
Online Model Learning for
Self-Aware Computing Infrastructures

Simon Spinner, Johannes Grohmann, Simon Eismann, Samuel Kounev
University of Würzburg

Am Hubland, 97074 Würzburg, Germany
Email:[first name].[last name]@uni-wuerzburg.de

Abstract

Performance models are valuable and powerful tools for performance predic-
tion. However, the creation of performance models usually requires signifi-
cant manual effort. Furthermore, as the modeled structures are subject to fre-
quent change in modern infrastructures, such performance models need to be
adapted as well. We therefore propose a reference architecture for online model
learning in virtualized environments, which enables the automatic extraction of
the aforementioned performance models. We follow an agent-based approach,
which enables us to incorporate the extraction of information about the appli-
cation structure as well as the virtualization structures present in modern com-
puting centers. Our evaluation shows that our collaborating agents are able
to reduce the manual effort of performance model extraction by 85.4%. The
resulting performance model is able to predict the system utilization with an
absolute error of less than 4% and the end-to-end response time with a relative
error of less than 21%.

Keywords: Self-Aware Computing, Performance Model, Model Extraction,
Model Learning

1. Introduction

IT services hosted in data centers, such as public internet services (e.g., Net-
flix, Facebook, or Google) as well as intranet services in corporate networks, are
typically subject to time-varying workloads.

Changes in the current number of users or their interactions with a service5

influence its resource demand. At any point in time, the amount of resources
allocated to an application needs to fulfill its current demand. As a result, con-
tinuous adaptations to the resource allocations of an application are required
during operation.

Current approaches to automatic resource management in industry are based10

on a rule-based approach: A system administrator manually defines custom
triggers that fire when a metric reaches a certain threshold (e.g., high resource

Preprint submitted to Journal of Systems and Software January 23, 2019

utilization or load imbalance) and execute certain reconfiguration actions. How-
ever, application-level performance metrics, such as response time, normally
exhibit a highly non-linear behavior on system load. Therefore, it is not pos-15

sible to determine general thresholds of when triggers should be fired, given
that the appropriate triggering points are typically highly dependent on the
architecture of the hosted services and their usage profiles, which can change
frequently during operation.

In order to overcome the limitations of rule-based approaches, the usage20

of different kinds of performance models has been proposed in the literature
[1, 2]. Stochastic performance models (e.g., queueing networks, or descrip-
tive modeling languages such as DML [3]) provide powerful abstractions of a
combined hardware and software system describing its performance-relevant
structure and behavior. They can predict the impact of a reconfiguration action25

on the system performance in advance and thus promise significant improve-
ments for the automatic resource management of IT services. Existing model-
based approaches either abstract the application as a black-box severely limiting
their prediction capabilities; or expect manually created model instances as in-
put. However, the expertise and effort required to create and maintain such30

detailed models of the infrastructure and applications in a virtualized environ-
ment manually pose a major challenge to exploit the advanced prediction capa-
bilities of stochastic performance models for automatic resource management.

Challenges. In this article, we describe a new agent-based reference architec-
ture enabling the deep integration of online model learning capabilities into35

virtualized environments. Our reference architecture addresses the following
challenges:
• Given that model learning is performed during system operation, the sys-

tem workload and configuration cannot be controlled. We rely on empiri-
cal observations while applications are serving production workloads. In40

order to avoid significant overheads on the performance of services, ex-
isting monitoring infrastructures and platform interfaces should be used
to obtain the empirical information required for model learning.

• The integration of model learning capabilities into systems requires a pro-
found understanding of the system architecture – including the applica-45

tion and any platform layers – and at the same time a deep knowledge of
performance modeling techniques. However, system administrators of-
ten do not have sufficient skills to perform such tasks. Furthermore, it can
be time-consuming and costly to design and implement model learning
capabilities for a given system. Therefore, ways to enable the reuse and50

sharing of model learning capabilities between systems are necessary.

• Multiple applications with diverse technology stacks typically share the
same underlying infrastructure in virtualized environments influencing
each other. A performance model needs to represent the complete vir-
tualized system (including the different applications) integrating infor-55

mation from heterogeneous datasources. However, the deployment of

2

applications and their software stacks are often not known before system
run-time (especially with the advancement of on-demand provisioning of
Virtual Machines (VMs) in cloud environments). As a result, the end-to-
end performance model of the system can only be dynamically composed60

a system run-time.

• The deployment and configuration of applications may change frequently
due to automatic or manual reconfigurations (e.g., deployment of new
VMs, or migration of existing ones). As a result, the overall performance
model of the system needs to be continuously updated to always reflect65

the current system architecture and configuration.

A major field of research is the automatic extraction of performance models
based on static and dynamic analysis of the system implementation and config-
uration in order to ease the usage of performance models. Existing work either
describes holistic approaches to extract complete performance models, but as-70

sume a very specific technology stack [4, 5], or focuses on improving certain
aspects of it (e.g., resource demand estimation [6]).

Contributions. In this paper, we propose an agent-based reference architecture
for online model learning in virtualized environments. In particular, this paper
makes the following contributions:75

• We extend the notion of Virtual Appliances (VAs) to include model learn-
ing capabilities in order to automatically build and maintain submodels
describing performance behavior of the application architecture and in-
frastructure layers.

• We introduce additional components into the virtualization platform to80

collect these sub-models and dynamically compose them into an end-to-
end performance model of the complete system.

• We identify different roles an agent may take over during model learn-
ing and describe the required communication between agents in different
roles.85

• We develop an algorithm for merging the different model skeletons into
a complete performance model in a central repository.

In order to evaluate this, we create a reference implementation of the pro-
posed agent structure monitoring a distributed SPECjEnterprise2010 bench-
mark. We evaluate the degree of automation for the model extraction as well90

as the prediction accuracy of the resulting model. Although targeted at vir-
tualized environments, some aspects, like the use of agent-based architectures
for performance model extraction of distributed software systems and the pro-
posed model merging algorithm, can be transferred to other application do-
mains.95

3

Structure. The remainder of the article is organized as follows. Section 2 in-
troduces our proposed reference architecture for integrating model learning
capabilities into virtualization platforms. Section 3 gives an overview of the re-
lated work. Section 4 describes our reference implementations of three different
model learning agents. We evaluate our reference implementation in Section 5.100

Lastly, we summarize and conclude our work in Section 6.

2. A Reference Architecture for Online Model Learning

Modern hypervisors (e.g., VMware ESX or Xen) and virtualization manage-
ment software (e.g., VMware vCenter) - in the following, the combination of
both is called the virtualization platform - rely on standardized formats for VM105

images to support the deployment of new VMs. However, this image format is
focused on the specification of the virtual hardware resources including their
configuration and lacks meta-data describing the platform and application lay-
ers inside a VM. The program code of the platform and application layers, as
well as any additional data, is contained in an unstructured binary image of the110

virtual hard disk.
Therefore, a virtualization platform is generally not aware of what is con-

tained inside a VM. Although, the virtualization platform may access all data
in the main memory and hard disks of a VM, the data is hard to interpret given
that no general assumptions can be made on their structure. An approach to115

model learning solely based on information available in the virtualization plat-
form inevitably leads to performance models abstracting application and plat-
form layers as a black-box. In contrast, an approach based on model learning
inside a VM may provide detailed performance models of the platform and ap-
plication layers running in the same VM. However, in the latter case access to120

the underlying infrastructure layers or co-located applications is prohibited. In
the following, we describe our reference architecture for model learning that
bridges this gap.

2.1. Conceptual Overview
We argue that model learning capabilities should be integrated deeply into125

both the virtualization platform and the hosted VMs enabling the extraction of
end-to-end performance models covering the virtual infrastructure, as well as
any platform and application layers within VMs. We assume a virtualization
platform that hosts a set of VAs. A VA is a set of pre-packaged VM images each
containing a complete software stack ready to run on a virtualization platform130

VAs can significantly reduce the effort and knowledge required for deploying
software systems. VAss are either provided directly by software companies or
by individuals.VAs are built by experts of the respective system and can then be
shared with others (e.g., through online marketplaces, such as VMware Solu-
tion Exchange1). When deploying such a VA, only certain pre-defined settings135

1https://solutionexchange.vmware.com/store

4

https://solutionexchange.vmware.com/store

may need to be customized (e.g., through a web interface provided by the VA)
in order to adapt it to a target virtual environment (e.g., IP address settings, or
passwords).

Our reference architecture is based on an extension of conventional VAs to
include additional logic for learning performance models of the application as140

well as any contained platform layers (e.g., middleware systems or Java VMs)
during system run-time. The model learning logic is encapsulated in special-
ized agents distributed as part of a VA. On instantiation of such a VA in a vir-
tualized environment, the contained agent will start to monitor the application
serving real production workloads and will automatically build a sub-model145

(so-called model skeleton) describing the observed performance behavior of the
application and platform layers inside the VA. The agent continuously updates
the model skeleton to reflect dynamic changes, for instance, in the configura-
tion or the workload of an application. A virtualization platform may access
the model skeletons extracted by the agents of a VA using a defined interface in150

order to obtain fine-grained performance models of an application.
Model skeletons created within a VA do not contain information about the

underlying infrastructure layers, or co-located VAs as such information is not
visible inside guest VMs. Therefore, the virtualization platform itself needs to
contain agents that extract model skeletons of the data center and the virtualiza-155

tion platform. The virtualization platform then composes the model skeletons
from different VAs and underlying infrastructure layers into an end-to-end per-
formance model.

A VA may contain a complete application (e.g., a SAP ERP system, or a Zim-
bra Collaboration server), or provide only certain platform layers (e.g., a Java160

Enterprise Edition (Java EE) application server) on which custom applications
can be deployed after VA instantiation. In the former case, the deployment of
the VA typically involves only certain customizations of the configuration and
the creator of the VA may be able to determine large parts of the model skele-
ton in advance. In the latter case, no prior knowledge about the static structure165

and dynamic behavior of applications running on the platform layers can be as-
sumed and the extraction logic needs to create the model skeleton dynamically
by analyzing the executed application.

Our reference architecture allows for agents to be specifically designed for
a given software stack in a VA. Thus, it is possible to incorporate technology-170

specific prior knowledge into the model learning logic. The model skeletons
may be partially or completely created at run-time based on dynamic system in-
formation obtained through sensor or reflection interfaces. Sensors provide em-
pirical observations of the dynamic behavior of a system. Reflection describes
the ability of a software system to determine its own structure and state (e.g.,175

based on configuration files, byte-code, etc.). Both sensors and mechanisms for
reflection on the application level are typically very technology-specific, and
therefore are part of the VA.

System administrators, who deploy a VA in a virtualized data center, do not
need to be experts in performance modeling. The model learning runs transpar-180

ently in the background without disturbing the system operation. The resulting

5

end-to-end performance model of the virtualized system can be used for online
resource management in conjunction with advanced reasoning techniques ex-
ploiting knowledge of the system architecture [7].

Physical Infrastructure

Virtual Infrastructure

Web Server VM App. Server VM Database VM

OS

Web App

OS OS

Java EE DBMS
A
p
p
. M

o
d
el

Ex
tr
ac
ti
o
n

A
p
p
. M

o
d
el

Ex
tr
ac
ti
o
n

A
p
p
. M

o
d
el

Ex
tr
ac
ti
o
n

Data Center
Model

Extraction

Model Variable
Characterization

Performance
Model Repository

Usage Model
Extraction

R
e
so
u
rc
e
 M

an
ag
em

en
t
To

o
l

uses

Virtualization Platform

Virtual Appliance

Agent Message Bus Sensor/Reflection Communication

Timeseries
Database

Figure 1: Conceptual overview of the reference architecture.

Components. Figure 1 gives an overview of the main components of our refer-185

ence architecture. Our reference architecture relies on specialized agents focus-
ing on learning models of certain aspects of a system:

• Each VA contains one or several application model extraction agents creat-
ing models of the application components including their behavior, their
assembly, and their deployment, as well as any platform layers running190

inside a VM. These agents only determine the model structure and do not
determine concrete values of model variables (e.g., resource demands).

• The usage model extraction agent focuses on the behavior of external users.
It determines usage behaviors for different types of users and character-
izes their load intensity. The agent needs to be able to observe incoming195

requests at the interface roles accessible from outside an application.

• The agents for data center model extraction are part of the virtualization
platform so that they have access to the virtual and physical infrastruc-
ture layers in a data center. The agents are specifically designed for the
infrastructure technologies in a data center, and must not make any as-200

sumptions on the software stack within VAs.

• Agents for model variable characterization implement generic dynamic anal-
ysis techniques to determine the current value of model variables based
on empirical data. The empirical data may be provided by the VAs (e.g.,
throughput or response time measurements) or the virtualization plat-205

form (e.g., resource utilization statistics). Model variable characterization
agents may not make any assumptions on the software stack running in
a VA. These agents need to derive the information they require from the
model skeletons and monitoring data provided by the model extraction
agents in the VAs and the virtualization platform.210

6

<

A

B

A

C

InterfaceRequiringRole InterfaceProvidingRole

BasicComponent AssemblyContext

ProvidingDelegationConnector

System

VM A VM B
Host 1

RuntimeEnvironment
ComputingInfrastructureDataCenter

DeploymentContext

RequiringDelegationConnector

CompositeComponent

Figure 2: DML overview.

For communication purposes, we assume that all agents have access to a
shared network. The network connects them with the central components pro-
vided by the virtualization platform. A message bus connects all agents and
decouples them using asynchronous publish/subscribe communication facili-
ties. The performance model repository merges the model skeletons coming from215

different agents in VAs and the virtualization platform into a consistent end-to-
end model. Resource management tools may access the current model version
in the repository for reasoning purposes. The resource management tools are
not part of our reference architecture. If historic monitoring data needs to be
persisted for longer periods of time, time series databases may be used to collect220

and store such data.

2.2. Meta-model
The model skeletons and the end-to-end performance model share a com-

mon meta-model providing a formal definition of an abstract syntax. The meta-
model enables us to create technology-independent descriptions of the sys-225

tem architecture. Furthermore, a common meta-model helps to enforce consis-
tent syntactic and semantic constraints between model skeletons and simplifies
their composition into an end-to-end performance model avoiding the need for
model transformations.

Our reference architecture is based on an existing meta-model for online230

resource management, called Descartes Modeling Language (DML) [7]. We will
give a short introduction here.

The Descartes Modeling Language (DML) is a descriptive, architecture-level
performance model specifically targeted at online performance and resource
management in data centers and offers flexible solution techniques based on235

model-to-model transformations, e.g., to Queueing Networks (QNs) or Queue-
ing Petri Networks (QPNs). Furthermore, in contrast to other architecture-level
performance models, it supports empirical as well as explicit descriptions of
model variables and parameter dependencies. For a complete specification of
DML see [8, 9].240

7

A DML instance (see Figure 2) contains a repository of basic and composite
components. Each component has interface providing and interface requiring roles.
Roles are associated with an interface that declares a set of operations. Each op-
eration of an interface providing role corresponds to a service of a component
that can be called by other components. The interface requiring roles specify245

the services that a component depends on. A basic component must specify
a service behavior for each provided service (i.e., for each interface providing
role and operation). The service behavior specifies the performance relevant
control flow of the component (i.e., resources accesses, external calls to other
services, loops, forks, etc.). Composite components bundle a set of components250

which are deployed together.
Components are composed to a system using assembly contexts, assembly con-

nectors, and delegation connectors. Each assembly context represents a compo-
nent instance within a system or a composite component. A component may
be instantiated multiple times in a system at different positions in the control255

flow (e.g., component A in Figure 2). Assembly connectors represent the con-
trol flow between components. Delegation connectors can be used to expose
providing or requiring roles to enclosing composite component or system.

The resource landscape describes the physical and logical resources in a data
center. The main entity are containers which can be a computing infrastructure (i.e.,260

physical server) or a runtime environment (e.g. a VM or a middleware service).
Each container contains a description of its resources (CPU, hard disks, network
links, etc.). Deployment contexts map an assembly context to a container.

A usage profile contains a set of usage scenarios describing the incoming work-
load to a system (open/close workload). A usage scenario defines the sequence265

of system user calls to interfaces provided by the system.
Compared to low-level prediction models (e.g., QNs), a descriptive meta-

model provides the advantage of greater expressiveness to include additional
information on the static architecture and dynamic behavior of a system. Com-
pared to other descriptive architecture-level performance models, such as Pal-270

ladio Component Model (PCM) [10] and SLAstic [11], Descartes Modeling Lan-
guage (DML) provides a number of benefits:

• DML provides explicit modeling elements to describe the layering and
configuration of the system environment. This is important to capture
the structure of the underlying virtualized infrastructure.275

• DML supports different levels of granularity to describe the behavior of
services (i.e., black-box, coarse-grained, and fine-grained). The different
granularity levels increase the flexibility when solving a model to trade-
off between prediction time and accuracy (see [3]).

• Model variables (e.g., resource demands or branching probabilities) and280

parameter dependencies can be marked as explicit or empirical in DML.
Explicit model variables are assumed to have a fixed value (or a stochas-
tic expression calculating a value based on input parameters). The values

8

of empirical model variables are determined at run-time based on moni-
toring data from the system. We exploit this modeling construct for our285

model skeletons.

2.3. Model Extraction Agents
Model extraction agents may take on different roles in our reference archi-

tecture. An agent role defines the aspects of the performance model an agent
takes care of. In order to extract a complete model, all required roles need to be290

implemented by agents. We analyzed the DML meta-model identifying clus-
ters of classes in the meta-model with a high cohesion. Such clusters should
be covered by a single agent role in order to reduce the required communica-
tion between agent roles. In the following, we describe each agent role and its
interfaces to other roles. The agent roles are grouped by extraction scopes.295

Scope <<Stereotype>>
Role

Event Topic Event Source Event Sink

Figure 3: Notation.

Notation. The communication between agents in our reference architecture is
based on asynchronous, event-based communication. In the following, we adopt
the Unified Modeling Language (UML) component diagram notation with the
profile for event-based communication used by Rathfelder [12]. Figure 3 gives
an overview of the notation. Each agent role is represented by a component.300

Composite components are used to group them into extraction scopes. A com-
ponent may have any number of event sources and event sinks specifying the
types of events it may send and receive. Event topics connect event sources
with event sinks and allow for publish/subscribe communication. Events are
either change notifications or scope delegations, if the event source is marked305

with the stereotype <<delegates>>.

2.3.1. Data Center Scope
Agents in the data center scope create and maintain a resource landscape

model of the physical hardware infrastructure as well as a high-level system
model of the applications running in a data center. The agents in this scope310

treat the physical hardware nodes and applications as black-boxes without any
knowledge of their internal structure. Figure 4 gives an overview of the agent
roles in the data center scope:

D1 The agent discovers the global, static structure of the data center. It iden-
tifies compute and storage nodes representing physical computers and315

storage systems in a data center.

9

Data Center Scope

<<Extraction>>
D1: Data Center Structure

<<Extraction>>
D2: Compute Node Configuration

<<Extraction>>
D4: Storage Node Configuration

<<Extraction>>
D3: Network Infrastructure

<<delegates>>RuntimeEnvironmentComputeNode

StorageNode

<<Extraction>>
D6: Application Assembly

InterfaceProvidingRole <<delegates>>SubSystem<<Extraction>>
D5: System Interface

Providing Roles <<delegates>>

Figure 4: Overview of the data center scope.

D2 The agent enriches compute nodes identified by D1 with information on
their configuration (e.g., number of CPUs and their speed). Furthermore,
it determines the directly contained runtime environment (e.g., a hyper-
visor, or a native operating system).320

D3/D4 The agent extracts the configuration of storage nodes identified by D1
and the network infrastructure respectively. The current version of DML
does not provide meta-models to describe these aspects in detail. Future
work may integrate the preliminary works of Noorshams [13] and Rygiel-
ski [14]. These roles are optional.325

D5 An agent with this role is responsible to identify services provided by ap-
plications to users outside the data center including individual operations
and their input and output parameters.

D6 The agent determines the different applications running inside a data cen-
ter including their interface providing and requiring roles. The interface330

providing roles of an application describe the services which are publicly
visible to other applications in the same data center or to external users.
The interface requiring roles of an application may be connected to ser-
vices provided by other applications in the same data center.

2.3.2. Usage Scope335

The usage model captures the external requests of an application coming
from outside the data center. Load from other applications in the same data
center is covered by agent role D6. Compared to the workload characterization
step in classic performance modeling, we only cover the arrival process in the
usage model and do not consider the mapping to resources as part.340

In order to extract usage models agents require empirical information on the
type and frequency of requests. In case of session-based workloads, we assume
that agents have access to session logs containing the information required to
correlate individual requests. Figure 5 gives an overview of the agent roles in
the usage scope:345

10

Usage Scope

<<Extraction>>
U1: Usage Scenario

InterfaceProvidingRole

SystemCallUserAction

<<Characterization>>
U2: Load

<<Characterization>>
U3: Call Parameters

UsageScenario

Figure 5: Overview of the usage scope.

U1 Users of a system may differ in their usage behavior (i.e., number and types
of system calls) and the load they cause on the system (i.e., load intensity
and open vs. closed workloads). Agents group user sessions into usage
scenarios with similar characteristics and determine a probabilistic model
of the usage behavior (i.e., the sequence of requests) for each scenario.350

U2 The agent needs to characterize the workload type (open vs. closed) as well
as the load intensity over time, including models describing load fluctu-
ations, such as seasonal patterns, trends, and bursts.

U3 The performance behavior of an application may depend on the value of in-
put parameters. In order to extract such parameter dependencies, agents355

may collect the values of parameters of individual requests to enabling the
characterization of parameter dependencies (see roles A6 and A7). This
role is only needed if parameter dependencies are considered.

2.3.3. Platform Scope
On top of the physical hardware layer (represented by a data center scope),360

data centers typically have one or several platform layers representing the hy-
pervisor and optional middleware layers required by applications. Each plat-
form layer may host agents that extract models describing its structure and be-
havior. Figure 6 gives an overview of the agent roles in a platform scope:

Platform Scope

<<Extraction>>
P1: Platform Configuration

<<delegates>>

<<Monitoring>>
P3: Platform Monitoring

SensorData

RuntimeEnvironment

RuntimeEnvironment

<<publishes>>

<<Extraction>>
P2: Overhead Model

Figure 6: Overview of the platform scope.

P1 The agent analyzes a run-time environment (e.g., a hypervisor, or a middle-365

ware system) and determines its logical software resources (e.g, vCPUs,
thread and connection pools, or asynchronous message queues), as well

11

as any contained run-time environments (e.g., VMs). The agent extracts
the current configuration of software resources of the run-time environ-
ment (e.g., the resource capacity, or scheduling priorities).370

P2 The agent determines the dynamic behavior of a run-time environment, i.e.,
its performance impact on higher layers in a system. For instance, hyper-
visors introduce certain overheads slowing down the processing within
a VM [15]. Furthermore, resource-intensive reconfigurations may impact
the performance of VMs in a data-center. These types of overheads may375

be optionally captured with explicit models.

P3 At system run-time, agents expose monitoring statics provided by platform
layers covering the state of physical and logical resources (e.g., the current
resource usage) in a technology-independent way. This is an optional role.

2.3.4. Application Scope380

The application model extraction covers the static structure and dynamic be-
havior of an application. We assume a component-based software architecture.
The agents in these roles focus on determining all possible control flow paths
in a component and do not determine the value of control flow variables (e.g.,
branching probabilities, or external call frequencies) and resource demands.385

These model variables are characterized by agents in the model variable scope.
Figure 7 gives an overview of the agent roles in the application scope:

A1 The agent discovers the software components an application consists of.
This includes the interface providing and requiring roles of the compo-
nents as well as interface definitions (i.e., signatures and parameters). The390

components are extracted on a type level, i.e., only one component defi-
nition is created even if it is used in different assembly contexts.

A2 Agents determine the composition of components identified by A1 within
an application. They discover all component instances and determine the
control between them.395

A3 The agent determines the deployment of component instances identified by
A2 on runtime environments identified by P1.

A4/A5 Role A1 only covers a black-box service behavior description. If more
fine-grained instrumentation is supported, agents can optionally create
more detailed service behavior descriptions. A coarse-grained one covers400

the resources that are accessed and components called by a component
irrespective of the order. A fine-grained description consists of individ-
ual actions the component-internal control flow consists of (e.g., internal
actions, forks, loops, and branches) including their exact execution order.

A6/A7 Model variables (e.g., resource demands or branching probabilities) may405

depend on the value of an input parameter. Agents identify possible pa-
rameter dependencies within a single component (e.g., which input pa-
rameters have an influence on the resource demand of a component) and

12

Ap
pl
ic
at
io
nS

co
pe

<<
Ex
tr
ac
tio

n>
>

A3
: C

om
po

ne
nt
 D
ep

lo
ym

en
t

<<
Ex
tr
ac
tio

n>
>

A1
: C

om
po

ne
nt
 B
ou

nd
ar
y

<<
Ex
tr
ac
tio

n>
>

A2
: C

om
po

ne
nt
 A
ss
em

bl
y

<<
Ex
tr
ac
tio

n>
>

A5
: C

oa
rs
e‐
G
ra
in
ed

 B
eh

av
io
r

<<
Ex
tr
ac
tio

n>
>

A4
: F
in
e‐
G
ra
in
ed

 B
eh

av
io
r

<<
Ex
tr
ac
tio

n>
>

A6
: P

ar
am

et
er
 D
ep

en
de

nc
ie
s

<<
Ex
tr
ac
tio

n>
>

A7
: P

ar
am

et
er
 P
ro
pa

ga
tio

n

Re
sp
on

se
Ti
m
eCo
nt
ro
lF
lo
w
Va

ria
bl
e

Re
so
ur
ce
De

m
an

d

Ba
sic

Co
m
po

ne
nt

In
flu

en
ci
ng

Pa
ra
m
et
er

As
se
m
bl
yC

on
te
xt

Ru
nt
im

eE
nv
iro

nm
en

t

Co
m
po

se
dP

ro
vi
di
ng

Re
qu

iri
ng

En
tit
y

Co
m
po

se
dP

ro
vi
di
ng

Re
qu

iri
ng

En
tit
y

Re
la
tio

ns
hi
p

<<
M
on

ito
rin

g>
>

A8
: A

pp
lic
at
io
n
M
on

ito
rin

g

Se
ns
or
Da

ta

<<
de

le
ga
te
s>
>

<<
de

le
ga
te
s>
>

<<
de

le
ga
te
s>
>

<<
de

le
ga
te
s>
>

<<
de

le
ga
te
s>
>

<<
de

le
ga
te
s>
>

<<
pu

bl
ish

es
>>

Figure 7: Overview of the application scope.

13

determine the data flow of input parameters between components (A7).
This is an optional role.410

A8 The agent collects application-level performance statistics (e.g., response
times and throughput of services) using instrumentation techniques pro-
vided by the application.

2.3.5. Model Variable Scopes
The techniques to characterize model variables are typically generic, how-415

ever, they may require access to information in the data center scope and the
platform scopes. Therefore, agents for the characterization of model variables
run in scopes separate to the application scope. Such agents may also use sta-
tistical techniques based on empirical monitoring with higher computational
complexity and may be deployed on isolated machines.420

Model Variable Scope <ModelVariable>

<<Characterization>>
Model Variable

ModelVariable

SensorData

Figure 8: Overview of the model variable scope.

Figure 8 gives an overview of the model variable scope. The scope defini-
tion is a generic template where the ModelVariable parameter determines the
actual variable type: ResponseTime, ControlFlowVariable, ResourceDemand,
InfluencingParameter, or Relationship. We distinguish between five agent
roles accordingly:425

M1 Black-box service behaviors contain a function describing the response time
of a component service depending on input parameters. The agent de-
rives a function describing the response time depending on the values of
input parameters.

M2 Resource demands are required for coarse-grained and fine-grained ser-430

vice behaviors. The agent determines a value for resource demands (in-
cluding their stochastic distribution).

M3 The agent determines values for control flow variables, such as loop iter-
ation counts or branching probabilities in fine-grained service behaviors
and external call frequencies in coarse-grained ones. The value of control435

flow variables may depend on values of input parameters.

M4 In order to enable the characterization of parameter dependencies, the dis-
tribution of values of input parameters to a component service needs to
be determined.

14

M5 The agent determines the data flow of input parameter values between440

components in an application and provides empirical distributions of these
relationships.

The model variable scopes are only required if the agent roles in the application
scope that identify the corresponding model variables are present.

2.4. Performance Model Repository445

The model repository is the central place where the extracted DML model
instance of the complete system is maintained and persisted. The model in-
stance is the result of merging all model skeletons coming from different agents
into a single model instance. Model skeletons from different agents may over-
lap, i.e., they may contain model objects referring to the same physical entity.450

To avoid duplication of model objects, a merging of the model skeletons is re-
quired resolving duplicate model elements to a single element in the perfor-
mance model repository.

2.4.1. Model Skeleton Composition
Formal Definitions. For the following descriptions, we adopt the formalization455

of Eclipse Modeling Framework (EMF) models used in [16]. We give a short
repetition of this formalization here.

Definition 1 (Meta-model). A meta-model “is a tuple em = (C,D, F, P). The
components of which are sets of classes, data types, features and properties,
respectively. F is partitioned into sets of attributesA and referencesR (F = A∪460

R,A ∩ R = ∅)”[16]. P consists of attribute functions describing the properties
of classes, data types and features (such as superTypes, domain, range, many,
ordered, unique, containment, and opposite).

A model consists of a set of objects which are instantiations of classes in
a meta-model. Each object contains values for the features defined in its class.465

Attributes have literal values defined by their data type. References link to other
objects in the model.

Definition 2 (Model). “Let em = (C,D, F, P) denote a meta-model. A model
instantiated from em is a tuple m = (O, class, FV). O is a set of objects. class :
O → C assigns to each object the class from which it was instantiated. For each470

feature f ∈ F there is one and only one feature value function fv ∈ FV .”[16]

Algorithm Overview. Suppose a model s sent by an agent as part of a model
skeleton and the global model p in our model repository, the goal is to merge the
contents of s into the existing version of p. We use a state-based, two-way merg-
ing algorithm. State-based means that it does not require a complete change475

history; the merging is done solely based on the latest versions of s and p. We
start with an empty model p. Each new or updated model s sent by an agent to
the model repository is then merged into the current version of p in an atomic
transaction. The merge algorithm needs to address the following two steps:

15

• Differencing: Find the model objects that are contained in both models.480

Given that the model skeletons are created independently by different
agents, we need to consider strategies for matching the same objects in
s and p.

• Merging: If a model object is only contained in s it can be simply copied to
p. Otherwise, we need to merge the two objects to integrate any changes485

of s into p.

Compared to other merging algorithms [e.g. 16] that assume the two model
versions come from a common base version, our algorithm differs as the model
skeleton s only represents a subset of p. As a result, it is not possible to reliably
determine model elements deleted from s solely on the current version of s and490

p. Model objects that are in p but not in s cannot be deleted directly because
other agents may still reference it in their model skeletons. Therefore, the model
repository implements a reference-counting scheme. For each model object in
p, the model repository maintains the set of agents that referenced it in their
latest version of the model skeleton.495

Object Matching. DML defines the abstract base class Identifier with a string
attribute id. The id is used to uniquely identify a model object on a global level
in a DML model instance. However, the id attribute is not suitable for matching
model objects. Model objects referring to the same physical entity may have dif-
ferent values for the id attribute if created by different model extraction agents.500

The id attribute is typically randomly generated. Furthermore, not all classes
in DML are subclasses of Identifier.

Instead of the id attribute, we use matching rules specific to the DML meta-
model. These rules specify a set of identifying features (i.e., attributes or ref-
erences) for each class in the DML meta-model. The values of these features505

need to be unique only on a local level (i.e, between siblings in the containment
tree). The values of the id attribute in a model skeleton are always ignored
when merging them into the model repository.

Conflict Prevention. Conflicts may occur if two different model skeletons con-
tain the same elements. Two models em′ and em′′ are conflicting, if they con-510

tain a model object o ∈ (O′ ∩ O′′) with a feature f for which the feature value
functions fv′f and fv′′f assign different values. The feature may be an attribute,
a containment or a cross-reference. The equality of feature values depends on
the feature attributes. For single-value features, the two values are compared
directly. For unordered many-value features, we check for set equality. For or-515

dered multi-value features, we also compare the sequence of values.
Given two versions of a model, which were changed independently of each

other, there exists no domain-independent merging algorithm for models that
can resolve all types of conflicts automatically [17]. Therefore, we need to in-
troduce additional constraints to prevent conflicts. The basic idea is to allow520

sharing of model objects between different model skeletons only if we can be
sure that any conflicting changes to these objects can be resolved automatically.

16

To enforce this constraint, we rely on the agent roles introduced in Section 2.3.
In Section 2.5, we describe the conditions that need to be fulfilled to allow au-
tomatic merging of model objects.525

2.5. Merge Algorithm
We now derive a formal description of the state of the model repository and

the model skeletons. These descriptions are focused on model merging and are
not complete formalizations. They assume the availability of a common meta-
model em = (C,D, F, P), which is DML in our case.530

Definition 3 (Model Skeleton). A model skeleton ms = (s, b, id, owns) contains
a model s = (Os, class, FV) conforming to the meta-model em. The element b ∈
B specifies the agent that created the model skeleton. In addition, it provides
a function id : C → SET(F) that returns a set of identity features used for
matching elements. The function owns : Os → boolean specifies whether an535

object is owned (true) or only referenced (false) in the model skeleton.

Several model skeletons are merged into a central model repository. The
state of a model repository is defined as:

Definition 4 (Model Repository). The state of a model repository is defined
by a tuple mp = (p,B, shared, refs, owner) containing a model instance p =540

(Op, class, FV) conforming to the meta-model em. The set B contains all cur-
rently connected agents. The function shared : Op → boolean specifies whether
multiple owners are allowed for an object. The function refs : Op → SET (B)
returns a set of agents that reference a model object. The function owners :
Op → B determines the set of agents that own a model object.545

The merging is based on a two-way merging algorithm: the model versions
are s and p. It is important to note that compared to traditional merging algo-
rithms, s is only a subset of p.

Differencing. The first step, is the differencing to determine the set of changes
in the model skeleton ms that need to be merged into the model repository550

mp. We define a helper function matches : Os × Op → boolean. The function
evaluates to true if the following condition for two objects o1 ∈ Os and o2 ∈ Op

with c = classs(o1) = classp(o2) is fulfilled: ∀i ∈ id(c) : fvi(o1) = fvi(o2). The
results of the differencing step are the following three sets (b is the agent that
created model skeleton ms):555

• The new objects set contains all objects in the model skeleton which have
no matching counterparts in the repository.

∆new = {os ∈ Os | ∀op ∈ Op : ¬matches(os, op)}

• The existing objects set contains all objects newly added to a model skele-
ton which already have matching counterparts in the repository, e.g. cre-
ated by another agent.

∆exists = {os ∈ Os | ∃op ∈ Op : (matches(os, op) ∧ b /∈ refs(op))}

17

• The removed objects set contains all objects which were contained in a
previous version of a model skeleton and now have been removed by
the agent. We perform reference counting to ensure that no objects are
deleted in the model repository which are still referenced in any of the
model skeletons.

∆remove = {op ∈ Op | b ∈ refs(op) ∧ (∀os ∈ Os : ¬matches(os, op))}

Merging. The merging step uses the sets ∆new, ∆exists, and ∆remove from the
differencing step and merges the model skeleton ms into the model repository
mp. The result is a new version m′

p of the model repository. The merging uses
the following four primitives:

• create(os): Creates a new object op in the model repositorym′
p that matches

the object os in the input model skeleton. The post-condition of this func-
tion is:

∃op ∈ O′
p : (matches(os, op) ∧ b ∈ refs′(op)

∧ (owns(os) =⇒ b ∈ owners′(op)))

b is the agent which created the model skeleton. We update the refs and560

owner attribute functions of the model repository accordingly.

• link(os, op): Similar to the create function, except that a matching coun-
terpart op of the object os in the model skeleton already exists in the model
repository. The pre-condition of this function is:

(owns(os) ∧ (owners(op) \ {b} 6= ∅)) =⇒ shared(op)

The pre-condition ensures that objects which cannot be shared between
multiple agents can only be owned by a single agent. If the pre-condition
is not fulfilled, the merging aborts with a conflict state. The link function
updates the refs′ and owner′ in the model repository m′

p accordingly.
This is enforced by the following post-condition:

b ∈ refs′(op) ∧ (owns(os)⇔ b ∈ owners′(op))

• remove(op): This function removes the agent b from the list of referencing
agents and removes the object from the model repository if the number
of references is zero. Its post-condition is:

b /∈ owners′(op) ∧ b /∈ refs′(op) ∧ (refs′(op) = ∅ ⇔ op /∈ O′
p)

• merge(os, op): This function synchronizes the contents of the object os in
the model skeleton and its counterpart op in the model repository. We
define Ωop = {f ∈ F | domain(F) ∈ (class(op)∪superTypes(class(op)))}

18

that contains all features of the class of op as well as all its super classes.
Then the pre-condition of this function is:

∀f ∈ Ωop : (shared(op) ∧ f /∈ id(class(op)))⇒ (many(f) ∧ ¬ordered(f))

Single-valued or ordered multi-valued features are not permitted for ob-
jects which are shared between agents, as we may overwrite changes of
other agents. Identifier features used for matching are excluded given that
they are ensured to always have the same value in os and op. The func-
tion has two post-conditions depending on whether it is a single-valued
or multi-valued feature:

∃o′p ∈ O′
p,∀f ∈ Ωop : many(f)⇒ fvf (o′p) = fvf (op) ∪ fvf (os)

∃o′p ∈ O′
p,∀f ∈ Ωop : ¬many(f) ∨ ordered(f)⇒ fvf (o′p) = fvf (os)

In case of multi-valued, unordered features, we create the union of all
its values in os and op. In case of single-value or an ordered multi-value
features, we overwrite the value of the feature in the model repository
with the one in the model skeleton.565

The merging step calls the functions in the following order: a) create for each
object in set ∆new, b) link for each object in set ∆exists, c) remove for each ob-
ject in set ∆remove, and d) merge for the set of objects ∆owned = {os ∈ Os |
owns(os)}.

Conflicts. If any of the pre-conditions of the merging primitives above were vi-570

olated, the merging would fail in a conflict state. Given that we do not assume
that a user may manually help to resolve the conflicts, we need to ensure that
conflicts may not happen in a correctly set up system. The following invariants
need to hold to ensure a conflict-free model repository:

• If a model object is allowed to be shared between agents, its non-identifying
features may only be non-ordered and multi-valued.

∀op ∈ Op,∀f ∈ Ωop : shared(op) ∧ f /∈ id(class(op))

=⇒ many(f) ∧ ¬ordered(f)

• Each non-shared model object may be only owned by a single agent:

∀op ∈ Op : ¬shared(op) =⇒ |owners(op)| ≤ 1

The first invariant can be enforced through a deliberate formulation of the575

shared and id functions. The second invariant needs to be checked at system
run-time. Our idea to avoid conflicts at run-time is to utilize the agent roles
introduced in Section 2.3. We require each agent to specify on startup, which
roles it fulfills. The agent is only permitted access to the model repository if in
the same extraction scope no other agent with any of these roles is registered580

19

or if a role explicitly allows multiple agents. Therefore, these variants can be
enforced by the centralized monitoring repository utilizing the agent roles de-
fined in Section 2.3. This way, no communication between the different agents
is required.

We now discuss, which agent roles may allow multiple agents of the same585

role in the same extraction scope. Given agent role t, the subset Ct ⊆ C of
meta-model classes specifies which objects an agent in t may own in its model
skeleton. It is important to note, that the agent still may reference objects from
the full set C. If for all classes in Ct holds that all non-identifying features are
non-ordered and multi-valued, multiple agents of role t may be allowed in the590

same extraction scope.
We determined the functions shared and id for the DML meta-model and

identified the following agent roles that allow for sharing of model objects: D1
(Data Center Structure), D5 (System Interface Providing Roles), D6 (Applica-
tion Assembly), A10 (Component Boundary), A2 (Component Assembly), A3595

(Component Deployment), and A5 (Coarse-Grained Behavior).

3. Related Work

There exists a lot of work on the topic of performance model extraction. In
order to group and relate them to our work, we cluster the existing approaches
according to which agent role it could provide. We believe this improves the600

plausibility as well as the practical applicability of our proposed architecture.
We follow the same structure as with the description of the agent roles in Sec-
tion 2.3.

Data Center scope. Traditional system or network management software, such
as IBM Tivoli or Hyperic, and virtualization management software, such as605

VMware vCenter, are commonly used to manage data centers. Such software
typically maintains an inventory of the systems and applications as well as their
topology in a data center. Proprietary or standardized management interfaces,
such as Simple Network Management Protocol (SNMP), or Common Informa-
tion Model (CIM), are available to access that information.610

Usage Scope. Table 1 gives an overview of existing approaches to usage model
extraction. Session logs can be collected either on the server or on the client. On
the server side, access logs (e.g., on a web server) are often available containing
the required information. In recent years, user monitoring on the client side
becomes increasingly popular (e.g., using javascript instrumentation of web615

pages, such as Google Analytics). Numerous approaches to web mining (see,
e.g., the work of Liu and Keselj [18]) have been proposed in the literature. How-
ever, such techniques are focused on the general analysis of user behavior.

Sharma et al. [19] uses Independent Component Analysis (ICA) to classify
user requests according to their resource needs. However, the approach does620

not consider sessions consisting of several requests. Thus it only covers agent

20

Approach U1 U2 U3

Web mining techniques [e.g. 18] 7
Sharma et al. [19] (7)
CBMG [20] 7
WESSBAS [21] 7
LIMBO [22] 7
Brosig et al. [4] 7

Table 1: Existing approaches to usage model extraction.

role U1 partially. Menascé et al. [20] and van Hoorn et al. [23] consider the ex-
traction of usage models for performance prediction. The work of Menascé et
al. [20] proposes a modeling formalism called Customer Behavior Model Graph
(CBMG) to describe user behaviors. They employ clustering techniques to de-625

termine different types of user sessions and reconstruct the usage behavior (see
U1) by analyzing the sequence and timings of observed sessions in a session
log. Van Hoorn et al. [23] published a tool, called WESSBAS, based on similar
techniques to extract usage behaviors for load testing.

Kistowski et al. [22] propose an approach, called LIMBO, to extract models630

describing the temporal development of load intensities. The approach em-
ploys signal processing techniques (e.g., Fourier transformations) to identify
seasonal patterns, trends, bursts, and noise. Brosig [24] considers supervised
learning techniques to group values of input parameters according to their per-
formance impact.635

Platform Scope. The extraction of platform layers is highly technology-specific.
We limit our discussion to hypervisors. Virtualization management software
(e.g., VMware vCenter) provide access to the hypervisor configuration to well-
documented interfaces. These interfaces are useful to implement P1 agents.
In addition, they typically also provide comprehensive monitoring capabilities640

supporting P3 agents. However, they contain purely descriptive models with-
out support for predictive analyses.

The extraction of hypervisor overheads (see role P2 in Section 2.3.3) is an
active research field. The work of Huber et al. [15] uses micro-benchmarks to
determine the performance impact of certain hypervisor configurations. Lu et645

al. [25] employ directed factor graphs with regression analysis techniques in or-
der to map the resource usage statistics observed within a VM to corresponding
statistics at the hypervisor level including hypervisor overheads.

Application Scope. A broad set of static or dynamic analysis techniques are avail-
able for application model extraction. Table 2 gives an overview of existing ap-650

proaches to application model extraction. Awad and Menascé [26] and Israr
et al. [27] extract QNs and respectively, Layered Queueing Networks (LQNs)
models. These models are not component-based, therefore they do not fulfill
roles A1, A2, and A3. Awad and Menascé [26] only determine call frequencies,
whereas Israr et al. [27] use traces of individual transactions to determine more655

fine-grained control flows.

21

Approach A1 A2 A3 A4 A5 A6 A7

Awad and Menascé [26] 7
Israr et al. [27] 7
SoMoX [28] 7 7 7 7
Brosig et al. [4] 7 7 7 7
PMW [5] 7 7 7 7
SLAstic [11] 7 7 7 7
PMX [29] 7 7 7 7

Table 2: Existing approaches to application model extraction

SoMoX [28] uses a combination of static and dynamic analysis techniques
to extract PCM instances. It requires access to the source code of an application
and uses clustering techniques on code metrics to identify components as well
as the component assembly. In order to determine parameter dependencies, the660

application is executed in a dedicated test environment and genetic search tech-
niques are employed. Given that the approach is targeted at model extraction
at design time, it lacks the information where the application will be deployed
at run-time.

Brosig et al. [4], PMW [5], SLAstic [11] and PMX [29] are exclusively based665

on dynamic analysis techniques of applications. Brosig et al. [4], PMW [5] and
PMX [29] are focused on the extraction of PCM instances, while SLAstic uses
its own meta-model (although a transformation to PCM exists). The main dif-
ference between the four approaches is the monitoring tools used for obtaining
the input for the dynamic analysis. Brosig et al. [4] is based on the proprietary670

instrumentation techniques provided by the Oracle WebLogic middleware plat-
form. PMW uses standardized Java EE filters to intercept incoming requests or
alternatively can exploit session data from the Dynatrace Application Perfor-
mance Management (APM) tool2. SLAstic and PMX are based on the Kieker
application monitoring framework [30].675

Model Variable Scopes. Table 3 shows major existing approaches to model pa-
rameterization that may be used to implement the agents described in Sec-
tion 2.3.5. The works of Courtois and Woodside [31] and Westermann et al. [32]
propose regression techniques to determine functions on the observed response
time. LibReDE [33] is a tool for resource demand estimation, which has also680

been integrated with the PMW [5] and the PMX [29] tools. Brunnert et al. [5]
also implement a measurement-based approach for resource demands using
application instrumentation. Further approaches using resource demand esti-
mation techniques are Wang et al. [34] and Brosig et al. [4]. The ByCounter [35]
approach uses fine-grained instrumentation to count byte-code instructions and685

micro-benchmarks to measure the resource demand of individual instructions.
Israr et al. [27], Brosig et al. [4], PMW [5], PMX [29] and SLAstic [11] are

all using dynamic analysis techniques to determine the control flow of appli-

2http://www.dynatrace.com/de/index.html

22

http://www.dynatrace.com/de/index.html

Approach M1 M2 M3 M4 M5

Courtois and Woodside [31] 7
Westermann et al. [32] 7
LibReDE [33] E
Wang et al. [34] E
Israr et al. [27] 7
SoMoX [28] 7 7 7
ByCounter [35] M
Brosig et al. [4] E 7 7 7
PMW + LibReDE [5] M/E 7
SLAstic [11] 7
PMX + LibReDE [29] E 7

Table 3: Existing approaches to model parameterization (E stands for estimation and M for mea-
surement).

cations, including a characterization of control flow variables. In contrast, So-
MoX [28] uses static analysis techniques to reach that goal. Combined with690

dynamic analysis techniques, SoMoX can also characterize parameter depen-
dencies using explicit stochastic expressions. Brosig et al. [4] characterize pa-
rameter dependencies using empirical distributions.

4. Aspects of Agent Implementations

In this section, we describe our reference implementation of three different695

model learning agents. The agents automatically extract submodels describ-
ing the structure and configuration of the data-center infrastructure as well as
the control flows, deployments, and the parameterization of the application ar-
chitecture. The agents continuously send the submodels to the performance
model repository. Using the merging algorithm presented in Section 2.5, they700

are automatically merged into the existing performance model. This enables
the automatic extraction of up-to-date performance models from a running ap-
plication.

4.1. VMware vSphere Agent
The vSphere Agent described in this section implements the agent roles Data705

Center Structure (D1), Compute Node Configuration, Platform Configuration
(P1) and Platform Monitoring (P3).

VMware vSphere is a virtualization platform supporting the centralized
management of clusters of x86 servers. We chose vSphere due to its wide-
spread use in industry [36] within public and private cloud infrastructures.710

Our model extraction agent builds upon the public web service interface of
vSphere to extract sub-models for the data center scope and platform scopes.
The agent itself runs in a system VM with access to the management network
of vSphere.

The vSphere platform consists of the ESX hypervisor and the vCenter server715

for hypervisor management in a cluster of virtualized hosts. A vCenter server

23

manages an inventory of the physical hardware, the hypervisor configuration
and the VMs deployed in a cluster. Furthermore, the vCenter server collects and
stores detailed monitoring statistics from all hypervisor instances. The agent
accesses this information through web services provided by the vCenter server720

(see vendor’s documentation [37]). The observed structure is then automati-
cally mapped and translated into a valid DML model.

In order to reflect changes to the system at run-time, clients can register at a
vCenter server to be automatically notified of changes in the inventory. This no-
tification mechanism covers manual reconfigurations of a system administrator725

as well as any inventory changes from the system itself. Our agent registers for
any changes that need to be reflected in the DML resource landscape model.
Each notification contains a pointer to the changed objects so that only the cor-
responding subset of the DML model needs to be updated.

4.2. JavaEE Wildfly Agent730

This section describes the implementation of the Wildfly agent, which ful-
fills agent roles A1 (Component Boundary), A4 (Fine-Grained Behavior), A2
(Component Assembly), A8 (Application Monitoring), and A3 (Component De-
ployment).

We built a virtual appliance based on a CentOS 6 Linux operating system, an735

OpenJDK 7 Java VM, and the Wildfly 8.2 application server. Wildfly (formerly
known as JBoss) is an open-source application server3 fully compliant with the
Java EE standard. It is written in Java and runs on any standard Java VM. Sev-
eral Wildfly instances can form a cluster to fulfill high-availability goals using
replication and load-balancing techniques. Our agent is configured to support740

clustering and runs in a domain mode for easier cluster management.
On startup of a Wildfly node, it is not yet clear which application com-

ponents will be deployed on this instance. Furthermore, the deployment of
components may change dynamically during system run-time. Therefore, our
agents determine at run-time which components are deployed on a server, as745

well as the control flow between these components. The latter requires the in-
sertion of instrumentation points at providing and requiring interface roles to
observe the inwards and outwards flow of requests. We developed a custom
agent for the Wildfly server that is loaded directly into the server process and
that has full access to the current server state. The agent automatically inter-750

cepts all deployments of components and inserts the required instrumentation
points.

In the following, we describe the static analysis steps that are performed by
the agent when new components are deployed, and then we give an overview
of the dynamic analysis steps implemented in our agent.755

3http://wildfly.org/

24

4.2.1. Static Analysis
When the component deployment on a Wildfly node changes, our model ex-

traction logic needs to be informed of these changes. Wildfly offers an extension
point to provide custom deployment unit processors that are invoked when
application modules are added or removed. Custom processors need to imple-760

ment the org.jboss.as.server.deployment.DeploymentUnitProcessor inter-
face. We provide an implementation that performs the following steps for each
application module:

• Static analysis of component structure: It determines the components con-
tained in an application module as well as their type (i.e., web or Enter-765

prise Java Bean (EJB) components). For each component, it identifies the
interface providing ports.

• Instrumentation setup: It adds instrumentation points to observe incoming
and outgoing invocations of a component. This information is required
for the dynamic analysis.770

Interface requiring roles are difficult to determine statically. Java EE pro-
vides two different ways to obtain references to required components: depen-
dency injection and Java Naming and Directory Interface (JNDI) lookup. In the for-
mer case, the container already knows all required components at deploy time.
However, in the latter case, an analysis of the complete bytecode of a component775

would be required to find all JNDI lookups of required components. To avoid
a full bytecode analysis, we resort to dynamic analysis techniques to determine
the interface requiring ports of components.

4.2.2. Dynamic Analysis
The interceptors count each incoming or outgoing invocation and measure780

its execution time. The agent does not maintain statistics for each individual
invocation in order to keep the volume of monitoring data low. Instead, it ac-
cumulates the values for each component service and each external call within
a component. In regular intervals (e.g., every minute), it sends the aggregated
statistics to the performance model repository. If the agent detects a component785

service or an external call that has not been observed before, it triggers an up-
date of the model skeleton. The update is performed asynchronously to avoid
delaying the application processing.

Each new component service or external call is added to the model skeleton
initially created when performing the static analysis of the component structure790

during deployment. In case of external calls, the agent automatically adds as-
sembly connectors between source and target component instances if required.
It uses technical identifiers (e.g., Uniform Resource Locators (URLs)) as used
by the Wildfly server internally to identify components in a unique way. The
assumption is that it can always determine the target component instance on795

the client-side. Updates to the model skeleton are sent in batches to the perfor-
mance model repository in order to reduce communication overhead.

25

4.3. Librede Agent
In order to provide the remaining mandatory agent roles M2 (Resource De-

mand) and M3 (Control Flow), we introduce the Librede agent. The statis-800

tics collected by the Wildfly agent described in the previous section are now
forwarded to the Library for Resource Demand Estimation (LibReDE) Agent
in order to classify the resource demands. LibReDE is a library of ready-to-
use implementations of state-of-the-art approaches to resource demand esti-
mation that can be used for online and offline analysis [33]. It uses several dif-805

ferent statistical estimation approaches to estimate the resource demands based
on generic system- and application-level measurements provided by the other
agents. We evaluated all available approaches and chose the available Recur-
sive optimization using response times and utilization observations [38] for this
case study.810

5. Evaluation

We evaluate the results of our work in this section. For evaluation, we choose
the SPECjEnterprise2010 benchmark, which is described in Section 5.1. After
that, we evaluate two aspects of our reference architecture: the degree of au-
tomation in Section 5.2 and the predictive power of the resulting model in Sec-815

tion 5.3.

5.1. Experiment Setup
SPECjEnterprise2010 is an industry-standard full system benchmark for

Java EE application servers4. The goal of the benchmark is to enable the com-
parison of different Java EE application servers with regards to their scalabil-820

ity and their efficiency under real-world applications. It covers the full system
stack and uses an application workload representative of many real-world en-
terprise systems. The benchmark is designed to exploit a large set of different
Java EE 5 technologies covering dynamic web pages (Servlets and Java Server
Pages), web services, (distributed) transactional EJBs, asynchronous messaging825

(Java Messaging Service) and object persistence (Java Persistence API).
In this case study, we evaluate the degree of automation and the prediction

accuracy of the models obtained using our reference architecture for online per-
formance model extraction presented in this paper. We chose the SPECjEnter-
prise2010 benchmark as it provides a complex workload representative of many830

real-world enterprise applications and exploits a broad set of technologies of

4SPECjEnterprise2010 is a trademark of the Standard Performance Evaluation Corp. (SPEC).
The SPECjEnterprise2010 results or findings in this publication have not been reviewed or
accepted by SPEC, therefore no comparison nor performance inference can be made against
any published SPEC result. The official website for SPECjEnterprise2010 is located at
http://www.spec.org/jEnterprise2010.

26

the Java EE standard. These properties make the benchmark also an ideal can-
didate to evaluate the capabilities of approaches for performance model learn-
ing. As a result, it has become a de-facto benchmark in this research area for
both industry [39] and academia [e.g., 4, 5, 40, 41, 42].835

Workload. The benchmark workload consists of Customer Relationship Man-
agement (CRM), manufacturing and supply-chain management applications.
The business scenario of the benchmark is modeled after an automotive man-
ufacturer with car dealerships, manufacturing sites, and suppliers interacting
with the system. Car dealerships use interactive web applications to access the840

order domain where they can browse, purchase and sell cars. The manufactur-
ing sites use remote EJB and web service calls to start and complete manufactur-
ing processes in the manufacturing domain. Suppliers are triggered through a
web service interface by the supplier domain if parts need to be purchased for
manufacturing.845

SPECjEnterprise2010 comes with two workload drivers: one for generat-
ing workloads from car dealerships (DealerDriver) and the other for the man-
ufacturing sites (MfgDriver). The generated workloads are based on transac-
tions; each transaction sending a sequence of different requests to the system.
Car dealerships interact with the order domain using either Browse, Purchase850

or Manage transactions. The Browse transaction is dominated by read requests,
whereas the latter two transactions are a mixture of read and write requests.
The manufacturing sites communicate either through a Simple Object Access
Protocol (SOAP)-based web service or through binary Remote Method Invo-
cation (RMI)-based protocols. We distinguish between Mfg WS and Mfg EJB855

transactions accordingly. The sequence of requests in a transaction is defined
by a first-order Markov chain. We use the standard workloads as defined in the
standard [43]. The workload drivers can be configured with a transaction rate
which determines the number of concurrent threads in the load driver sending
requests to the system. The transaction rate scales the interarrival times of the860

different types of transactions accordingly.
The external suppliers are represented by one or multiple emulators, which

wait for requests from the supplier domain. It simulates the processing of pur-
chase orders for components required to manufacture a car in the manufactur-
ing domain. After receiving a purchase order, it sleeps for a certain time defined865

by the lead time of the requested component. Then it signals the shipment of
the component to the supplier domain.

Deployment. The benchmark is originally designed for a three-tier deployment,
consisting of a web, an application, and a database server. In addition, the three
domains may be deployed on separate servers. However, modern enterprise870

applications often follow a service-oriented paradigm implementing the func-
tionality as multiple independent services that can be deployed separately. In
order to better reflect the architecture of a service-oriented, distributed system,
we adapted the SPECjEnterprise2010 benchmark, so that the EJBs in the busi-
ness logic tier can be deployed individually as services. Figure 9 shows the875

27

LargeOrderMDB

ReceiveMDB

MessageSenderService

MfgService

WorkOrderService Mfg DB

FulfillOrderMDB

CustomerService

ItemBrowserService

LargeOrderSenderServiceOrderService

Order DB

BuyerMDB

PurchaseOrderMDB

SupplierService

Supplier DB

SpecAppServlet

MfgDriver

Supplier BuyerService

DealerDriver

Order Domain

Manufacturing Domain

Supplier Domain

VM 1 VM 2

VM 3

VM 4

VM 5 VM 6

VM 7

VM 8

VM 9

Load driver/Emulator Servlet EJB JMS Database

Figure 9: Distributed deployment of SPECjEnterprise2010.

resulting deployment. The benchmark is deployed on a cluster of Wildfly 8.2
application servers. The order domain is distributed over several fine-granular
services each deployed in a separate virtual machine. The services of the man-
ufacturing and supplier domains are all deployed in the same VM. The data
tier is shared by all business services and hosted by a MySQL 5.6.25 relational880

database. The communication between business services is based on the RMI
protocol as provided by the application server. The relational database is ac-
cessed using the standard Java Database Connectivity (JDBC) drivers provided
by MySQL.

The physical resource environment consists of 4 servers, each equipped with885

1 Intel Xeon E3-1230 CPU with 4 cores, 16 GB main memory, 500 GB HDD and 1
Gbit network connection. VMware vSphere 5.5 is used as hypervisor. All VMs
are equipped 1 virtual CPU and 4 GB memory, except for VM 7 (2 vCPUs and
8 GB memory) and VM 9 (2 vCPUs and 4 GB memory) which have a higher
resource requirement. The VMs are distributed evenly between hosts so that890

resources are not over-committed (Host 1: VM 1, VM 8; Host 2: VM 3, VM 5,
VM 6; Host 3: VM 2, VM 7; Host 4: VM 9, VM 4). Each VM runs a CentOS 6.6
Linux 64-bit operating system.

Experiment Runs. The DML model used for evaluation purposes was automati-
cally extracted by our approach during an eight-hour benchmark run at a trans-895

28

action rate of 60 using our agents described in Section 4. Both our agent imple-
mentations and the extracted model are publicly available for download5. For
validation purposes, we performed five more benchmark runs each with a du-
ration of one hour varying the transaction rates between 20 (corresponds to a
lightly utilized system) and 100 (which is close to the maximum sustainable900

load at VM 3).

5.2. Degree of Automation
The following agent roles (see Section 2.3) are automated in this case study:

(D1), (P1), (P3), (A1), (A2), (A3), (A4), (A8), (M2) and (M3). The individual sub-
models created by these agent roles could be autonomously merged without905

conflicts as the invariants documented in Section 2.5 are fulfilled. In order to
obtain a complete DML model, we performed additional manual steps in this
case study. The agent roles System Interface Providing Roles (D5), Application As-
sembly (D6), and all agent roles in the usage scope (U1), (U2), (U3) were not
covered by automated agents and had to be created manually.910

Sub-Model Total
Elements

Manually
Created Elements

Degree of
Automation

UsageProfile 208 207 0.5 %
System 12 11 8.3 %
ResourceLandscape 60 0 100.0 %
Deployment 15 0 100.0 %
Repository

Structure 316 10 96.8 %
Behavior 584 14 97.6 %
Parameterization 543 12 97.8 %

Total 1739 254 85.4 %

Table 4: Analysis of manual effort required for model creation

To quantify the achieved degree of automation, we compare the number of
manually and automatically created model elements. In DML all model enti-
ties have a similar level of complexity since complex elements are modeled as
a composition of multiple model entities. Consequently, the basic model ele-
ments counted during this evaluation all have a similar level complexity. This915

is an inherent property of the Eclipse Modeling Framework (EMF), in which
DML is implemented. Therefore, percentage of automatically created model
elements is a suitable metric to quantify the degree of automation.

5See http://descartes.tools/prisma for the implementation of the reference architec-
ture along with a list of all available agents. The model we used in this evaluation can
be found at https://gitlab2.informatik.uni-wuerzburg.de/descartes/prisma-core/tree/
master/examples/specjenterprise2010.

29

http://descartes.tools/prisma
https://gitlab2.informatik.uni-wuerzburg.de/descartes/prisma-core/tree/master/examples/specjenterprise2010
https://gitlab2.informatik.uni-wuerzburg.de/descartes/prisma-core/tree/master/examples/specjenterprise2010

Table 4 depicts the degree of automation achieved for the DML model of the
SPECjEnterprise2010 benchmark extracted during our experiments. The result-920

ing model consists of six submodels containing a total of 1739 model entities.
Out of these model entities 254 were created manually, resulting in an overall
degree of automation of 85.4%. In the following, we discuss how the current
limitations can be relieved to reach the goal of full automation:

• The manual effort for creating the usage profile makes up for 207 out of925

254 manually created elements. In Section 2.3.2, we list several techniques
that can be used here. For instance, van Hoorn et al. [23] propose a tech-
nique to automatically extract usage profiles that they have already suc-
cessfully validated with the SPECjEnterprise2010 workload [21]. We leave
the integration of such techniques into our reference architecture as future930

work.

• The emulator is not part of the extraction as it represents an external com-
ponent, which may be hosted outside of the data center. For performance
prediction purposes, we manually added a component representing the
emulator in our model. The emulator accounts for 35 out of the 36 man-935

ually created repository model entities. Future work should consider the
automatic extraction of more appropriate models for external services.

• The overall application assembly, i.e., the applications in a data center and
the communication paths between applications need to be defined man-
ually. The monitoring of the control flow across different applications940

in a data center is an open challenge. Today’s monitoring tools for ap-
plications are mostly focused on single applications. However, a system
administrator typically needs to know the high-level control flow of an
application (i.e., the externally provided and required services) anyways
to configure the system correctly. Therefore, we think that it would be945

an acceptable manual effort. In our case study, the manual effort for the
application assembly only makes up 13 model entities and therefore 0.7%
of all model entities.

Manual parts can be easily integrated into the end-to-end performance model
by creating model skeletons by hand. As model skeletons are valid instances of950

DML, the existing Eclipse tooling for the graphical and textual editing of DML
models [24] can be used to create them. They can be uploaded to our model
repository through the same interface used by the model extraction agents.

5.3. Model Prediction Accuracy
In this section, we evaluate the prediction accuracy of the DML model ex-955

tracted in our case study under different transaction rates. To evaluate the pre-
diction accuracy for scaling decisions, we now use our extracted model and
compare the predicted utilization and end-to-end response times at the trans-
action levels 20, 40, 60, 80, and 100 with measurements from corresponding
benchmark runs at the real system. The transaction levels are chosen to cover960

30

a wide range of resource utilizations. A transaction level of 100 is close to the
maximum load sustainable with the given configuration. Higher transaction
rates require additional resources to ensure system stability.

The results are shown in Figure 10 for the CPU utilization and in Figure 11
for the end-to-end response time. The response times are shown for complete965

transactions consisting of multiple individual requests to the system.

20 40 60 80 100

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

Transaction Level

A
bs

ol
ut

e
E

rr
or

VM2
VM3
VM4
VM5
VM6
VM7
VM9

Figure 10: Mean absolute utilization error for different transaction rates.

Figure 10 shows the mean absolute prediction error for the different VMs.
The deployment of the VMs is discussed in Figure 9. Generally speaking, the
utilization error is always below 5%. For VM6, VM7, and VM9, the error is
even below 1%. This is very positive since VM7 runs a majority of our services.970

In terms of general utilization, VM2 and VM3 were usually the ones with the
highest utilization in the system. Therefore, their higher prediction error is ac-
ceptable, since the graph shows the absolute utilization errors. However, no
general trend about higher transaction rates influencing our prediction can be
observed.975

Figure 11 depicts the relative end-to-end response time error of our predic-
tions. We can observe a much higher variation of the errors when varying the
transaction rate. Generally, the transactions Purchase, Browse and also Manage
seem to be harder to predict than both transactions concerning the manufac-
turing (Mfg EJB and Mfg WS). However, at a transaction rate of 60, the relative980

errors of all considered transactions drop below 5%. Interestingly, although the
Browse transaction is dominated by read requests (as opposed to Purchase and

31

20 40 60 80 100

0.
00

0.
05

0.
10

0.
15

0.
20

Transaction Level

R
el

at
iv

e
E

rr
or

Purchase
Manage
Browse
Mfg EJB
Mfg WS

Figure 11: Mean relative end-to-end response time error for different transaction rates.

Manage), this does not seem to affect the prediction capabilities of our system.
In summary, the extracted DML model yields a high prediction accuracy.

The absolute errors of the utilization are all below 4% and the relative errors985

of the end-to-end response times are less than 21%. A prediction error of 30%
concerning mean response times and 5% concerning resource utilization is con-
sidered acceptable in capacity planning [44].

6. Summary

In this work, we presented a reference architecture for online model learn-990

ing in virtualized environments. The reference architecture is based on agents
which are responsible for extracting model skeletons of certain aspects of a sys-
tem. Agents may employ different static and dynamic analysis techniques to
create model skeletons at run-time. We expect a deep integration of agents into
existing technologies and platforms in order to exploit domain-specific knowl-995

edge for model learning. The model skeletons are dynamically composed into
a comprehensive performance model of a system. Our reference architecture
is based on a common meta-model in order to ease the composition of model
skeletons from different agents.

In order to implement our reference architecture, virtualization platforms1000

need to be extended with additional components supporting the online model
learning. However, these components are supplementary and do not require

32

changes in the existing parts of a virtualization platform. We provide a refer-
ence implementation of the core components.

We evaluated the degree of automation achieved for the model learning step1005

as well as the fitting and prediction accuracy of the resulting performance mod-
els. For the SPECjEnterprise2010 application, we achieved a degree of automa-
tion of 85.4%. By integrating existing techniques for usage profile extraction,
this number could be increased to 97.3%. As a result, a system administrator
only needs to provide high-level information on the control flow between appli-1010

cations to obtain a complete model. The internal architecture of the application
could be completely extracted including all platform layers. It is noteworthy,
that the model learning capabilities in the Wildfly VAs only assume that the
application adheres to the Java EE standard and does not include any prior
knowledge of the SPECjEnterprise2010 application. Therefore, it can be reused1015

to create performance models of other Java EE applications. For instance, [45]
has already used our Wildfly VA with a different application.

We then use the fully parameterized model to predict the performance for
scaling scenarios. We obtained model predictions with an absolute error of less
than 4% for the CPU utilization and a relative error of less than 21% for the end-1020

to-end response time. Given the SPECjEnterprise2010 deployment with seven
different VMs and 80 different resource demands to be estimated, it poses a
considerable problem size.

Future work. Leveraging our reference architecture, future work may provide
VAs containing model extraction agents focused on specific aspects of model1025

learning. A performance engineer, who has expertise in performance modeling,
can specifically design the extraction logic to exploit a priori knowledge about
a technology and leverage proprietary interfaces. For a given technology, this
needs to be done only once and the resulting VA can be reused in different
deployments.1030

Acknowledgments

This work was supported by the German Research Foundation (DFG) under
grant No. (KO 3445/11-1).

References

[1] B. Jennings, R. Stadler, Resource management in clouds: Survey and re-1035

search challenges, J. Network Syst. Manage. 23 (3) (2015) 567–619.

[2] T. Lorido-Botran, J. Miguel-Alonso, J. A. Lozano, A review of auto-scaling
techniques for elastic applications in cloud environments, J. Grid Comput.
12 (4) (2014) 559–592.

33

[3] N. Huber, F. Brosig, S. Spinner, S. Kounev, M. Bähr, Model-based self-1040

aware performance and resource management using the descartes mod-
eling language, IEEE Transactions on Software Engineering 43 (5) (2017)
432–452.

[4] F. Brosig, N. Huber, S. Kounev, Automated extraction of architecture-level
performance models of distributed component-based systems, in: Pro-1045

ceedings of the 26th IEEE/ACM International Conference on Automated
Software Engineering, ASE, 2011, pp. 183–192.

[5] A. Brunnert, C. Vögele, H. Krcmar, Automatic performance model gen-
eration for java enterprise edition (EE) applications, in: Proceedings of
the 10th European Workshop Computer Performance Engineering, EPEW,1050

2013, pp. 74–88.

[6] S. Spinner, G. Casale, F. Brosig, S. Kounev, Evaluating Approaches to Re-
source Demand Estimation, Elsevier Performance Evaluation 92 (2015) 51
– 71.

[7] S. Kounev, N. Huber, F. Brosig, X. Zhu, A Model-Based Approach to De-1055

signing Self-Aware IT Systems and Infrastructures, IEEE Computer 49 (7)
(2016) 53–61.

[8] F. Brosig, N. Huber, S. Kounev, Architecture-level software performance
abstractions for online performance prediction, Sci. Comput. Program. 90
(2014) 71–92.1060

[9] N. Huber, A. van Hoorn, A. Koziolek, F. Brosig, S. Kounev, Modeling
run-time adaptation at the system architecture level in dynamic service-
oriented environments, Service Oriented Computing and Applications
8 (1) (2014) 73–89.

[10] S. Becker, H. Koziolek, R. H. Reussner, The palladio component model for1065

model-driven performance prediction, Journal of Systems and Software
82 (1) (2009) 3–22.

[11] A. van Hoorn, Model-driven online capacity management for component-
based software systems, Ph.D. thesis, Faculty of Engineering, Kiel Univer-
sity, Kiel, Germany (2014).1070

[12] C. Rathfelder, Modelling Event-Based Interactions in Component-Based
Architectures for Quantitative System Evaluation, Vol. 10 of The Karlsruhe
Series on Software Design and Quality, KIT Scientific Publishing, Karl-
sruhe, Germany, 2013.

[13] Q. Noorshams, Modeling and prediction of i/o performance in virtualized1075

environments, Ph.D. thesis, Karlsruhe Institute of Technology (KIT) (2015).

34

[14] P. Rygielski, S. Kounev, Descartes Network Infrastructures (DNI) Manual:
Meta-models, Transformations, Examples, Technical Report v.0.3, Chair
of Software Engineering, University of Würzburg, Am Hubland, 97074
Würzburg (2014).1080

[15] N. Huber, M. von Quast, M. Hauck, S. Kounev, Evaluating and modeling
virtualization performance overhead for cloud environments, in: CLOSER
2011 - Proceedings of the 1st International Conference on Cloud Comput-
ing and Services Science, 2011, pp. 563–573.

[16] B. Westfechtel, Merging of EMF models - formal foundations, Software1085

and System Modeling 13 (2) (2014) 757–788.

[17] S. Förtsch, B. Westfechtel, Differencing and merging of software diagrams -
state of the art and challenges, in: Proceedings of the Second International
Conference on Software and Data Technologies - Volume 2: ICSOFT„ IN-
STICC, SciTePress, 2007, pp. 90–99.1090

[18] H. Liu, V. Keselj, Combined mining of web server logs and web contents for
classifying user navigation patterns and predicting users’ future requests,
Data Knowl. Eng. 61 (2) (2007) 304–330.

[19] A. B. Sharma, R. Bhagwan, M. Choudhury, L. Golubchik, R. Govindan,
G. M. Voelker, Automatic request categorization in internet services, SIG-1095

METRICS Performance Evaluation Review 36 (2) (2008) 16–25.

[20] D. A. Menascé, V. Almeida, R. C. Fonseca, M. A. Mendes, A methodology
for workload characterization of e-commerce sites, in: EC, 1999, pp. 119–
128.

[21] A. van Hoorn, C. Vögele, E. Schulz, W. Hasselbring, H. Krcmar, Automatic1100

extraction of probabilistic workload specifications for load testing session-
based application systems, EAI Endorsed Trans. Self-Adaptive Systems
1 (3) (2015) e5.

[22] J. von Kistowski, N. R. Herbst, D. Zöller, S. Kounev, A. Hotho, Modeling
and extracting load intensity profiles, in: 10th IEEE/ACM International1105

Symposium on Software Engineering for Adaptive and Self-Managing
Systems, 2015, pp. 109–119.

[23] A. van Hoorn, C. Vögele, E. Schulz, W. Hasselbring, H. Krcmar, Auto-
matic extraction of probabilistic workload specifications for load testing
session-based application systems, in: 8th International Conference on1110

Performance Evaluation Methodologies and Tools, 2014, pp. 139–146.

[24] F. Brosig, Architecture-level software performance models for online per-
formance prediction, Ph.D. thesis, Karlsruhe Institute of Technology (KIT),
Karlsruhe, Germany (2014).

35

[25] L. Lu, H. Zhang, G. Jiang, H. Chen, K. Yoshihira, E. Smirni, Untangling1115

mixed information to calibrate resource utilization in virtual machines, in:
Proceedings of the 8th International Conference on Autonomic Comput-
ing, 2011, pp. 151–160.

[26] M. Awad, D. A. Menascé, Dynamic derivation of analytical performance
models in autonomic computing environments, in: Proceedings of the1120

2014 Computer Measurement Group Conference, 2014, pp. 159–168.

[27] T. A. Israr, C. M. Woodside, G. Franks, Interaction tree algorithms to extract
effective architecture and layered performance models from traces, Journal
of Systems and Software 80 (4) (2007) 474–492.

[28] K. Krogmann, Reconstruction of software component architectures and1125

behaviour models using static and dynamic analysis, Ph.D. thesis, Karl-
sruhe Institute of Technology (2010).

[29] J. Walter, Website, online available at http://descartes.tools/pmx/.
Last accessed on 23-05-2016 (2015).

[30] M. Rohr, A. van Hoorn, S. Giesecke, J. Matevska, W. Hasselbring, S. Alek-1130

seev, Trace-context sensitive performance profiling for enterprise software
applications, in: Performance Evaluation: Metrics, Models and Bench-
marks, 2008, pp. 283–302.

[31] M. Courtois, C. M. Woodside, Using regression splines for software per-
formance analysis, in: Workshop on Software and Performance, 2000, pp.1135

105–114.

[32] D. Westermann, J. Happe, R. Krebs, R. Farahbod, Automated inference of
goal-oriented performance prediction functions, in: IEEE/ACM Interna-
tional Conference on Automated Software Engineering, 2012, pp. 190–199.

[33] S. Spinner, G. Casale, X. Zhu, S. Kounev, LibReDE: A Library for Resource1140

Demand Estimation, in: Proceedings of the 5th ACM/SPEC International
Conference on Performance Engineering, ACM Press, New York, NY, USA,
2014, pp. 227–228.

[34] W. Wang, J. F. Pérez, G. Casale, Filling the gap: a tool to automate parame-
ter estimation for software performance models, in: Proceedings of the 1st1145

International Workshop on Quality-Aware DevOps, 2015, pp. 31–32.

[35] M. Kuperberg, M. Krogmann, R. Reussner, ByCounter: Portable runtime
counting of bytecode instructions and method invocations, in: Proceed-
ings of the 3rd International Workshop on Bytecode Semantics, Verifica-
tion, Analysis and Transformation, 2008.1150

[36] T. J. Bittman, P. Dawson, M. Warrilow, Magic quadrant for x86 server vir-
tualization infrastructure (2016).

36

http://descartes.tools/pmx/

[37] VMware, Inc., vSphere API and SDK Documentation, Website, online
available at https://pubs.vmware.com/vsphere-55/index.jsp. Last ac-
cessed on 04-02-2017 (2013).1155

[38] Z. Liu, L. Wynter, C. H. Xia, F. Zhang, Parameter inference of queueing
models for IT systems using end-to-end measurements, Perform. Eval.
63 (1) (2006) 36–60.

[39] Standard Performance Evaluation Corporation (SPEC), Published SPEC-
jEnterprise2010 Results, Website, online available at https://www.spec.1160

org/jEnterprise2010/results/jEnterprise2010.html. Last accessed
on 23-01-2018.

[40] F. Willnecker, H. Krcmar, Optimization of deployment topologies for dis-
tributed enterprise applications, in: 12th International ACM SIGSOFT
Conference on Quality of Software Architectures (QoSA), 2016, pp. 106–1165

115.

[41] C. Vögele, A. van Hoorn, E. Schulz, W. Hasselbring, H. Krcmar, Wessbas:
extraction of probabilistic workload specifications for load testing and per-
formance prediction—a model-driven approach for session-based applica-
tion systems, Software & Systems Modeling 16 (2016) 1–35.1170

[42] A. Brunnert, H. Krcmar, Continuous performance evaluation and capac-
ity planning using resource profiles for enterprise applications, Journal of
Systems and Software 123 (2017) 239–262.

[43] Standard Performance Evaluation Corporation, SPECjEnterprise2010 De-
sign Document, Website, online available at https://www.spec.org/1175

jEnterprise2010/docs/DesignDocumentation.html. Last accessed on
02-02-2017 (2010).

[44] D. A. Menasce, A. F. A. Virgilio, Scaling for E Business: Technologies, Mod-
els, Performance, and Capacity Planning, 1st Edition, Prentice Hall PTR,
Upper Saddle River, NJ, USA, 2000.1180

[45] A. Bauer, Design and Evaluation of a Proactive, Application-Aware Elas-
ticity Mechanism, Master Thesis, University of Würzburg, Am Hubland,
Informatikgebäude, 97074 Würzburg, Germany (2016).

37

https://pubs.vmware.com/vsphere-55/index.jsp
https://www.spec.org/jEnterprise2010/results/jEnterprise2010.html
https://www.spec.org/jEnterprise2010/results/jEnterprise2010.html
https://www.spec.org/jEnterprise2010/results/jEnterprise2010.html
https://www.spec.org/jEnterprise2010/docs/DesignDocumentation.html
https://www.spec.org/jEnterprise2010/docs/DesignDocumentation.html
https://www.spec.org/jEnterprise2010/docs/DesignDocumentation.html

	Introduction
	A Reference Architecture for Online Model Learning
	Conceptual Overview
	Meta-model
	Model Extraction Agents
	Data Center Scope
	Usage Scope
	Platform Scope
	Application Scope
	Model Variable Scopes

	Performance Model Repository
	Model Skeleton Composition

	Merge Algorithm

	Related Work
	Aspects of Agent Implementations
	VMware vSphere Agent
	JavaEE Wildfly Agent
	Static Analysis
	Dynamic Analysis

	Librede Agent

	Evaluation
	Experiment Setup
	Degree of Automation
	Model Prediction Accuracy

	Summary

