
Date of publication xxxx 00, 0000, date of current version September 20, 2020.

Digital Object Identifier 10.1109/ACCESS.2017.DOI

An Overview of Design Patterns for
Self-Adaptive Systems in the Context of
the Internet of Things
CHRISTIAN KRUPITZER1,5 (Member, IEEE), TIMUR TEMIZER2, THOMAS PRANTL3, and
CLAUDIA RAIBULET4 (Member, IEEE)
1Software Engineering Group, Julius-Maximilians-Universität, 97074 Würzburg, Germany (e-mail: christian.krupitzer@uni-wuerzburg.de)
2Chair of Information Systems II, Universität Mannheim, 68161 Mannheim, Germany (e-mail: t.temizer@gmx.de)
3Software Engineering Group, Julius-Maximilians-Universität, 97074 Würzburg, Germany (e-mail: thomas.prantl@uni-wuerzburg.de)
4Dipartimento di Informatica, Sistemistica e Comunicazione, Universitá degli Studi di Milano-Bicocca, Milan 20126, Italy (e-mail: claudia.raibulet@unimib.it)
5Department of Food Informatics, Universität Hohenheim, 70599 Stuttgart, Germany (e-mail: christian.krupitzer@uni-hohenheim.de)

Corresponding author: Christian Krupitzer (e-mail: christian.krupitzer@uni-hohenheim.de; ORCID: 0000-0002-7275-0738).

ABSTRACT The Internet of Things (IoT) requires the integration of all available, highly specialized,
and heterogeneous devices, ranging from embedded sensor nodes to servers in the cloud. The self-adaptive
research domain provides adaptive capabilities that can support the integration in IoT systems. However,
developing such systems is a challenging, error-prone, and time-consuming task. In this context, design
patterns propose already used and optimized solutions to specific problems in various contexts. Applying
design patterns might help to reuse existing knowledge about similar development issues. However, so
far, there is a lack of taxonomies on design patterns for self-adaptive systems. To tackle this issue, in
this paper, we provide a taxonomy on design patterns for self-adaptive systems that can be transferred
to support adaptivity in IoT systems. Besides describing the taxonomy and the design patterns, we discuss
their applicability in an Industrial IoT case study.

INDEX TERMS Design Patterns, Internet of Things, IoT, Self-adaptive Systems, Software Engineering

I. INTRODUCTION

DESIGN PATTERNS represent well defined and widely
applied solutions to specific problems. They were first

introduced by Gamma et al. [1] in 1994. Since then, the
design patterns research has known an increasing trend both
in the number of patterns as well as in popularity and
application. The reason for this is that software engineers
have recognized their advantages immediately, especially,
capturing best practices and lessons learned during software
development. Design patterns play a central role both in
forward and reverse engineering. Using them in forward
engineering increases the software quality, its readability, and
its documentation. In reverse engineering, design patterns
help to understand the software and the rationale behind the
development solutions [2].

Usually, when a new research field raises, software en-
gineers tend to reuse available development knowledge. In-
ternet of Things (IoT) and the related concept of Cyber-
Physical Systems (CPSs) both interact intelligently with
users in a dynamic environment. Further, those systems in-
tegrate heterogeneous software and hardware resources as

well as data from various resources. Hence, those systems
have to adapt to changing environmental conditions and the
system’s dynamics to preserve their quality of service. Those
reactions are aggravated regarding the distributed decision
making in IoT and CPSs. For those adaptations as direct
reactions to changes in the system environment, IoT systems
require context-awareness, autonomy, decision making under
uncertainty, and decentralized control.

Self-adaptive systems (SASs) are able to change their
behavior at runtime as a response to changes in their environ-
ment or in the system itself [3], [4]. Those systems are able
to work in dynamic and uncertain environments. They are
often divided into a managed subsystem, i.e., software and
hardware resources that interact with the users or back-end
systems, and a managing subsystem, which is able to control
and adapt the managed subsystem. As a de facto standard,
the managing subsystem implements the Monitor-Analyze-
Plan-Execution-Knowledge (MAPE-K) system model [5]
for structuring the required management functionality into
(i) monitoring the environment and the system resources,
(ii) analyzing if an adaptation is required, (iii) planning

VOLUME 4, 2016 1



Krupitzer et al.: An Overview of Design Patterns for Self-Adaptive Systems in the Context of the Internet of Things

the necessary adaptation actions, and (iv) executing those
actions. Those functionalities can be complemented by a
shared (distributed) knowledge repository. Other authors pro-
pose similar feedback structures, such as the sense-plan-
act control [6], the autonomic control loop [7], or the ob-
server/controller architecture [8].

Both types of systems, SAS and IoT, operate in dynamic
environments, resulting in uncertainty about the system en-
vironment. Accordingly, the exact requirements for those
systems are hard to determine at design time. Hence, adaptive
behavior, as know from the SAS domain, is also beneficial for
IoT systems. Furthermore, to achieve this adaptive behavior,
IoT systems must be context-aware, i.e., those systems must
be able to monitor their context / environment and react
to changes. Lastly, IoT and SAS systems are systems-of-
systems, i.e., composed of several interacting resources re-
sulting in highly distributed systems. Due to the significant
commonalities between IoT and SASs – dynamic environ-
ments, context-awareness, uncertainty, adaptivity, distributed
nature – it seems beneficial to discuss the application of Soft-
ware Engineering practices from the field of more established
SASs community in IoT. The link between SASs and IoT
has also been inserted in the research roadmap by Verme-
san et al. [9], who mentioned the need for “distributed self-
adaptive software for self-optimization, self-configuration,
self-healing”. Hence, our work comes to enable and support
IoT systems’ engineering through design patterns already
successfully applied for SASs. Currently, there are available
several design patterns for SASs, some of them having over-
lapping parts, some providing alternative solutions. There-
fore, it is not trivial for non-experts of SASs to have an
overview of these patterns and choose the appropriate one for
the system under development. A taxonomy of design pat-
terns for SASs would be extremely useful because it would
generate awareness of their existence in suitable application
domains as IoT or CPS, and it would provide an overview
of these design patterns. Implicitly, the application of design
patterns would improve the quality of the systems and their
understanding. To the best of our knowledge, there is no such
taxonomy available for self-adaptive specific design patterns.

Based on our experience [10], [11] on design patterns [12],
[13] and SASs [4], [14]–[16], in this paper we analyze design
patterns for SASs under the lenses of their applicability for
IoT systems given the commonalities that both share. Our
contributions are threefold:

• Literature Review: We do an exhaustive literature re-
view to identify design patterns for SASs.

• Taxonomy: We classify the patterns according to their
development purpose.

• Application: We discuss the potential application of
those patterns in IoT systems.

The remainder is structured as follows: Next, we de-
scribe related work (Section III). Then, we describe our
research methodology (Section IV) as well as our derived
taxonomy (Section V). After, we show its application in an

Industrial IoT (IIoT) use case (Section VI) and discuss the
threats to validity (Section VII). Finally, we conclude the
paper with a summary and future work (Section VIII).

II. SELF-ADAPTIVE SYSTEMS IN A NUTSHELL
There is no unique and precise definition of SASs in the sci-
entific literature [4], [17]. Several definitions that outline var-
ious facets of SAS have been proposed. For example, Garlan
et al. mentioned that architectural adaptation focuses on the
changes made at run-time in the structure of the components
of a system and/or in the interactions among them by using an
architectural model of a system [18]. McKinley et al. outline
that compositional adaptation regards the modifications of a
software’s structure and behavior made at run-time due to the
changes that occurred in its execution environment. This is
achieved by exchanging structural and behavior components
among them in order to enable software to fit better to its
current environment [19]. Bastide et al. focus on structural
adaptation of a software component that consists of updating
its structure while preserving its behavior and services [20].
While behavioral adaptation focuses on the changes made
dynamically in the execution of software components in a
non intrusive way (e.g., by changing its configuration or by
intercepting its requests and replies) as sustained by Gorton
et al. [21]. Content adaptation is defined through the trans-
formation and manipulation of contents (e.g., images, audio,
video, text) based on the application’s features or device
requiring them [22]. While service adaptation is translated
into content as well as a behavioral adaptation [23]. In [4],
we add the relevance to explicitly include context-adaptation
through the SAS into the reasoning process for adaptation in
addition to monitoring the context as a trigger for adaptation.

All these definitions have in common three main char-
acteristics: (1) adaptivity is requested by changes occurred
internally inside a system and/or externally in its execution
environment; (2) adaptivity consists in changes performed
by the system itself in its execution environment, and (3)
adaptivity is performed at run-time [15], [24], [25]. Recently,
Danny Weyns introduced two basic principles [17] which
determine what a SAS is:

• The external principle: a SAS can handle changes and
uncertainties in its environment, the system itself, and
its goals autonomously (i.e., without or with minimal
human interference).

• The internal principle: a SAS comprises implicitly or
explicitly two distinct parts: the first part (see Figure 1
- the Managed System) interacts with the environment
and is responsible for the domain concerns (i.e., its func-
tionality); the second part (see Figure 1 - the Managing
System) interacts with the first part (and monitors its
environment) and is responsible for the adaptation.

The managed part of a SAS provides the functionality, i.e.,
the system’s services to its stakeholders. Examples are the
self-driving vehicle or manufacturing systems. The managing
part implements the self-adaptive mechanisms. This part
should implement implicitly or explicitly four main steps [5]:

2 VOLUME 4, 2016



Krupitzer et al.: An Overview of Design Patterns for Self-Adaptive Systems in the Context of the Internet of Things

FIGURE 1. A conceptual model of a SAS.

• monitor the environment and the system itself;
• analyze the information gathered during the monitoring;
• plan changes if the results of the analyze step indicate a

need for adaptation;
• execute the planned changes.
These four steps (also called MAPE or MAPE control

feedback loop) may share and/or exploit the knowledge
(becoming MAPE-K) built from the monitored environment,
the analyzed information, the planned changes, and the result
of the execution of the changes. . This knowledge may
grow in time being enriched with new information about the
environment and the applied adaptations.

Engineering the managed part of SAS is a challenging
task, especially to the gap between design time and run-
time [26]. As SAS operate in highly uncertain and dynamic
environments, the set of requirements for those systems are
often incomplete or even unknown at design time. Accord-
ingly, those systems have to engineer themselves through
adaptation at runtime. Therefore, each of the four steps of
the MAPE loop may require a more or less complex sub-
system to be engineered. Various approaches and solutions
to design and implement these steps to improve the SAS’
performance and avoid introducing significant overheads in
the interaction of the two parts of a SAS have been proposed.
In this context, design patterns for SAS aim to capture the
successfully applied solutions for each of these steps, as well
as for the coordination, interaction, and management of the
various parts of a SAS. While MAPE-K may be considered
an architectural pattern because it deals with the structure and
interaction of the main elements of a SAS managing part,
design patterns have a more narrow scope focusing on the
engineering of the MAPE-K steps (or parts of them). Their
role is determinant because they can be seen as the building
blocks of the MAPE-K loop. Therefore, in this paper we fo-
cus our attention on the design patterns defined in the context
of SAS, which may be adopted, adapted, and applied for IoT.
As both categories of systems — IoT and SAS — operate
in dynamic environments leading to uncertainty, both require
integrating context-awareness and adaptivity. Accordingly, it
seems beneficial to discuss applying principles for adaptivity

from the field of the more established SASs community in
IoT. In this context, design patterns facilitate the interplay
between the managing system as control logic and support
the distributed nature of IoT systems and can support devel-
opers of IoT systems.

III. RELATED WORK
This section presents related work in the context of this
paper, i.e., overviews on design patterns for adaptive sys-
tems / IoT as well as specific definitions of patterns. The
relevant literature can be grouped into (i) design patterns for
SASs, (ii) design patterns related to IoT systems, as well
as (iii) software engineering for IoT. Before presenting this
related work, we briefly describe what design patterns are and
which are their main objectives.

Design Patterns. Designing software is not easy; design-
ing good, i.e., qualitative, software is even more challenging.
Design patterns are descriptions of communicating entities
that are customized and adapted to solve a general design
problem in a particular context [27]. The main objective of
design patterns is to capture design experience and simplify
reuse: developers create new software solutions based on pre-
vious experience and on previous successful designs through
patterns. Hence, patterns make software flexible, elegant, and
reusable. Developers aware and familiar with design patterns
may apply them to design problems without having to re-
discover them. Patterns are knowledge about design issues
and related solutions. Therefore, in this paper, we provide an
overview of design patterns successfully applied for SASs
that can be adopted in the context of IoT. There are various
types of patterns for software design: architectural, design,
and idioms. Architectural patterns concern the design of
software architectures and have a broader scope than design
patterns. Examples of architectural patterns include client-
server or model-view-controller. Idioms concern program-
ming languages and have a more narrow scope than design
patterns. Examples of idioms for Java include good practices
of using the equals() or compareTo() methods.

Design patterns for SASs. Puviani et al. [28] propose
a taxonomy of self-adaptation patterns based on various
composition mechanisms focusing on architectural patterns
rather than design patterns. The authors base their taxon-
omy on service components and component ensembles to
derive architectural patterns supporting self-adaptation. Juz-
iuk et al. [29] present a literature review focusing on design
patterns for multi-agent systems. The authors conclude that
there is a lack of (i) a standard design pattern description tem-
plate hampering the use of design patterns amongst system
designers and (ii) the description of associations between pat-
terns. However, design patterns for multi-agent systems are
applied in several applications. Musil et al. [30] propose new
design patterns capturing best practices for self-adaptation in
CPSs. Giese et al. [31] describe several architectural patterns
that describe reflection in self-aware computing systems.
Whereas the former approaches target system domains close
to SASs, Ramirez et al. [32] identified twelve design patterns

VOLUME 4, 2016 3



Krupitzer et al.: An Overview of Design Patterns for Self-Adaptive Systems in the Context of the Internet of Things

which concern the main steps of the MAPE-K control loop.
These patterns are grouped into three categories: monitoring,
decision making, and reconfiguration. Their work integrates
structures that the authors may not describe as patterns. Ad-
ditionally, due to their distributed nature, researchers study
decentralized control structures in the field of SASs. One
prominent example of decentralized self-adaptation is pre-
sented by Weyns et al. [33]. They propose a reference model
for decentralized self-adaptation. However, they do not focus
on the definition of design patterns for self-adaptation.

Design patterns for IoT. IoT is a paradigm with a sig-
nificant number of design patterns adopted from various
research fields. In the following, we provide an overview of
the IoT focused design patterns. Inspired by the agent-based
modeling, Jung et al. [34] introduce three design patterns
to address the heterogeneity of the IoT devices. The three
patterns are described in an informal and unstructured way.
Inspired by Edge Computing, Qanbari et al. [35] introduce
four design patterns for IoT concerning the configuration
and implementation of applications. They describe each of
these four patterns by indicating their name, the problem
they address, the appropriate context of the application, the
motivations (i.e., use case scenarios), and the solution details
with a sketch, i.e., the results of the pattern application. Vega-
Barbas et al. [36] focus on the human-related aspects of IoT
in smart spaces and define five interaction patterns that aim to
capture the “good manners” of user interaction in IoT. Sithole
and Marchall [37] present an exciting work on the attributes
extraction for a fine-grained description and differentiation
of the IoT patterns. This approach aims to provide an insight
into IoT patterns with the objective to quickly and efficiently
differentiate them based on various aspects. The authors
mention that they have considered 109 IoT patterns (33 from
informal Web pages1, the others from peer-reviewed and
published articles). However, no details on these patterns are
provided. Rahman et al. [38] propose a generic definition of
an IoT pattern together with its formal specification based
on the modeling concepts and relations. The authors focus
on the managerial conflicts of applying a pattern derived
from two types of managerial control, i.e., data control and
behavioral control. Reinfurt et al. [39] extracted eight IoT
design patterns from a large number of IoT solutions. They
sustain that these patterns help in understanding the code
design principles for developing IoT solutions. The same
authors have proposed six security patterns for IoT in [40]
and six device energy patterns in [41]. Cruz and Abreu [42]
summarize 22 patterns for energy efficiency in mobile ap-
plications. The authors argue that these patterns may be
of relevance for domains such as IoT and CPS. Pape and
Rannenberg [43] show how seven available privacy patterns
may be applied to IoT/cloud computing/fog applications by
using a smart vehicle case study. The authors underline
that the choice of the privacy patterns is use case driven.

1e.g., https://community.arm.com/iot/b/blog/posts/design-patterns-for-
an-internet-of-things

Summarizing, the cited papers concerning design patterns for
IoT neither address adaptivity nor describe design patterns
for self-adaptation.

Software Engineering for IoT. There are some significant
surveys and overviews concerning software engineering for
IoT. Weyrich and Ebert [44] underline the available reference
architectures and their evolution in industry and academia.
Bader et al. [45] classify the reference frameworks in IIoT
and discuss their concerns. Sethi and Sarangi [46] provide
a survey on methods, protocols, and applications in IoT.
They propose a taxonomy for research in IoT technologies
based on the architectural elements: sensors, communication,
middleware, and applications. Di Martino et al. [47] review
the most commonly used architectural solutions, both stan-
dardized and commercial, for IoT systems by focusing on
security and interoperability. Mocrii et al. [48] address the
main technologies, components for communication as well
as privacy and security issues for IoT-based smart homes.
However, none of those surveys focus on design patterns.

Industrial IoT. One technological domain within the IoT
context that heavily benefits from adaptiveness is the In-
dustrial IoT (IIoT), i.e., smart manufacturing systems, or
Industry 4.0, respectively. For those smart manufacturing
machines, adaptiveness is a key aspect to achieve the system
goals, especially, to enable the production of individual-
ized goods. Several surveys exist in the field (e.g., [49]–
[51]). Those surveys mainly target relevant technologies,
architectural models, process models, or research challenges.
Caesar et al. [52] discusses research challenges related to the
adaptiveness of systems required in the IIoT. Cha et al. [53]
analyses and compares meta-model for model-based smart
production systems. In [54], the authors present an archi-
tecture for event-driven manufacturing information systems
following the Industry 4.0 vision. Most closely to our work,
Bloom et al. [55] presents design patterns for IIoT. They
identified six design patterns that subsume the architecture
and data flow in IIoT applications. However, to the best of
the authors’ knowledge, there does not exist design patterns
for IIoT systems that focus on the support of adaptiveness.

Delineation. Generally, literature does not provide a lit-
erature review on design patterns for SASs. Moreover, none
of the other studies do a large-scale search and comparison of
such patterns with the objective of a structured representation
of the state of the art. If so, than the authors mainly focus on
centralized design patterns or the use of the design patterns
provided by Gamma et al. [27], however, on a limited scope.
This paper tries to close this gap and contributes to the exist-
ing body of research on design patterns for (self-)adaptive
systems with a taxonomy on design patterns, focusing on
(but not limited to) decentralized control in SASs which is
highly relevant in the context of IoT as those systems are
by definition composed of many distributed resources that
have to cooperate and adapt. On the other hand, we outlined
design patterns that come from various IoT-related research
areas such as edge computing, agent-based systems, and
human-machine interaction. Consequently, in this paper we

4 VOLUME 4, 2016



Krupitzer et al.: An Overview of Design Patterns for Self-Adaptive Systems in the Context of the Internet of Things

Forward and 

backward 

search  (10)

24 relevant 

papers

Extract 

design pattern

Categorize design

patterns

Add to 

the taxonomy

Search Process
Iterative Extraction 

of Design Patterns

Transformation in 

Taxonomy

Papers not 

suitable (82)

96 papers retrieved 

through method

FIGURE 2. Process of literature identification, pattern extraction, and creation of the taxonomy.

review design patterns that support the adaptivity of SASs
for supporting the IoT.

IV. RESEARCH METHODOLOGY
We derived our taxonomy following a systematic literature
review process [56], [57]. Figure 2 shows a flow diagram of
the whole literature selection process. The main search terms
used for the initial paper screening process were:

• design pattern(s) AND self-adaptive system(s),
• design pattern(s) AND adaptive system(s),
• pattern(s) AND self-adaptive system(s), and
• pattern(s) AND adaptive system(s).

We included Google Scholar, IEEEXplore, ACM Digital
Library, the Web of Science, ScienceDirect, and EBSCOhost
as sources. At the first stage, we identified 96 papers po-
tentially relevant for the topic of SASs design patterns after
screening their title and abstracts. We intent here as design
pattern any description of communicating entities that may
be customized to solve a self-adaptive related design problem
in a particular context. Through an analysis of the abstracts as
well as the introduction sections of the papers, we identified
the papers that are directly connected to design patterns for
SASs. We explicitly exclude papers which present design
patterns in a general context and rather included only design
patterns in the context of (self-)adaptive systems as those
systems have special characteristics (e.g., uncertainty in the
system and the environment or incomplete defined set of
requirements as the runtime environment is not known a
priori). To ensure the applicability of design patterns in the
context of adaptivity, we excluded all papers focusing on
design patterns only or SASs in general from the review.
Therefore, a remaining set of 14 papers was used as a basis
for further review and search. Additionally, we performed a
“go backward” and “go forward” search strategy as intro-
duced by Webster & Watson [57] to identify further relevant
papers. This strategy improves the coverage of the significant
literature “by reviewing the citations of the articles identified
[and finding] articles citing the key articles identified” [57,

p. xvi] and helped to identify relevant works from close
research domains. With this step of the literature research, we
included ten additional papers. Consequently, we extracted
design patterns from 24 papers.

The approach to develop our taxonomy on design patterns
covers four steps. First, we compared the extracted papers
using dimensions, such as whether the design patterns were
based on SASs or other related concepts, whether the authors
introduced a single pattern or composition of patterns, or the
issue addressed by the patterns. Additionally, we extracted
the relevant design patterns from the identified papers. Sec-
ond, after identifying different dimensions for comparison
and categorization of design patterns, we categorized the
patterns along the dimensions. Last, we derived the dimen-
sions for our taxonomy and the relevant properties for the
analysis of the design patterns by iteratively refining its focus.
In this step, we focus on design patterns for decentralized
coordination that can be applied in IoT as IoT systems, by
definition, are connected, distributed systems.

V. TAXONOMY ON DESIGN PATTERNS FOR
DECENTRALIZED SELF-ADAPTIVE SYSTEMS
This section presents the taxonomy of design patterns for
SASs. The literature research returned 24 relevant papers.
We included papers that present the application of design
patterns in a SAS. After carefully studying those papers, we
added 55 design patterns out of 11 papers to the taxonomy.

The other papers provided related patterns that, for ex-
ample, miss a systematic description or have only been
applied in specific systems, and hence, we did not include
them in the taxonomy. The design patterns included in the
taxonomy are not only covering SASs, but also highly related
domains, such as (self-organizing) multi-agent systems, self-
organizing emergent systems, dynamically adaptive systems,
self-adaptive real-time embedded (RTE) systems, and CPSs.
Those patterns of related domains are included since they
provide solutions that can be applied in IoT. The catego-

VOLUME 4, 2016 5



Krupitzer et al.: An Overview of Design Patterns for Self-Adaptive Systems in the Context of the Internet of Things

rization of design patterns within the taxonomy is based on
the functionality that patterns support. Throughout the de-
velopment of the taxonomy, the scope was further narrowed
down to cover SASs design patterns and to integrate the
aspect of decentralized control which is highly important for
IoT systems. Subsequently, based on the functionality of the
managing system, the taxonomy (see Figure 3) includes the
following categories: the monitor, analyze, plan, and execute
categories provide the basic functionality of an adaptation
logic as described by the MAPE-K loop [5] and similar
feedback control structures [6]–[8], [58]. As the MAPE
functionality is often implemented in dedicated modules, we
focus on a separate analysis of the patterns. Additionally,
orthogonal to those functionalities, we add the categories
component structure and interaction, shared knowledge man-
agement, and coordination to reflect the distributed nature
of IoT systems. Those aspects support the implementation
of the MAPE functionalities. The following subsections pro-
vide the relevant design patterns categorized along with the
mentioned MAPE functionality as well as the orthogonal
aspects. For each category, we provide a short discussion
of the relevant design patterns. Within those discussions,
we describe overlapping descriptions, similarities, as well as
differences in the design patterns.

A. CATEGORY 1: MONITOR
This category includes the design patterns associated with the
monitoring step of the MAPE-K control loop [5].

The SAS Monitor design pattern aims to establish all the
necessary components for the monitoring activity of the
Monitor, Analyze, Plan, Execute, Knowledge (MAPE-K)
control loop [59]. It decides which properties to monitor
in order to detect possible violations that might trigger the
adaptation process. The structural and behavioral views of
the design pattern are illustrated with UML diagrams.

The RTE Monitor design pattern introduced by Said
et al. [60] is used in the development of a self-adaptive
RTE system to support the detection of an irregular RTE
system status that resulted from the fluctuations in the inter-
nal and external context elements. The pattern enables the
observation and monitoring of the system status and context
properties. Said et al. provide a structural and behavioral
view of the pattern, including class and sequence diagrams.

Iglesia & Weyns [61] describe a Monitor Behavior Tem-
plate that guides through the main monitoring activities:
trigger the monitoring step, collect data through sensors,
preprocess gathered data whenever possible, update working
data, and inform the analyzing step. The Monitor Behavior
Template is not specified using a pattern description; it is
illustrated via multiple state chart diagrams.

Comparison: The two patterns SAS Monitor [59] and
RTE Monitor [60] are almost identical: each is composed
of 8 classes, 5 of them having identical names and identical
semantics. The difference between the two patterns consists
of the use of the GoF Observer design pattern. SAS Mon-
itor monitors the significant context variables, while RTE

Monitor explicitly addresses hardware- and software-specific
sensors. Monitor Behaviour Template [61] models the be-
havioral aspects of the monitoring step. It is very similar to
the behavior captured by the UML sequence diagrams of the
SAS Monitor and RTE Monitor patterns. The main difference
between this template and the previously mentioned two
patterns consists in the addition of the data preprocessing
activity. To summarize, these three patterns may be consid-
ered as variants (according to [2], [13]) of the same design
pattern.

B. CATEGORY 2: ANALYZE
This category presents design patterns associated with ana-
lyzing. Those design patterns focus on evaluating the system
state and its context to determine adaptation needs.

The SAS Analyze design pattern [59] is utilized to analyze
previously collected data in order to identify if an adaptation
is required. The pattern integrates a symptom-based analysis
and aggregation of those symptoms to situations. Also, this
pattern uses two observers to interact with the classes of
the monitoring and planning steps of the MAPE-K loop.
The structural and behavioral views of the design pattern are
illustrated with UML class and sequence diagrams.

The RTE Analyzer design pattern [60] focuses on the sys-
tem’s stability by keeping the number of adaptation requests
low. The pattern consists of the Analyzer for verifying sys-
tem constraints and generating adaptation requests, while an
AdaptationRequest captures the analysis results. The authors
propose a class diagram for the structural view as well as a
UML sequence diagram showing the behavior.

Analyze Behavior Template compares the required re-
sources to the used ones [61]. The analysis component’s
behavior from the MAPE-K loop has three primary states
(over satisfied, satisfied, and unsatisfied) that cover the essen-
tial steps of triggering the analysis, processing the analysis,
and indicating related plan behavior(s). The Analyze Behav-
ior Template is illustrated via multiple state chart diagrams
showing possible actions that can be performed.

The Adaptation Detector design pattern [62] determines
when a reconfiguration of the system is required by retrieving
and analyzing the provided sensor data. A HealthIndicator
class captures if an adaptation is required based on the
Observer classes’ feedback that interprets the sensor data.
The pattern also includes a Trigger class to indicate the cause
for adaptation. Ramirez specifies the design pattern through
a UML class diagram for the structural view and a UML
sequence diagram for the behavioral view.

Comparison: The two patterns SAS Analyzer [59] and
RTE Analyzer [60] are both composed of 2 core classes:
Analyzer and AdaptationRequest. However, the SAS Analyzer
models the symptoms explicitly as a unit of analysis, provides
a repository with symptom descriptions, and includes links
to the adjacent MAPE-K steps using the Observer pattern.
. Analyze Behaviour Template [61] indicates the behavioral
aspects of the analyzing step. It is very similar to the be-
havior captured by the UML sequence diagrams of the SAS

6 VOLUME 4, 2016



Krupitzer et al.: An Overview of Design Patterns for Self-Adaptive Systems in the Context of the Internet of Things

FIGURE 3. The identified design patterns for self-adaptive systems.

Analyzer and RTE Analyzer patterns. To summarize, these
three patterns may be considered as variants for analysis. The
fourth pattern, Adaptation Detector [62], includes classes
specific to the monitoring (Sensor and Threshold) and to the
planning (Trigger); hence, it has a broader scope than the
other patterns.

C. CATEGORY 3: PLAN
Based on the analysis, if adaptation is required, the planning
step includes a decision-making mechanism to plan adap-
tations. Accordingly, this category presents design patterns
associated with the planning step of the MAPE-K loop [5].

The SAS Plan design pattern [59] specifies the neces-
sary adaptation actions as well as the execution order by
integrating a policy engine. In addition, this pattern uses
two Observers to interact with the classes of the MAPE-
K loop’s monitoring and planning steps. The structural and
behavioral views of the design pattern are illustrated using
UML diagrams.

The RTE DecisionMaker [60] generates the adaptation
decision that best fits the adaptation triggers and offers a com-
ponent for handling the configurations of adaptable elements.
The behavior is provided as a UML sequence diagram, while
the structure is shown as a UML class diagram.

The Plan Behavior Template focuses on adaptations for
adding resources or releasing resources [61]. The pattern is
not specified using a pattern description format, rather it is

illustrated via multiple state chart diagrams showing possible
actions that can be performed on system states.

Ramirez [62] proposed several design patterns to support
the planning of adaptation. In order to decide how to adapt
the system, the Case-based Reasoning design pattern applies
rule-based decision making, which can be applied for simple
adaptations. The Divide and Conquer design pattern aims
at systematically breaking down complex adaptation plans
into reconfiguration plans that are easier to execute. This
pattern is particularly useful if various reconfiguration plans
have to be combined or if distributed components share
dependencies along with a reconfiguration plan. Following an
architecture-based approach, the Architecture-based design
pattern supports the selection of reconfiguration plans when
they are estimated to change frequently. This pattern manages
the architectural model’s evolution from a current state to a
possible future reconfigured target state. Last, the TradeOff-
based design pattern chooses the plan which balances the
best various objectives. As stated by the authors, the pattern
is particularly useful if the reconfiguration requirements are
satisfied by numerous reconfiguration plans and, hence, mul-
tiple dimensions need to be considered. All design patterns
introduced are specified by class and sequence diagrams.

Fernandez-Marquez et al. [63] define natural-inspired de-
sign patterns. Three of them can be assigned to the plan
category: Gossip, Quorum sensing, and Morphogenesis. Gos-
sip aims at reaching a shared agreement about parameter

VOLUME 4, 2016 7



Krupitzer et al.: An Overview of Design Patterns for Self-Adaptive Systems in the Context of the Internet of Things

values by spreading information to neighboring agents that
aggregate this information with local information to reach an
agreement. Quorum sensing estimates the density of agents
which solely rely on local interactions as in cases where the
number of agents collaborating on a specific task needs to be
kept to a certain minimum, the density of agents is of high
importance. Finally, Morphogenesis intends to choose differ-
ent agent behaviors based on the agent’s position. All design
patterns are described with flow and interaction diagrams.

Comparison: We identified 10 design patterns for the
planning step. SAS Plan [59] and RTE DecisionMaker [60]
have a similar structure and behavior: they consist of a
coordination class, a reasoning class, and an adaptation plan.
However, both differ in decision making and apply a rule-
based approach and a configuration-based approach, respec-
tively. Plan Behaviour Template [61] indicates the behavioral
aspects of the planning step, being very similar to the be-
havior captured by the UML sequence diagrams of SAS Plan
and RTE DecisionMaker. Case-based Reasoning [62] can be
considered as a more detailed variant of the SAS Plan pattern.
The other six design patterns (from [62] and [63]) differ
among them and have minimal commonalities with the four
discussed patterns.

D. CATEGORY 4: EXECUTE
This category comprises design patterns associated with the
execution step of the MAPE-K loop, responsible for im-
plementing pre-defined adaptation actions. The SAS Execute
design pattern [59] modifies system parameters or compo-
nents through effectors and traces the performed adaptation
actions. Its components are connected to the planning com-
ponents using the Observer design pattern. The structural and
behavioral views of the design pattern are illustrated with
UML class and sequence diagrams.

Said et al. [60] present two patterns for executing of
adaptations: RTE Actor and RTE Assessor. RTE Actor maps
the described adaptation action from the received adaptation
plan to components and controls adaptation. RTE Assessor
supports cost-efficient adaptations by determining the neces-
sary quality of service level through the evaluation and ad-
justment of the control loop based on the results of statistical
analysis and estimations as well as parameter tuning. Both
design patterns specify the structural view with a UML class
diagram and the behavioral view with a sequence diagram.

Execute Behavior Template splits the execution of adap-
tation actions in pre-preparation (e.g., locking a resource),
execution (e.g., performing adaptation), and post-execution
(e.g., unlocking resources). The design pattern is not speci-
fied using a pattern description format, rather it is illustrated
by exemplary state chart diagrams [61].

Ramirez [62] also define design patterns concerning the
execution. The Decentralized Reconfiguration design pattern
supports the component insertion and removal process of
components from a decentralized architecture at runtime. The
Server Reconfiguration design pattern provides a behavioral
template for specifying a server-client architecture’s recon-

figuration without having to shut down the server. The Com-
ponent Removal design pattern supports the safe removal
process of a component at runtime whereas the Component
Insertion design pattern is responsible for safely inserting and
initializing components during runtime. Both design patterns
require the available interfaces to enable the components to
move to different behavioral states. Ramirez specifies the
patterns using class and sequence diagrams.

Comparison: The SAS Execute [59] pattern is the simplest
one being composed of an executor and effectors. RTE Ac-
tor [60] adds adaptation plans and adaptation actions. It can
be combined with the RTE Assessor pattern [60], which aims
at cost-efficient adaptation. Execute Behaviors Template [61]
specifies a pre and a post activity for an adaptation. The
design patterns proposed by Ramirez [62] add functionality
for adding or removing architectural components at runtime.

E. CATEGORY 5: COMPONENT STRUCTURE AND
INTERACTION

SASs are often systems-of-systems; hence, they are dis-
tributed. This is also related to decision making. As IoT
systems are distributed by nature, decentralized decision
making is an important aspect. Accordingly, this category
introduces design patterns that deal with such decentralized
decision settings and the corresponding interaction between
different components. We focus here on distributing the
adaptation logic functionality to the different components of
the decentralized adaptation logic.

Based on discussions on a Dagstuhl seminar, Weyns et al.
introduce five design patterns [64]2 for decentralized control
focusing on the distribution of decision making components
and its interaction. The Information Sharing and the Coordi-
nated Control patterns support local decision making; how-
ever, in both patterns, data is exchanged for coordination in
the monitoring functionality or all MAPE-K functionalities,
respectively. Contrary, the other design patterns introduced
by Weyns et al. apply a hybrid model with partly central-
ized decision making. Master-Slave creates a hierarchical
structure between interacting components where one master
component controls the analyze and plan activities of the
MAPE-K control loop. Monitoring and execution of adap-
tation decisions remain on the local instances. The Regional
Planning pattern aggregates the planning functionality into
regional planners. In this setting, each region has its own
regional planner component. Furthermore, regional planners
can collaborate across regions. Finally, Hierarchical Control
separates concerns of MAPE-K control loops into differ-
ent layers. While the top layer deals with the overarching
adaptation goals of the system, the intermediate layers focus
on the lower adaptation layers. Weyns et al. combine a

2In this work, we integrated those patterns and refer to them as design
patterns as those patterns also provide a template for designing the decision
logic which is the relevant aspect for this work. However, it should be
mentioned that in the original publication [64], the authors do not refer to
them as design patterns.

8 VOLUME 4, 2016



Krupitzer et al.: An Overview of Design Patterns for Self-Adaptive Systems in the Context of the Internet of Things

standard pattern description format with structural diagrams
for describing their design patterns.

Three of the twelve design patterns introduced by
Ramirez [62] deal with component structure and interac-
tion: Sensor-Factory, Reflective Monitoring, and Content-
based Routing. Sensor-Factory is responsible for probing
distributed components by deploying software sensors in a
network. Reflective Monitoring supports mechanisms that
enable the observation of a component’s internal state. Fur-
thermore, the proposed mechanisms allow altering the mon-
itoring scheme dynamically. Content-based Routing aims
at routing messages within a distributed monitoring setting
according to the message’s content. Ramirez specifies the
design patterns by using structural UML diagrams and se-
quence diagrams.

Musil et al. propose three design patterns for self-
adaptation, focusing on CPSs: Synthesize-Utilize, Synthesize-
Command, and Collect-Organize [30]. Precisely, these multi-
adaptation patterns capture information on the used adapta-
tion mechanism, the interactions between those mechanisms
across layers, and a definition of layers (i.e., physical, proxy,
communication, service middleware, application, and social
layer). Synthesize-Utilize provides an abstraction for includ-
ing context information of physical resources. Synthesize-
Command implements adaptation mechanisms based on the
MAPE-K control loop for managing the physical resource(s).
Collect-Organize consists of an adaptive algorithm, au-
tonomous entities, and self-organizing mechanisms for effi-
cient information sharing and local task coordination. Musil
et al. describe their patterns using a pattern description and
workflow diagrams.

Comparison: 5) Component Structure and Interaction.
The five design patterns introduced by Weyns et al. [64]
focus on the structure and interaction among several MAPE-
K control loops, which may operate in parallel to man-
age self-adaptation. Two of them, i.e., Coordinated Control
and Information Sharing, provide a decentralized approach,
while the other three are hybrid. The patterns proposed by
Musil et al. [30] aim to improve the utility of the services
of distributed applications using MAPE-K control loops by
exploiting context information. While the patterns proposed
by Weyns et al. and Musil et al. have a global view on
the self-adaptive mechanisms (i.e., MAPE-K control loop
level), Ramirez et al. [62] focus on patterns which concern
a single task of the MAPE-K functionalities, for example,
Sensor Factory and Reflective Monitoring for the first step
of the adaptation mechanism. Important in the context of
component interaction, especially for IoT systems, are the
aspects of security and data privacy. However, the studied
patterns do not focus on those aspects. An extensive analysis
of security and privacy aspects requires an implementation of
the design patterns in real systems. Such an analysis is out of
the scope of this paper and part of future work.

F. CATEGORY 6: COORDINATION
Whereas the previous category focuses on a distributed
adaptation logic’s structural aspects, this category captures
distributed decision-making with global behavioral guaran-
tees requires efficient coordination mechanisms. This is a
procedural view of the distributed decision-making.

The Collective Sort for MAS design pattern proposed by
Gardelli et al. [65] deals with the collective clustering of
information to decrease the overhead in information repos-
itories. The authors describe their pattern in a tabular de-
scription format. Another Collective Sort design pattern was
proposed by Snyder et al. [66]. This pattern tackles the
problem of scattered data or entities within a system by using
heuristics for constantly collecting similar elements and form
them into clusters. The authors describe their design pattern
using a standard pattern description format.

The Repulsion, Digital Pheromone, Chemotaxis, and
Flocking design patterns proposed by Fernandez-Marquez et
al. [63] support coordination. Repulsion describes the basic
process for motion coordination in a large agent-based sys-
tem and enables agents to modify the position in response
to changes in the environment. Digital Pheromone describes
a swarm coordination mechanism that uses indirect commu-
nication based on gradients created by digital pheromones.
Chemotaxis focuses on decentralized motion coordination
and addresses the problem of discovering specific sources of
events. Flocking deals with swarm formation by providing
rules that specify how groups of agents move in the environ-
ment and also maintaining the connections between agents.
The authors describe their design patterns with flow and in-
teraction diagrams that show agent behavior and interactions.

The Gradient Field pattern supports coordination inspired
by physical and biological processes [67]. Within a gradi-
ent field, different agents observe numerous gradient parts
of neighboring locations and can move to those locations
following the gradient field-specific wave format. The design
pattern is outlined by textual specifications and in UML.

Kasinger et al. [68] present the Digital Infochemical Co-
ordination pattern for the coordination of self-organizing
emergent systems based on infochemical coordination. It is
specified following a standard pattern description format and
providing a conceptual model as a UML class diagram.

Comparison: The Collective Sort design pattern proposed
by Snyder et al. [66] is a generalization of the Collective
Sort for MAS design pattern proposed by Gardelli et al. [65].
Snyder et al. extend the initial definition of the pattern (which
assumes that active agents relocate inactive data items) also
to cases where agents themselves may represent entities to
be grouped or where different environmental abstractions
may be used. Two of the design patterns proposed [63]
have no similarities to other patterns (i.e., Repulsion and
Flocking); Digital Pheromone may be compared to Digital
Infochemical Coordination proposed by Kasinger et al. [68].
Chemotaxis [63] is an extension of the Gradient [63] pattern,
and it can be compared to the Gradient Fields [67].

VOLUME 4, 2016 9



Krupitzer et al.: An Overview of Design Patterns for Self-Adaptive Systems in the Context of the Internet of Things

G. CATEGORY 7: KNOWLEDGE MANAGEMENT
As a third category orthogonal to the MAPE functionality,
this category comprises design patterns that cover infor-
mation and knowledge management to support the shared
knowledge management in distributed systems.

Fernandez-Marquez et al. [63] propose the Aggregation,
Evaporation, and Spreading design patterns. Aggregation de-
scribes the process of information fusion by locally applying
a fusion operator, such as filtering or merging. Evaporation
describes a mechanism to prioritize more recent and rele-
vant information from older, potentially outdated informa-
tion. Spreading deals with information diffusion within the
system, focusing on direct communication between system
parts in order to increase the global knowledge of all system
parts. In addition to those basic design patterns, Fernandez-
Marquez et al. propose the Gradient pattern as a composi-
tion of the Aggregation and Spreading patterns. The authors
describe their design patterns using flow and interaction
diagrams.

Gardelli et al. [65] propose the Aggregation, Replication,
Evaporation, and Diffusion3 design patterns. Aggregation for
MAS aims at aggregating information in order to achieve
coherent global views. Replication for MAS tries to lower
access time to information and increase robustness by repli-
cating. Evaporation for MAS addresses the problem of in-
formation flooding in large systems by environmental agents
responsible for erasing obsolete information. Last, Diffusion
for MAS aims at distributing information equally among
all nodes within the system. Gardelli et al. describe their
proposed design patterns in a tabular description format.

Comparison: The design patterns proposed by Fernandez-
Marquezet al. [63], i.e., Aggregation, Evaporation, and
Spreading, represent revised and enhanced versions of the
previously defined Aggregation for MAS, Evaporation for
MAS, and Diffusion for MAS patterns by Gardelli et al. [65].
Hence, the design patterns by Gardelli et al. may be seen as
variants of those defined by Fernandez-Marquez et al. The
Replication for MAS design pattern has not been revisited
by Fernandez-Marquezet al. The Blackboard design pattern
cannot be compared to the above mentioned patterns, having
a different objective and coming from an architectural per-
spective rather than bio-inspired self-organizing systems.

H. FURTHER DESIGN PATTERNS
In the early stages of our research, we identified patterns
that are not relevant for the taxonomy as they either do
not support adaptivity in decentralized system settings or
are not sufficiently described in a structured approach. For
completeness, we mention those patterns in the following.

Taylor et al. proposed several architecture styles for run-
time software adaptation [69]. The two design patterns Re-
active Stigmergy Service Components Ensemble Pattern and
P2P AMs Service Components Ensemble Pattern introduced

3In order to distinguish those patterns from design patterns with the same
name, we attach “for MAS” in the following.

by Puviani et al. [28] support settings with a large number
of components interacting with each other in a frequently
adjusting environment. Gomaa et al. outline patterns for ser-
vice orchestration of service-oriented architectures [70]. The
bio-inspired design patterns introduced by Babaoglu et al.
describe techniques for information diffusion and handling
in dynamic systems [71]. Those architectural styles are not
included in the taxonomy as the authors only provide a high-
level description.

Giese et al. present the Blackboard for data exchange in
self-aware computing systems [31]. However, the authors do
not formally describe the design pattern.

The Market-Based Control design pattern presented by
De Wolf & Holvoet [67] as well as the Specialization design
pattern introduced by Snyder et al. [66] deal with system
optimization. Hence, they propose a system model rather
than a design pattern for coping with specific design topics.

Last, the Centralized Control pattern by Gomaa & Hussein
is not included in the taxonomy due to its focus on centralized
control rather than decentralized coordination [72].

VI. APPLICATION OF THE DESIGN PATTERNS IN THE
INTERNET OF THINGS
The field of IoT provides a large set of application domains,
including smart home/smart buildings [48], smart transporta-
tion [73], smart city [74], IIoT [45], smart health [75], or
smart energy management/smart grid [42]. Systems in those
areas have in common that they can benefit from adaptivity to
autonomously react to changes in their environment. Conse-
quently, system development in those domains could highly
benefit from the presented patterns as they provide a struc-
tured approach to include adaptivity. We outline that there
are already some IoT examples using self-adaptivity and the
MAPE-K loop: DeltaIoT [76] or Feed me [77]. However,
their documentation does not indicate the application of self-
adaptive design patterns, and there are no available tools for
the automated detection of such patterns yet.

In the following, we present the application of the design
patterns within an IIoT / Industry 4.0 use case. Industry
4.0 is a paradigm that fosters the collaboration of smart,
autonomous machines (e.g., industrial robots or self-driving
transport vehicles) with other machines and humans. The
objective is an intelligent production process that offers high
flexibility and results in individualized products. In our IIoT
use case, we focus on the application of smart production
systems, that are connected and can automatically determine
the next production steps as well as organize themselves
in groups of connected Cyber-Physical Production Systems
(CPPSs) accordingly. This can also include the organization
of smart (internal and external) logistics, smart warehousing,
as well as machine learning (e.g., for predictive mainte-
nance). In [78], we present a self-adaptive exemplar for such
coordinating robots: two robots divide a manufacturing task
into subtasks and can re-organize the labor division in case
of malfunctions of a robot. Here, we extend that scenario to
a multi-layer system, including the groups of coordinating

10 VOLUME 4, 2016



Krupitzer et al.: An Overview of Design Patterns for Self-Adaptive Systems in the Context of the Internet of Things

robots, Edge technology to intelligently analyze the robot
coordination as well as Cloud technology for a production
facility spanning view (see Figure 4). This follows the Cloud-
in-the-Loop pattern from [55]. On both levels, Edge and
Cloud, intelligent analysis based on machine learning and
forecasting algorithms support the decision making. This
enables self-adaptation of the production on several levels.

Cloud

Edge

Hardware

Sensors

Com
m

unication

FIGURE 4. Multi-level IIoT system composed of hardware and sensors as
well as Edge/Cloud levels for data analytics to control the lower local level.

As we have a multi-level system approach, the monitor-
ing part is not limited to a single production robot. Mon-
itoring is necessary on all different levels of the system.
Furthermore, for decentralized, local reasoning of the robots
requires information dissemination of the instances within
a layer. Hence, besides supporting the implementation of
local monitoring procedures by the SAS Monitor design
pattern [59], information dissemination across the layers as
well as between instances within a layer can be supported
by the knowledge management patterns, especially by Ag-
gregation, Evaporation, and Spreading [63]. This supports
new types of condition monitoring as demanded for IIoT
applications [79]. The analysis — for example, to determine
the quality of a product, identify the current product, or
identify the wear of machine tools — happens on three lev-
els: local (machine level), regional (Edge level), and global
(Cloud level). Accordingly, this approach combines several
component structure design patterns specified in [64]. On
the one hand, the levels follow the Hierarchical Control
design pattern. This support different types of analysis on
the different levels and especially enables the intelligent, AI-
based analysis of data [80], e.g., online failure prediction
methods [81] for predictive maintenance. On the other hand,
within a group of robots, the decision is made cooperatively;
hence, the Coordinated Control, Master-Slave, or Regional
Planning patterns might suit. The Sensor-Factory as well as
the Content-based Routing design patterns [62] can structure
and organize the information flow in distributed monitoring
settings. In our IIoT use case, those patterns can be imple-
mented using a stream processing systems like Apache Kafka
for data collection as well as data dissemination, the ELK

stack for data handling and analysis, and the MQTT protocol
for pub/sub communication.

Processes have to guarantee efficient and non-conflicting
analysis. Here, the Adaptation Detector design pattern [62]
can support the identification of adaptation triggers. Further,
the SAS Analyzer design pattern [59] supports the implemen-
tation of a multi-level analysis approach by the possibility of
clearly assigning the relevant functionality to the correspond-
ing levels as well as efficient aggregation mechanisms to de-
rive situations from (potentially locally derived) symptoms,
e.g., using the approach for situation-awareness from [82].

Analogously, planning should take place at all different
levels, i.e., the smart factory, the CPPSs as well as company-
wide, hence, between different factories [83]. Planning in
our scenario mainly involves identifying the next production
steps based on the specification of the current product. As
mentioned above, the objective is high flexibility to enable
individualized products and support multiple objectives si-
multaneously [84]. Further, it includes the coordination of the
required production steps between the machines. On the local
level, Case-based Reasoning [62] supported by adaptation
rules might be applied. Further, the Gossip pattern [63]
aims at reaching a shared agreement about parameter values;
hence, can support the decision making in a group of robots.
For multi-level decision making, the use of the Divide and
Conquer pattern [62] can divide the responsibilities and dif-
ferent scopes of decision making across the levels, primarily
as it supports the combination of several reconfiguration
plans. Additionally, the TradeOff-based pattern [62] chooses
the plan which balances several objectives; hence, it helps to
balance trade-off decisions across the levels.

Using the SAS Execute design pattern [59] enables the
description and implementation of clear interfaces and pro-
cess workflows for adaptation. This can support the definition
of required workflows for the smart factory, i.e., intelligent
production processes supported by CPPSs and the required
integration of employees with the smart machines [85].
Hence, those adaptation patterns complement the definition
of production workflows. The process of adaptation can be
supported by the Execute Behavior Template which splits the
execution of adaptation actions in pre-preparation, execution,
and post-execution [61]. This might be especially interesting
in this context as those three phases can be distributed across
the levels. The RTE Actor pattern [60] maps the described
adaptation actions in the adaptation plan to components and
controls their adaptation; hence, this can support the central
decision making on higher layers and efficient dissemination
and execution of the high-level adaptation plans.

Last, several design patterns support the coordination
within the different levels: The Digital Pheromones pat-
tern [63] enables the coordination of the production robots,
the Collective Sort for MAS pattern [65] provides clustering
of information on the Edge and Cloud levels, and the Collec-
tive Sort pattern [66] offers plausibility checks of data. Those
patterns can support the application of evaluation models for
IIoT as proposed in [86].

VOLUME 4, 2016 11



Krupitzer et al.: An Overview of Design Patterns for Self-Adaptive Systems in the Context of the Internet of Things

In summary, the IIoT use case shows the potential of the
design patterns to enable adaptivity in IoT systems on several
levels and targets all of the required MAPE-K functionality
for adaptivity. A measurement of the effects of the design
patterns in a productive system is part of future work.

VII. THREATS TO VALIDITY
To provide an objective and comprehensive overview of the
state of the art, we applied a systematic literature review [57]
combined with forward and backward search. We analyzed
each of the identified papers in detail and extracted the
information about the design patterns by using systematic
information representations. Nonetheless, the results may be
biased due to the manual steps of our methodology. For ex-
ample, as not all design patterns are described in a systematic
approach, the information’s extraction might not always be
entirely consistent. However, we try to minimize the risk of
such effects by carefully discussing doubtful aspects between
the authors. Additionally, the set of keywords used in the
literature review focuses on the area of SASs. Hence, it might
be possible that we miss design patterns from other fields that
could be applied in our context.

In this paper, we focus on SASs that have similar charac-
teristics to IoT systems. Still, this can result in not including
works that do not confirm the search terms. To overcome this,
we apply forward/backward search, to also include papers
that do not comply with the search terms.

We are aware of the fact that the discussion of the design
patterns in Section V does not follow a systematic approach.
On the one hand, this is barely feasible due to the different na-
ture of the patterns as well as the different degrees structured
information provided by the authors. On the other hand, we
reduced the risk of misinterpretation by careful consideration
and the authors’ experience in the areas of design patterns
and SASs. We are aware that patterns must be applied in
the design of a system to see how they can solve design
issues. However, design patterns represent design solutions.
Hence, they may have potentially an infinite number of
implementations, called variants in the software engineering
literature. Still, we plan as future work to investigate some of
the design patterns in real systems to systematically measure
their impact. As mentioned at the beginning of Section VI,
there are already some IoT systems (e.g., DeltaIoT, Feed me)
that explicitly rely on MAPE-K and maybe also on some of
the design patterns presented in this paper. Another future
activity may concern reengineering already available IoT
systems using design patterns and making a comparison.

We focus on the MAPE-K system model [5] for struc-
turing the taxonomy. This seems to be a limitation, as this
is a specific model. However, other authors propose similar
feedback structures, such as, the sense-plan-act control [6],
the autonomic control loop [7], the observer/controller archi-
tecture [8], or based on MIAC/MRAC controllers [58]. All of
those contain the same basic functionality of data collection,
reasoning, and adaptation. Further, the addition of three or-
thogonal dimensions—component structure and interaction,

shared knowledge management, and coordination—reflect
the distributed nature of IoT systems as outlined in many pa-
pers such as [87]–[89] and, hence, improves the compliance
to the target domain. In addition, in this paper we focused on
design patterns; hence other architectural or design mecha-
nisms (e.g., algorithms) have not been discussed.

Another problem might arise due to the fact that different
activities are associated with each MAPE activity. However,
one has to mention that still some aspects are always present
for a specific MAPE activity, as described in the follow-
ing. The design patterns capture and support those activities
without limiting their applicability through a detailed, nar-
row implementation. For example, the SAS Analyze pattern
analyzes the collected data to identify possible issues, i.e.,
“symptoms”; however, it does not mention anything about
how the analysis is performed: there can be applied various
analysis mechanisms ranging from simple comparisons with
a reference value or advanced mechanisms based on machine
learning. This is valid for several other design patterns; it
is the nature of a design pattern to provide not an imple-
mentation solution in a specific programming language but
a generic applicable concept.

Applying the MAPE model provides a split of the pattern’s
functionality so that developers can easily identify possible
patterns for a specific MAPE functionality. Hence, it is a
simplified approach to clustering the patterns. However, as
the orthogonal categories of the taxonomy — component
structure and interaction shared knowledge management,
and coordination — already show the discussion of design
patterns might also require a view that spans across the
single functions. Further, it might be possible the there are
dependencies between patterns, for example, that an analysis
pattern relies on a specific type of data created by a moni-
toring pattern. Hence, the horizontal comparison of patterns
might be reduced by our approach chosen for deriving the
taxonomy. As we want to present in this paper an overview
of patterns, we think that the construction method of the
taxonomy is suitable for our purpose. As already mentioned,
an in-depth analysis of the patterns — including a study of
their dependencies and their applicability of various use cases
— is part of our future work. However, a comprehensive
comparison of all patterns in various use cases seems hardly
feasible to do the high implementation effort.

In this paper, we focus on the application of design patterns
to simplify the development of the managing subsystem’s
functionality. Of course, further relevant aspects for IoT
systems exist that we excluded, especially the security or data
privacy in those systems. The reason for the exclusion of
security and privacy aspects is that these two aspects pose
entirely new challenges to IoT developers and are often in
contrast to commonly applied design patterns. Design deci-
sions for IoT systems take into account the decentralized na-
ture of IoT systems and that they typically consist of battery-
powered and resource-constrained devices. Accordingly, de-
velopers focus on optimizing performance, which is, e.g.,
clearly evident in most commonly used IoT protocols such

12 VOLUME 4, 2016



Krupitzer et al.: An Overview of Design Patterns for Self-Adaptive Systems in the Context of the Internet of Things

as MQTT. These protocols are usually based on the so-called
Pub/Sub architecture, which aims to increase IoT devices’
performance by implementing communication between IoT
devices using additional devices, so-called brokers, which
handle the main communication burden. Thereby security
mechanisms are almost wholly ignored, as it is the case
with MQTT [90]. This is especially crucial, as IoT systems
rely on sensors that potentially gather sensitive data. Since
conventional IoT design decisions were made with regard to
performance, but not security, and IoT systems also place a
whole range of new demands on security and privacy mecha-
nisms, security, and privacy, which are not regarded by well-
established and state-of-the-art patterns [91]. Further, secu-
rity or data privacy is often implementation-specific aspects,
whereas design patterns incorporate design-specific aspects.
Still, for future work, an interesting research question would
be to investigate the influence of security — for example,
based on existing works related to security in IoT (such as
[92]–[95]) — on the analyzed design patterns.

VIII. CONCLUSION AND FUTURE WORK
IoT systems are strongly distributed systems with heteroge-
neous hardware and software resources. Furthermore, those
systems interact with users or backend systems in dynamic
environments. Adaptivity can help to overcome those chal-
lenges. With this work, we contribute to this topic by pro-
viding an overview of design patterns in SASs. We outline
that there are at least two main advantages of applying design
patterns in the engineering of any system: (1) quality achieve-
ment, because design patterns capture efficient solutions to
recurring problems in specific contexts, and (2) maintenance
support, because design patterns implicitly document the
solution applied indicating not only how it has been designed,
but also why it has been designed due to the semantic behind
a pattern, i.e., its motivation.

Based on a systematic literature review, we identified 24
relevant papers as a base for taxonomy on design patterns
for SASs. This taxonomy is composed of seven categories
(monitor, analyze, plan, execute, component structure & in-
teraction, knowledge management, and coordination) with a
total of 55 design patterns. We exemplify the applicability of
those patterns in an IIoT use case.

With this work, we provide qualitative analysis for inte-
grating design patterns that support adaptivity in IoT systems.

An open issue in SAS concern the context and system
models representation and management as the knowledge
in the MAPE-K loop. TThese models may grow and be-
come bigger and bigger based on the monitoring context
and adaptation strategies’ needs. In addition, these models
also become very complex and hard to exploit at runtime, as
well as hard to maintain. Alternative approaches to models
at runtime are emerging, e.g., based on big data technologies
and analytics [96].

As future work, we plan to provide a thorough discussion
of the applicability on different IoT system domains by com-
paring the implementations of IoT systems having integrated

those patterns to systems without design patterns for mea-
suring the effectiveness of the design patterns. Moreover, a
future task will concern the privacy and security issues [97]–
[99] addressed in SAS, which may be adapted and applied in
IoT though self-protection mechanisms [100].

ACKNOWLEDGMENT
The authors would like to thank Veronika Lesch and Martin
Pfannemüller for their valuable feedback.

This publication was supported by the Open Access Pub-
lication Fund of the University of Würzburg.

REFERENCES
[1] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns:

Elements of Reusable Object-Oriented Software. Addison Wesley, 1994.
[2] F. Arcelli Fontana, F. Perin, C. Raibulet, and S. Ravani, “Design pattern

detection in java systems: A dynamic analysis based approach,” in Proc.
ENASE, 2010, pp. 163–179.

[3] B. H. Cheng, R. De Lemos, H. Giese, P. Inverardi, J. Magee et al.,
“Software engineering for self-adaptive systems: A research roadmap,”
in Software engineering for self-adaptive systems. Springer, 2009, pp.
1–26.

[4] C. Krupitzer, F. M. Roth, S. VanSyckel, G. Schiele, and C. Becker,
“A survey on engineering approaches for self-adaptive systems,” PMCJ,
vol. 17, pp. 184–206, 2015.

[5] J. O. Kephart and D. M. Chess, “The vision of autonomic computing,”
IEEE Computer, vol. 36, no. 1, pp. 41–50, 2003.

[6] J. Kramer and J. Magee, “Self-managed systems: an architectural chal-
lenge,” in Rpoc. FOSE. IEEE, 2007, pp. 259–268.

[7] S. Dobson, S. Denazis, A. Fernández, D. Gaïti, E. Gelenbe, F. Massacci,
P. Nixon, F. Saffre, N. Schmidt, and F. Zambonelli, “A survey of auto-
nomic communications,” ACM TAAS, vol. 1, no. 2, pp. 223–259, 2006.

[8] S. Tomforde, H. Prothmann, J. Branke, J. Hähner, M. Mnif, C. Müller-
Schloer, U. Richter, and H. Schmeck, “Observation and Control of Or-
ganic Systems,” in Organic Computing – A Paradigm Shift for Complex
Systems. Springer, 2011, pp. 325–338.

[9] O. Vermesan, P. Friess, P. Guillemin, S. Gusmeroli, H. Sundmaeker et al.,
“Internet of things strategic research roadmap,” IERC, Tech. Rep., 2011.

[10] B. Eberhardinger, I. Gerostathopoulos, C. Krupitzer, P. Lewis, and
C. Raibulet, “Emsac-seac 2019: Evaluations and measurements in self-
aware computing systems workshop and the workshop on self-aware
computing,” in Proceedings - 2019 IEEE 4th International Workshops
on Foundations and Applications of Self* Systems, FAS*W 2019, 2019,
pp. xxi–xxii.

[11] C. Krupitzer, B. Eberhardinger, I. Gerostathopoulos, and C. Raibulet,
“Introduction to the special issue "applications in self-aware computing
systems and their evaluation",” Computers, vol. 9, no. 1, p. 22, 2020.
[Online]. Available: https://doi.org/10.3390/computers9010022

[12] F. Arcelli Fontana, S. Maggioni, and C. Raibulet, “Understanding the
relevance of micro-structures for design patterns detection,” Journal of
Systems and Software, vol. 84, no. 12, pp. 2334–2347, 2011.

[13] F. Arcelli, S. Maggioni, and C. Raibulet, “Design patterns: a survey
on their micro-structures,” Journal of Software: Evolution and Process,
vol. 25, no. 1, pp. 27–52, 2013.

[14] E. Kaddoum, C. Raibulet, J. Georgé, G. Picard, and M. P. Gleizes,
“Criteria for the evaluation of self-* systems,” in Proc. SEAMS, 2010,
pp. 29–38.

[15] C. Raibulet and F. Arcelli Fontana, “Evaluation of self-adaptive systems:
a women perspective,” in Proc. ECSA, 2017, pp. 23–30.

[16] C. Krupitzer, F. M. Roth, C. Becker, M. Weckesser, M. Lochau, and
A. Schürr, “FESAS IDE: an integrated development environment for
Autonomic Computing,” in Proc. ICAC. IEEE, 2016, pp. 15–24.

[17] D. Weyns, “Engineering self-adaptive software systems - an
organized tour,” in 2018 IEEE 3rd International Workshops on
Foundations and Applications of Self* Systems (FAS*W), Trento, Italy,
September 3-7, 2018. IEEE, 2018, pp. 1–2. [Online]. Available:
https://doi.org/10.1109/FAS-W.2018.00012

[18] D. Garlan, S. Cheng, A. Huang, B. R. Schmerl, and
P. Steenkiste, “Rainbow: Architecture-based self-adaptation with

VOLUME 4, 2016 13



Krupitzer et al.: An Overview of Design Patterns for Self-Adaptive Systems in the Context of the Internet of Things

reusable infrastructure,” IEEE Computer, vol. 37, no. 10, pp. 46–
54, 2004. [Online]. Available: https://doi.org/10.1109/MC.2004.175

[19] P. K. McKinley, S. M. Sadjadi, E. P. Kasten, and B. H. C. Cheng,
“Composing adaptive software,” IEEE Computer, vol. 37, no. 7, pp.
56–64, 2004. [Online]. Available: https://doi.org/10.1109/MC.2004.48

[20] G. Bastide, A. Seriai, and M. Oussalah, “Software component
re-engineering for their runtime structural adaptation,” in 31st
Annual International Computer Software and Applications Conference,
COMPSAC 2007, Beijing, China, July 24-27, 2007. Volume 1.
IEEE Computer Society, 2007, pp. 109–114. [Online]. Available:
https://doi.org/10.1109/COMPSAC.2007.192

[21] I. Gorton, Y. Liu, and N. Trivedi, “An extensible and
lightweight architecture for adaptive server applications,” Softw.
Pract. Exp., vol. 38, no. 8, pp. 853–883, 2008. [Online]. Available:
https://doi.org/10.1002/spe.857

[22] J. He, T. Gao, W. Hao, I. Yen, and F. B. Bastani, “A flexible content
adaptation system using a rule-based approach,” IEEE Trans. Knowl.
Data Eng., vol. 19, no. 1, pp. 127–140, 2007. [Online]. Available:
https://doi.org/10.1109/TKDE.2007.250590

[23] O. Choi and Y. Yoon, “A meta data model of context information
for dynamic service adaptation on user centric environment,” in
2007 International Conference on Multimedia and Ubiquitous
Engineering (MUE 2007), 26-28 April 2007, Seoul, Korea.
IEEE Computer Society, 2007, pp. 108–113. [Online]. Available:
https://doi.org/10.1109/MUE.2007.22

[24] C. Raibulet, “Hints on quality evaluation of self-systems,” in Eighth
IEEE International Conference on Self-Adaptive and Self-Organizing
Systems, SASO 2014, London, United Kingdom, September 8-12, 2014.
IEEE Computer Society, 2014, pp. 185–186. [Online]. Available:
https://doi.org/10.1109/SASO.2014.36

[25] C. Raibulet, F. Arcelli Fontana, and S. Carettoni, “A preliminary analysis
of self-adaptive systems according to different issues,” Software Quality
Journal, 2020. [Online]. Available: https://doi.org/10.1007/s11219-020-
09502-5

[26] S. Tomforde and C. Müller-Schloer, “Incremental Design of Adaptive
Systems,” Journal of Ambient Intelligence and Smart Environments,
vol. 6, no. 2, pp. 179–198, 2014.

[27] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, “Design patterns:
Elements of reusable object-oriented software,” 1994.

[28] M. Puviani, G. Cabri, and F. Zambonelli, “A taxonomy of architectural
patterns for self-adaptive systems,” in Proc. C3S2E, 2013, pp. 77–85.

[29] J. Juziuk, D. Weyns, and T. Holvoet, “Design patterns for multi-agent
systems: a systematic literature review,” in Agent-Oriented Software
Engineering. Springer, 2014, pp. 79–99.

[30] A. Musil, J. Musil, D. Weyns, T. Bures, H. Muccini, and M. Sharaf,
“Patterns for self-adaptation in cyber-physical systems,” in Multi-
Disciplinary Engineering for Cyber-Physical Production Systems.
Springer, 2017, pp. 331–368.

[31] H. Giese, T. Vogel, A. Diaconescu, S. Götz, and K. L. Bellman, Generic
Architectures for Individual Self-aware Computing Systems. Springer,
2017, pp. 149–189.

[32] A. J. Ramirez and B. H. C. Cheng, “Design patterns for developing
dynamically adaptive systems,” in Proc. SEAMS, 2010, pp. 49–58.

[33] D. Weyns, S. Malek, and J. Andersson, “On decentralized self-adaptation:
lessons from the trenches and challenges for the future,” in Proc. SEAMS,
2010, pp. 84–93.

[34] E. Jung, I. Cho, and S. M. Kang, “An agent modeling for overcoming the
heterogeneity in the iot with design patterns,” in Proc. MUSIC, 2013, pp.
69–74.

[35] S. Qanbari, S. Pezeshki, R. Raisi, S. M. Zadeh, R. Rahimzadeh, N. Behi-
naein, F. Mahmoudi, S. Ayoubzadeh, P. Fazlali, K. Roshani, A. Yaghini,
M. Amiri, A. Farivarmoheb, A. Zamani, and S. Dustdar, “Iot design
patterns: Computational constructs to design, build and engineer edge
applications,” in Proc. IoTDI, 2016, pp. 277–282.

[36] M. Vega-Barbas, I. Pau, J. C. Augusto, and F. Seoane, “Interaction
patterns for smart spaces: A confident interaction design solution for
pervasive sensitive iot services,” IEEE Access, vol. 6, pp. 1126–1136,
2018.

[37] V. Sithole and L. Marchall, “Attributes extraction for fine-grained differ-
entiations of the internet of things patterns,” in Proc. SAICSIT, 2019, pp.
9:1–9:10.

[38] L. F. Rahman, T. Ozcelebi, and J. J. Lukkien, “Designing iot systems:
Patterns and managerial conflicts,” in Proc. PerComW, 2019, pp. 542–
548.

[39] L. Reinfurt, U. Breitenbücher, M. Falkenthal, F. Leymann, and A. Riegg,
“Internet of things patterns for communication and management,” Trans.
on Pattern Languages of Programming, vol. 4, pp. 139–182, 2019.

[40] L. Reinfurt, U. Breitenbücher, M. Falkenthal, P. Fremantle, and F. Ley-
mann, “Internet of things security patterns,” in Proc. PLoP, 2017, pp.
20:1–20:28.

[41] L. Reinfurt, U. Breitenbücher, M. Falkenthal, F. Leymann, and A. Riegg,
“Internet of things patterns for devices,” in Proc. PATTERNS, 2017.

[42] L. Cruz and R. Abreu, “Catalog of energy patterns for mobile applica-
tions,” Empirical Software Engineering, vol. 24, no. 4, pp. 2209–2235,
2019.

[43] S. Pape and K. Rannenberg, “Applying privacy patterns to the internet
of things’ (iot) architecture,” Mobile Networks and Applications, vol. 24,
no. 3, pp. 925–933, 2019.

[44] M. Weyrich and C. Ebert, “Reference architectures for the internet of
things,” IEEE Software, vol. 33, no. 1, pp. 112–116, 2016.

[45] S. R. Bader, M. Maleshkova, and S. Lohmann, “Structuring reference
architectures for the industrial internet of things,” Future Internet, vol. 11,
no. 7, p. 151, 2019.

[46] P. Sethi and S. R. Sarangi, “Structuring reference architectures for the
industrial internet of things,” Journal of Electrical and Computer Engi-
neering, vol. 2017, p. 25, 2019.

[47] B. D. Martino, M. Rak, M. Ficco, A. Esposito, S. A. Maisto, and
S. Nacchia, “Internet of things reference architectures, security and
interoperability: A survey,” Internet of Things, vol. 1-2, pp. 99–112, 2018.

[48] D. Mocrii, Y. Chen, and P. Musílek, “Iot-based smart homes: A review
of system architecture, software, communications, privacy and security,”
Internet of Things, vol. 1-2, pp. 81–98, 2018.

[49] E. Sisinni, A. Saifullah, S. Han, U. Jennehag, and M. Gidlund, “Indus-
trial internet of things: Challenges, opportunities, and directions,” IEEE
Transactions on Industrial Informatics, vol. 14, no. 11, pp. 4724–4734,
2018.

[50] L. D. Xu, W. He, and S. Li, “Internet of things in industries: A survey,”
IEEE Transactions on Industrial Informatics, vol. 10, no. 4, pp. 2233–
2243, 2014.

[51] Y. Liao, E. de Freitas Rocha Loures, and F. Deschamps, “Industrial
internet of things: A systematic literature review and insights,” IEEE
Internet of Things Journal, vol. 5, no. 6, pp. 4515–4525, 2018.

[52] B. Caesar, F. Grigoleit, and S. Unverdorben, “(self-)adaptiveness for
manufacturing systems: challenges and approaches,” SICS Software-
Intensive Cyber-Physical Systems, 11 2019.

[53] S. Cha, B. Vogel-Heuser, and J. Fischer, “Analysis of metamodels for
model-based production automation system engineering,” IET Collabo-
rative Intelligent Manufacturing, vol. 2, no. 2, pp. 45–55, 2020.

[54] A. Theorin, K. Bengtsson, J. Provost, M. Lieder, C. Johnsson,
T. Lundholm, and B. Lennartson, “An event-driven manufacturing
information system architecture for industry 4.0,” International Journal
of Production Research, vol. 55, no. 5, pp. 1297–1311, 2017. [Online].
Available: https://doi.org/10.1080/00207543.2016.1201604

[55] G. Bloom, B. Alsulami, E. Nwafor, and I. C. Bertolotti, “Design patterns
for the industrial internet of things,” in 2018 14th IEEE International
Workshop on Factory Communication Systems (WFCS), 2018, pp. 1–10.

[56] P. Brereton, B. A. Kitchenham, D. Budgen, M. Turner, and M. Khalil,
“Lessons from applying the systematic literature review process within
the software engineering domain,” Journal of Systems and Software,
vol. 80, no. 4, pp. 571 – 583, 2007.

[57] J. Webster and R. T. Watson, “Analyzing the past to prepare for the future:
Writing a literature review,” MIS quarterly, pp. xiii–xxiii, 2002.

[58] Y. Brun, G. D. M. Serugendo, C. Gacek, H. Giese, H. Kienle, M. Litoiu,
H. Müller, M. Pezzè, and M. Shaw, “Engineering self-adaptive systems
through feedback loops,” in Software engineering for self-adaptive sys-
tems. Springer, 2009, pp. 48–70.

[59] Y. Abuseta and K. Swesi, “Design patterns for self adaptive systems
engineering,” arXiv preprint arXiv:1508.01330, 2015.

[60] M. B. Said, Y. H. Kacem, M. Kerboeuf, N. B. Amor, and M. Abid, “De-
sign patterns for self-adaptive RTE systems specification,” International
Journal of Reconfigurable Computing, vol. 2014, p. 8, 2014.

[61] D. G. D. L. Iglesia and D. Weyns, “Mape-k formal templates to rigorously
design behaviors for self-adaptive systems,” ACM TAAS, vol. 10, no. 3,
p. 15, 2015.

[62] A. J. Ramirez, Design patterns for developing dynamically adaptive
systems. Michigan State University, 2008.

[63] J. L. Fernandez-Marquez, G. D. M. Serugendo, S. Montagna, M. Viroli,
and J. L. Arcos, “Description and composition of bio-inspired design

14 VOLUME 4, 2016



Krupitzer et al.: An Overview of Design Patterns for Self-Adaptive Systems in the Context of the Internet of Things

patterns: a complete overview,” Natural Computing, vol. 12, no. 1, pp.
43–67, 2013.

[64] D. Weyns, B. Schmerl, V. Grassi, S. Malek, R. Mirandola et al., “On
patterns for decentralized control in self-adaptive systems,” in Software
Engineering for Self-Adaptive Systems II, 2013, pp. 76–107.

[65] L. Gardelli, M. Viroli, and A. Omicini, “Design patterns for self-
organising systems,” Multi-agent systems and applications V, pp. 123–
132, 2007.

[66] P. L. Snyder, G. Valetto, J. L. Fernandez-Marquez, and G. D. M. Seru-
gendo, “Augmenting the repertoire of design patterns for self-organized
software by reverse engineering a bio-inspired p2p system,” in Proc.
SASO, 2012, pp. 199–204.

[67] T. De Wolf and T. Holvoet, “Design patterns for decentralised co-
ordination in self-organising emergent systems,” in Engineering Self-
Organising Systems. Springer, 2007, pp. 28–49.

[68] H. Kasinger, B. Bauer, and J. Denzinger, “Design pattern for self-
organizing emergent systems based on digital infochemicals,” in Proc.
EASe, 2009, pp. 45–55.

[69] R. N. Taylor, N. Medvidovic, and P. Oreizy, “Architectural styles for
runtime software adaptation,” in Proc. WICSA/ECSA, 2009, pp. 171–180.

[70] H. Gomaa, K. Hashimoto, M. Kim, S. Malek, and D. A. Menascé,
“Software adaptation patterns for service-oriented architectures,” in Proc.
SAC, 2010, pp. 462–469.

[71] O. Babaoglu, G. Canright, A. Deutsch, G. A. D. Caro, F. Ducatelle, L. M.
Gambardella, N. Ganguly, M. Jelasity, R. Montemanni, A. Montresor
et al., “Design patterns from biology for distributed computing,” ACM
TAAS, vol. 1, no. 1, pp. 26–66, 2006.

[72] H. Gomaa and M. Hussein, “Software reconfiguration patterns for dy-
namic evolution of software architectures,” in Proc. WICSA, 2004, pp.
79–88.

[73] C. Krupitzer, M. Segata, M. Breitbach, S. S. El-Tawab, S. Tomforde,
and C. Becker, “Towards Infrastructure-Aided Self-Organized Hybrid
Platooning,” in Proc. GCIoT, 2018.

[74] R. Lea and M. Blackstock, “City Hub: A Cloud-Based IoT Platform for
Smart Cities,” in Proc. CloudCom, 2014, pp. 799–804.

[75] C. Krupitzer, T. Sztyler, J. Edinger, M. Breitbach, H. Stuckenschmidt, and
C. Becker, “Hips do lie! a position-aware mobile fall detection system,”
in Proc. PerCom, 2018, pp. 95–104.

[76] M. U. Iftikhar, G. S. Ramachandran, P. Bollansée, D. Weyns, and
D. Hughes, “Deltaiot: A real world exemplar for self-adaptive internet
of things (artifact),” DARTS, vol. 3, no. 1, pp. 04:1–04:2, 2017.

[77] A. Bennaceur, C. McCormick, J. García-Galán, C. Perera, A. Smith,
A. Zisman, and B. Nuseibeh, “Feed me, feed me: an exemplar for
engineering adaptive software,” in Proc. SEAMS, 2016, pp. 89–95.

[78] C. Krupitzer, G. Drechsel, D. Mateja, A. Pollkläsener, F. Schrage,
T. Sturm et al., “Using Spreadsheet-defined Rules for Reasoning in Self-
Adaptive Systems,” in Proc. PerComW, 2018, pp. 462–467.

[79] A. Maier, S. Schriegel, and O. Niggemann, Big Data and Machine
Learning for the Smart Factory—Solutions for Condition Monitoring,
Diagnosis and Optimization. Cham: Springer International Publishing,
2017, pp. 473–485.

[80] S. Goetz, G. Keitzel, and F. Klocke, Going Smart—CPPS for Digital
Production. Cham: Springer International Publishing, 2017, pp. 401–
422.

[81] F. Salfner, M. Lenk, and M. Malek, “A survey of online failure prediction
methods,” ACM Comput. Surv., vol. 42, no. 3, Mar. 2010. [Online].
Available: https://doi.org/10.1145/1670679.1670680

[82] E. M. Fredericks, I. Gerostathopoulos, C. Krupitzer, and T. Vogel, “Plan-
ning as Optimization: Dynamically Discovering Optimal Configurations
for Runtime Situations,” in Proc. SASO, 2019.

[83] D. Zuehlke, “Smartfactory – from vision to reality in factory
technologies,” IFAC Proceedings Volumes, vol. 41, no. 2, pp. 14 101
– 14 108, 2008, 17th IFAC World Congress. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1474667016412565

[84] M. Saggiomo, Y.-S. Gloy, and T. Gries, Applying Multi-objective Opti-
mization Algorithms to a Weaving Machine as Cyber-Physical Produc-
tion System. Cham: Springer International Publishing, 2017, pp. 505–
517.

[85] M. Palviainen, J. Mäntyjärvi, J. Ronkainen, and M. Tuomikoski, To-
wards User-Driven Cyber-Physical Systems—Strategies to Support User
Intervention in Provisioning of Information and Capabilities of Cyber-
Physical Systems. Cham: Springer International Publishing, 2017, pp.
575–593.

[86] M. Weyrich, M. Klein, J.-P. Schmidt, N. Jazdi, K. D. Bettenhausen,
F. Buschmann, C. Rubner, M. Pirker, and K. Wurm, Evaluation Model
for Assessment of Cyber-Physical Production Systems. Cham: Springer
International Publishing, 2017, pp. 169–199.

[87] M. Weißbach, N. Taing, M. Wutzler, T. Springer, A. Schill, and
S. Clarke, “Decentralized coordination of dynamic software updates
in the internet of things,” in 3rd IEEE World Forum on Internet
of Things, WF-IoT 2016, Reston, VA, USA, December 12-14, 2016.
IEEE Computer Society, 2016, pp. 171–176. [Online]. Available:
https://doi.org/10.1109/WF-IoT.2016.7845450

[88] M. Weißbach, P. Chrszon, T. Springer, and A. Schill, “Decentrally
coordinated execution of adaptations in distributed self-adaptive software
systems,” in 11th IEEE International Conference on Self-Adaptive and
Self-Organizing Systems, SASO 2017, Tucson, AZ, USA, September
18-22, 2017. IEEE Computer Society, 2017, pp. 111–120. [Online].
Available: http://doi.ieeecomputersociety.org/10.1109/SASO.2017.20

[89] M. Weißbach and T. Springer, “Coordinated execution of adaptation
operations in distributed role-based software systems,” in Proceedings
of the Symposium on Applied Computing, SAC 2017, Marrakech,
Morocco, April 3-7, 2017, A. Seffah, B. Penzenstadler, C. Alves,
and X. Peng, Eds. ACM, 2017, pp. 45–50. [Online]. Available:
https://doi.org/10.1145/3019612.3019624

[90] T. Prantl, P. Ten, L. Iffländer, A. Dmitrenko, S. Kounev, and C. Krupitzer,
“Evaluating the performance of a state-of-the-art group-oriented encryp-
tion scheme for dynamic groups in an iot scenario,” in Proceedings
of the 2020 IEEE Symposium on Modelling, Analysis, and Simulation
of Computer and Telecommunication Systems (MASCOTS), 2020, to
bepublished.

[91] P. Thomas et al., “Simpl: Secure iot management platform,” in ITSec, ser.
1st ITG Workshop on IT Security, 2020.

[92] C. Choi and J. Choi, “Ontology-based security context reasoning for
power iot-cloud security service,” IEEE Access, vol. 7, pp. 110 510–
110 517, 2019.

[93] V. Hassija, V. Chamola, V. Saxena, D. Jain, P. Goyal, and B. Sikdar, “A
survey on iot security: Application areas, security threats, and solution
architectures,” IEEE Access, vol. 7, pp. 82 721–82 743, 2019.

[94] S. Zahra, M. Alam, Q. Javaid, A. Wahid, N. Javaid, S. U. R. Malik, and
M. Khurram Khan, “Fog computing over iot: A secure deployment and
formal verification,” IEEE Access, vol. 5, pp. 27 132–27 144, 2017.

[95] G. George and S. M. Thampi, “A graph-based security framework for
securing industrial iot networks from vulnerability exploitations,” IEEE
Access, vol. 6, pp. 43 586–43 601, 2018.

[96] S. Schmid, I. Gerostathopoulos, C. Prehofer, and T. Bures, “Self-
adaptation based on big data analytics: A model problem and tool,”
in 12th IEEE/ACM International Symposium on Software Engineering
for Adaptive and Self-Managing Systems, SEAMS@ICSE 2017, Buenos
Aires, Argentina, May 22-23, 2017. IEEE Computer Society, 2017, pp.
102–108. [Online]. Available: https://doi.org/10.1109/SEAMS.2017.20

[97] A. Hassan, R. Hamza, H. Yan, and P. Li, “An efficient outsourced
privacy preserving machine learning scheme with public verifiability,”
IEEE Access, vol. 7, pp. 146 322–146 330, 2019. [Online]. Available:
https://doi.org/10.1109/ACCESS.2019.2946202

[98] Y. Yu, D. Barthaud, B. A. Price, A. K. Bandara, A. Zisman, and
B. Nuseibeh, “Livebox: A self-adaptive forensic-ready service for
drones,” IEEE Access, vol. 7, pp. 148 401–148 412, 2019. [Online].
Available: https://doi.org/10.1109/ACCESS.2019.2942033

[99] C. Perera, M. Barhamgi, A. K. Bandara, M. A. Azad, B. A.
Price, and B. Nuseibeh, “Designing privacy-aware internet of things
applications,” Inf. Sci., vol. 512, pp. 238–257, 2020. [Online]. Available:
https://doi.org/10.1016/j.ins.2019.09.061

[100] E. Yuan, N. Esfahani, and S. Malek, “A systematic survey
of self-protecting software systems,” ACM Trans. Auton. Adapt.
Syst., vol. 8, no. 4, pp. 17:1–17:41, 2014. [Online]. Available:
https://doi.org/10.1145/2555611

VOLUME 4, 2016 15



Krupitzer et al.: An Overview of Design Patterns for Self-Adaptive Systems in the Context of the Internet of Things

CHRISTIAN KRUPITZER received a bachelor’s,
master’s, and Ph.D. degree from the University of
Mannheim, Germany, in 2010, 2012, and 2018, re-
spectively. Since October 2020, he is tenure track
professor and leads the Department of Food Infor-
matics at the University of Hohenheim in Stuttgart,
Germany. His research interests include applying
principles of adaptive systems and machine learn-
ing for IIoT (focusing on food production), intel-
ligent transportation, and sports. He is involved

in the organization of workshops and conferences, such as IEEE PerCom
and IEEE ACSOS (former ICAC/SASO), and reviews for conferences and
journals, e.g., ACM TAAS, IEEE IoTJ, or Elsevier FGCS.

TIMUR TEMIZER received his B.Sc. and M.Sc.
in Business Informatics from the University of
Mannheim, Germany, in 2015 and 2018. As part of
his studies, he focused on design patterns for SASs
and their application in a smart highway system.
He currently works as an IT consultant with BCG
Platinion across countries in Europe, the Middle
East, and Asia. His main work and research inter-
ests include agile delivery of software engineering
projects and the impact of changing IT skills on IT

departments and organizations.

THOMAS PRANTL received his bachelor’s and
masters degrees from the University of Würzburg.
He is a doctoral researcher in the Security Perfor-
mance research group at the Software Engineering
Chair at the University of Würzburg.

CLAUDIA RAIBULET is an Assistant Professor
at the Universitá degli Studi di Milano-Bicocca
in Italy. She received her master degree in Com-
puter Science from POLITEHNICA University of
Bucarest, Romania, in 1997 and her PhD degree
from Politecnico di Torino, Italy, in 2002. Her
research interests include software architectures,
object-oriented methodologies, model-driven so-
lutions, SASs, mobile systems, distributed sys-
tems, reverse engineering, software architecture

reconstruction, and design patterns. Claudia co-authored more than eighty
research papers published in international journals, conferences, and work-
shops. She is involved in referee activities for various international journals,
as well as in organizing and program committees for international confer-
ences and workshops.

16 VOLUME 4, 2016


