Model-Based Throughput Prediction
in Data Center Networks

Piotr Rygielski and Samuel Kounev

Institute for Program Structures and Data Organization,

Karlsruhe Institute of Technology (KIT)
76131 Karlsruhe, Germany
Email: {piotr.rygielski, kounev}@kit.edu

Abstract—In this paper, we address the problem of per-
formance analaysis in computer networks. We present a new
meta-model designed for the performance modeling of net-
work infrastructures in modern data centers. Instances of our
metamodel can be automatically transformed into stochastic
simulation models for performance prediction. We evaluate the
approach in a case study of a road traffic monitoring system.
We compare the performance prediction results against the real
system and a benchmark. The presented results show that our
approach, despite of introducing many modeling abstractions,
delivers predictions with errors less than 32% and correctly
detects bottlenecks in the modeled network.

I. INTRODUCTION

The increasing popularity of Cloud Computing has lead
to the emergence of large virtualized data centers hosting
increasingly complex and dynamic IT systems and services.
Due to the common adoption of virtualization technologies,
virtualized data centers are becoming increasingly dynamic
[1]. Virtual machines, data, and services can be migrated on
demand between physical hosts to optimize resource utiliza-
tion while enforcing service-level agreements. This dynamism
of data center infrastructures makes an accurate and timely
performance analysis a challenging problem [2].

In our research, we focus on network infrastructures of
modern virtualized data centers. Network infrastructures in
such environments introduce several new challenges for per-
formance analysis. The growing density of modern virtualized
data centers (increased amount of network end-points), the
high volume of intra-data-center traffic, or new traffic sources
in the management layer of virtualized environments are only
some examples of such challenges.

In this paper, we model the performance-relevant aspects
of the major common building blocks of modern data center
network infrastructures. This includes, for example, network
topology, links, nodes, the basic network configuration (e.g.,
addressing, routing, protocols), the traffic sources and the
characteristics of the workloads they generate. These and other
basic network elements serve as the basis for building network
infrastructures in virtualized data centers.All network virtual-
ization approaches are built on top of physical infrastructure,
have configuration, and carry network traffic—thus accurate
performance modeling is important at this level.

This paper extends the contributions of our work-in-
progress paper [3]. The major contributions of this paper over

Steffen Zschaler
Department of Informatics
King’s College London
London, UK
Email: szschaler@acm.org

[3] are: redesigned meta-model; extended model transforma-
tions so that simulation can be generated fully automatically;
experimental validation of the approach in a case study.

The major contributions of this paper are the following.
Firstly, we present the Network Infrastructure (Sub-)meta-
model of Descartes Meta-Model (DMM) [4], referred to in
short as DNI meta-model. Secondly, we provide the model
transformation that transform a DNI model (descriptive) to
OMNeT++ simulation models (predictive) to enable quanti-
tative evaluation. Thirdly, we present a city traffic monitor-
ing use case and define practical scenarios, which are later
modeled with DNI. We conduct experiments and measure the
performance of network infrastructures. Finally, we show that
the obtained performance predictions reflect the performance
of real networks; that confirms that the modeling capabilities
of our approach are good in the investigated scenarios.

A novel feature of our approach is the generic character of
the meta-model. We aim to abstract the highly-detailed spec-
ification of network technologies and focus on the modeled
system as a whole accepting the possible loss of accuracy.
Another benefit is the flexibility in selecting the trade-off
between the overhead and accuracy of the analysis (based
on the model solving technique): once a system is modeled,
multiple transformations to various predictive models may be
provided.

The rest of this paper is organized as follows: In Section II,
we introduce our approach to performance modeling and pre-
diction. Section III presents the DNI Meta-model and describes
its details. Model transformations are described in Section IV.
In Section V, we present our traffic monitoring case study,
its scenarios, conducted experiments and discuss the results.
Finally, we conclude the work in Section VI.

II. APPROACH

The modeling approach we propose is based on a new
meta-model for modeling network infrastructures in virtual-
ized data centers. This meta-model, which we refer to as
Descartes Network Infrastructure (DNI) meta-model, is part
of our broader work in the context of the Descartes Meta-
Model (DMM) [4], an architecture-level modeling language
for dynamic IT systems and services.

Our approach assumes that instances of the DNI Meta-
model are automatically transformed to predictive stochastic

| DependencyIQ—l Unit |

Variable 1
Constant 5
1 o

Random

Networkinfrastructure
1
NetworkTraffic
NetworkStructure

NetworkConfiguration

(a) (b)

Function

Continuous

Fig. 1: (a) Root of the meta-model, and (b) dependencies.

models (e.g., product-form queueing networks or stochastic
simulation models) by means of model-to-model transforma-
tions. Thus, our modeling approach does not require explicit
knowledge and expertise in stochastic modeling and analysis.
The DNI Meta-model has been designed to support describing
the most relevant performance influencing factors that occur
in practice while abstracting fine-granular low level protocol
details. Our approach is designed to support the implementa-
tion of different transformations of the high-level DNI models
to underlying predictive stochastic models (by abstracting
environment-specific details, transformations to multiple pre-
dictive models are possible), thereby providing flexibility in the
trade-off between the overhead and accuracy of the analysis. In
this paper, we present a single transformation to demonstrate
the applicability of the approach.

III. NETWORK INFRASTRUCTURE META-MODEL

The DNI meta-model' covers three main parts of every data
center network infrastructure: structure, traffic and configura-
tion. It is implemented in Ecore using the Eclipse Modeling
Framework (EMF). An initial preliminary version of the DNI
Meta-model was presented as a work-in-progress paper in
[3]; since then, the meta-model has evolved significantly and
therefore we present a brief overview of its major parts in the
following.

The root element of the DNI Meta-model
(NetworkInfrastructure) connects the three main
parts mentioned formerly: network structure, traffic and
configuration (see Fig. la). To analyze the performance
of any network infrastructure, one must know how the
network is physically built (NetworkStructure), how
it is configured (NetworkConfiguration) and how
it is used (NetworkTraffic). Every numeric value in
the model is modeled as a Dependency (Fig. 1b). The
Dependency represents a Variable (constant or random)
or a Function. Additionally, each Dependency can be
accompanied with a Unit. Examples of a Dependency can
be the following descriptions of a parameter: “exponentially
distributed with mean value of 100ms”, or just “5SMbps”.

A. Network Configuration

The network-configuration meta-model is presented in Fig-
ure 2. Currently, the NetworkConfiguration contains
information about routes, protocols and protocols stacks. In
the model, we describe a snapshot of the current routes in the
system; we do not explicitly consider dynamic routing as this

!For more implementation details, please refer to the auxiliary material that
is available on-line under: http://bit.ly/DNI-model

NetworkConfiguration
1.% 1.*
| Protocolstack| | NetworkProtocol |
? e protocol | 1

Hop | ProtocolLayer
0..1 | nextHop 0.1 | isCarriedBy

Fig. 2: Meta-model of Network configuration.

would require detailed information about routing algorithms
which is abstracted here. In the meta-model, a Route consists
of Hops and each Hop references a NetworkInterface.
The term route is an abstraction; we do not store informa-
tion about dynamic routing protocols. A ProtocolStack
is an ordered set of ProtocolLayers, where each
ProtocolLayer references a single NetworkProtocol.
The NetworkProtocol itself is described by a generic set
of parameters such as, for example, overheads introduces by
the data unit headers.

B. Network Structure

The part of the meta-model representing the network
structure is depicted in Figure 3. The NetworkStructure
is a graph consisting of Nodes and Links connected through
NetworkInterfaces. All nodes, links and interfaces can
be either physical or virtual; each virtual network element is
hosted on a PhysicalNode. The performance-relevant influ-
encing factors of every element in the NetworkStructure
are described using PerformanceSpecification enti-
ties (abbreviated as PerfSpec in Fig. 3), both for phys-
ical and virtual elements. We distinguish end nodes (e.g.,
virtual machine, server) and intermediate nodes (e.g., switch,
router), because their performance descriptions are different,
e.g., end nodes do not utilize information about forwarding
performance.

C. Network Traffic

In a data center, most of the network traffic is generated
by deployed applications. This includes also the hypervisors
(applications) which can trigger, e.g., VM migrations (traf-
fic). As depicted in Figure 4, the DNI meta-model, net-
work traffic is generated by TrafficSources that originate
from SoftwareComponents. Software components are de-
ployed on end nodes. Each TrafficSource generates traffic
Flows that have exactly one source and possibly multiple
destinations. The F1ow destinations are located in Nodes and
can be uniquely identified by a set of protocol-level addresses.
Each TrafficSource can generate a specified set of flows.
The information about the precise transmission time of a flow
is modeled in the workload model (GenericWorkload).
Each flow can be described by means of various flow de-
scriptions; in this paper, we use a GenericFlow description
capturing the amount of transferred data. The meta-model can
be extended to support other traffic models that can be found
in the literature, e.g., [5].

IV. TRANSFORMATION

An instance of the DNI Meta-model provides a descriptive
model of a network. To conduct performance analysis, a given

\V4 0.*
1 Networkinterface 4)[Link
l.. (aPorf. JAN
NodePerfor P

1 |performance

NetworkStructure
PhysicalNetworkinterface

B
VirtualNetworkinterface

2 connects

PhysicalLink

2 connects

[EndNodePerfSpec] [IntermediatechePerfSpec]

NetworkinterfacePerfSpec f }
1 1 1 1

1 1 :)
lDataPIanePerfSpec] lControlPIanePerfSpec] [PhysicalNetworkinterfacePerfSpec| [VirtualNetworkinterfacePerfSpec]| [VirtualLinkPerfSpec| [PhysicalLinkPerfSpec

Fig. 3: Meta-model of Network structure.

NetworkTraffic

originatesFrom

1.7

l ip

trafficSources 0.1

StartAction
I I
[stopAction | waitAction][Tr

Fig. 4: Meta-model of network traffic

DNI model must be transformed into a predictive model. In this
section, we briefly describe a transformation that transforms an
instance of the DNI Meta-model to an OMNeT++ simulation
model [6]. The OMNeT model utilizes the INET library, which
provides implementations of standard network protocols (e.g.,
IP, Ethernet, TCP, UDP), thus in current version, only these
protocols are supported by the transformation, although the
meta model does not have this limitation.

The transformation has been implemented using the Ep-
silon Framework [7] and is available in the auxiliary material.
During an execution of the transformation, entities from the
DNI model are automatically translated into entities of the
OMNeT model. The meta model of OMNeT simulation has
been semi-automatically obtained (using Xtext[8]) from the
grammar included in the OMNeT documentation. The trans-
formation consist of rules that define how an input entity
should be interpreted by the destination model. “DNI!Link-to-
OMNET!Channel”, “DNI!Node-to-OMNET!SubModule” are
examples of such rules. The resulting OMNeT model is later
translated into simulation files using templates defined in
model-to-text transformation language EGL (Epsilon Gener-
ation Language [7]). The simulation configuration files (e.g.,
omnetpp.ini) are generated from the input DNI model using
similar templates. Due to limited space, we cannot provide
all details about the transformation. The auxiliary material
contains the models, meta models, transformation rules and
code generation templates for reference.

The transformation currently assumes that we use standard
protocols (L2, L3 and L4 protocols in OMNeT++), although
our meta-model allows to model the coarse behavior of any—
even custom implemented—network protocol. The matching
between the protocols specified in the meta model and the
protocols supported by the transformation is done based on

Fig. 5: Experimental environment, network topology and con-
figuration; (a) scenario #1 and #2, (b) scenario #3. Dashed
links are used for monitoring, solid links for data traffic.

the protocol name. We have initially concentrated on these
standard protocols as they are the most ubiquitous. According
to Shiravi et al. [9], about 97% of current traffic in data centers
is carried by IP; additionally, 99% of IP traffic carries TCP or
UDP segments.

V. EXPERIMENTAL VALIDATION

To validate our modeling and analysis approach, we have
conducted a case study in a data center hosting a traffic
monitoring application. We first model the deployed system
using the DNI Meta-model and then use the OMNeT++
simulation to predict the network performance. We compare
the OMNeT++ results against measurement on the real system
as well as against the results obtained by the uperf benchmark
[10].

A. Hardware and Configuration

The system under study was deployed in a local data
center in an environment consisting of eight servers and
three switches. Each server is equipped with an eight-core
processor with 3.3GHz, 16GB of memory, and four 1Gbps
Ethernet ports. The servers are running Ubuntu 12.04-Server.
The switches are HP ProCurve 3500yl, each with 24 1Gbps
Ethernet ports. The physical topology and the configuration of
the network environment is depicted in Figure 5. The host H2
connected to the switches using VLAN 55 is used to acquire
the monitoring data from switches using SNMP.

B. Case Study

The system under study is a traffic monitoring application
based on results from the Transport Information Monitoring
Environment (TIME) project [11] at the University of Cam-
bridge. The system consists of multiple distributed components
and is based on the SBUS/PIRATES (short SBUS) middleware
[12].

Due to technical limitations of the SBUS implementation
(single threaded implementation of the SBUS wrapper that
wraps each component), we used uperf as a reference for ex-
periments under high load to exclude the influences of software
bottlenecks on the network performance. uperf benchmark [10]
is a network performance tool that supports modeling and
replay of various network traffic patterns. uperf was shown to
emulate the network traffic without exhibiting any scalability
or stability issues under high load.

In the case study, we consider two kinds of components:
cameras and license plate recognition (LPR) components. The
cameras are located in the city and take pictures of cars that are
speeding or entering a paid zone. Each camera is connected to
a local SBUS component that sends the picture together with
a time stamp to the LPR components. The LPR components
are deployed in a data center due to their high consumption
of computing resources. LPRs receive the pictures emitted by
cameras and run a recognition algorithm to identify the license
plate numbers of the observed vehicles.

In our experiments, we assume that there are N cameras
connected with the data center using a dedicated network line.
The network line is assumed to be a leased channel that is
characterized with a maximum bandwidth X. The channel
is only used by the cameras—there is no other traffic in the
network. Every camera sends pictures of size L every p units
of time. Each picture is transmitted with additional parameters
like, for example, time stamp, location identifier and measured
speed of the car. We model the intensity of the road traffic with
A photographed cars per second. We consider the following
scenarios.

Scenario #1: A single camera is connected with the data
center using a dedicated leased line. The line has maximum
theoretical bandwidth of X = 1Gbps. The road traffic intensity
is A = 2 photographed cars per second. How much bandwidth
will be utilized by the system on the path between LPR and
the switch if the traffic intensity increases? In this scenario,
the camera and the LPR is deployed in a single VLAN with
servers connected in a star topology (Figure 5a).

Scenario #2: Given an area in the city with a single network
end-point, we consider to add new cameras to the area that is
connected using a leased line with bandwidth X = 1Gbps.
How many cameras can be handled without congestion by
this connection for a given road traffic intensity? In this
scenario, all cameras are deployed in a single VLAN with
servers connected in a star topology (Figure 5a). The cameras
transmit the data over a single shared network link to the LPR
component.

Scenario #3: Given multiple areas in the city connected
to the data center, we consider the situation with multiple
cameras and LPR components deployed on different servers
due to predefined distribution of computational workload. The

cameras deployed in VLAN 11 transmit the data to the LPRs
deployed in VLAN 12. Additionally, we model other source
of external traffic by deploying additional camera component
in VLAN 13 (see Figure 5b). In this scenario, we examine
the bottlenecks in VLAN 21 and the switches S1 and S2
(referred to as scenario 3A). Moreover, we study additional
changes in topology and configuration in the following sub-
scenarios. In the scenario 3B, we study the changes in the
network performance if the connection between switch S1 and
S3 (VLAN 22) fails. Scenario 3C assumes the reaction of the
network operator where the camera hosted on H7 is disabled.
Finally, scenario 3D represents the situation where VLAN 22
is brought back to operation, however the camera component
on host H7 remains turned off.

C. Measurements

In every scenario, we measure the amount of the traffic
flowing through the network interfaces of all switches. We
use the set of counters located in the switches to measure
the number of bytes transmitted through each interface. We
read the values of the counters through SNMP every second
and calculate the average throughput for that interval. Host H?2
takes the measurements using the isolated VLAN 55 (no traffic
can be routed to or from that VLAN). The sizes of transmitted
messages were constant in all experiments. The experimental
network was isolated from other networks (e.g., Internet).
During the measurements, all think times were modeled as
exponentially distributed; confidence intervals are calculated
for significance o = 0.05.

In every experiment we send predefined amount of pictures
(usually 10 000 for each camera) and execute the experiment
30 times for SBUS and 16 times for OMNeT. We use 16
repetitions for OMNeT due to long simulation time; to simulate
one real second, the generated OMNeT model needs about 100
seconds.

D. Results

In the two first scenarios, we have examined mainly the
correctness of the modeling approach and the transformation.

Scenario #1 In the first scenario, we set the message size
to 2000kB and vary the think time p for a single sender.
In experiment A (Figure 6 left), we set the think time to
500ms and decreased it in steps of 50ms. The measured
throughput grow exponentially for lower think times. Note,
that the throughput values for SBUS drop when decreasing
the p below 100ms. This phenomenon is caused by scalability
problems of SBUS (single-threaded implementation of the
SBUS wrapper). This situation was also observed in the second
scenario.

Both, OMNeT and uperf followed the trend of SBUS,
slightly overestimating the actual throughput. Additionally, we
investigated a range of smaller think times in experiment B
(Figure 6 right). In this experiment, the prediction errors were
lower than 20%.

Scenario #2 In the second scenario, we varied the think times
and the number of senders. Due to the scalability issues of
SBUS, the measurements were taken only for OMNeT and
uperf (uperf served as reference). The results are depicted

Experiment A: 50-500ms Experiment B: 5-40ms

900
7 800t
1 700 }
1 e00 |
1 500 |
1 400 |

i i i ! 300 L
0 100 200 300 400 500 5

Think time [ms]

uperf Cl ——
OMNeT Cl — 4

Layer 2 Throughput [Mbps]

. n
10 15 20 25 30 35 40
Think time [ms]

Fig. 6: Scenario #1: Confidence intervals for the mean through-
put for think time 50-500ms (left) and for 5-40ms (right).

25ms 50ms
1000 T T T T 1000
900
800
700
600
500

Layer 2 Throughput [Mbps]

400 | uperf 1st,Cl,3rd —— | 300 - uperf 1st,Cl,3rd —— :
OMNeT CI —— OMNeT CI ——
300 L .) ! 200 L—F . . A
1 2 3 4 5 1 2 3 4 5
75ms 100ms

1000 T T T T T 800
900 - 1

800 -
700 -
600 -
500 -
400
300 -
200 -
100

HH
o N
S8
$4

L \I L 100 T
1 2 3 4 5 1 2 3 4 5

Number of senders Number of senders

Layer 2 Throughput [Mbps]

uperf 1st,CL3rd ———1 | 200 | uperf 1st,C1,3rd ——1 |
) OMNeT] _ OMNeT C

Fig. 7: Scenario #2: Confidence intervals for varying number
of senders and think time p. For uperf, 1st and 3rd quartiles
are shown additionally.

in Figure 7; the relative errors are given in Table I. For
think time p = 75ms and 100ms, we see linear dependency
between the number of senders and the achieved throughput.
For 50ms, the maximum throughput was reached with five
senders. The situation was similar for the 25ms run. In the
presented experiments, the relative prediction error was higher
than in scenario #1; the extremes of confidence intervals of
both models were a maximum 21% of the reference value
apart. According to the uperf model, the maximum achievable
bandwidth is 963Mbps; OMNeT reports the maximum as
935Mbps (underestimating by 3%).

In the next scenario, we deploy multiple cameras and LPRs;
there are multiple traffic sources and destinations. Moreover,
we decrease the message size to L = 400kDB to address the
scalability issues of the SBUS. Here, the validation is carried
against SBUS to increase the reality of the configuration.

TABLE I: Prediction errors and goodness of fit for scenarios
#1 and #2.

Scenario #1 A: OMNeT | A: uperf A: OMNeT | B: OMNeT
vs. PIRATES vs. PIRATES | vs. uperf vs. uperf

Error 0-14.1% 1-16.4% [0—-11.6% 0—15.8%

(min—-max)

Fit R” 0.9877 0.9859 0.9885 0.99743

Scenario #2 25ms 50ms 75ms 100ms

Error 0 —20.2% 0—17.1% 0 —20.9% 0—17.5%

(min—-max)

Fit R? 0.9287 0.9793 0.9963 0.9980

Scenario #3 In the third scenario, we deployed the following
set of traffic sources and destinations: H1 — H7, H3 —
H6, H4 — Hb5, H5 — H6, and in the sub-scenarios #3A
and #3B, H8 — HT7. The components were configured to
spawn two threads, each sending a picture of size L = 400kB
every 1ms so that the network is fully loaded. There were also
multiple SBUS wrapper instances running in the background
to exclude the influence of the SBUS scalability issues on
the network. In every run, each host sent 10000 pictures. We
stopped the measurements once all cameras reported successful
transmission of all pictures. The measured values of throughput
are presented in Table II. Prediction errors were calculated as
the difference between the mid points of confidence intervals.

In the scenario #3A, our model kept the prediction error
at acceptable level not exceeding 25%. In most cases, the
prediction was an overestimation, however three results are
underestimated. All existing bottlenecks were detected but
there was also one false positive: the bandwidth on path
S3 — HT was overestimated by 24% and a bottleneck was
reported, although there were still free resources on that link.

In the scenario #3B, there was only one bottleneck, which
was detected successfully. Due to the failure of VLAN 22,
there was an overload situation on the only link connecting
VLAN 11 with VLANs 12 and 13. Most of the prediction
errors were under 20% except for two overestimations—by
32% and 26%.

In the scenario #3C, we lowered the amount of traffic by
disabling one camera, however it did not affect the bottleneck
between switches S1 and S2. OMNEeT discovered a bottleneck
on the path S2 — H8 but there were still free resources in
reality. Although the bottleneck S1 — S2 visibly slowed down
the other flows, the prediction errors remained at a similar
level—up to 27%.

Scenario #3D represents the situation where the VLAN
22 is repaired but the camera on HS8 remains off. In this
case, the load in the network was more balanced as eight out
of 12 links reached saturation of over 85%. The predictive
model discovered all eight highly saturated links and reported
all possible bottlenecks correctly. Prediction errors remained
under 30%.

Summarizing, the automatically generated simulation
model in OMNeT provided accurate predictions not exceeding
the average prediction error of 32% in the average worst case.
The model correctly recognized all bottlenecks and provided
only two false positives. Additionally, in case of high traffic
load (bottlenecks), the relative prediction errors were low
and did not exceed 13% (up to 110Mbps); in case of false
positives the error was higher—up to 25%. We stress that
the presented predictions were obtained by an automatically
generated simulator; the simulation model was generated from
a DNI model where most of low-level details were abstracted.

VI. CONCLUSION AND FUTURE WORK

In this paper, we presented a new meta-model for perfor-
mance modeling of data center network infrastructures. The
meta-model was designed to address the challenges of network
performance analysis in modern data centers by abstracting too
detailed and technology-specific information, while covering

TABLE II: Measured and predicted bandwidth between net-
work nodes. Confidence intervals are given in Mbps. Bottle-
necks are marked in bold.

Link SBUS OMNeT Relative
Source — Mbps Mbps error %
Destination ICI [uCl ICI [uCl

Scenario #3A: VLAN 22, H8 — HT
H1—S1 352 413 440 448 13.4%
H3—S1 396 499 407 494 0.1%
H4—S1 540 563 595 611 9.1%
H5—S2 533 545 667 684 25.4%
H7—S3 567 795 644 654 —-9.5%
H8—S2 376 440 491 500 18.7%
S1—S2 915 | 932 926 | 944 1.3%
S1—S3 352 413 440 448 13.4%
S2—H5 616 638 667 684 7.6%
S2—H6 860 872 926 944 8.1%
S2—HS8 568 795 591 600 —17%
S2—S3 376 441 491 500 18.5%
S3—H7 680 803 931 948 23.7%
S3—S2 566 793 591 600 —16.8%
Scenario #3B: no VLAN 22, H8 — HT7
H1—S1 210 246 298 314 31.9%
H3—S1 277 302 303 323 7.7%
H4—S1 402 440 355 367 —15.1%
H5—S2 443 533 364 474 —13.1%
H7—S3 282 444 349 446 6.1%
H8—S2 470 530 630 647 25.8%
S1—S2 897 | 946 937 | 950 1.7%
S2—HS 410 469 393 418 —8.8%
S2—H6 732 851 591 680 —19.8%
S2—H8 289 457 349 446 3.2%
S2—S3 695 822 623 712 —12.5%
S3—H7 696 822 623 712 —12.5%
S3—S2 243 445 349 446 9.5%
Scenario #3C: no VLAN 22, H8 - H7
H1—S1 244 291 311 323 15.9%
H3—S1 272 287 295 312 8.6%
H4—S1 366 394 346 356 —8.3%
H5—S2 443 521 347 457 —15.1%
H7—S3 218 410 300 427 11.2%
S1—S2 931 952 945 951 0.4%
S2—HS 368 409 383 405 0.6%
S2—H6 714 807 584 676 —16.8%
S2—HS 545 792 872 889 24.5%
S2—S3 247 302 349 363 26.3%
S3—H7 248 306 349 363 25%
S3—S2 219 412 300 427 10.6%
Scenario #3D: VLAN 22, H8 - H7
H1—S1 819 | 846 807 | 822 —2.4%
H3—S1 354 365 410 495 29.2%
H4—S1 540 524 604 612 15.1%
H5—S2 527 548 677 685 26.1%
H7—S3 929 941 900 916 —2.8%
S1—S2 884 902 938 947 5.4%
S1—S3 823 849 807 822 —2.8%
S2—HS 546 571 677 685 21.3%
S2—H6 864 | 880 938 | 947 7.9%
S2—HS 930 | 939 804 | 818 —13.1%
S3—H7 824 | 849 904 | 919 8.7%
S3—S2 926 940 804 818 —13%

important performance-relevant aspects of network infrastruc-
tures. We showed how DNI models can be automatically trans-
formed to OMNeT simulation models to obtain quantitative
evaluation of networks performance. The obtained simulation
models were validated in the traffic monitoring case study.
The conducted experiments showed that the presented trans-
formation correctly transforms the DNI model into simulation.
In simple scenarios our approach delivers accurate predictions
with maximal error of 21% and the model fits the measured
data with R? > 0.928.

The third scenario shows how the model predicts the

throughput in more complex situations. The experiments con-
ducted in the third scenario showed that the generated model
reflects real performance with maximal error of 32%. Addi-
tionally, the simulation model recognized all real bottlenecks
providing only two false positives. This is a satisfactory
prediction accuracy given the high degree of abstraction in
our meta model.

In the future, we will focus on extending the meta model
and on developing further transformations. We plan to pro-
vide additional modeling abstractions to cover virtualization
aspects of modern data center networks [13]. The experiments
conducted in this work are also an incentive to provide
transformation to other simulation models, so that performance
predictions are obtained quicker and the prediction accuracy
remains at a satisfactory level or may be improved.

This work is a part of RELATE project supported by the
European Commission (Grant no. 264840ITN).

REFERENCES

[1] K. Juszczyszyn, P. Swiatek, P. Stelmach, and A. Grzech, “A config-
urable servicebased framework for composition, delivery and evaluation
of composite web services in distributed QoSaware ICT environment,”
International Journal of Cloud Computing, vol. 2, no. 2, pp. 258-272,
2013.

[2] N. Huber, M. von Quast, M. Hauck, and S. Kounev, “Evaluating and
Modeling Virtualization Performance Overhead for Cloud Environ-
ments,” in Proc. of the Ist Int. Conf. on Cloud Computing and Services
Science, 2011, pp. 563-573.

[3] P. Rygielski, S. Zschaler, and S. Kounev, “A Meta-Model for Perfor-
mance Modeling of Dynamic Virtualized Network Infrastructures,” in
Proc. of the 4th ACM/SPEC Int. Conf. on Performance Engineering
(ICPE’13). New York, NY, USA: ACM, April 2013, pp. 327-330,
Work-In-Progress Paper.

[4] FE Brosig, N. Huber, and S. Kounev, “Architecture-Level Software
Performance Abstractions for Online Performance Prediction,” Elsevier
Science of Computer Programming Journal (SciCo), 2013.

[51 A.]J. Field, U. Harder, and P. G. Harrison, “Network Traffic Behaviour
in Switched Ethernet Systems,” in MASCOTS 2002, 10th IEEE Interna-
tional Symposium on Modeling, Analysis, and Simulation of Computer
and Telecommunications Systems, October 2002, pp. 32-42.

[6] A. Varga, “The OMNeT++ discrete event simulation system,” in Proc.
of the European Simulation Multi-conference, 2001, pp. 319-324.

[71 D. Kolovos, R. Paige, and F. A. Polack, “The Epsilon Transformation
Language,” in Theory and Practice of Model Transformations, vol. 5063
of LNCS. Springer, 2008, pp. 46—60.

[8] “Xtext, Language Development Made Easy,” Online, 2013. [Online].
Available: http://www.eclipse.org/Xtext

[9] A. Shiravi, H. Shiravi, M. Tavallaece, and A. A. Ghorbani, “Toward
Developing a Systematic Approach to Generate Benchmark Datasets
for Intrusion Detection,” Computers & Security, vol. 31, no. 3, pp.
357-374, 2012.

[10] “uperf A network performance tool,” Performance Applications Engi-
neering group at Sun Microsystems, 2012.

[11] J. Bacon, A. Beresford, D. Evans, D. Ingram, N. Trigoni, A. Guitton,
and A. Skordylis, “TIME: An open platform for capturing, processing
and delivering transport-related data,” in Proceedings of the 5th IEEE
Consumer Communications and Networking Conference (CCNC), Las
Vegas, 2008.

[12] D. Ingram, “PIRATES Data Representation,” http://www.cl.cam.ac.uk/
research/time/pirates/docs/datarepr.pdf, 2009.

[13] P. Rygielski and S. Kounev, “Network Virtualization for QoS-Aware
Resource Management in Cloud Data Centers: A Survey,” PIK — Praxis

der Informationsverarbeitung und Kommunikation, vol. 36, no. 1, pp.
55-64, 2013.

