
Discrete-Time Analysis of the Blockchain
Distributed Ledger Technology

Stefan Geissler∗, Thomas Prantl∗, Stanislav Lange§, Florian Wamser∗, Tobias Hossfeld∗

∗University of Würzburg, Institute of Computer Science, Würzburg, Germany
{stefan.geissler|thomas.prantl|florian.wamser|tobias.hossfeld}@informatik.uni-wuerzburg.de

§Department of Computer Science and Engineering, POSTECH, Korea
stasl@postech.ac.kr

Abstract—Blockchain and distributed ledger technologies have
become more and more popular and widespread during recent
years. After the initial hype about the technology and many
cryptocurrency related use cases, the technology slowly starts to
make its way into other domains like food tracking and document
management. In order to further contribute to the search of
what this technology can be used for, more detailed performance
evaluations are required in order to investigate key performance
indicators and general limits of the technology. To this end, we
develop a discrete-time queueing model that allows a detailed
evaluation of the characteristics of a blockchain system, such
as the transaction waiting time distribution. Furthermore, we
validate the model by comparing the results to values obtained
from measurements in a closed lab environment based on the
Ethereum blockchain.

Index Terms—Blockchain, Distributed ledger, Discrete-time
analysis, Ethereum, Modeling, Performance Evaluation, Mea-
surement.

I. INTRODUCTION

With the rise of cryptocurrency platforms such as Bitcoin [1]
and Ethereum [2], their fundamental technology, blockchain,
has gained significant traction in several areas. Countless ap-
plications have been devised, which are all based on the same
technological principle of the blockchain and distributed ledger
technologies. This principle, to have a public, immutable
ledger that is not governed by a central authority, but instead
maintained by a distributed network of equal peers has led to
a plethora of new use cases such as decentralizing privacy [3],
privacy-preserving smart contracts [4], as well as applications
in the internet-of-things [5, 6].

However, since all of these use cases are realized with the
same underlying system, they also inherit all the accompany-
ing challenges. One of the most crucial challenges of modern
blockchain systems is their throughput in terms of transactions
per second [7, 8, 9].

Hence, the goal of this paper is to evaluate key performance
indicators and influence parameters of the fundamental tech-
nology all of these use cases have in common, the blockchain
or distributed ledger technology. To this end, we present
an abstract discrete-time model of a blockchain system that
can, due to its generality, be applied to various use cases
built upon the technology. We provide a detailed description

of the model and perform an extensive validation based on
measurement values obtained from a private instance of the
Ethereum blockchain in a closed environment.

Our evaluation shows that the model is accurate when it
comes to real world scenarios. Additionally, the model can be
used to perform extensive parameter studies in order to identify
key influence factors of a system to pinpoint optimization
potential.

The remainder of this paper is structured as follows.
Section II provides a brief introduction to the blockchain
technology as it is required for the proposed model. Section III
presents related work regarding the performance evaluation
of blockchain-based systems as well as relevant analytical
models. A description of the proposed model is presented in
Section IV. Section V presents a parameter study to investigate
the impact of different input parameters. In Section VI, we
provide a comparison between baseline data obtained from
the Ethereum blockchain and results obtained from the model.
Finally, Section VII summarizes the content of this paper and
outlines future research directions.

II. BACKGROUND ON BLOCKCHAIN TECHNOLOGY

This section describes the basic functionality of the
blockchain technology and declares the abstractions intro-
duced during the development of the model.

A blockchain is, in its most basic form, a distributed data
structure that is fully replicated by every member of an overlay
peer-to-peer network. It was originally introduced to solve
the double spending problem [10] in a fully decentralized
electronic cash system [1] with cryptocurrencies [11] being its
most prominent manifestation. The most basic version of the
blockchain protocol employs computational puzzles to limit
write access to the distributed data structure in a mechanism
called Proof-of-Work (PoW) [12]. While other mechanisms,
such as Proof-of-Stake [13], exist, PoW is still the most
prominent solution. The cryptographic problems used by PoW
ensure that the system is working correctly as long as the
majority of computational power in the network is provided
by honest members, as opposed to relying on the number
of honest participants in the network. This mechanism is,
on the one hand, used to ensure that data written to the

data structure is valid, as it enforces significant computational
effort to acquire write permission and invalid data can easily
be detected by other peers in the system. On the other
hand, the mechanism is used to achieve consensus in the
network in case of write conflicts [14]. As opposed to common
distributed systems, no special consensus protocol to resolve
conflicts is used in blockchain environments. This form of
consensus is often referred to as probabilistic consensus since
the system continuously converges against a valid state on its
own, instead of specifically resolving conflicts. The system
can thus be described as a probabilistic state machine [15].
In the following, we provide a high level overview of the
functionality of a blockchain or distributed ledger system and
cover the features of the system required for the remainder of
this paper. A more in-depth description of the technology and
its workings has been published in [14].

1) A member of the network has the intent to publish data,
e.g., a transaction to transfer an asset to another user
of the network. Note that the data to be published can
be arbitrary and is, in general, not limited to financial
transactions. These transactions can in the process be
equipped with a priority, based on the fee provided by
the creator of a transaction that is paid out to the user
who later validates this transaction into a new block.

2) The blockchain client now distributes the data, called
transaction, to connected peers in the overlay network,
which in turn distribute the data to their connected peers
recursively in order to make the data known to the whole
network.

3) Special nodes in the network, called Miners, subse-
quently validate all open transactions and upon success
try to incorporate them in newly generated blocks by
solving the mentioned cryptographic puzzle to obtain
write access to the data structure. Thereby, open trans-
actions are in general prioritized based on their fees, as
the goal of the Miner is to maximize the reward for
generating a new block.

4) As soon as one of the Miners finds a solution to the
computational puzzle, he generates a new block, thereby
incorporating its solution into the header, and distributes
the newly mined block to his connected peers. These
can now validate the block by checking whether the
included solution is valid and recursively distribute the
new block among their peers, respectively. If several
Miners simultaneously find and distribute different valid
possibilities for the next block, other Miners generally
accept the first version they receive from peers. This
means that at any point in time, there can be several
different valid blockchain forks present in the network.
This situation is, unlike in common distributed systems,
not actively resolved through the use of consensus
algorithms. Instead, the different versions co-exist until
one Miner finds another block, thereby extending its
version of the chain by one more block compared to
other currently existing versions, which is then accepted

Mining
Node

Batch Pickup Block GenerationArrival

Backlog

Fig. 1. Schematic presentation of the modeled system.

by all Miners as a longer chain replaces all versions
with less blocks. A more in-depth description of the
consensus mechanisms in blockchain systems can be
found in [14].

5) Finally, the whole network has been informed about a
newly mined block and the transactions included are thus
replicated by all members of the network.

Note that blockchain networks work asynchronously and the
steps outlined above all occur concurrently in different parts
of the network. The central feature of the used mechanism
revolves around the fact that all elements of the network
continuously converge towards a common and valid state, in-
dependent of propagation delays as well as network topology.

In this work, we aim to evaluate the performance of Step 3
in the listing above, as it describes the number of newly
generated blocks as well as the number of included trans-
actions per block and thus dictates the overall performance
of the network. For the remainder of this work, we neglect
transaction priorities as well as the time it takes to distribute
transactions and blocks by individual Miners over the network
and do not include the impact of blockchain forks [16] on the
performance of the system.

Figure 1 shows the abstracted system used for the model
developed in this work. Transactions arrive at the system ac-
cording to a specified rate and are stored in a queue of infinite
size, called backlog. From there, transactions are confirmed
by a batch processing mechanism in intervals according to
the average inter-block generation time of all Miners. A more
detailed description of the parameters of the model follows in
Section IV.

III. RELATED WORK

In this section, we cover relevant publications that aim at
evaluating the performance of modern blockchain systems as
well as works in the area of systems modeling that apply
queueing theory.

A. Experimentation and General Work

A great deal of work has already been done in regard
to experimental evaluation and general discussion of modern
blockchain systems, especially Bitcoin and Ethereum. Swan
performed an extensive dissection regarding the development
and chances of blockchain [17]. Tschorsch and Scheuermann
discuss research directions and show that the blockchain
technology impacts fields beyond cryptocurrencies [18]. Zheng
et al. [14] discuss various different consensus mechanisms
and lay out possible future developments for the blockchain
technology such as testing and evaluation procedures for

blockchain systems. The model proposed in this work is a
first step to establish an evaluation framework for blockchain
systems.

B. Systems Modeling

Blockchain systems essentially behave like bulk queuing
systems, which have already been studied in the past [19].
In case of Markovian bulk input M [x]/M/1 as well as bulk
processing systems M/M [x]/1, closed form solutions are pro-
vided by [20]. While systems exhibiting bulk-arrival processes
have been studied extensively [21, 22] and have been applied
to several real world use cases [23, 24, 25], models that focus
on batch processing, as present in modern blockchain systems,
are largely missing to date. We recently published another
model in this area that describes the behavior of batched
processing in the context of virtual network functions [26].
However, models targeting the specific behavior of blockchain
systems are still largely missing in the literature. Li et al.
have proposed a Markovian batch-service model to describe
the average number of transactions waiting to be confirmed,
their average confirmation time, as well as the mean number of
transactions per block [27]. Pass et al. analyze the blockchain
protocol in asynchronous networks and show that the applied
consensus mechanism guarantees consistency and liveness
even when taking information propagation within the network
[16] into account [28].

IV. MODEL DESCRIPTION

In the following section, we describe our generic
GI/GIN/1 model of the blockchain mining process. In order
to simplify the description of the model itself and improve
readability, we first introduce the notation that is used through-
out the rest of the paper. Table I shows the variables and their
description as a central reference. The top half describes input
parameters of our model, while the bottom half describes the
model output and consists of key performance indicators of
the blockchain system.

Furthermore, we follow the convention of noting random
variables as uppercase letters such as A, while their respective
distributions are written as

a(k) =def P(A = k), k ∈ [0,∞) .

The associated distribution function is defined as

A(k) =def P(A ≤ k) =

k∑
i=0

a(k), k ∈ [0,∞) .

A. Base Fixed-Point Iteration

As already mentioned, we neglect information propagation
delays and assume immediate distribution of transactions and
blocks to all peers in the network. In other words, we collapse
the whole network into a single node that generates new
blocks according to t(k) and at which transactions arrive
with interarrival times according to a(k). From this, the
model is built around a fixed-point iteration of the queue size
distribution. To achieve this, we represent the system state by

TABLE I
NOTATION.

Variable Description

β Maximum block size.

A, a(k) Transaction interarrival time.

T , t(k) Service time of blocks.

S, s(k) Size of transactions.

xτ,a(k) Number of arrivals with interarrival time distribution a
in an interval with duration distribution τ [29].

ρ System load as ratio btw. arrival and processing rate of
transactions. Requires ρ < 1 for the queue to be stable.

Qn, qn(k) Queue size in number of transactions immediately before
the n-th block has been generated.

Q, q(k) Queue size in number of transactions at embedding times.

Qb, qb(k) Queue size in byte at embedding times.

Q̄, q̄(k) Queue size in number of transactions at random times.

Q̄b, q̄b(k) Queue size in byte at random times.

On, on(k) Block size in number of transactions for specific queue
size n.

O, o(k) General block size in number of transactions.

W , w(k) Transaction waiting time.

0

Q(t)

t

T T

A Arrivals

Block Generation

Queue Size

t

t

Fig. 2. Development of the queue size over time.

the queue size Qn at the time the n-th block is generated. The
queue size has been selected as it is directly influenced by all
possible system events, as shown in Figure 2.

Every arriving transaction increases the queue size Q by
one, while every block generation decreases the queue size by
confirming a number of transactions in one batch. The number
of transactions included in each block is thereby determined
by the distribution of transaction sizes s(k) as well as the
maximum block size β and can be calculated as

on(k) =

∑β
i=1 s

∗k(i), k = n∑β
i=1 s

∗k(i)−
∑β
i=1 s

∗(k+1)(i), 0 < k <n
0, else.

(1)
with s∗k(i) describing the k-fold convolution of s with itself,
evaluated at i, and n being the current queue size. The k-fold
convolution is used to account for all possible combinations of

individual, different-sized transactions within the new block.
Furthermore, since the blockchain backlog currently has no

size limit, no transaction will be discarded, even if the arrival
rate is larger than the processing rate, in which case the queue
size will diverge to +∞. Hence, the model is limited to system
loads of ρ < 1, as otherwise, the following fixed-point iteration
of the queue size does not converge. The iteration is based
on an embedded Markov chain with embedding times right
before a block generation event as indicated by the red arrows
in Figure 2. At these embedding times, we can calculate the
progression of the queue size distribution as

qn+1(k) =

∞∑
i=0

qn(i) ·
∞∑
j=0

oi(j) · xt,a(k − i+ j). (3)

Thereby, we recursively progress from embedding time n
to n + 1 by iterating over all possible queue sizes at time
n, and weighting the probability of each value of Qn with
the probabilities of all possible numbers of transactions in the
generated block (1) as well as xt,a(i) as the number of new
arrivals during the corresponding inter-block time T according
to [29]. Finally, under the above-mentioned condition that
ρ < 1, the queue size distribution converges for n→∞ to

q(k) = lim
n→∞

qn(k). (4)

Based on Equations 1 and 4, we can now infer the general
block size distribution in terms of the number of transactions
included in each block as

o(k) =

∞∑
i=0

oi(k) · q(i). (5)

Furthermore, we can obtain the queue size distribution at
random times via Equation 2. We thereby exploit the temporal
sequence of the queue size distribution by weighting the
probability for a certain queue size with the recurrence time
E[RA] if the queue size is assumed in the beginning or the
end of an inter-block interval. If a queue size level is assumed
at any other point in the interval, the corresponding probability
is weighed with the mean interarrival time E[A].

B. Derived Key Performance Indicators

From the queue size Q̄ at random times, we can now derive
further key performance indicators of the system. The backlog,
represented by the queue size in bytes instead of the number
of transactions, can be obtained as

q̄b(k) =

∞∑
i=0

q(i) · s∗i(k). (6)

Analogously, we can compute the queue size in bytes at
embedding times by using q(k) instead of q̄(k).

As a key performance indicator, we show the evaluation
of the waiting time distribution, which, in this context, cor-
responds to the time until the confirmation of transactions.
To this end, we follow a recursive approach to determine the

distribution of the number of block generation cycles required
until a transaction is confirmed:

cn(1) =

∞∑
i=n

on(i). (7)

cn(k) =

n−k+1∑
i=1

on(i) · cn−i(k − 1). (8)

Thereby, we calculate cn(k) by recursively calculating the
probability to pick up i transactions in the k-th cycle and
multiplying it with the probability of having to pick up n− i
transactions in k−1 cycles. Based on this, we can then omit the
index n by calculating the weighted probability while taking
into account the queue size distribution at random times Q̄ as

c(k) =

∞∑
i=0

q̄(i) · ci(k). (9)

We can then determine the waiting time distribution as

w(k) =

∞∑
i=1

(rT ∗ t∗(i−1))(k) · c(i), (10)

with rT being the recurrence time distribution of the block
generation process according to

rT (x) =
1

E[T]
· (1− T (x)). (11)

Here we determine the probability for one recurrence time as
well as i pickup cycles taking exactly duration k and calculate
the weighted sum by using the probability of i pickup cycles
c(i) as the weight.

V. PERFORMANCE EVALUATION

In this section, we perform a parameter study to investigate
the influence of different input parameters on key performance
characteristics of blockchain and distributed ledger systems. To
this end, we evaluate the impact of the arrival process as well
as transaction sizes on the queue size as well as the waiting
time until transactions are processed. Other parameters, such
as the service time of blocks or the maximum block size
are regarded as fixed, deterministic values throughout the
following evaluation scenarios. Furthermore, in order to better
isolate the influence of single input parameters, we also regard
the transaction size S as constant throughout the parameter
study. This is necessary due to the dependencies of the various
input parameters when it comes to the system load ρ as is
shown in (12).

ρ =
E[T]

E[A]
· E[S]

β
(12)

Accordingly, since E[T], E[S], as well as β are determinis-
tic, we can control the system load though adaptation of E[A].
Hence, whenever results are shown for increasing load, this
is achieved by reducing the mean interarrival time between
transactions. Finally, for all evaluations shown in this paper,
we assume A to follow a negative binomial distribution as it
is a close approximation of bursty traffic [30] and allows the
precise configuration of the coefficient of variation cA.

q̄(k) =

∞∑
i=0

q(i) · oi(i− k) · xt,a(o) +

∞∑
i=0

q(i) · oi(i− k) ·
∞∑
l=1

xt,a(l) ·
E[RA]

(l − 1)E[A] + 2E[RA]
+

∞∑
i=0

q(i)

i∑
j=0

oi(j) · xt,a(k + j − i) ·
E[RA]

(k + j − i− 1)E[A] + 2E[RA]
+

∞∑
i=0

q(i)

i∑
j=i−k+1

oi(j)

∞∑
l=k+j−i+1

xt,a(l) ·
E[A]

(l − 1)E[A] + 2E[RA]
.

(2)

A. Queue Size

First, we examine the influence of system load as defined
by the mean interarrival time, as well as the impact of the
coefficient of variation on the queue size. Figure 3 shows the
queue size distribution for two different load levels, 0.75 and
0.95, each for a coefficient of variation of 0.25 as well as
1.25. Thereby, the figure shows the number of transactions
waiting to be confirmed along the x-axis and the corresponding
probability along the y-axis. Note that these probabilities are
valid for arbitrary times, not only for the embedding times of
the Markov chain.

0 10 20 30 40 50 60
number of waiting transactions

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

pr
ob

ab
ili

ty

 load 0.95 , c = 1.25
 load 0.95 , c = 0.25
 load 0.75 , c = 1.25
 load 0.75 , c = 0.25

Fig. 3. Queue size distribution in number of transactions for
ρ ∈ {0.75, 0.95}, cA ∈ {0.25, 0.75}, E[S] = 150, E[T] = 10000, and
a maximum block size of β = 1500.

As is expected, the figure shows that the coefficient of
variation of the arrival process has a significantly larger impact
on the distribution of the number of waiting transactions than
the system load ρ. This is explained by the increased burstiness
of arrival processes with a high coefficient of variation. This
burstiness is directly reflected in a higher variation of the
queue size distribution when compared to arrival processes
with lower variance.

Next, we investigate the impact of transaction sizes on the
queue size. Thereby, we increase the transaction size in steps
of 30 from 60 to 210. First, note that in this case we denote
transaction sizes in byte. The model, however is not limited to
any specific unit and can be applied to any arbitrary transaction
size unit, e.g., gas in case of Ethereum [2] like we do in
Section VI. Second, since according to (12), the transaction
size directly influences the system load, in this scenario we
modify the arrival process for each different value of S to
achieve a consistent system load of ρ = 0.95. Finally, in this

0 1000 2000 3000 4000 5000
Queue size [byte]

0.2

0.4

0.6

0.8

1

C
D

F E[S] = 60
 E[S] = 90
 E[S] = 120
 E[S] = 150
 E[S] = 180
 E[S] = 210

Fig. 4. Queue size distribution in byte for different deterministic transaction
sizes, ρ = 0.95, cA = 0.25, and a maximum block size of β = 1500.

scenario, the number of transactions is no longer a comparable
metric. Hence, we now introduce the queue size distribution in
byte Q̄b instead of the number of waiting transactions, which
allows us to directly compare the resulting distributions.

Figure 4 shows the queue size along the x-axis and the
cumulative distribution function along the y-axis with each
color representing a different transaction size value from 60
to 210. It can be seen that the queue size distribution in byte
does not directly follow the transaction size. This is explained
by a closer examination of the used parameter combination.
A blocksize β = 1500 in combination with deterministic
transaction sizes leads to different values regarding the block
utilization. In this work, we define the block utilization as

ut(s) =

⌊
β

E[S]

⌋
· E[S]

β
(13)

as it describes the efficiency of the usage of available space
within one block. Table II describes the utilization values
that lead to the curves seen in Figure 4. It can be seen
that the curves are ordered by utilization group, meaning
parameter combination with similar block utilizations also
result in similar queue sizes.

B. Waiting Time

In the second part, we investigate the waiting time distri-
bution of transactions for different input parameters. To this
end, we again isolate the key influence factors by keeping all
but one parameter fixed in order to examine the influence of
a single input value. In this scenario, we first examine the
impact of different transaction sizes S on the mean waiting

TABLE II
BLOCK UTILIZATION (SEE EQ. 13) FOR DIFFERENT TRANSACTION SIZES

AND A BLOCK SIZE OF β = 1500.

E[T]
E[S] 60 90 120 150 180 210

ut(s) 1 0.96 0.96 1 0.96 0.98

Queue Size at random time

E[Q̄b] 722.0 964.1 1072.6 759.8 1318.6 900.4

E[Q̄] 12.0 10.7 8.9 5.1 7.3 4.3

Queue Size at embedding times

E[Qb] 1434.4 1676.6 1785.0 1472.3 2031.1 1612.9

E[Q] 24.0 18.6 14.9 9.8 11.3 7.6

time E[W]. Figure 5 shows for increasing load levels between
0.75 and 0.95 along the x-axis the mean waiting time in
seconds along the y-axis. Different transaction sizes between
60 and 210 are indicated by the different colors according
to the legend. Similarly to the queue size evaluation shown in
Figure 4, the mean waiting time does not increase continuously
with increasing transaction sizes, but rather depends on the
block utilization as shown in Table II. As a higher block
utilization leads to more efficient packing of transactions into
the available space within each block, more transactions can
be confirmed in each cycle, leading to quicker confirmation
times in return.

0.75 0.8 0.85 0.9
System load

5000

5500

6000

6500

7000

E
[w

ai
tin

g
tim

e]

E[S] = 60
E[S] = 90
E[S] = 120
E[S] = 150
E[S] = 180
E[S] = 210

Fig. 5. Mean waiting time W for different transaction sizes, cA = 0.25,
ρ between 0.75 and 0.95, E[T] = 10000, and a maximum block size of
β = 1500.

Next, we evaluate the impact of the coefficient of variation
of the arrival process cA on the mean waiting time. We here
take a closer look on the scenarios with a block utilization of
ut(s) = 1, as these are the most efficient cases. Figure 6
shows the mean waiting time for transactions of size 60
along the y-axis, different load levels along the x-axis, and
various values for cA according to the annotation. Accordingly,
Figure 7 shows the same values for transactions of size 150.
Again, it can be seen that the coefficient of variation of the

arrival process has a much more significant impact on the
mean waiting time than the transaction size, even though both
transaction sizes result in a high block utilization.

0.75 0.8 0.85 0.9 0.95

System load

5000

5500

6000

6500

E
[w

ai
tin

g
tim

e]

c
A

{0.25, 0.5, 0.75, 1.0, 1.25}

trans. size = 60

Fig. 6. Mean waiting time W for different cA, ρ between 0.7 and 0.95,
E[S] = 60, E[T] = 10000, and a maximum block size of β = 1500.

0.75 0.8 0.85 0.9 0.95

System load

5000

6000

7000

8000

9000

E
[w

ai
tin

g
tim

e]

c
A

{0.25, 0.5, 0.75, 1.0, 1.25}

trans. size = 150

Fig. 7. Mean waiting time W for different cA, ρ between 0.7 and 0.95,
E[S] = 150, E[T] = 10000, and a maximum block size of β = 1500.

VI. VALIDATION

In the final part of our evaluation, we validate the previously
presented model. To this end, we perform measurements using
a private instance of the Ethereum blockchain. In order to
create comparable scenarios, we have developed a testbed
consisting of a private, isolated Ethereum blockchain using
a single Geth client1, a Go implementation of the Ethereum
protocol. Using this implementation, we generate transactions
of deterministic size of 21000 gas. The blocksize of our private
blockchain is thereby 210000 gas. Gas is the measure of
complexity of a transaction in the Ethereum blockchain and is
used to limit the number of transactions included in a single
block, as opposed to byte as in the case of Bitcoin. Due

1https://github.com/ethereum/go-ethereum

to this setup, a block can contain a constant number of 10
transactions. Based on this setup, we validate our model using
the Proof-of-Authority consensus mechanism. This mechanism
delegates the block generation process to a dedicated set
of nodes that hold full authority on which transactions are
included in a block and when a new block is generated.
A more detailed description of the PoA mechanism can be
found in [31]. This specific behavior allows us to determine
the exact time between block generation events, which we
keep deterministic at T = 15000 milliseconds in this case. In
combination with the setup of a single block having enough
capacity for exactly 10 transactions once more allows us to
isolate a single parameter, the arrival process. In addition,
varying the arrival process allows us to achieve a specific load
level. In the following, we show results for a coefficient of
variation cA = 1.25 for load levels of ρ = 0.75 as well
as ρ = 0.95 in Figure 8 and Figure 9, respectively. We
thereby monitor the waiting times for 20000 transactions as
observed in the test environment and compare these results to
the prediction from our model.

0 10 20 30 40
waiting time [s]

0

0.2

0.4

0.6

0.8

1

C
D

F

model
measurement
measurement
without offset

Fig. 8. CDF of waiting time W , T = 15000, β = 210000, E[S] = 21000,
cA = 1.25, and ρ = 0.75.

Both Figures 8 and 9 show the CDF of the waiting time W
for both the model values in blue as well as the measurement
in red. It can be seen that in both cases, the measurements
differ significantly from the model values. This is explained
by a characteristic of the technical system used to obtain
the measurements. The model assumes that whenever a new
transaction arrives in the system, it is, if there is enough
capacity, included in the next generated block. However, the
technical system functions slightly differently as it shifts
transactions that arrive within 4.4 seconds before a new block
is generated into the next block and only considers transactions
that have arrived before this threshold. Hence, the CDF of the
measurement is shifted by this amount. To this end, we include
a third curve in our figures, shown in green, that represents
the measurement values without this technical offset that have
been calculated by simply subtracting the offset of 4.4 seconds
from all measurement values. It can be seen that this curve fits

0 50 100 150
waiting time [s]

0

0.2

0.4

0.6

0.8

1

C
D

F

model
measurement
measurement
 without offset

Fig. 9. CDF of waiting time W , T = 15000, β = 210000, E[S] = 21000,
cA = 1.25, and ρ = 0.95.

closely to the values obtained via the model.

VII. CONCLUSION

Blockchain and distributed ledger technologies, initially
only known for cryptocurrencies, have lately made their way
into the focus of the research community and many the
industry has started to evaluate the technology regarding its
suitability for more and more use cases. Many of these
have the same fundamental question when it comes to the
blockchain technology. Namely, whether the technology is able
to provide the required performance for the different use cases.

In order to address this question, we have developed a
discrete-time queueing model that allows the evaluation of key
performance indicators of blockchain and distributed ledger
systems. Our GI/GIN/1 model enables the evaluation and
prediction of the queue size as well as transaction waiting
time distribution based on various input parameters. Based
on this model, we have performed a first parameter study
to evaluate the impact of different input parameters on the
system behavior. We have further investigated the validity
of the model by means of measurements in a controlled
environment based on a private Ethereum blockchain. This
evaluation has shown that the predictions of the model hold
true for the Proof-of-Authority consensus mechanism. Future
research directions include a more in-depth parameter study to
further investigate the impact of different system parameters as
well as the investigation of the impact of different distribution
types on system performance as well as further validation steps
using different consensus mechanisms.

VIII. ACKNOWLEDGEMENT

This research has been funded by the Federal Ministry
of Education and Research of Germany in the framework
KMU-innovativ - Verbundprojekt: Secure Internet of Things
Management Platform - SIMPL (project number 16KIS0852)
[32]. This work was supported by the Institute of Information
& Communications Technology Planning & Evaluation (IITP)

grant funded by the Korean government (MSIT) (2018-0-
00749, Development of Virtual Network Management Tech-
nology based on Artificial Intelligence).

REFERENCES

[1] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” 2008.
[2] G. Wood, “Ethereum: A secure decentralised generalised transaction

ledger,” Ethereum project yellow paper, 2014.
[3] G. Zyskind, O. Nathan et al., “Decentralizing privacy: Using blockchain

to protect personal data,” in IEEE Security and Privacy Workshops
(SPW), 2015.

[4] A. Kosba, A. Miller, E. Shi, Z. Wen, and C. Papamanthou, “Hawk:
The blockchain model of cryptography and privacy-preserving smart
contracts,” in IEEE symposium on security and privacy (SP), 2016.

[5] S. Huh, S. Cho, and S. Kim, “Managing iot devices using blockchain
platform,” in International Conference on Advanced Communication
Technology (ICACT), 2017.

[6] N. Kshetri, “Can blockchain strengthen the internet of things?” IT
Professional, 2017.

[7] M. Vukolić, “The quest for scalable blockchain fabric: Proof-of-work
vs. bft replication,” in International Workshop on Open Problems in
Network Security, 2015.

[8] Z. Zheng, S. Xie, H.-N. Dai, X. Chen, and H. Wang, “Blockchain
challenges and opportunities: a survey,” International Journal of Web
and Grid Services, 2018.

[9] K. Croman, C. Decker, I. Eyal, A. E. Gencer, A. Juels, A. Kosba,
A. Miller, P. Saxena, E. Shi, E. G. Sirer et al., “On scaling decentralized
blockchains,” in International Conference on Financial Cryptography
and Data Security, 2016.

[10] G. Karame, E. Androulaki, and S. Capkun, “Two bitcoins at the price
of one? double-spending attacks on fast payments in bitcoin.” IACR
Cryptology ePrint Archive, 2012.

[11] A. Narayanan, J. Bonneau, E. Felten, A. Miller, and S. Goldfeder,
Bitcoin and cryptocurrency technologies: a comprehensive introduction.
Princeton University Press, 2016.

[12] C. Dwork and M. Naor, “Pricing via processing or combatting junk
mail,” in Annual International Cryptology Conference, 1992.

[13] V. Buterin and V. Griffith, “Casper the friendly finality gadget,” arXiv
preprint arXiv:1710.09437, 2017.

[14] Z. Zheng, S. Xie, H. Dai, X. Chen, and H. Wang, “An overview of
blockchain technology: Architecture, consensus, and future trends,” in
IEEE International Congress on Big Data (BigData Congress), 2017.

[15] K. Saito and H. Yamada, “What’s so different about
blockchain?—blockchain is a probabilistic state machine,” in IEEE
International Conference on Distributed Computing Systems Workshops
(ICDCSW), 2016.

[25] J. Padhye, V. Firoiu, D. Towsley, and J. Kurose, “Modeling tcp through-
put: A simple model and its empirical validation,” ACM SIGCOMM
Computer Communication Review, 1998.

[16] C. Decker and R. Wattenhofer, “Information propagation in the bitcoin
network,” in IEEE International Conference on Peer-to-Peer Computing
(P2P), 2013.

[17] M. Swan, Blockchain: Blueprint for a new economy. ” O’Reilly Media,
Inc.”, 2015.

[18] F. Tschorsch and B. Scheuermann, “Bitcoin and beyond: A technical
survey on decentralized digital currencies,” IEEE Communications Sur-
veys & Tutorials, 2016.

[19] I. W. Kabak, “Blocking and delays in m (x)/m/c bulk arrival queueing
systems,” Management Science, 1970.

[20] J. F. Shortle, J. M. Thompson, D. Gross, and C. M. Harris, Fundamentals
of queueing theory. John Wiley & Sons, 2018, vol. 399.

[21] D. Manfield and P. Tran-Gia, “Analysis of a finite storage system with
batch input arising out of message packetization,” IEEE Transactions
on Communications, 1982.

[22] D. M. Lucantoni, “New results on the single server queue with a batch
markovian arrival process,” Communications in Statistics. Stochastic
Models, 1991.

[23] E. Altman, K. Avrachenkov, and C. Barakat, “A stochastic model
of tcp/ip with stationary random losses,” ACM SIGCOMM Computer
Communication Review, 2000.

[24] A. Klemm, C. Lindemann, and M. Lohmann, “Modeling ip traffic using
the batch markovian arrival process,” Performance Evaluation, 2003.

[26] S. Lange, L. Linguaglossa, S. Geissler, D. Rossi, and T. Zinner,
“Discrete-time modeling of nfv accelerators that exploit batched process-
ing,” in IEEE Conference on Computer Communications (INFOCOM),
2019, to be published.

[27] Q.-L. Li, J.-Y. Ma, and Y.-X. Chang, “Blockchain queueing theory,”
arXiv preprint arXiv:1808.01795, 2018.

[28] R. Pass, L. Seeman, and A. Shelat, “Analysis of the blockchain protocol
in asynchronous networks,” in Annual International Conference on the
Theory and Applications of Cryptographic Techniques, 2017.

[29] S. Gebert, T. Zinner, S. Lange, C. Schwartz, and P. Tran-Gia, “Discrete-
time analysis: Deriving the distribution of the number of events in an
arbitrarily distributed interval,” University of Wuerzburg, Tech. Rep.,
2016.

[30] C. Larsson, Design of Modern Communication Networks: Methods and
Applications. Academic Press, 2014.

[31] S. De Angelis, L. Aniello, R. Baldoni, F. Lombardi, A. Margheri, and
V. Sassone, “Pbft vs proof-of-authority: applying the cap theorem to
permissioned blockchain,” 2018.

[32] KMU-innovativ, “SIMPL Verwaltungsplattform für
ein sicheres Internet der Dinge,” https://www.
forschung-it-sicherheit-kommunikationssysteme.de/projekte/simpl/,
2019, [Online; accessed 18-January-2019].

