneration time 10ms), includ-
ing loading the input file and storing the results to the disk.
Larger simulations take: 30s for 30 nodes, 46s for 40 nodes,
65s for 50 nodes, and 325s for 100 nodes. The used version

La
ye

r 2
 T

hr
ou

gh
pu

t [
M

bp
s]

Intergeneration time [ms]

uperf CI
SimQPN

 600

 700

 800

 900

 1000

 2 4 6 8 10
Intergeneration time [ms]

uperf CI
SimQPN

 100

 200

 300

 400

 500

 20 30 40 50 60 70 80 90 100

Fig. 9: Throughput on link S2 → H5 in scenario C for
variable intergeneration times.

of SimQPN utilizes only a single CPU core for simulation,
however, a parallel version is currently under development and
will be released soon.

VII. CONCLUSIONS AND FUTURE WORKS

In this paper, we presented a generic model-based approach
to network performance prediction. We introduced the DNI
meta-model and described the transformation to QPNs. In the
validation, we showed that the transformation works correctly,
the prediction accuracy is acceptable, and the simulation time
is short. We stress that the presented predictions were obtained
through an automatically generated simulation model from a
high-level descriptive model where most low-level details were
abstracted.

As part of our future work, we intend to provide an
extensive comparison of the generated QPN models against
other automatically generated predictive models (e.g., OM-
NeT++ presented in [20]). Moreover, we aim to provide
more transformations to models with different granularities to
enable flexibility in performance prediction, so that simulation
at different level of detail can be used depending on the
required accuracy and time constraints. Finally, we plan to
validate our automatically generated models in larger data
center conducting multiple case studies and considering further
performance metrics.

ACKNOWLEDGMENT

This work is a part of RELATE project supported by the
European Commission (Grant no. 264840ITN).

REFERENCES

[1] N. Huber, M. von Quast, M. Hauck, and S. Kounev, “Evaluating and
Modeling Virtualization Performance Overhead for Cloud Environ-
ments,” in Proc. of the 1st Int. Conf. on Cloud Computing and Services
Science, 2011, pp. 563–573.

[2] F. Brosig, N. Huber, and S. Kounev, “Architecture-Level Software
Performance Abstractions for Online Performance Prediction,” Elsevier
Science of Computer Programming Journal (SciCo), 2013.

[3] S. Spinner, S. Kounev, and P. Meier, “Stochastic Modeling and Analysis
using QPME: Queueing Petri Net Modeling Environment v2.0,” in Proc.
of the 33rd Int. Conf. on Application and Theory of Petri Nets and
Concurrency. Springer-Verlag, 2012, pp. 388–397.

[4] P. G. Harrison and N. M. Patel, Performance Modelling of Communi-
cation Networks and Computer Architectures. Addison-Wesley, 1993.

[5] R. Puigjaner, “Performance modelling of computer networks,” in Proc.
of the 2003 IFIP/ACM Latin America conf. on Towards a Latin
American agenda for network research, ser. LANC ’03. New York,
NY, USA: ACM, 2003, pp. 106–123.

[6] S. Becker, H. Koziolek, and R. Reussner, “The Palladio component
model for model-driven performance prediction,” Journal of Systems
and Software, vol. 82, no. 1, pp. 3–22, 2009.

[7] P. G. Harrison, C. M. Lladó, and R. Puigjaner, “A general performance
model interchange format,” in Proc. of the 1st int. conf. on Performance
evaluation methodolgies and tools, ser. ValueTools ’06. New York, NY,
USA: ACM, 2006.

[8] A. Mitschele-Thiel and B. Müller-Clostermann, “Performance engineer-
ing of SDL/MSC systems,” Comput. Netw., vol. 31, no. 17, pp. 1801–
1815, 1999.

[9] N. de Wet and P. Kritzinger, “Using UML models for the performance
analysis of network systems,” Comput. Netw., vol. 49, no. 5, pp. 627–
642, 2005.

[10] I. Dietrich, F. Dressler, V. Schmitt, and R. German, “SYNTONY: net-
work protocol simulation based on standard-conform UML2 models,”
in Proc. of the ValueTools ’07, 2007, pp. 21:1–21:11.

[11] “SDL combined with UML,” ITU-T Z.109, International Telecommu-
nication Union, 2000.

[12] A. Prakash, Z. Theisz, and R. Chaparadza, “Formal methods for
modeling, refining and verifying autonomic components of computer
networks,” in Transactions on Computational Science XV. Springer,
2012, pp. 1–48.

[13] D. A. Zaitsev and T. R. Shmeleva, “A Parametric Colored Petri Net
Model of a Switched Network,” Int. J. Communications, Network and
System Sciences, no. 4, pp. 65–76, 2011.

[14] G. Ciardo, L. Cherkasova, V. Kotov, and T. Rokicki, “Modeling a fibre
channel switch with stochastic petri nets,” SIGMETRICS Perform. Eval.
Rev., vol. 23, no. 1, pp. 319–320, 1995.

[15] L. Kristensen and K. Jensen, “Specification and validation of an edge
router discovery protocol for mobile ad hoc networks,” in Integration
of Software Specification Techniques for Applications in Engineering,
2004, pp. 248–269.

[16] S. Kounev, K. Sachs, J. Bacon, and A. Buchmann, “A Methodology
for Performance Modeling of Distributed Event-Based Systems,” in
Proceedings of the 11th IEEE International Symposium on Object
Oriented Real-Time Distributed Computing, 2008, pp. 13–22.

[17] S. Kounev, K. Bender, F. Brosig, N. Huber, and R. Okamoto, “Auto-
mated Simulation-Based Capacity Planning for Enterprise Data Fab-
rics,” in 4th International ICST Conference on Simulation Tools and
Techniques, 2011, pp. 27–36.

[18] S. Kounev and C. Dutz, “QPME - A Performance Modeling Tool Based
on Queueing Petri Nets,” ACM SIGMETRICS Performance Evaluation
Review (PER), Special Issue on Tools for Computer Performance
Modeling and Reliability Analysis, vol. 36, no. 4, pp. 46–51, 2009.

[19] P. Rygielski, S. Zschaler, and S. Kounev, “A metamodel for Performance
Modeling of Dynamic Virtualized Network Infrastructures,” in Proc. of
the 4th ACM/SPEC Int. Conf. on Performance Engineering (ICPE’13).
New York, NY, USA: ACM, April 2013, pp. 327–330.

[20] P. Rygielski, S. Kounev, and S. Zschaler, “Model-Based Throughput
Prediction in Data Center Networks,” in Proc. of the 2nd IEEE Int.
Workshop on Measurements and Networking (M&N 2013), 2013, pp.
167–172.

[21] A. J. Field, U. Harder, and P. G. Harrison, “Network Traffic Behaviour
in Switched Ethernet Systems,” in MASCOTS 2002, 10th IEEE Interna-
tional Symposium on Modeling, Analysis, and Simulation of Computer
and Telecommunications Systems, October 2002, pp. 32–42.

[22] F. Bause, “Queueing petri nets-a formalism for the combined qualitative
and quantitative analysis of systems,” in Petri Nets and Performance
Models, 1993. Proceedings., 5th International Workshop on, 1993, pp.
14–23.

[23] “uperf A network performance tool,” Performance Applications Engi-
neering group at Sun Microsystems, 2012.

[24] J. Bacon, A. Beresford, D. Evans, D. Ingram, N. Trigoni, A. Guitton,
and A. Skordylis, “TIME: An open platform for capturing, processing
and delivering transport-related data,” in Proceedings of the 5th IEEE
Consumer Communications and Networking Conference (CCNC), Las
Vegas, 2008.

