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Abstract. IoT devices often communicate over wireless or cellular net-
works with varying connection quality. These fluctuations are caused,
among others, by the free-space path loss (FSPL), buildings, topological
obstacles, weather, and mobility of the receiver. Varying signal quality af-
fects bandwidth, transmission delays, packet loss, and jitter. Mobile IoT
applications exposed to varying connection characteristics have to handle
such variations and take them into account during development and test-
ing. However, tests in real mobile networks are complex and challenging
to reproduce. Therefore, network emulators can simulate the behavior of
real-world networks by adding artificial disturbance. However, existing
network emulators often require a lot of technical knowledge and a com-
plex setup. Integrating such emulators into automated software testing
pipelines could be a challenging task. In this paper, we propose a frame-
work for emulating IoT networks with varying quality characteristics. An
existing emulator is used as a base and integrated into our framework
enabling the user to utilize it without extensive network expertise and
configuration effort. The evaluation proves that our framework can sim-
ulate a variety of network quality characteristics and emulate real-world
network traces.

Keywords: mobile networks, network quality, network emulation, ap-
plication development

1 Introduction

In recent years, the number of IoT devices has increased rapidly [13]. These
devices can be found in many different areas, such as smart homes, health
care, smart buildings, vehicles, agriculture, smart cities, and industrial automa-
tion [12, 17, 8]. Since many IoT devices are mobile, communication over wireless
networks is often necessary. For this, WiFi, mobile networks, as well as propri-
etary radio standards are used [15]. At the application level, IoT protocols such



as MQTT or CoAP are often employed [3]. However, wireless networks are ex-
posed to significantly more interference factors than wired networks. Buildings,
the velocity with which the device moves, weather, and the distance to the mo-
bile radio station influence the connection quality [10, 16, 19]. These influencing
factors can lead to packet delays, bandwidth restrictions, packet loss, or jitter.

IoT devices often require a stable connection to internet services. Temporary
performance limitations could lead to undesired application behavior and dis-
satisfied users. Application developers should, therefore, test their applications
in networks with different quality characteristics. However, tests in real-world
networks are time-consuming, expensive, and not suitable for repetition. Net-
work emulations can simulate the quality characteristics of networks and add
artificial interference. The impact of varying network quality on the applica-
tion can be simulated and tested by the developer through emulated networks.
Unfortunately, network emulators often require time-consuming setup, complex
configuration, and technical knowledge of networks. Furthermore, network emu-
lators are often not designed for integration into software testing environments.

In this paper, we present a framework to emulate the characteristics of IoT
networks. An existing network emulator is embedded in our framework to pro-
vide artificial interference at the network interface layer. By this, our emulator
supports varying the maximum bandwidth, the packet delay, the packet loss
rate, the packet duplication rate, and the jitter value. Besides the disturbance
of the link, connection failures can be emulated as well. A scheduler adjusts the
connection quality at predefined times to reconstruct a temporal behavior. The
definition of time events enables the framework to simulate the movement of
devices, changes in the environment, or a variation of disruptive factors. Besides
manually specifying the quality characteristic changes and times, network mea-
surement traces can also be imported into the event queue. Our work provides
the following core contributions. First, the developed framework can be easily
instantiated for efficient use by application developers. Second, measurements
from real-world networks can be imported into the scheduler to reconstruct re-
alistic scenarios. Third, a provided REST API for configuring and operating the
emulator makes it ideal for integration into automated software test pipelines.

To ensure that the quality characteristics are correctly emulated, the first part
of the evaluation focuses on these individual factors. The timing of the scheduler’s
events is also analyzed within this part of the evaluation. In the second part of
the evaluation, a real-world network with Message Queuing Telemetry Transport
(MQTT) traffic is measured and emulated. The evaluation will show that real
network traces can be imported and emulated realistically.

The remainder of this work is structured as follows. Section 2 introduces
existing emulators and their differences. Next, Section 3 presents our developed
framework for the emulation of IoT networks and discusses the modules and fea-
tures. Section 4 evaluates the emulator. The first part of the evaluation examines
the precise appliance of limited quality characteristics on a link; the second part
presents the test results of a real-world network’s emulation. Section 5 concludes
the work, identifies some limitations and states future work.



2 Related Work

Network emulators are already widely used to artificially limit networks in cer-
tain characteristics and execute measurements and benchmarks on the restricted
networks. Most network emulators have been developed for specific purposes
and fulfill different requirements. In this section, we introduce the open-source
network emulators well-known in science. Generally, network emulators can be
divided into the following two categories [11]: Network Link Emulators (NLEs)
and Virtual Network Emulators (VNEs).

2.1 Network Link Emulators (NLEs)

NLEs are lightweight and simple to use network emulators. They are usually
limited to the link layer and are used to manipulate packets in such a way as to
emulate specific network conditions. Most NLEs can influence the bandwidth,
latency, packet error rate, and jitter of a network link but are limited to the
machines they run on.

NISTnet [4] is a Linux based network emulation package that was originally
developed and released by the American National Institute of Standards and
Technology (NIST) in 2003. NISTnet can be set up on a single Linux computer
and allows this computer to run as a virtual router. This virtual router can then
be used to emulate variable network conditions by influencing different network
parameters, such as packet delay distribution, congestion, loss, bandwidth limi-
tation, as well as packet reordering and duplication. NISTnet is implemented as
a Linux kernel extension and offers an X-Window System-based user interface,
which can be used to monitor the network traffic and manage the emulation.
Furthermore, NISTnet supports replaying real-world network traces. NISTnet is
nowadays no longer maintained and actively developed. Most of its functionality
has been incorporated into NetEM and the Linux iproute2 kit.

NetEm [7] is currently one of the most popular NLEs and is included in the
Linux kernel. Stephen Hemminger developed it at the Linux Foundation, and has
incorporated many of the functionalities of NISTnet. NetEm is part of the Linux
iproute2 kit, a collection of tools and utilities used to control TCP/IP networks
and traffic in Linux. NetEm is an enhancement of the Linux Traffic Control
(TC) system. It allows manipulating incoming and outgoing packets to a specific
network interface by configuring delays, packet loss rates, and duplications rates,
and packet reordering. Users of NetEm can either add discrete artificial delays
or add delay distribution models. Furthermore, NetEm allows interfering traffic
by adding random noise to a specific percentage of packets. Although NetEm is
a powerful NLE, it has some limitations. One of the main issues with NetEm is
related to Linux’s timer granularity, since Linux does not run in real-time [7].

Similarly to Linux’s TC, the Free-BSD based Dummynet [14] network em-
ulator can also manipulate the kernel’s IP queue to emulate variable network
quality parameters. Dummynet allows emulating finite and bounded-size queues,
bandwidth limitations, delays, and packet losses.



For individual use cases, NLEs are powerful network emulators, especially
when multiple ones are combined, as is the case with the iproute2 of Linux.
However, one of the main shortcomings of NLEs is their limitation to a single
computer. This makes it difficult to emulate larger network topologies. Since
most NLEs manipulate the packets coming into and leaving a specific network
interface, one would need to use some virtualization technology to scale up the
emulation. This makes the tools more complex and more challenging to use.

2.2 Virtual Network Emulators (VNEs)

VNEs aim to emulate entire network topologies. In VNEs, users can create all
kinds of network topologies and can practically control every aspect of a network
stack. However, this complexity often results in them being complicated and
difficult to use.

EMULAB [18] is a network emulation platform that is run and hosted by
the Flux Research Group, which is part of the School of Computing at the
University of Utah in the United States. EMULAB can be used for research,
development, and educational purposes. However, it is a time- and space-shared
platform, which means not everyone can use it. EMULAB has multiple installa-
tions around the world and requires those who want to use it to apply in advance,
stating the number of nodes they require and for how long. Multiple criteria are
considered when granting access to EMULAB, such as being associated with
an academic institution, having a clear deadline for a conference paper submis-
sion, and needing to perform experiments as part of a publication that will be
peer-reviewed.

The Integrated Multiprotocol Network Emulator/Simulator (IMUNES) [20]
is an open-source and free general-purpose IP network emulation tool that was
developed in 2004 by the University of Zagreb in Croatia. It is available for both
the FreeBSD and Linux operating systems and aims to offer realistic network
topology emulation and simulation. It uses kernel-level virtualization techniques
to instantiate multiple lightweight virtual nodes, which can be connected using
kernel-level links and bridges to instantiate complex network topologies. Net-
works emulated using IMUNES can have a large number of virtual nodes all
running on a single physical machine. IMUNES comes bundled with a console
to configure the emulated network.

Mininet [6, 9] is one of the best well known open-source network emulators
and enables the creation of a virtual network containing virtual hosts, switches,
and links on a single machine. Hosts are virtual machines running standard
Linux network software. Mininet can create custom network testbeds that enable
sophisticated topology testing without having to connect to physical networks.
As Mininet can run real code, any network applications developed and tested in
Mininet, specifically network control and routing software, can be migrated to a
real system with minimal changes.

The Common Open Research Emulator (CORE) [1] is an open-source net-
work emulator that originally bases on IMUNES. It has forked from IMUNES in



2004 and further expanded the emulator to add new functionality, such as sup-
port for wireless networks, mobility scripting, distributed emulation over mul-
tiple computers, and more. The Boeing company originally released it in 2008,
and it is still further maintained and developed by a community of develop-
ers to this day on GitHub3. Like IMUNES, CORE uses the operating systems’
virtualization technology to instantiate large network topologies. CORE allows
for instantiating lightweight virtual networks and virtual nodes, e.g., Ethernet
ports, routers, and PCs connected using the host operating system’s kernel.
These virtual machines are created using the Linux network namespace virtual-
ization technology and are connected using Linux Ethernet bridging. This allows
each virtual node to share resources such as the memory, CPU time, and the
file system with the host system, but have their own network stack and process
environment. Real network interfaces can also be connected to the virtual nodes
to connect real and virtual worlds, which allows for even more powerful network
emulation [2]. Users can launch a terminal from each of the emulated nodes,
which in turn permits running any command and launching any application
over the emulated network.

More recently, the NetSec Research Group from the Department of Engi-
neering and Architecture at the University of Parma in Italy has developed
NEMO [5]. NEMO is written in Java and aims to be a highly flexible and portable
network emulator. It seeks to be platform-independent by taking advantage of
Java’s virtual machine and runs completely at the user-space. While NEMO can
be used to develop and test new communication protocols, it also comes bundled
with an extensive collection of standard protocols. It includes an implementation
of the TCP/IP stack that is entirely independent of the underlying operating
system. NEMO allows connecting real networks with the virtual network and
can run emulations that are distributed among multiple physical machines.

Although many of the VNEs partly offer graphical tools for configuration,
the creation of emulated networks is often complex. A lot of configuration effort
is also required when connecting virtual and physical networks. During soft-
ware testing, influencing quality parameters usually requires knowledge of the
emulator and may require in-band reconfiguration of the emulators.

3 Approach

This section describes our framework for network emulation focusing on IoT com-
munication. Our network emulator aims to test mobile IoT applications under
varying quality characteristics at the development stage. The emulator artifi-
cially influences the quality of network connections so that the application can
be tested under degraded quality characteristics.

Most emulators introduced in Section 2 offer great features and can influ-
ence networks in several aspects. However, using these emulators for application
developers, especially in automated test environments, often requires much tech-

3 https://github.com/coreemu/core



nical knowledge and manual intervention. We define the following requirements
for a network emulator focusing on IoT application development:

1. Simple and easy to use: Application developers do not have to be network
experts to use the emulator. Already defined disturbance scenarios can be
reused to generate reproducible results.

2. Emulation of the temporal behavior of real-world networks: The quality char-
acteristics should be changeable during a running emulation. This enables,
e.g., simulating a road trip by a car passing different networks (e.g., 3G,
LTE, or 5G).

3. Connection with real-world physical networks and devices: Both virtual and
physical networks and devices should be able to be integrated into the em-
ulator. For example, an IoT system benefits from including a real MQTT
Message Broker.

4. Remote control: The network and connection characteristics can be con-
trolled via API calls. This allows using the emulator in automated test en-
vironments.

5. Running programs and applications over the emulated network: The emula-
tor can start applications and execute commands on the devices.

As indicated in Section 2, a large number of network emulators already exist,
which in particular already supports many of the network characteristics to be
controlled. However, to the best of our knowledge, there is currently no network
emulator that meets the previously defined requirements. This is especially true
for the easy integration of the emulator into software development pipelines. In
this paper, we extend an existing emulator with these features.

Our research indicates that the CORE network emulator best suits as a foun-
dation for our implementation. It partly fulfills the first requirement since it is
a lightweight network emulation platform. Judging the ease of use is subjective
as it is specified by many factors, such as the users’ skills in writing Python
scripts and their experience in network engineering. CORE can connect emu-
lated virtual networks to real-world physical ones. However, this requires some
complex configuration effort. Currently, CORE does not automatically support
the emulation of the temporal behavior of networks and the ability to control
the emulator remotely.

Figure 1 shows the architecture of our network emulator, including the com-
ponents of the CORE network emulator. The emulator consists of four modules.
The central part of our network emulator, denoted by Network Emulator in Fig-
ure 1, abstracts the technical details from the users and combines all of the other
modules into a working network emulator. On top of that, our emulator contains
the modules TopologyConfigurator, Scheduler, and a REST API, which we de-
scribe in the following. Our emulation framework is available as open source and
can be downloaded from our Git repository4.

4 https://gitlab2.informatik.uni-wuerzburg.de/descartes/iot-and-cps/
iot-network-emulator



Fig. 1. The architecture overview of the network emulator.

The TopologyConfigurator module is responsible for instantiating and man-
aging the topology. It contains all the logic and methods required to manage
the node and link entities. The module furthermore provides interfaces to add,
modify, and remove these nodes and links. The hosts, connected to the emulator,
can be virtual nodes, switches, hubs, or physical nodes, connected to Ethernet
interfaces. The virtual nodes are deployed running an integrated SSH server
by default to manage them and execute scripts. Starting traffic generators like
Iperf or executing measurement scripts are some examples of using the SSH
interface. If physical nodes connect to the emulated network, it is sufficient only
to provide the network interface name. Our emulation framework instantiates
all required virtual bridges between the physical and virtual networks. This is
a great strength of our emulator compared to the original version of CORE,
where these tasks have to be done manually. The module further provides the
functionality to update the connection quality characteristics of links. It can add
artificial network delay, jitter, packet loss rate, packet duplication rate, and limit
the bandwidth of a link. The TopologyConfigurator module abstracts the tech-
nical complexity of network emulation from the user to easily integrating our
emulator. At starting the emulator, users have the option to define a topology
configuration as a YAML file. The topology configuration file includes fundamen-
tal information and parameters regarding the emulation. It defines the logical
network addresses and the virtual nodes that will run in the emulation and the
links between them. API calls can generate the emulated network entirely if no
topology configuration is provided.



The Scheduler module emulates the temporal behavior of networks by schedul-
ing the execution of certain events at specific times. Supported events are adding,
removing, or modifying connection quality characteristics. This allows, for ex-
ample, to add a delay later or to change the maximum supported bandwidth
multiple times. Furthermore, the events can execute commands on virtual nodes,
to, e.g., start programs or execute additional configuration tasks on the nodes.
The events can be defined as an event queue in a configuration file. Each event is
specified by the event type, the time when it should be executed, and additional
optional execution arguments. One of the greatest strengths of the scheduler
is the emulation of the temporal behavior of real-world networks. For this, the
scheduler can import network measurement trace files. An event with the new
value is created when a change in quality characteristics occurs in the measure-
ment from the real-world network. A possible use-case for this is testing software
for vehicular applications. The quality characteristics such as maximum band-
width, delay, and packet loss can be varied along the route depending on network
coverage and the mobile network used. Developers of such software can measure
the internet connection quality on a certain route in advance and then use our
emulator to reconstruct the entire route’s network conditions. Developers can
then perform experiments and investigate their software’s behavior under these
connection quality conditions, without having to drive the route again.

The REST API enables interaction with the network emulator at runtime.
Upon starting our network emulator, a web server listening to HTTP requests is
started in the background. Instead of configuration files, users can configure the
topology and the events via REST API calls. Through REST API calls, users
can further modify the emulation, i.e., adding or removing nodes and links. Also,
the connection quality of specific links can be influenced (e.g., by adding artifi-
cial delays, bandwidth limitations, or increasing the packet loss and duplication
rates) as well as the link jitter value. Further, users can retrieve information on
the emulator’s status via the REST API, including the current topology (i.e.,
nodes, their attributes such as IP addresses and interfaces), and the links be-
tween the nodes. Users can also get detailed information about a specific node,
such as its neighbors and connections. Also, information about the links, includ-
ing their current quality characteristic, can be queried. The REST interface is
a powerful feature to integrate the network emulator into a software test and
build pipelines, as both the instantiation and the execution of the emulator can
be fully automated.

4 Evaluation

This section evaluates our emulator in two dimensions. Section 4.1 measures
and validates the influence of quality characteristics on network traffic. Also, the
temporal behavior of the scheduler is evaluated in this section. In Section 4.2,
the quality characteristics of a real-world network are captured, and the commu-
nication behavior is then emulated in a virtual environment. Section 4.3 briefly
discusses the validity of the measurements.



Fig. 2. Testbed setup for connection quality characteristic evaluation.

4.1 Connection Quality Characteristics

Our network emulation framework can manipulate different network quality
characteristics: packet delay, bandwidth, packet loss rate, packet duplication
rate, and jitter. In this evaluation, we verify that our network emulator cor-
rectly manipulates the quality of network links based on those five parameters.
For each of these parameters, we perform an individual test using a common
testbed.

Testbed Setup All of the following experiments are performed on a notebook
with an Intel Core i7-8550U CPU running at 1.80 GHz with a maximum turbo
frequency of 4.0 GHz with 16 GB RAM. The network emulator is executed on
a Linux virtual machine within the device and has access to four out of eight
processor cores and 6 GB of RAM. The virtual machine runs Ubuntu version
18.04.2 LTS. For the hypervisor, we use version 5.2.22 of VirtualBox.

Figure 2 illustrates the experiment setup. Our topology consists of two RJ45
interfaces connected to a virtual switch within the emulator. The two physical
interfaces are connected to two virtual machines, simulating the connectivity
to two other physical nodes. Each of the external virtual machines also runs
Ubuntu version 18.04.2 LTS and have access to 2 GB of RAM, and two of the
CPU cores.

Delay The delay measurements verify that (i) the emulator applies the set
delay correctly, and (ii) the scheduler executes the change at the correct time.
To evaluate the network delay, we use an echo request/reply (ping) test. In this
test, a packet is sent from one node to another, and upon receipt, a reply is sent
back to the sending computer. The time it takes for the packet to be delivered
and returned is called Round Trip Time (RTT).



Fig. 3. The results of the delay measurements.

For the measurement, we send 50 echo requests sequentially per second from
the right computer (ref. Figure 2) to the left one. We run the test for a total of
ten seconds. To do this, we schedule an echo request test every second.

To evaluate our emulator’s scheduler module and the ability to variate the
network delay, we defined an event queue containing ten link update events.
Each of these events occurs every second and increases the delay value on the
link between the left and right computers by ten milliseconds, starting by zero
milliseconds at second zero.

The measurement results are depicted in Figure 3. The x-axis of the graph
shows the elapsed time of the experiment in seconds. The left y-axis shows the
added artificial delay values in milliseconds. Likewise, the red step plot also
denotes the added artificial delay values. More specifically, the red ‘x’ marks the
time when the delay was set. Each delay value is stable for one second until the
next delay value is set. The right y-axis in blue represents the RTT and has a
linear relationship with the left y-axis. The RTT of a ping refers to the total
time it takes for the echo request to be sent from one computer to another and
the time for the echo reply back. Therefore, the RTT is expected to be twice
the network delay/latency plus any required processing time. The y-value of the
blue dots represents the average RTT of the 50 echo requests sent in that second.
The x-value refers to the time interval of when those 50 echo requests were sent.

Optimally, each blue dot lies slightly above each step, on the red line. That
means that the RTT is precisely double the delay plus the required processing



time. Some of the RTT values are slightly higher than others, which could be
due to other events happening in the system and the fact that we were sending
50 packets each second at very short intervals. This means that the kernel and
the network interface have to buffer some packets before sending them out. From
this experiment for delay investigation, it can be concluded that both setting the
correct link delay and scheduling the events works as expected.

Bandwidth In this part of the evaluation, we investigate influencing the band-
width of a particular link within a network. For this measurement, we use the
same testbed setup described in Figure 2 and measure the throughput capac-
ity between the left and right computers. To determine the bandwidth of a
link, we use the iperf3 5 Python library. This library provides a wrapper for the
iperf3 tool. Iperf is a well known and widely used tool for actively measuring
the maximum achievable bandwidth on networks. The Python wrapper provides
convenience methods for performing tests using iperf3 and parsing their results.
To perform the test, we run iperf3 in server mode on the left computer, and we
start the emulator on the host computer, without providing an event configura-

5 https://pypi.org/project/iperf3/

Fig. 4. Results of the bandwidth measurements.



tion file. On the right computer, we execute a Python script that first performs
API calls to set the appropriate bandwidth limits.

We run eight different measurements, each with an artificial limited emulated
bandwidth of 1 MB/s, 5 MB/s, 10 MB/s, 20 MB/s, 30 MB/s, 40 MB/s, 50 MB/s,
and 60 MB/s. For each bandwidth limit, the throughput between the left and
right computer is measured for a total of 60 seconds. This measurement is re-
peated a total of eight times for each bandwidth limit. All of the throughput
values from the eight measurements for each bandwidth limit are averaged.

The results of the measurement are depicted in Figure 4. The x-axis denotes
the measurement number. The y-axis shows bandwidth value in Megabytes per
second. The blue bars refer to the bandwidth limit set using the emulator and
denote the expected results. The orange bars represent the measured through-
put itself, specifically the average of all eight measurements performed for each
bandwidth limit. The numbers above the bars represent their values and are
rounded down to the nearest integer.

From this investigation, it can be concluded that the actual throughput never
exceeds the maximum defined bandwidth. Furthermore, it can be seen that by
increasing bandwidth, a difference between the artificial limit and the measured
bandwidth occurs. We assume that TCP’s window size causes this difference.
However, we asserted that our emulator appropriately modified the QDISC using
NetEm.

Packet Loss Rate This evaluation investigates the influence of our emulator
on the packet loss rate of a specific link. The packet loss rate refers to the number
of lost packets divided by the total number of sent packets. We use the testbed
setup shown in Figure 2, and evaluate the packet loss rate between the left and
right computers by using echo requests and replies.

For the test, we perform five measurements, each with different packet loss
rates of 20%, 40%, 60%, 80%, and 100%. Each test sends 1000 echo requests
and is repeated 30 times. The packet loss rate is set via API call within the
measurement script.

The results of our measurements can be seen in Figure 5. The x-axis in the
graph denotes the measurement number. The y-axis represents the packet loss
rates in percent. The blue bars refer to the packet loss rate that was applied
by the emulator and represent the expected results. The orange bars depict the
average packet loss rate of all 30 measurements for each of the packet loss rates
that we applied using the emulator. The numbers above the bars represent the
bars’ height, i.e., the expected values, respectively, the measured values and are
rounded two decimal places.

It can be seen that the average packet loss rate of the measurements is
very close to the rate that was applied by the emulator. From this, we can
conclude that our network emulator is appropriately applying the packet loss
rate parameter.



Fig. 5. The results of the packet loss rate measurements.

Packet Duplication Rate This measurement verifies whether the set packet
loss rate is correctly adopted. For this, the measurement setup from the previous
section, including the echo reply/request measurement method, is used. The
unique sequence number of the ICMP message identifies duplicate packets in
the response log. We apply the packet duplication rates of 20%, 40%, 60%, 80%,
and 100%. Each measurement sends 1000 echo requests and is repeated 30 times,
before averaging the packet duplication rates.

The results of our measurements can be seen in Figure 6. Like in the previous
experiment, the X-axis represents the number of the measurement, and the y-
axis represents the packet duplication rates in percent. The blue bars denote the
packet duplication rate that we applied using our emulator and the results we
expect to see. The orange bars represent the actual measurements, specifically
the average of each of the 30 measurements for each of the five packet duplication
rates. The numbers at the top of the bars are rounded to two decimal places.

It can be seen that the measured packet duplication rate of the emulated
network matches the set value. From this, we can conclude that our network
emulator is appropriately adjusting the packet duplication rate of network links
accurately.

Jitter This measurement evaluates the setting of an artificial jitter on a link.
Jitter is defined as the variance in the time that data packets take to traverse



Fig. 6. The results of the packet duplication rate measurements.

a network path. For this measurement, we use the setup from Figure 2 and
measure the connection quality between the left and right computer using echo
requests/replies. As jitter is related to the delay value in a way, we first have to
use the emulator to apply an artificial delay to the link between the right and
left computers. Explicitly, we set the delay value to 100 ms. We then used the
emulator to apply a jitter value of 50 ms to the link between the right computer
and the switch.

For the measurement, we send echo requests for 60 seconds, with an interval
of 500 ms between each request. From the individual timestamps of the ICMP
replies, we calculate the standard deviation of the RTT. Since we set a link delay
value of 100 ms, provided there is no network jitter, the average RTT of the link
between the left and right computers should be approximately 200 ms plus some
processing time.

The results of the measurement can be seen in Figure 7. The x-axis denotes
the elapsed time of the experiment. The y-axis represents the RTT values in
milliseconds. The blue plot represents the variations between the RTT values.
The orange line in the middle represents the theoretical average RTT if the jitter
value was 0. The green line represents the maximum theoretical RTT value we
should expect to see, i.e., the average theoretical RTT value plus the jitter value.
Likewise, the red line at the bottom represents the minimum expected value, i.e.,
the average RTT minus the jitter.



Fig. 7. The results of the jitter measurements.

In total, 120 echo requests were transmitted, 114 replies were sent back, and
six were lost caused by a timeout of 60 seconds for the whole test. Figure 7
shows that most measurement results reflect our expectations, i.e., RTTs be-
tween 150 ms and 250 ms. The expected interval must be set to twice the set
jitter value because the packets pass through the link twice during an echo re-
quest and reply. The six values slightly above 250 ms can be explained by the
processing time, which is not subtracted from the measured transmission time.

4.2 Evaluation of Temporal Behavior Emulation

This section evaluates the temporal behavior of the emulation framework within
a real-world IoT use-case. For this, we employ a publish/subscribe communica-
tion scenario using the Message Queuing Telemetry Transport (MQTT) protocol
for communication between two clients and one message broker. To emulate a
real-world network’s temporal behavior, we first need to capture the character-
istics of such a network over a certain period. The capturing is done in a first
experiment, using a public MQTT message broker. In a second experiment, we
emulate the network to the public broker by the captured network trace and
replace the broker by a local one.



Fig. 8. The setup used to gather data of the network quality between the MQTT
clients and the public MQTT Mosquitto broker.

Measuring the Temporal Behavior of a Real-World Network In this
measurement, we capture the temporal behavior of a real-world network in terms
of network latency. The measurement setup is depicted in Figure 8. Two virtual
machines running an MQTT client, a subscriber and a publisher, communicate
with each other over a public MQTT message broker6.

For the publisher and subscriber clients, we developed an MQTT application
using the Eclipse Paho library. The publisher application connects to the MQTT
broker and publishes the system’s current time along with a message sequence to
a topic called “time” every second. With each published message, the sequence is
incremented. We can control the time interval between each publication and the
total number of messages that the application should publish. The application
running on the subscriber client subscribes to the topic “time” and receives all
messages related to this topic from the broker. Upon receiving a message, the
subscriber subtracts the time in the message from the current time. By doing
this, we can approximate the time it took for the message to be sent by the
publisher, processed by the broker, forwarded to the subscriber, and processed
by the subscriber. To obtain accurate results regarding each message’s transport
duration, we synchronized the clocks of the two MQTT clients directly before
starting the experiment. Since in our setup, the publisher is publishing a message
each second, we can use each message’s sequence number to derive the sending
time of the message. Upon calculating the transport duration of the various
messages at the subscriber end, a trace file is generated, including the sequence
number of each message and its measured transport duration. The total running
time for the experiment is 60 seconds.

Emulating the Temporal Behavior of a Real-World Network In this
part of the evaluation, we emulate the network with the characteristic captured
in the previous part. For the experiment, we replace the public MQTT message
broker by a local broker, running within our the emulated network. The clients
now connect to the local broker. The setup is shown in Figure 9.

6 https://test.mosquitto.org/



Fig. 9. Testbed setup for the MQTT scenario.

We use the trace file from the real-world measurement and import it into the
event configuration so that the fluctuations are represented as events. For the
evaluation, one client again publishes the current time and a sequence number,
which is subscribed by the other client. As in the first part of the experiment,
the subscriber measures the transport duration of each message and stores the
duration along with each messages sequence number.

The data, captured from the real-word network and the measured data from
the emulated network, are depicted in Figure 10. The x-axis denotes the elapsed
time in seconds. The y-axis indicates the transport duration of each message in
milliseconds. The orange ’x’ markers represent the transport duration of each
message in the real-world scenario, i.e., when communicating with the public
Mosquitto broker. The blue plot represents the transport duration of the mes-
sages in the emulated scenario.

It can be seen that our emulation framework can reconstruct the behavior
of the real-work network accurately. The value measured from the emulation is
always very close to the value of the real-world network. The minimal deviations
can be explained by the delays in the local message broker. From this measure-
ment, we can conclude that our emulation framework can accurately emulate
the behavior of a real-world network.

4.3 Threats to Validity

Although the measurements of the evaluation were performed with great care,
they might contain some inaccuracies. In measurements where time behavior
such as RTT or jitter was measured, the processing time for the response was
not included. Therefore, the reported time corresponds to the set delay plus the
processing time. This explains the slightly discrepancy between expected value
and measured value in Figure 3 as well as Figure 7. However, since the processing



Fig. 10. Comparison of the connection quality with the public Mosquitto broker and
the emulated connection over a period of 60 seconds.

time of an echo request compared to the set delay is very short, this can be
neglected. A similar consideration applies to the measured interference in the
emulated network. In both virtual and physical networks, the connection quality
is influenced by, e.g., packet queueing. Since our measurements for accuracy
were performed on a single notebook and exclusively in a virtual network, this
can also be neglected. Finally, in the real-world scenario, the transmission time
was measured as the time for transport and processing in the MQTT message
broker and emulated as an artificial delay. The local MQTT message broker also
introduces a processing time, and this time is added to the measured transmission
time, which explains the small offset in Figure 10. Since the values for the real
network’s delay were very high, and the broker’s processing time was very short,
this aspect was not considered in depth.

5 Conclusion

Network emulators can artificially influence the quality characteristics of net-
work connections. They can be powerful tools in the development of mobile IoT
applications to test the application’s behavior even if the connection quality
of wireless networks varies. However, existing emulators are often complex to
configure, require technical knowledge about networks, and are challenging to
integrate into automated test environments.



In this paper, we presented a novel network emulation framework that can be
easily integrated into software test pipelines. Our emulator does not require ex-
tensive expertise so that developers of IoT applications can focus on application
development. The emulator supports changes in the interference parameters over
time so that a mobile network’s temporal behavior, e.g., during a car ride, could
be simulated. In the evaluation, the correct influence of the quality characteris-
tics delay, bandwidth, packet loss rate, packet duplication rate, and jitter value,
as well as their temporal adjustment, is validated. Furthermore, a measurement
of a real-world network with MQTT traffic is imported into the emulator, and the
temporal behavior of the real-world network is simulated against an application.

Although our framework can ideally be used to simulate a temporal behavior,
there is a limitation inaccuracy. Our network emulator itself does not directly
influence the quality characteristics of the network connection but uses an exist-
ing emulator, which uses tools of the Linux kernel like NetEm or Traffic Control.
Thus, the accuracy of our emulator depends on the accuracy of the underlying
libraries. If a higher accuracy or even real-time is required, other libraries could
be included instead.

To further simplify our emulator’s operation, future work could extended our
framework by a graphical user interface. The elements of CORE, such as the vi-
sualization of the network, can be reused, and, for example, a representation of
the event queue can be added. Furthermore, temporal behaviors could be emu-
lated by assigning probability distributions to quality characteristics. Probability
distributions represent a variation of the values over time, as they are present
in some real-world scenarios. In addition to investigating network influences of
a single application, the number of applications on virtual instances could be
scaled using the emulator. This would enable the investigation of the influence
of interference factors in the network within even more complex peer-to-peer
networks with a large number of participants.

Acknowledgements

This work was funded by the German Research Foundation (DFG) under grant
No. (KO 3445/18-1).

References

1. Ahrenholz, J., Danilov, C., Henderson, T.R., Kim, J.H.: CORE: A real-time net-
work emulator. In: MILCOM 2008 - 2008 IEEE Military Communications Confer-
ence. pp. 1–7 (Nov 2008). https://doi.org/10.1109/MILCOM.2008.4753614

2. Ahrenholz, J.: Comparison of CORE network emulation platforms. In: 2010-
Milcom 2010 Military Communications Conference. pp. 166–171. IEEE (2010)

3. Bormann, C., Castellani, A.P., Shelby, Z.: Coap: An application protocol for billions
of tiny internet nodes. IEEE Internet Computing (2), 62–67 (2012)

4. Carson, M., Santay, D.: Nist net: a linux-based network emulation tool. ACM
SIGCOMM Computer Communication Review 33(3), 111–126 (2003)



5. Davoli, L., Protskaya, Y., Veltri, L.: NEMO: A Flexible Java-based Net-
work Emulator. In: 2018 26th International Conference on Software, Telecom-
munications and Computer Networks (SoftCOM). pp. 1–6 (Sep 2018).
https://doi.org/10.23919/SOFTCOM.2018.8555769

6. De Oliveira, R.L.S., Schweitzer, C.M., Shinoda, A.A., Prete, L.R.: Using mininet
for emulation and prototyping software-defined networks. In: 2014 IEEE Colombian
Conference on Communications and Computing (COLCOM). pp. 1–6. Ieee (2014)

7. Hemminger, S., et al.: Network emulation with NetEm. In: Linux conf au. pp.
18–23 (2005)

8. Herrnleben, S., Pfannemüller, M., Krupitzer, C., Kounev, S., Segata, M., Fast-
nacht, F., Nigmann, M.: Towards Adaptive Car-to-Cloud Communication. In: Pro-
ceedings of the IEEE International Conference on Pervasive Computing and Com-
munications Workshops (PerCom Workshops). Kyoto, Japan (2019)

9. Lantz, B., Heller, B., McKeown, N.: A network in a laptop: rapid prototyping for
software-defined networks. In: Proceedings of the 9th ACM SIGCOMM Workshop
on Hot Topics in Networks. p. 19. ACM (2010)

10. Luomala, J., Hakala, I.: Effects of temperature and humidity on radio signal
strength in outdoor wireless sensor networks. In: 2015 Federated Conference on
Computer Science and Information Systems (FedCSIS). IEEE (2015)

11. Nussbaum, L., Richard, O.: A Comparative Study of Network Link Emulators.
In: Proceedings of the 2009 Spring Simulation Multiconference. pp. 85:1–85:8.
SpringSim ’09, Society for Computer Simulation International, San Diego, CA,
USA (2009), http://dl.acm.org/citation.cfm?id=1639809.1639898

12. Porter, M.E., Heppelmann, J.E.: How smart, connected products are transforming
competition. Harvard business review 92(11), 64–88 (2014)

13. Ray, P.P.: A survey on Internet of Things architectures. Journal of King Saud
University-Computer and Information Sciences 30(3), 291–319 (2018)

14. Rizzo, L.: Dummynet: a simple approach to the evaluation of network protocols.
ACM SIGCOMM Computer Communication Review 27(1), 31–41 (1997)

15. Roux, J., Alata, E., Auriol, G., Nicomette, V., Kaâniche, M.: Toward an intrusion
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