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ABSTRACT
Software performance engineering (SPE) provides a plethora of

methods and tooling for measuring, modeling, and evaluating per-

formance properties of software systems. The solution approaches

come with different strengths and limitations concerning, for exam-

ple, accuracy, time-to-result, or system overhead. While approaches

allow for interchangeability, the choice of an appropriate approach

and tooling to solve a given performance concern still relies on

expert knowledge. Currently, there is no automated and extensible

approach for decision support. In this paper, we present a method-

ology for the automated selection of performance engineering ap-

proaches tailored to user concerns. We decouple the complexity of

selecting an SPE approach for a given scenario providing a decision

engine and solution approach capability models. This separation

allows to easily append additional solution approaches and rating

criteria. We demonstrate the applicability by presenting decision

engines that compare measurement- and model-based analysis ap-

proaches.
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1 INTRODUCTION
Performance of software systems is relevant to multiple application

areas because it has a major impact on key business indicators.

Performance evaluation techniques include measurement, simula-

tion, analytical solutions, model transformations to stochastic for-

malisms, algebraic solutions, and fluid approximations each having
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specific analysis goals and capabilities. Interoperability of evalua-

tion techniques can be achieved by automated performance model

extraction [10, 27], and by transformations of monitoring data [18]

and performance models [9]. Integrating all aspects into a uni-

fied interface, declarative software performance engineering (SPE)

approaches automate the whole process of deriving performance

metrics [28].

SPE techniques can be compared based-on different criteria like

analysis speed, accuracy, or system overhead. They come with

strengths and limitations depending on user concerns and the sys-

tem under test. While many alternative performance evaluation

approaches exist, the choice of an appropriate SPE approach and

tooling to solve a given performance concern still requires expert

knowledge. Even desired statistics like distribution, mean, quantiles,

percentiles, or maximum, impact the choice of SPE techniques [8].

For example, mean value analysis can be significantly faster than

simulations [21]. For measurements, in-place aggregation of metrics

may reduce the communication overhead. SPE can be used to eval-

uate a variety of metrics like utilization of resources or throughput

and response times of services. The requested metrics impact the

choice of an analysis approach, but also characteristics of the sys-

tem under test or its model representation may impact the choice.

For monitoring tools, there are technological restrictions on what

languages and infrastructures can be monitored [29]. For model-

based analysis, approaches come with different scalability in terms

of time-to-result and memory overhead [9, 17, 19], supported model

elements [9], and restrictions to certain model structures [8, 26].

To summarize, various methods, techniques, and tools for measur-

ing, modeling, and evaluating performance properties of software

systems have been proposed over the years, each with different

strengths and limitations. The choice of an appropriate tooling

to solve a given user concern tailored to the application scenario,

requires expert knowledge. Given the complexity of selecting a

solution approach, it is essential to introduce automated decision

support. Existing approaches do not provide an extensibility con-

cept to integrate new approaches and comparison attributes [8, 9].

The contribution of this paper is a methodology for automated deci-

sion support for performance engineering approaches that enables

to automatically select an appropriate approach for a given system

and user concern. We propose an architecture decoupling the com-

plexity of the approach selection into a decision engine coupled

with tool capability models. Besides automation, the benefit of our

capability model concept is that it supports extensibility concern-

ing solution approaches and comparison attributes. We show the

applicability by presenting decision support based on capability

models for measurement and model-based analysis. Our evaluation

considers qualitative and quantitative attributes and discusses how

to integrate new SPE approaches and comparison attributes.

https://doi.org/10.1145/3150928.3150952
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The remainder of this paper is organized as follows: Section 2

reviews related work. Based on the shortcomings of current ap-

proaches, we define requirements in Section 3. Section 4 describes

our approach that is based on a decomposition into a decision

engine and a capability model. Section 5 demonstrates decision

support for model- and measurement-based approaches. Finally,

Section 6 provides a conclusion.

Supplementary material including the meta-model, example

models, and the decision engine implementation is available online

at: http://descartes.tools/aasspe/.

2 RELATEDWORK
This work is related to decision support for performance engineer-

ing approaches which can be subdivided into decision support for

model-based and measurement-based analysis.

2.1 Decision Support for Model-based Analysis
Performance predictions can be performed based on different model

descriptions like regression models, queueing networks, control-

theoretical models, and descriptive models [23].

Qualitative comparisons of model-based solution approaches

have been performed, e.g., in [3, 4, 8, 9, 14]. Works include the

comparison of concrete toolchains [3, 9, 14] or methodologies [4, 8].

There are surveys focused on a single analysis type [4] or a single

formalism [8, 9]. Balsamo et al. [3] provide a categorization of differ-

ent model-based solution approaches according to their supported

model, application domain, and life cycle phase. Koziolek [14] sur-

veys model-based analysis approaches for component-based sys-

tems focusing on model expressiveness, tool support, and maturity.

DeGooijer et al. [11] mix capabilities of formalisms and solution

approaches and discuss the usability from an industrial perspective.

Quantitative analyses of solution approaches have been per-

formed, e.g., in [9, 15, 17, 19]. Brosig et al. [9] perform a quantitative

evaluation of model-driven performance analysis and simulation of

component-based architectures. Müller et al. [17] quantify analysis

time in relation to model parameters of a benchmark model. Rygiel-

ski et al. [20] compare different solution approaches for network

performance evaluation. Summarizing, none of the above works

discusses automating the choice of analysis approaches, except for

[8, 9] providing decision trees. While there are advancements in

SPE, none of the works discusses extensibility.

2.2 Decision Support for Measurement-based
Analysis

Qualitative comparisons of measurement-based approaches have

been performed in [13, 18, 29]. Gartner evaluates application per-

formance management (APM) tool vendors on a yearly basis [13].

Kowall and Cappelli [13] define three dimensions of APM func-

tionality: application topology discovery and visualization, applica-

tion component deep dive, and user-defined transaction profiling.

Okanović et al. [18] compare application performance monitor-

ing tools concerning derivable information, like call parameters

or error stack traces. According to Watson [29], key aspects to

consider include programming language support, cloud support,

software-as-a-service (SaaS) versus on-premise, pricing, and ease-

of-use. Quantitative analyses focus on system overhead [12, 22, 25]

and costs of ownership [2, 29]. Cost of ownership types for APM

include: (i) software licenses, (ii) hardware and system software

required to operate, (iii) deployment and instrumentation costs,

and (iv) ongoing maintenance costs [2]. At this, pricing models of

vendors impact the choice of monitoring infrastructures.

Monitoring may cause a significant impact on the overall perfor-

mance of software systems. The MooBench [25] micro-benchmark

has been developed to measure and quantify the overhead of moni-

toring frameworks. Monitoring of system metrics usually induces

less performance overhead than application monitoring [25]. To

reduce the performance impact of application monitoring, sam-

pling can be used to avoid to collect and store detailed monitoring

traces [12, 22].

To summarize, monitoring tools have been compared with re-

spect to different dimensions. However, currently there is no ap-

proach offering a unified view and end-to-end automation. The

work presented in this paper allows to aggregate existing knowl-

edge in a unified view and provides automated decision support.

3 REQUIREMENTS
Based on shortcomings in the state of the art, we formulate re-

quirements for the automated decision support and the comparison

methodology:

• Decision support should be based on user concerns defining

metrics, statistics, constraints, and optimization attributes.

• Decision support shall consider characteristics and limita-

tions of the system under test.

• The decision support should allow for comparison of differ-

ent kinds of SPE approaches including measurement- and

model-based analysis approaches, analytical and simulation-

based solvers.

• The decision support should allow for adjustments and ex-

tensions without introducing a dependency to already inte-

grated approaches or comparison attributes.

4 METHODOLOGY
The choice of an appropriate solution approach to solve a given

performance concern requires expert knowledge. The goal is to

provide a framework that automates the decision based on config-

urable concerns supporting measurement- and model-based anal-

ysis while being extensible with respect to solution approaches

and comparison metrics. Our methodology provides a solution to

automatically filter applicable approaches and optimize for given

concerns. Figure 1 presents the coarse-grained architecture of our

decision framework. Our decision support is based on capability

models of different approaches and a decision engine. Instances

of the capability meta-model represent analysis approaches like

measurement, simulation, or analytical solvers. They have to be

registered in the registry. To propose a solution approach, the deci-

sion engine receives a performance concern and a description of

the analyzed system as input.

Concern We define a Concern as a tuple of element, metric, statistic

and optional accuracy constraints (const) and cost types to

optimize for (opt):

cn = {element ,metric, statistic, const?,opt?}.

http://descartes.tools/aasspe/
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Decision 
Engine

<<submit concern & 
system description>>

<<solution approach>>

Registry

Capability Model

<<register>>

Figure 1: Decision architecture.

An exemplary concern tuple is given by [service, response

time, sample, accuracy = high, time-to-result]. This tuple

states that the fastest solution approach providing a sample

of service response time at a high accuracy should be chosen.

System A System tuple describes the system under test. It may con-

tain sets of applied languages (lanдuaдe) and middleware

technologies (middleware), and an architectural system de-

scription (model). The system description is given by the

tuple:

system = {lanдuaдe∗,middleware∗,model?}.

An exemplary system tuple is given by [(Java, Scala), (JBoss),

/application/myModel.properties]. The tuple states that the

application uses Java and Scala code, runs on a JBoss appli-

cation server middleware, and the relative path to an archi-

tectural model of the system is given by "/application/my-

Model.properties".

Our system tuple offers alternative descriptions in parallel to eval-

uate applicability for different kinds of approaches. The system

description for model-based analysis is specified by its model (de-

noted by its path in the file system) and meta-model, e.g., PCM [6].

The automated extraction of system descriptions including tech-

nologies required to evaluate measurement tools is more challeng-

ing. Currently, there are neither standardized representations nor

interfaces to automatically derive information. While nowadays

the description of applied technologies has to be put together by

hand, self-describing systems might automatically provide a model

of their applied technologies in the future.

Evaluating the inputs, the engine walks through all registered

solution approach capability models and selects an appropriate

solution strategy. At first, the decision engine decides for a given

performance engineering approach if it provides the required func-

tional capabilities to process the concern for the given system set-

tings. In case multiple solution approaches are capable to provide

the same required metrics and statistics, the decision will be made

based on non-functional requirements specified in the Concern.

4.1 Capability Model
In the following, we present a meta-model for performance en-

gineering tools and approaches, enabling the description of their

capabilities. This enables a performance engineer to model what is

provided by a solution strategy. The implementation of our capabil-

ity model is based on the Eclipse Modeling Framework (EMF) [24].

This allows for the instantiation of solution strategy models by

performance engineering experts using an automatically generated

graphical editor [24].

+name
+supportedMetaModel

SolutionStrategy

*

+parent*

* +strategyLimitations

0..*

*

+evaluableElements

*

*

+costEstimates*
Figure 2: Solution strategy capability model root.

Figure 2 presents the root of our solution strategy capability

meta-model. The root points to submodels that specify what can

be derived at which accuracy, as well as the costs and limitations

when applying the considered approach. The comparison of solu-

tion approaches requires the specification of a common terminol-

ogy. Hence, a solution strategy links to a supportedMetaModel to

represent the linked terminology meta-model, e.g. PCM [6].

Solution approaches can be classified into groups according to

their capabilities. For example, when multiple solution approaches

depend on the same model transformation, an abstract model may

be employed to describe their common aspects. Another example

for an analysis group with high overlap is simulation. Except for

few limitations and improved time-to-result, parallel simulation

provides the same capabilities like sequential simulation [26].

Our meta-model reflects similarities of models by allowing to

define abstract approach capability models from which concrete

models may be derived. Inheritance provides benefits if the capabil-

ities of two solution strategies differ only in a few capabilities. In

such cases, the knowledge has to be persisted only once in the form

of an abstract capability model. This enables the reuse of capability

specifications for multiple tools. A capability model may be defined

using a hierarchical structure. Instances of an abstract capability

model should include sufficient information for decision making

so that a developer may specify a method’s capability model just

by inheritance. Abstract capability models enable the deduction

and recommendation for general approaches without considering

a concrete tool implementation.

4.1.1 Evaluable Elements. At first, we model what metrics and

statistics can be requested. EvaluableElements, described in Fig-

ure 3a, define functional capabilities of a solution approach and

may be extended by an accuracy description. Example types of

EvaluableElement include service or resources like CPU or HDD.

To specify the type, an EvaluableElement contains a pointer to

define the type element of the connected meta-model terminology.

An EvaluableElement contains a set of metrics. We modeled an

initial set of metrics including, e.g., response time, throughput for

services and utilization of resources. Each metric definition has to

contain at least one statistic. Statistics refine supported ways to

determine a metric by the given solution strategy. We integrated

an initial set of common statistics, like mean, sample, maximum,

quantiles, and percentiles. This set can be arbitrarily extended by

implementing the Statistic interface. The statistic definition may

be linked to a specification of the solution accuracy. The instanti-

ations of the abstract accuracy class allow to model a maximum

absolute or relative deviation from ground truth data.
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1
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TimeToResultRegressionEstimation ArithmeticExpressionMachineLearningEstimation
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(c) Cost meta-model.

Figure 3: Subparts of the solution strategy capability meta-model.

4.1.2 Limitation Modeling. The applicability of solution

strategies can be limited by several constraints (Figure 3b).

StrategyLimitations have to implement the appliesTo
interface evaluating applicability based on a passed System
description.

To evaluate limitations for model-based analysis, the passed

System has to contain an architectural description. Then solution

strategy limitations can be defined using Object Constraint Lan-

guage (OCL) [24]. OCL allows to declaratively query constraints in

objects. Exemplary constraints for model-based analysis are on ap-

plicable input models (e.g., for product form solutions) [8, 9] or limi-

tations of model-transformations [9]. Besides using OCL, the evalu-

ation of applicability can also be based on CustomImplementation
to tailor a more efficient solution.

While concepts can be transferred, measurement tools are lim-

ited to certain technologies. To model supported languages and

technologies, LanguageLimitation and MiddlewareLimitation
contain a textual list of supported technologies. This allows, for

example, modeling a limitation to Java technology for a monitor-

ing tool. To evaluate if provided technologies match to a System
description, a matching of supported tool technologies to system

capabilities can be performed.

In the future, we envision a connected database of limitations

storing limitations that occur frequently. This database may con-

tain predefined StrategyLimitations for solution strategies in

association with an architectural meta-model. This database will

be linked to our capability model by a reference.

4.1.3 Cost Modeling. Solution strategies differ in several cost

types like time-to-result or system overhead, as depicted in our

cost meta-model in Figure 3c. Which cost type is the most rel-

evant depends on the specific application scenario. Therefore, a

CostEstimation has a dedicated CostType. For model-based anal-

ysis, this can be, e.g., TimeToResult. For measurement-based anal-

ysis, SystemOverhead and License costs are common comparison

and optimization criteria while for model-based approaches system

overhead can be considered to be zero.

Costs can either be static (e.g., fixed license costs, time-to-result

always high or low) or dependent on the system and analysis config-

uration. Static costs can be used as a simplification when complex

relationships are not known. In the more general case, the costs may

depend on CostInfluencingFactors, which may depend either

on the system characteristic or on the analysis configuration. A

SystemCharacteristic defines a property of the system or model

to be analyzed, e.g., instantiation type or count of elements, re-

cursion depth, or a composed metric. An AnalysisParameter de-
scribes a parameter of the analysis setting of the given solution

strategy. This can be, for example, the accuracy configuration for

a simulation run, as simulation runs parameterized to be more ac-

curate are expected to require more runtime to return the result.

CostEstimation offers a method to predict the cost for the analysis

of a given System and Concern based on the interpretation of cost

influencing factors. The abstract concept of system- and concern-

aware DynamicCostEstimationApproach can be implemented by

concrete prediction approaches. This enables the integration of

arithmetic expressions capturing expert knowledge and various es-

timation techniques, e.g., using neural networks, machine learning

approaches, or regression-based approaches.

4.2 Decision Engine
Based on the capability model defined in the previous section, we

can build a decision engine to decide which toolchain to use to

process a given performance Concern for a given System. The

decision process follows a two-step approach. First, our framework

selects applicable solution approaches that come into question.

Then, the applicable approaches are rated according to cost and

accuracy criteria as defined in the user concern.

4.2.1 Selecting applicable approaches. Algorithm 1 decides if

a given strategy is applicable for a given Concern and System de-
scription. The isApplicableForConcern function traverses given
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capability models and checks for matches of the evaluation element,

metric, and statistic defined in the concern element. This function

may determine, for example, that mean value analysis is not applica-

ble if a probability distribution is requested or that system level mon-

itoring tools cannot provide application performancemetrics.When

provided in the concern definition, isApplicableForConcern also
filters applicable approaches according to accuracy constraints. The

isApplicableForSystem function evaluates if a solution strategy

can be applied under given system settings, that is, the decision en-

gine checks if one of the solution approach StrategyLimitations
appears within the system, as illustrated in Algorithm 2.

Algorithm 1 Select applicable strategies.

1: function getApplicable(List<SolutionStrategy> strategies,

Concern concern, System sys)

2: applicableStrategies← empty list

3: for all strategy in strategies do
4: if isApplicableForConcern(strategy,concern) then
5: if isApplicableForSystem(strategy,sys) then
6: applicableStrategies.add(strategy)

7: end if
8: end if
9: end for
10: return applicableStrategies

11: end function

Algorithm 2 Evaluate limitations for a system.

1: function isApplicableForSystem(SolutionStrategy strategy,

System system)

2: for all limitation in strategy.strategyLimitations do
3: if limitation.appliesTo(system) then
4: return false

5: end if
6: end for
7: return true

8: end function

4.2.2 Rating according to concerns. After filtering applicable ap-
proaches, remaining approaches have to be rated according to their

costs. In case the concern includes a cost type to optimize for, the

decision engine rates applicable approaches and returns the most

cost efficient approach. As users might not want to specify cost com-

parison attributes in every concern, we additionally allow to specify

a default order of cost comparison attributes within the decision

engine. This allows to omit the cost type in the concern definition.

The question arises how to decide when meta-information about

the system overhead, time-to-result, and accuracy is not provided

for a capability model? We extend the decision logic to forward

information on what is missing to the user.

5 DEMONSTRATION
In this section, we demonstrate how to apply our methodology

and tooling to compare measurement- and model-based analysis

approaches.

1
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Figure 4: Solution strategy decision tree from [9]

5.1 Comparison of model-based analysis
We apply our methodology to architectural performance models

as they use a terminology similar to system architecture models,

compared to stochastic formalisms like Queueing Networks (QNs).

We demonstrate how our approach works by comparing analysis

approaches for the Palladio Component Model (PCM) formalism [6].

Supported solution strategies for PCM include SimuCOM, LQNS,

SimQPN, and SimQPN MVA [9]. SimuCOM transforms a PCM in-

stance to a process-based discrete-event simulation supporting all

PCMmodeling concepts [6]. A transformation to Layered Queueing

Networks (LQNs) allows triggering the analytical LQNS solver [15].

A transformation to Queueing Petri Nets (QPNs) enables a simula-

tion and a mean value analysis (MVA) using the SimQPN tool [16].

We decompose the decision tree of Brosig et al. [9] into four main

steps depicted in Figure 4. In the following, we explain how to

extract capability models. The results of reverse engineering the

decision tree are shown in the capability models depicted in Table 1.

The first steps of the decision tree evaluate model capabilities

that cannot be solved accurately by the available approaches based

on transformations to stochastic formalisms. If the model contains

loops, forks, or parametric dependencies that cannot be approxi-

mated, inaccuracies occur that make the approaches inapplicable.

To model these limitations, constraints have to be integrated into

the capability models of LQNS, SimQPN, and SimQPN MVA. In

case these limitations do not apply, the tree proposes not to use

SimuCOM. The decision tree implicitly captures that SimuCOM

performs badly in terms of time-to-result. Our approach allows to

explicitly preserve this information within in the capability models.

Then, Step 2 of the decision tree states that when the distribution

of response times is required, SimQPN has to be used. Accordingly,

we append the statistic type sample to the capability model for

the solution strategy SimQPN. SimQPN MVA and LQNS are only

capable to derive means, which can be explicitly modeled.

Step 3 models a limitation of the transformations to LQN. The

containment of flexible parameter characterizations leads to sig-

nificant inaccuracies. Consequently, we define a constraint in the

LQNS capability model.
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Analysis request class

accuracy

costs

limitations

Case

approach entity metric stat. time-to-result model

SimuCOM serv. resp. time sample high very high - tree

LQNS serv. resp. time mean high very low no loops, no fork-join, no param. dep., no blocking beh. tree

SimQPN serv. resp. time sample high medium no loops, no fork-join, no param. dependencies tree,3

SimQPN MVA serv. resp. time mean high low no loops, no fork-join, no param. dep. tree,3

SimQPN parallel serv. resp. time sample high very low open workload, no loops, no fork-join, no param. dep. 2,3

JMT serv. resp. time mean high medium no loops, no fork-join, no param. dep., ≤64 job classes 1

Table 1: Capability models for model-based analysis approaches.

Case 4 5 1,2,3,6

Analysis request class costs

limitations

approach entity metric stat. overhead license

DynaTrace serv. resp. time sample low $ only Java, Node.js, .NET, MySQL, Python, Perl, Erlang, Ruby, iOS . . .

Instana serv. resp. time sample low $ only .Net, Crystal, Go, Java, Node.js,PHP, Ruby, Scala

Kieker serv. resp. time sample medium - only Java, Perl, C#, VB6, Cobol, IEC61131-3

SPASS-meter serv. resp. time sample very low - sampling on high load, only Java

Table 2: Capability models for measurement-based approaches.

Further, if the source model contains blocking behavior not cap-

tured by LQN task multiplicity (step 4), LQNS cannot be used, too.

So we have to define an additional constraint for LQNS that checks

if the source model contains blocking behavior not captured by the

LQN task multiplicity.

Using our decision engine, the capability models depicted in

Table 1 allow for exactly the same selection of methods as in the

decision tree in Figure 4. Moreover, our approach allows separating

applicability from cost and accuracy concerns. For example, when

a system model contains loops, our approach proposes SimuCOM

knowing that only SimuCOM is applicable. In the case of a scenario

model, that does not contain loops, forks or parameter dependencies,

our approach states that SimuCOM and SimQPN are applicable and

recommends SimQPN as it simulates faster. To fully automate the

evaluation of limitations, we apply a simplifying generalization

by restricting to all loops, branching actions, blocking behavior,

and parametric dependencies, even though there might be analyses

where respective entities have no significant effect.

Providing capabilities to depict existing decision support, the

main benefit of our approach is that it provides flexibility for evo-

lution scenarios, as demonstrated in the following use cases:

Case 1 Adding a new solution approach. While adding a solution

approach to the tree would require to understand all ap-

proaches, our approach demands only to specify the capabil-

ities of the new solution strategy. We added a transformation

to QNs and a subsequent simulation using JMT [7]. It shares

the limitations of other transformations. Moreover, the solver

implementation has a technical restriction to 64 job classes

which makes it impossible to simulate large scale models.

However, for small models, it performs better than SimQPN

in terms of time-to-result.

Case 2 Adding a similar solver.We reuse the transformation toQPNs

and combine it with a parallel simulation using SimQPN [26].

Parallelization allows for significant speedup when the work-

load is specified as an open workload which is a prerequi-

site for efficient decomposition [26]. Capabilities for parallel

and sequential simulation are very similar. This generally

indicates hierarchical capability modeling which could be

derived using refactoring.

Case 3 Improvements of transformations. As illustrated by limita-

tions, existing model transformations often do not support

all features of a source model. Extensions of transformations

to support more source model features can be easily included

by updating the capability models. Moreover, there are trans-

formation alternatives based on the same source model. For

example, architectural models allow to model determinis-

tic loop counts. Transformations transform to probabilistic

models for complexity reasons, but QPNs would also allow

for deterministic loop counts using multiple token colors.

Case 4 Preselection. Our approach enables easy pre-adjustments.

Some application scenarios imply constraints known in ad-

vance that should not be evaluated on every request. A pres-

election of approaches for certain scenarios may be realized

by registering only a subset of capability models. For exam-

ple, knowing that only response time distribution will be

requested, we can limit the registered approaches to Simu-

COMand SimQPN.Having time constraints, onemight select

a subset of fast solvers.
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5.2 Comparison of measurement-based
analysis

Measurement-based analysis approaches may use the same schema

of accuracy, costs and limitations. However, their comparison fo-

cuses on different features. While time-to-result is very relevant for

model-based analysis, the time required for measurements is often

similar for different measurement tools. In contrast to model-based

analysis, system overhead plays a critical role. System monitoring

approaches, like Magpie [5] or X-Trace [1], are minimally invasive

and target only network and operating system parameters. They

come with the advantage of low system overhead but are not able

to provide a view of internal application behavior. For APM tools,

the monitoring overhead is equal to the number of transactions

times the number of measurement points divided by implementa-

tion overhead in seconds — depending on the actual monitoring

tool implementation. Measurement-based approaches are usually

not assessed or compared according to accuracy, as there is no

ground truth like for model-based analysis. Therefore, we omitted

a presentation of accuracy in Table 2 — which we would consider

very high for all approaches.
Commercial monitoring frameworks often incur significant li-

cense costs, which makes them worth to be included in the capabil-

ity models of measurement-based approaches. In general, one could

also model other cost types like hardware and system software

required to operate, deployment and instrumentation costs, and

ongoing maintenance costs. Monitoring tools are limited to the

technology stacks for which they provide agents. A very important

question is if a given monitoring tool can be applied to a specific

system having specific technologies. This can be modeled using lim-

itations. Table 2 compares measurement-based analysis approaches

according to the discussed capabilities.

We created the capability models based on information available

in the referenced literature and performed no additional measure-

ments. The selection has been made to demonstrate several con-

cepts without making any claims to be exhaustive. The list contains

commercial APM tools for use in production systems like Dyna-

Trace and Instana. Research prototypes support fewer languages,

libraries, and platforms but are usually open source. To reduce

overhead, there are sampling-based approaches [5, 12, 22]. SPASS-

meter depicts an open-source implementation [12] while similar

concepts run as closed source at large providers like Microsoft [5]

or Google [22]. In the following, we discuss scenarios and explain

how our decision engine answers or how to adjust to changes.

Case 1 New Technology. Consider a system or parts of it written in

emerging technologies, like the new Go language. According

to the modeled limitation, only Instana provides agents im-

plemented for Go. Therefore, the decision engine proposes

to use Instana.

Case 2 Standard Technology. The second use case considers a pro-

gram written in a standard language, like Java. Java is sup-

ported by all investigated tools. Therefore, the decision en-

gine delivers the information that all measurement tools are

applicable. Ordered according to license costs, it would rec-

ommend the open source Kieker framework or SPASS-meter.

Case 3 Debugging. Debugging requires accurate failure detection.
This translates into denial of sampling. Detailed application

traces are necessary to produce a comprehensive view of

the monitored system. Applicable approaches include Dyna-

Trace, Instana, and Kieker.

Case 4 Managing overhead. In a high load production system, the

performance monitoring overhead is critical. In such a sce-

nario, coarse grained monitoring information on response

times is sufficient. The decision support proposes an ap-

proach with low overhead, e.g., SPASS-meter.

Case 5 Changes to pricing. There is competition between APM ven-

dors, which may result in changes to prices and pricing

policy. The decision support can be updated by changing the

cost specifications within capability models.

Case 6 Tool updates. The competition between vendors also results

in an increasing set of supported languages and technologies.

Relevant changes could be reflected by adapting limitation

definitions of capability models.

5.3 Comparison of measurement and
model-based analysis

Comparison of model- and measurement-based analysis can be

performed extending the capability model definitions presented

in Tables 1 and 2. While the comparison of most capabilities is

straightforward, comparisons of accuracy and time-to-result pose

challenges.

The accuracy of model-based analysis describes the deviation

from the exact model solution. This does not reflect how accurate

the system has been modeled. The accuracy of the model itself

depends on how well model building and extraction techniques

can capture the system. Relative comparisons of time-to-result for

model-based approaches have been performed but there is no nat-

ural link to the time required for measurement-based analysis. In

case additional measurements are required, model-based analy-

sis usually outperforms measurements in terms of time to result.

However, this depends on the experiment setup. Probably, required

infrastructure costs depict a more suitable attribute to compare

measurement and model-based approaches.

Besides triggering measurements and model-based analysis, ad-

ditional approaches can be applied. If metrics of a system configu-

ration have already been requested, historical logs could be queried.

This provides accurate values at no system overhead costs. Based

on traces of similar configurations, predictions based on transfer

learning could also provide desired metrics.

6 CONCLUSION
Solution approaches and tools in SPE come with different capabili-

ties, strengths, and limitations. Approaches allow for interchange-

ability, but there is lack of automated and extensible decision sup-

port. In this paper, we present a methodology for automated se-

lection of a suitable performance engineering approach tailored a

given system and user concerns. We decouple the complexity of the

approach selection into a decision engine and solution approach

capability models. The decision engine can filter applicable solution

strategies and rank them according to the user concerns. Compared

to tree-based approaches, our approach allows to easily append

and modify solution strategies as the performance engineer does

not rely on the knowledge of previously integrated approaches.
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Also, our approach enables to easily introduce new comparison

attributes like new costs, metrics or statistics.

As part of our future work, we plan to replace static cost specifi-

cations with context-aware cost predictions using machine learning.

Moreover, we plan to integrate the automated decision support into

our declarative framework to combine the benefits of automated

selection and processing in production.
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