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ABSTRACT
Recent developments by companies asWaymo, Uber, or Tesla
show that autonomous driving is no science fiction anymore.
Coordinated driving applications such as platooning, i.e.,
driving in convoys of coordinated vehicles, use the full po-
tential of the automation. In this paper, we present a sim-
ulation framework for analyzing platooning coordination
strategies which can be used by domain experts without
experience in simulation as it abstract from the details of
the underlying simulation. We show the applicability of the
simulation framework to support the analysis of platooning
coordination strategies in a case study with three coordina-
tion strategies.

CCS CONCEPTS
• Computing methodologies→ Simulation tools; Sim-
ulation evaluation; • Human-centered computing →
Ubiquitous andmobile computing; •Computer systems
organization→ Self-organizing autonomic computing; Em-
bedded and cyber-physical systems;
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1 INTRODUCTION
The fast development of Adaptive Cruise Control (ACC)
systems and self-driving vehicles in the last years enables
new applications such as platooning, in which vehicles use
ACC and vehicular communication to drive with small inter-
vehicle distances [1]. Besides an increase of driver’s comfort,
the small distances in platoons (i) increase the efficiency
in utilizing the roads, (ii) reduce the fuel consumption and,
hence, the emissions due to slipstream effects as well as
(iii) have social implications as platooning increases safety
by eliminating the likeliness of accidents thanks to the ACC
and to coordination through communication.

Platooning requires two types of organization. We distin-
guish the platoon management from platoon coordination:
where the first targets the intra-platoon level, i.e., the ad-
justment of the inter-vehicle distance, the latter focuses on
vehicle-platoon and inter-platoon interactions.

In this paper, we target coordination of platooning, hence,
the assignment of vehicles to platoons based on individual
factors as well as the coordination of platoons especially
in scenarios with a small amount of platoonable vehicles,
i.e., the pioneering phases of platooning. We present a simu-
lation framework that integrates the platooning simulator
Plexe [10] which is based on Veins [12] (including SUMO and
OMNeT++) with the Platooning Coordination System (PCS)
for platooning coordination [6]. The simulation framework
integrates two components for (i) a simplified definition of
the platooning coordination strategies and the configuration
of the simulation as well as (ii) a web interface based analysis
of the simulation results. This enables user without experi-
ence in programming / simulation to use it. The modularity
of the simulation enables to integrate another simulation
environment not depending on the PCS. We show the appli-
cability in a case study. Hence, experienced programmers
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might benefit from the easy to use web interface to under-
stand details of the simulation while enabling them to use
their favorite simulation tool.
The remainder is structured as follows: Next, Section 2

discusses related approaches. Section 3 introduces the PCS for
platooning coordination. Section 4 explains the components
of our modular simulation framework. Section 5 describes
the example use of the system within a case study. Lastly,
Section 6 summarizes the paper and mentions future work.

2 RELATEDWORK
This section compares some tools for simulating platooning.
For comparison we included Veins [12], Plexe [10], VSim-
RTI [9], the iTETRIS Control System (iCS) [7], and Simpla [11].

Veins [12] is a framework for vehicle simulation that pro-
vides both a realistic simulation of (i) wireless networking1
using OMNeT++ [13] as well as (ii) realistic vehicle mobility
based on the traffic simulator SUMO. Veins synchronizes
these two simulators in a bi-directional way.

Plexe is an extension of Veins [10] that adds functionality
to implement platooning. It features additional car-following
models implementing ACC and Cooperative Adaptive Cruise
Control (CACC), i.e., an enhanced ACC that exploits commu-
nication to reduce the inter-vehicle distancewithout harming
safey. Simulation results can be analyzed using R [10].

The V2X Simulation Runtime Infrastructure (VSimRTI) [9]
provides an infrastructure for coupling every discrete-event
based simulator that supports the so called federate ambas-
sador, e.g., network simulators likeOMNeT++ or ns-3 [8] with
SUMO. Such a setup can simulate platooning. Additionally,
VSimRTI provides a GUI for analysis vehicles on the map and
calculating statistics; however, this requires a commercial li-
cense. Alternatively, VSimRTI offers theWebSocket Visualizer
for showing vehicles in a Google Maps View.
The iCS is part of iTETRIS [7] and permits to integrate

SUMO and ns-3. As in Veins, every user can implement a
custom vehicle behavior, e.g., for simulating platooning.
Simpla [11] is a plugin for SUMO that exploits its TraCI

interface to control the simulation. It implements a basic
platooning logic and supports configurable parameters, such
as the distance between vehicles of a platoon. In contrast to
Veins, it does not integrate a network simulation.

We compare the presented approaches for simulation of
platooning and platooning coordination using the following
criteria: (i) effort to setup and run a simulation; (ii) effort for
testing custom platooning coordination strategies, (iii) visu-
alization of a simulation, and (iv) possibility to compare the
results of different platooning coordination strategies.

1Through configuration of the network simulator, it is possible to consider
issue of realistic communication such as packet loss.

The effort to setup and run a simulation differs for the
approaches. For example, Simpla offers a quite easy setup pro-
cess while Plexe, Veins, and iCS require not only SUMO but
also additional software for the network simulation. VSimRTI
offers the built-in Simple Network Simulator. However, it
does not provide the complete IEEE 802.11p stack, which
is only present when using an external network simulator
such as OMNeT++. The developers of Veins and Plexe offer
virtual machine images to simplify this process.

Second, we analyze the possibility to implement and test
custom platooning coordination strategies. In theory, every
project supports this as all are open source and a developer
could implement any required functionality. However, the
projects can be split into two groups: Veins, VSimRTI , and
iCS do not target platooning specifically, but might be ex-
tended for it. Plexe and Simpla are originally meant for
platooning simulation. So these two projects offer platoon-
ing functionality, e.g., the CACC controller. In contrast to
Plexe, Simpla offers only a limited extensibility because it
does not implement custom controllers such as CACCs to
enable platooning but uses different SUMO vehicle types
for the purpose. The leading vehicle of a platoon need thus
to be different than the following ones. Besides this issue,
Simpla does not support (realistic) Vehicle-to-Vehicle (V2V)
or Vehicle-to-Infrastructure (V2I) communication [11].

The third characteristic targets the visualization of a simu-
lation. Most of the approaches use the traffic simulator SUMO
that offers a Graphical User Interface (GUI) for observing a
simulation. Large scale simulations, however, do not run in
real time or are parallelized on a server, where the GUI is
not used. This solution thus does not provide the best user
experience. VSimRTI offers different solutions for a graphi-
cal representation of a simulation; however, as it does not
focus on platooning, it does not display platooning-related
information.
Finally, we analyzed the comparability of the results of

different platooning coordination strategies. None of the
approaches offer a complete solution. All projects that use
SUMO are able to provide raw log files that contain data,
such as the velocity. This data can be analyzed using R or
other tools, requiring manual effort. These tools are essential
for complex statistical analyses, but there is also the need of
performing rapid qualitative analyses.

Overall, there are different tools that can be used to show
how platooning works. But when it comes to the implemen-
tation of different platooning coordination strategies and
especially the visual analysis and comparison of the results,
the existing approaches do not offer the required functional-
ity. Hence, in this paper we strive for a GUI as a convenient
way for such domain experts to check the suitability of algo-
rithms while keeping a developer with understanding of the
simulation platform in the loop for implementation.



A Modular Simulation Framework for Analyzing Platooning Coordination TOP-Cars’19 ’19, July 2, 2019, Catania, Italy

(a) choice of the subsystem (b) simulation configuration panel (c) simulation runs and analysis panel

Figure 1: Screenshots of the GUI of the simulation tool.

3 PLATOONING COORDINATION
SYSTEM

The Platooning Coordination System (PCS) coordinates the
formation of platoons [6]. It receives information from dri-
vers such as their destination, searches a suitable platoon,
and navigates the vehicle to the platoon. After reaching the
platoon, a vehicle uses vehicle-to-vehicle communication
and sensors (e.g., distance sensors) for controlling the join-
ing process. Further, if a platoon meets another platoon, the
PCS decides whether they should merge or overtake. The
PCS constantly receives updates about vehicles’ positions
and determines when to leave or dissolve a platoon.
In [3], we used the Java-based FESAS Framework [4] to

build a demonstrator for the PCS for coordinating self-driving
Mindstorms robots2. Following the MAPE-K approach [2],
the PCS is structured into the four key functionalities of
monitoring the vehicles, analysing which platooning actions
are necessary (e.g., join requests of vehicles or inter-platoon
actions), planning necessary actions, and controlling the
execution of these adaptations. Themonitor and the executor
elements communicate with the vehicles (or the a platoon-
ing simulation) using a JSON-based protocol for collecting
data and sending instructions, respectively. For analyzing
and planning of the platooning behavior using the collected
data, the PCS can integrate different coordination strategies
to comply with individual objectives of drivers, e.g., travel as
fuel efficient as possible versus travel as fast as possible while
keeping the benefits of platooning. These functions are sup-
ported by a shared knowledge repository which represents
a typical self-adaptive systems approach [5] and enables
adaptations of platooning behavior of vehicles at any time.

2A video showing the platooning demonstrator can be found at:
https://www.youtube.com/watch?v=Nnrbq-4Dn24

4 SIMULATION FRAMEWORK
To simplify simulations with the PCS, we build a simulation
framework connecting the PCS with Plexe that includes a
configuration tool and a web interface for the analysis of sim-
ulation runs. The PCS is well integrated into our simulation
framework. Accordingly, users do not have to change the PCS
itself to test new platooning coordination strategies. Users
are rather able to just implement the algorithms of their
strategies in a common Java class. We offer a development
environment which supports an API for interacting with
the PCS, such as accessing collected information or abstract-
ing the commands of the JSON protocol. Accordingly, users
can just implement their platooning coordination strategies,
load them into the simulation tool and evaluate them. In the
next section, we detail the components of the simulation
framework.

4.1 Simulation Tool
We implemented the simulation tool using Python. A GUI
permits the users to quickly setup a simulation, run it, and
import the simulation outcome into the web interface for
the visual analysis. Users can choose the Plexe subsystem to
be used, which can either be the version of Plexe installed
on the host machine or Instant-Plexe, i.e., a Linux-based
Virtual Machine (VM) which comes with all the required
software pre-installed (Fig. 1a). In addition, it permits the
user to choose the location of the web analyzer (Section 4.2)
for importing simulation results into the analysis tool.

Once the user chooses the subsystem to use, it presents to
the user a window enabling the quick creation of a simula-
tion by entering some basic information such as the duration
(Fig. 1b). The user can then choose the SUMO map and a
traffic flow configuration. Currently, the tool offers two sam-
ple maps and a couple of pre-configured flow files, but the
user can integrate additional ones. Next, the user chooses the
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coordination strategy. The different algorithms of the coordi-
nation strategies are loaded from a jar file and displayed as a
choice to the user. This will tell the PCS which coordination
logic to load and to employ during the simulation. Finally,
the tool creates a new Plexe simulation folder including
all the required configuration files. These files are standard
OMNeT++ configuration files, as the ones included in any
Veins or Plexe tutorial. The experienced user can thus also
generate a basic simulation and then manually tune addi-
tional parameters (e.g., IEEE 802.11p network parameters).
The final tab (Fig. 1c) permits the user to run a simulation
and, at the end, to extract the data from the simulation and
import it into the web analyzer tool.

4.2 Analysis Web Interface
The web interface for providing the graphical qualitative
analysis of platooning coordination simulations was imple-
mented using the Symfony Framework for PHP and JavaScript.
It is composed of two web pages. The first one lists the sim-
ulations that have been run and permits either to analyze
one, or to choose two of them for comparison. The list of
simulations is retrieved from a database which, in turn, is
populated by the GUI interface described in Section 4.1. Once
a simulation (or a pair) is chosen, the second page of the inter-
face displays the SUMO map associated with the simulation
and permits to re-play it. Each vehicle is displayed as a rec-
tangle, and the color can either identify the vehicle type
or the association to a platoon. Hence, vehicles belonging
to the same platoon can be displayed using the same color.
In addition, by clicking on a vehicle, the interface shows
additional information such as current speed and its time
evolution, platoon id, position, distance or relative speed to
the front vehicle. Currently, we are developing a dashboard
that shows the aggregated results of simulation runs w.r.t.
platooning compositions, velocity, environmental pollution,
energy consumption, and time spent in platoons.

5 CASE STUDY
This section describes how to define coordination strategies
and the analysis of their outcome. In particular, we define
three toy coordination strategies:

• All-In-One: all vehicles are assigned to a single platoon;
• Max-3-Cars: the system assigns a vehicle to the closest
platoon with less than 3 vehicles. If there is no such
platoon, the system creates a new one; and

• Max-Distance: a vehicle is assigned to the closest pla-
toon, provided that this is closer than 400m.

The coordination strategies are defined as Java classes for
the PCS. The generateStrategy method takes one parameter,
i.e., an object (of class Vehicle) representing the vehicle for
which the coordination strategy should be computed and

must return an object (of class DrivingStrategy) representing
the action. Currently we have three categories of strategies,
i.e., BasicDrivingStrategy, CreatePlatoonStrategy, and JoinPla-
toonStrategy. The first one simply indicates that the vehicle
should drive on its own. The second one creates a new pla-
toon with certain characteristics, e.g., a certain speed and
driving on a certain lane. The last one controls the join of a
platoon. In this paper we consider this small set of actions as
a proof-of-concept. In future we will implement new ones,
e.g., to support leaving or changing platoons.
Once the user implements the algorithms, they are com-

piled to a single jar file, which is loaded by the PCS at run-
time. Then, the user can choose the coordination strategy
that should be employed using the configuration tool (Sec-
tion 4.1). In the following we show the pseudo-code of the
three aforementioned coordination strategies.
function g e n e r a t e S t r a t e g y ( Veh i c l e v e h i c l e )

i f ( u s ing B a s i cD r i v i n g S t r a t e g y )
p l a t oon = f i n dB e s t P l a t o o n ( v e h i c l e ) ;
i f ( p l a t oon == null ) return C r e a t e P l a t o o n S t r a t e g y ( ) ;
e l se return J o i n P l a t o o n S t r a t e g y ( p l a t oon ) ;

e l se return null ;
function f i n dB e s t P l a t o o n ( Veh i c l e v e h i c l e )

p l a t o on s = ge tNea rbyP l a t oon s ( v e h i c l e ) ;
i f ( p l a t o on s i s empty ) return null ;
e l se return p l a t o on s [ 0 ] ;

Listing 1: All-In-One strategy.

function g e n e r a t e S t r a t e g y ( Veh i c l e v e h i c l e )
i f ( u s ing B a s i cD r i v i n g S t r a t e g y )

P l a t oon p l a t oon = f i n dB e s t P l a t o o n ( v e h i c l e ) ;
i f ( p l a t oon == null | | p l a t oon . g e t V e h i c l e s ( ) . s i z e ( ) == 3 )

return C r e a t e P l a t o o n S t r a t e g y ( ) ;
e l se return J o i n P l a t o o n S t r a t e g y ( p l a t oon ) ;

e l se return null ;
function f i n dB e s t P l a t o o n ( Veh i c l e v e h i c l e )

p l a t o on s = ge tNea rbyP l a t oon s ( v e h i c l e ) ;
s u i t a b l e = {p ∈ platoons | p is ahead and has less than 3 cars}
i f ( s u i t a b l e i s empty ) return null ;
e l se return argminp∈platoons d i s t a n c e ( v eh i c l e , p ) ;

Listing 2: Max-3-Cars strategy.

function g e n e r a t e S t r a t e g y ( Veh i c l e v e h i c l e )
i f ( u s ing B a s i cD r i v i n g S t r a t e g y )

p l a t oon = f i n dB e s t P l a t o o n ( v e h i c l e ) ;
i f ( p l a t oon == null ) return C r e a t e P l a t o o n S t r a t e g y ( ) ;
e l se return J o i n P l a t o o n S t r a t e g y ( p l a t oon ) ;

return null ;
function f i n dB e s t P l a t o o n ( Veh i c l e v e h i c l e )

p l a t o on s = ge tNea rbyP l a t oon s ( v e h i c l e ) ;
s u i t a b l e = {p ∈ platoons | p is ahead and distance is smaller than 400 meters}
i f ( s u i t a b l e i s empty ) return null ;
e l se return argminp∈platoons d i s t a n c e ( v eh i c l e , p ) ;

Listing 3: Max-Distance strategy.

Listings 1 to 3 list the three implemented coordination
strategies. Each of the three coordination strategies, within
the generateStrategy function, first check whether the vehicle
is still driving on its own. If that is the case, the coordination
strategy invokes the findBestPlatoon method, which actually
finds the platoon given the constraints of the strategy. If
no platoon is found, the vehicle becomes a new platoon;
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Figure 2: Screenshot of the web analyzer showing the result of the All-In-One strategy.

otherwise the coordination strategy commands the vehicle
to join the best one.

Inside the findBestPlatoon method, the coordination strat-
egy exploits the functionalities provided by the PCS, e.g.,
getNearbyPlatoons. As shown in the code snippets, the find-
BestPlatoon method is a straightforward implementation of
the coordination strategy.

For testing the behavior of the coordination strategies and
to show the analysis tool described in Section 4.2 we create
three simple 8-car simulations, each of which uses one of
the coordination strategies. We run the simulation using the
tool described in Section 4.1, extract the data, and import
it into the database of the web analyzer. With respect to
simulation parameters, the desired platoon speed is set to
80 km/h, while the PCS commands the joiners to speed up
to 130 km/h to catch-up with the platoon. This speed delta
is clearly unrealistic and it is used here only to make the join
process quicker. As the communication parameters are not
relevant in this paper, we omit them. We are just using the
IEEE 802.11p PHY and MAC models provided by Veins.
Figure 2 shows a screenshot of the web analyzer for the

All-In-One coordination strategy simulation. In particular,
the first seven vehicles have already formed a platoon, and
the tool shows this by drawing them all with the same color.
The eight vehicle is still approaching the platoon, so it dis-
played with a different color. The user can use the time line at
the bottom to move back and forth in time, or start and stop
the replay. Finally, by clicking on a vehicle, in the top-right

corner the tool shows information about the selected car, in-
cluding identifier, current speed, position, platoon identifier,
etc. In addition, it is possible to show time series of certain
quantities. Currently we only show the speed as an example,
but we currently add information such as fuel consumption.

Figure 3 shows a screenshot of the analyzer in comparison
mode, after choosing the Max-3-Cars and the Max-Distance
simulations for comparison. The two views in the browser
page are linked together, so they display the same portion
of the road at the same zoom level. The Max-3-Cars coordi-
nation strategy (top of Fig. 3) results in the creation of three
platoons, the first two with three vehicles and the last with
the remaining two cars (not displayed in the figure due to
the zoom level). Conversely, the lower part of Fig. 3, shows
the outcome of the Max-Distance strategy. The first platoon
is composed of four vehicles because the three joiners were
closer than the chosen 400m at the time of joining.

6 CONCLUSION AND FUTUREWORK
In this paper, we presented a framework that eases the imple-
mentation of platooning coordination strategies as well as
their evaluation. We show the applicability with the Plexe
simulator in combination with the PCS for coordinating pla-
tooning. Due to modularity of the simulation framework, the
simulation itself can be substituted.
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Figure 3: Screenshot of the web analyzer used in comparison mode, showing the results of the Max-3-Cars (top)
and the Max-Distance strategies.

We are currently extending the graphical analyzer with a
dashboard to include fuel consumption and efficiency analy-
sis. Fuel consumption data is already collected but not yet dis-
played. Further, the PCS can now manage non-platooning in-
terfering vehicles if they are communicating, so that the PCS
is aware of their presence. The detection of non-communicating
interfering vehicles using local sensors of autonomic vehicles
and communicating this to PCS is part of out future work.
So far, we consider a join at the rear of a platoon. For future
work, we plan to integrate situations in which a vehicle joins
in another position.
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