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Introduction \)2

Typical container orchestration tasks (definition by Google):

UNI

» Provisioning and deployment

» Scaling containers up or down and load balancing

» Allocating resources between containers

» Moving containers to another host to ensure availability if there’s a
shortage of resources or an unexpected outage
» Performance and health monitoring of the application

» Service discovery
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Motivation

Container orchestration (CO) frameworks significantly impact performance
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apiVersion: autoscaling/vz
kind: HorizeontalPodAutosca
metadata:
name: order-service-hpa
spec:
scaleTargetRef:
apiversion: apps/vl
kind: Deployment
name: order-service
minReplicas: 1
maxReplicas: 5
metrics:
- type: Resource
resource:
name: cpu
target:
type: Utilization
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apiVersion: autescaling/v2beta2
kind: HorizontalPodlAutoscaler

metadata:
name: crder-service-hpa 50
spac:
500
scaleTargetRef:
apiversion: apps/vl asof

kind: Deployment
name: order-service
minReplicas: 2
maxReplicas: 18
metrics:
- type: Resource
resource: 200]
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Motivation \)i

> Testing configurations for CO mechanisms is costly and time-consuming, because:
> CO mechanisms have a (very) large variety of configuration parameters

> ... where one mechanism’s configuration can exert influence on another’s

Provision

More pods of No machines

) . more nodes :
al-i'seearglecle with a GPU W|thI :ﬂ(IBPU
P ' please! '

_ o5 5
Horizontal pod autoscaler ‘ | ’_.\' Kube-scheduler ‘[ _\' Cluster-autoscaler

> Automatically optimizing configurations via a simulation strongly preferrable!
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Recap: MiSim

MiSim: A Simulator for Resilience Assessment of
Microservice-based Architectures

Sebastian Frank!2, Lion Wagner?, Alireza Hakamian®, Martin Straesser®, André van Hoorn'

!University of Hamburg, Hamburg, Germany
2University of Stuttgart, Stuttgart, Germany
3University of Wiirzburg, Wiirzburg, Germany
{sebastian.frank, andre.van.hoorn} @uni-hamburg.de, mir-alireza.hakamian @iste.uni-stuttgart.de,
martin.straesser @uni-wuerzburg.de

> State-of-the-Art microservice simulator
> Based on discrete event simulation, uses CPU performance model

> Focus on resilience mechanisms
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Recap: MiSim-Orchestration L

» Extend MiSIim by simulating a Kubernetes-in-the-Loop:

Kubernetes environment Enriching Microservice Simulation Through
Authentic Container Orchestration

> Let MISIm communicate with

Martin Straesser!, Patrick Haas', Sebastian Frank?, Alireza Hakamian®,

real Kubernetes components, André van Hoorn?, and Samuel Kounev'

! University of Wiirzburg, Wiirzburg, Germany
{martin.straesser, samuel.kounev}@uni—wuerzburg.de,

pretending to be in an actual

patrick.haas@informatik.uni-wuerzburg.de

CIUSter 2 University of Hamburg, Hamburg, Germany

{sebastian.frank, andre.van.hoorn}@uni-hamburg.de
% University of Stuttgart, Stuttgart, Germany

> ... to enable realistic behavior mir-alireza.hakamian@iste.uni-stuttgart.de
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Recap: MiSim and MiSim-Orchestration b
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Simulation-driven Optimization

Key concept: Run simulation iteratively in an optimization loop
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Simulation-driven Optimization

‘ﬁ Optimizer

EEEEEEER SearCh Space
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Optimization
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Simulation-driven Optimization

contig: podl-hpa.yaml
spec: Metrics Processor

define minReplicas: %(1, 2,|3,|4,
maxReplicas: &(1e, 1z, 14,

1 apiversion: autoscaling/vZbeta2 A E :

2 kind: HorizontalPodAutoscaler Opt|m|zat|0n

i mEE::zfaﬁudl—hpa MethOd 1 apiVersion: autoscaling/v2beta2
2 kind: HorizontalPodAutoscaler

> Spec: 3 metadata:

6 scaleTargetRef: a4 name: podi-hpa

7 apiversion: apps/vl 5 spec:

8 kind: Deployment 6 scaleTargetRef:

9 name: user-service 7 apiversion: apps/vwl

1@ metrics: 3 kind: Deployment

11 - type: Resource . o name: user-service

12 resource: Config Generator 1o [FinReplicsst 3

13 name: cpu 11 maxReplicas: 16

14 target: 12 metrics:

15 type: Utilization 13 - type: Resource

16 averageUtilization: 5@ resource:
15 name: cpu
16 target:
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Characterizing the Optimization Problem g

> ODbjectives can be opposing to each other - e.qg., costs vs. service quality
> Derivative-free optimization a.k.a. black-box optimization
> Unfeasible to try all configurations

= Suppose we have 15 configuration parameters, each restricted to 5 possible values and
an average simulation runtime of 10s (very optimistic!)

= Can test 0.0102% of all possible combinations in a full year of running 24/7

= Improvements in simulation time possible, however, unlikely to improve by many
magnitudes

> Therefore, a highly efficient and systematic optimization method is required
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Potential Optimization Methods

@ Probablistic
Model-based

Bandit-based
Methods

Combined
Techniques

o

Predict good solutions

Mimic mechanisms from

Dynamically allocate

Combine strengths of

Description| with learned probabilistic natural selection to resources, apply early two or more techniques

model optimize solutions stops to unpromising

iteratively trials

Strength / Can be bad for very Great for very high- Highly efficient, but may May also transfer
Weakness high-dimensional search dimensional search lead to inaccurate weaknesses of

space space optimization techniques

Bayesian Optimization, Genetic Algorithm, Successive Halving, DEHB: Differential
Examples Tree-structured Parzen Differential Evolution Hyperband Evolution w/ Hyperband,

Estimators
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Evaluation, Analysis and Interpretability D

Evaluation
> ldeally, real and fully known microservice architecture to replicate in simulation with recorded traces
> ... then deploy in real cloud to measure unoptimized vs. optimized metrics

> ... and see if they improve in similar magnitude to the simulated unoptimized vs. optimized metrics

) e HPA: HPA: Node affinity: Node affinity: SLO Operating
Analysis and Interpretability minReplicas | maxReplicas | required label preferred label for | violations | costs

for “clock- “location”
speed”

> Automatically find correlations

5 9 high eu-west 0-20 233

> ...maybe by simplifying with some ° 12 LG S 0520 400
constraints (e.g., binning values) > = high su-west Da20N|Eate

9 24 medium eu-west 0-20 190

> Visualize results with techniques 5 12 high eu-west 0-20 392
from hyperparameter tuning 5 16 high eu-east 21-40 456

4 15 high eu-east 41-60 444
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Summary

Configuration of CO environments is complex, testing is
time-consuming and costly

Automate process of selecting and testing
configurations, leverage simulation

Effortlessly and efficiently find good configurations

Build optimizer feature for simulation, perform lots of
testing and analysis
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Summary
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Thank you for listening!

Any questions?
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