
ComBench: A Benchmarking Framework for
Publish/Subscribe Communication Protocols

under Network Limitations

Stefan Herrnleben1[0000−0001−7960−0823], Maximilian Leidinger1, Veronika
Lesch1[0000−0001−7481−4099], Thomas Prantl1, Johannes

Grohmann1[0000−0001−9643−6543], Christian Krupitzer2[0000−0002−7275−0738], and
Samuel Kounev1

1 University of Wuerzburg, 97074 Wuerzburg, Germany
{firstname}.{lastname}@uni-wuerzburg.de

2 University of Hohenheim, 70599 Stuttgart, Germany
{firstname}.{lastname}@uni-hohenheim.de

Abstract. Efficient and dependable communication is a highly relevant
aspect for Internet of Things (IoT) systems in which tiny sensors, ac-
tuators, wearables, or other smart devices exchange messages. Various
publish/subscribe protocols address the challenges of communication in
IoT systems. The selection process of a suitable protocol should consider
the communication behavior of the application, the protocol’s perfor-
mance, the resource requirements on the end device, and the network
connection quality, as IoT environments often rely on wireless networks.
Benchmarking is a common approach to evaluate and compare systems,
considering the performance and aspects like dependability or security.
In this paper, we present our IoT communication benchmarking frame-
work ComBench for publish/subscribe protocols focusing on constrained
networks with varying quality conditions. The benchmarking framework
supports system designers, software engineers, and application develop-
ers to select and investigate the behavior of communication protocols.
Our benchmarking framework contributes to (i) show the impact of fluc-
tuating network quality on communication, (ii) compare multiple proto-
cols, protocol features, and protocol implementations, and (iii) analyze
scalability, robustness, and dependability of clients, networks, and bro-
kers in different scenarios. Our case study demonstrates the applicability
of our framework to support the decision for the best-suited protocol in
various scenarios.

Keywords: IoT, publish/subscribe, benchmarking, load testing

1 Introduction

The road to success of the Internet of Things (IoT) leads to an enormous increase
of devices exchanging data over the internet [27]. Many popular IoT communi-
cation protocols follow the publish/subscribe communication pattern [1], which



2 S. Herrnleben et al.

decouples space, time, and synchronization and is well-suited for upscaled dis-
tributed systems due to its loose coupling [11]. MQTT, AMQP, and CoAP are
well-known examples of publish/subscribe protocols which exchange their mes-
sages via a central message broker [28,17,15,3,22]. All participating clients can be
both publishers and subscribers. Whoever wants to receive a message subscribes
to a specific topic at the broker. For sending a message, a client publishes the
message with a specific topic to the broker, which delivers the message to all
subscribers of the topic.

The argument to apply a publish/subscribe protocol in an IoT system is
straightforward due to the characteristics of those systems [10,20,30]. Perfor-
mance, scalability, and overhead of a protocol often play a significant role when
looking for a suitable protocol for a particular use case [22,3,28,17]. Selecting the
most suitable protocol and a performant implementation can be challenging due
to the wide variety of existing protocols, each with different broker and client
implementations [20,10].

A special challenge in IoT is the robustness of a communication protocol
against the variation of network quality [5,6]. While data centers typically use
wired connections, IoT devices often communicate via wireless networks, which
are often faced with bandwidth limitations, high latencies, and packet loss [4,16].
In addition to WiFi and cellular networks, low-power wireless network protocols
such as LoRaWAN can also be used. In addition to already challenging aspects of
standardization, availability of implementations, and licensing, developers should
also be aware of protocol performance even in stressed environments and under
unstable connections [6].

Existing benchmarking tools can test load and scalability [13,7,9], but do not
limit the network communication by, e.g., adding artificial packet loss or latency.

To support designers, developers, and operators of IoT systems, we present
in this paper our benchmarking framework ComBench coupled with a method-
ology for evaluating and comparing communication-related characteristics like
performance, dependability, and security [19]. The key attributes of ComBench
can be summarized as follows:

– Multi-protocol client supporting the protocols MQTT, AMQP, and CoAP
out of the box.

– Customized load profiles with configurable message size and frequency
for each client or group of clients.

– Virtually unlimited clients for testing large-scaled environments.
– Fine-grained communication configuration per client or group of clients.

Messages can be published after a fixed delay, following a statistical distri-
bution, or as a (delayed) response to an incoming message.

– Configurable network quality in terms of bandwidth limit, transmission
delay, and packet loss. Each can be configured per client or group of clients,
statically or using a time series, e.g., for emulating a moving device.

– A Benchmarking controller serving as a single configuration point for
managing the experiment, collecting all measurements, and making them
available for visualization and export.



ComBench: IoT Publish/Subscribe Benchmarking Framework 3

We demonstrate the wide range of ComBench’s applicability in five exem-
plary use cases by varying protocols, configurations, workloads, network condi-
tions, and setups. The case study shows how our benchmarking framework and
measurement methodology analyzes and compares communication protocols in
different IoT environments. ComBench allows developers and system design-
ers to investigate the performance of protocols and the resource consumption
on clients and networks to select an appropriate protocol or optimize their ap-
plication. Artificial variation of network quality allows statements about the
protocol’s performance even under limited network connectivity.

The remainder of this paper is structured as follows. In Section 2, we describe
the characteristics of our benchmark, its components, the supported metrics and
give an insight into its usage. Section 3 presents the case study demonstrating its
applicability to various evaluation objectives. In Section 4, we discuss weaknesses
of our benchmarking framework that an operator should be aware of. Section 5
shows related work that deals with benchmarking and performance evaluation of
publish/subscribe systems. Section 6 summarizes the paper and provides ideas
for future work.

2 Benchmark

This section introduces our benchmarking framework, including the specified
requirements, the measurement methodology, the captured metrics, and some
design and implementation details. Section 2.1 presents the requirements from
which the capabilities of the framework are derived. In Section 2.2, the metrics
based on the measured values are formally defined. Section 2.3 describes the
design and architecture of our ComBench, while Section 2.4 provides implemen-
tation and configuration details.

2.1 Requirements

For the development of a benchmarking framework for IoT communication pro-
tocols, a number of requirements arise. The general requirements for a bench-
mark [18] are supplemented by additional requirements due to the large hetero-
geneity of protocols, clients, and communication behavior, as well as the usually
wireless connection [26,5]. This section presents the essential requirements to be
met by our benchmarking framework for IoT communication protocols.

Support of Multiple Protocols Various publish/subscribe communication pro-
tocols are omnipresent in IoT systems. While some protocols are similar, other
protocols are more suitable for specific communication scenarios and require-
ments. A benchmarking framework should address this heterogeneity and sup-
port various protocols to investigate scenarios under different protocols.

Variation of Network Conditions IoT devices often communicate over wire-
less links exposed to bandwidth fluctuations, transmission delays, and packet
loss. A benchmarking framework for IoT systems should take such varying net-
work conditions into account by artificially influencing the network quality. This



4 S. Herrnleben et al.

allows investigating and comparing protocol behavior and features under differ-
ent workloads.

Heterogeneous Clients IoT systems often consist of clients with different mes-
sage types (e.g., messages with different payload sizes), different communication
behavior (e.g., rarely arising vs. high frequent), and different network quality
(e.g., GSM vs. LTE). A benchmarking framework should reproduce this hetero-
geneity by configuring bandwidth limit, transmission delay, and packet loss per
device or device group.

Protocol Features Protocols like MQTT support different QoS levels or secu-
rity features like encryption via Transport Layer Security (TLS). Such features
often influence the performance and resource consumptions of the device as well
as the network load. A benchmarking framework should support easy activation
of these features to investigate the impact of such protocol features on CPU,
RAM, and network.

Scalability IoT systems often scale over a massive amount of devices, and the
number of IoT devices is continuously increasing [27]. The number of emulated
IoT devices should not be limited to the hardware capabilities of a single node;
instead, the experiment should be scaleable to multiple servers or a cloud. Scaling
the number of clients, messages, and network load enable investigating brokers
in stressed environments.

Flexibility at Broker Selection Various message broker implementations ex-
ist, which differ in the supported protocols, programming language, licensing,
performance, stability, vendor, and how they are developed (e.g., community-
driven, proprietary). Operators of IoT systems need to be aware of the broker’s
performance and reliability. Therefore, a benchmarking framework should not
be fixed to a specific broker; instead, the broker, configuration, and deployment
should be freely choosable.

Metrics Metrics are used in benchmarks to provide insights into the per-
formance, reliability, or security of a tested system [19]. The supported metrics
should not be limited to a specific evaluation objective. Instead, the metrics and
measurements like client resource consumption, i.e., CPU and RAM utilization,
network throughput, latency, packet loss, and protocol efficiency contribute to
investigate and compare different objectives. Metrics are formally defined in the
next section.

2.2 Metrics

Before defining the metrics, we introduce the meaning of the used sets and
symbols. The set C containing all clients, the set T refers to all topics (for topic-
based protocols like MQTT), and the set M contains all published messages by
any client to any arbitrary topic. Pc = {m | m ∈M and messagem was published
by client c} represents the set of messages which have been published by client c.
The subscribed messages of each client c are described by Sc = {m | m ∈ M
and topic t of message m was subscribed by client c}. Since messages can be
lost, S′c = {m | m ∈ Sc and message m was received by client c} with S′c ⊆ Sc



ComBench: IoT Publish/Subscribe Benchmarking Framework 5

only considers messages for client c that were actually delivered. From these
definitions and the introduced measurements, we derive the following metrics:

Message Loss Ratio This metric defines the ratio of lost messages to expected
received messages at the application layer. This metric provides information
about the reliability of a protocol and the success rate of packet loss compen-
sation mechanisms, e.g., retransmissions. The message loss ratio is defined for
each client c in Equation (1) as well as for all clients in Equation (2).

MsgLossc = 1− |S
′
c|
|Sc|

(1) MsgLoss = 1−
∑

c∈C |S′c|∑
c∈C |Sc|

(2)

In both cases, the numerator represents the number of messages subscribed
and successfully received by a client. The denominator depicts the messages
which have been subscribed by the client, regardless if they were received or
not. It is essential to sum the messages per client for the total message loss.
Considering only the number of total messages would include messages without
a subscription and count messages with multiple subscriptions only once.

Latency of received messages This metric refers to the mean latency of re-
ceived messages. Equation (3) defines the mean latency for each client, while
Equation (4) defines it for all involved clients. σm,c ∈ R states the spent time
for message m from sender to recipient c, including the broker processing time.

Latc =

∑
m∈S′

c
σm,c

|S′c|
(3) Lat =

∑
c∈C

∑
m∈S′

c
σm,c∑

c∈C |S′c|
(4)

In both definitions, the numerator sums up the latency of each received mes-
sage. The denominator represents the total number of received messages per
client, respectively, for all clients.

Protocol efficiency This metric indicates the ratio between the transferred
payload and the number of bytes sent through the network interface. While the
payload only considers the bytes of the message content, the bytes at the network
interface include the complete protocol stack, i.e., payload, headers, checksums,
and trailers. The protocol efficiency metric reflects the proportion of the payload
to the transferred bytes. This metric further reflects additional bytes for retrans-
missions in case of packet loss. Moreover, the overhead for encryption or optional
header fields are also included. Equation (5) shows the protocol efficiency for an
individual client c while Equation (6) considers all clients. ψm ∈ N refers to the
payload of message m, and Ψc denotes the total transferred bytes for client c.

PEc =

∑
m∈Pc

ψm

Ψc
(5) PE =

∑
c∈C

∑
m∈Pc

ψm∑
c∈C Ψc

(6)

In both definitions, the numerator sums up the payload of each published
message. The denominator depicts the amount of sent bytes, measured at the
network interface, for one client, respectively, for all clients.



6 S. Herrnleben et al.

2.3 Harness Design

Section 2.1 defined the requirements for a benchmarking framework for IoT
communication protocols. For the software design, additional requirements arise
addressing correctness, ease of use, modularity, and extensibility. This section
presents the design, the entities involved, and the process of a benchmark run.
Figure 1 depicts the involved participants, i.e., the benchmark operator, the
benchmark controller as central management instance, and the system under
test (SUT) which consist of the multiple clients and the broker. The benchmark
harness contains the controller and the clients, which emulate a freely config-
urable application. Any message broker, including cloud brokers that supports
the desired protocol, can be used as a message broker.

benchmark controller

operator

client 2client 1 client n

message broker

configuration measurement
results

co
nf

ig

re
su

lt

control traffic
workload (pub/sub traffic)

co
nf

ig

re
su

lt

co
nf

ig

re
su

lt

pub/sub pub/sub pub/sub

system under test (SUT)

1

2 2 2

3
3

3

4 4 4

5

Fig. 1: Benchmark architecture
with involved participants.

clientsclients
operator

controller clients broker

config

results

config

results

msg1
msg 1

msg n
msg n

Fig. 2: Sequence diagram of a bench-
mark run.

The benchmark operator configures the benchmark by providing a configu-
ration to the central controller. This configuration includes, amongst others, the
start time and duration of the benchmark, some global settings like the selected
publish/subscribe protocol, and the definition of the communication behavior as
well as network constraints of the clients. After the experiment, the operator re-
trieves the measurement results from the central benchmark controller. Instead
of a human operator, scripts or external software artifacts can use our API to
configure and run the benchmark.

The benchmark controller is responsible for the overall control of the bench-
mark. It is instantiated as a separate software artifact in a container and must be
deployed once. The benchmark controller receives the global configuration from
the operator via a REST API, connects to the clients via an additional API, and
configures them independently. The controller knows the benchmark timing and



ComBench: IoT Publish/Subscribe Benchmarking Framework 7

waits for the duration of the experiment before collecting the raw measurement
data from the clients, aggregating and evaluating them, and generating reports.

A client represents a communicating entity and acts as a workload generator
using a publish/subscribe protocol. The client runs as a container, likewise the
central controller. Clients can coexist on the same machine as long as their perfor-
mance does not negatively affect each other. To scale the experiment or to isolate
performance, the deployment can also be spread over multiple hosts. Our client
implementation can handle the publish/subscribe protocols MQTT, AMQP, and
CoAP via included protocol adapters. The selected protocol is one part of the
individual configuration received by each client from the benchmark controller.
Other parts of the configuration are the start time of the run, the duration, the
subscriptions, the response behavior to incoming messages, scheduled publishing
events, and network conditions. The client verifies time synchronization, applies
the artificial network constraints on the container’s network interface, and sub-
scribes to the assigned topics, and starts publishing messages if configured. The
central controller collects all measurements for further analysis after each run.

A central message broker is required by several publish/subscribe protocols
like MQTT, AMQP, and CoAP. The message brokers manage the client sub-
scriptions and deliver messages based on the message topics and subscriptions.

For an experiment, the benchmark operator provides a global configuration
to the controller as shown in Figure 2. This configuration contains the global
specifications and client configurations, including communication behavior, load
profiles, and network constraints. The central controller sends an individual con-
figuration file to each client, as depicted in Figure 1. After a client receives a
configuration, it can operate autonomously, i.e., no further control traffic during
the experiment is necessary. This time-decoupling allows using the same network
connection for configuration and the workload. The clients configure themselves
independently, start the experiment at a predefined time and collect measure-
ment data. After a benchmark run, the controller collects and aggregates the
measurement results from all clients, processes them, and generates summaries
and graphs. This report is accessible from the controller, depicted in the last
step in the sequence diagram of Figure 2.

2.4 Implementation

The implementation of ComBench consists of the artifacts controller and client,
as introduced in Section 2.3. The controller manages the benchmark, configures
the clients, and evaluates the measurements. The clients exchange messages with
the chosen publish/subscribe protocol and conduct the measurements. This sec-
tion describes the implementation of these artifacts, which are written in Python.

The controller provides a REST-API for configuration. The benchmark op-
erator configures the benchmark via the API and retrieves the measurement
results. The controller sends the preprocessed configuration again as an HTTP
request to each client and collects the raw measurement results.



8 S. Herrnleben et al.

The benchmark client application currently includes three protocol adapters
for MQTT (asyncio-mqtt3 library), AMQP (pika library4), and CoAP (aiocoap5

library). The REST API on the client receives the configuration commands and
returns the measurements. To influence the network conditions and retrieve spe-
cific system parameters, the client has some dependencies on Linux tools and is,
therefore, only executable on Linux.

Both artifacts, controller and client, are published as open-source under the
Apache 2.0 license. The source code, a manual, and some evaluation examples
are available at ComBench’s GitHub repository [29]. The Docker images can be
pulled from Docker Hub 6,7.

The setup of an experiment is specified in a single configuration file to facili-
tate repeatability and sharing of different scenarios since all configuration options
are stored in one file. The configuration contains some global settings like the
chosen communication protocol, the start time, the runtime of the benchmark,
and the IP address/hostname of the broker given as a JSON file. Furthermore,
the configuration defines the client roles, like group settings, subscriptions, the
associated publishing events, and network conditions. The network conditions
like packet loss rates, bandwidth limits, and transmission delays can be specified
either statically or as a time series so that the values change during the experi-
ment and thus, e.g., emulate moving devices. The last part of the configuration is
the individual clients. Each client is assigned to a group, simplifying large-scale
experiments.

To calculate the metrics defined in Section 2.2, measurements must be per-
formed. On the client, our benchmark collects (i) message logs, (ii) system per-
formance parameters, and (iii) network performance parameters. The message
log records every published message with its unique message ID, the topic, and
the transmission timestamp. Each received message also creates a log entry at
the subscriber with the message ID and arrival timestamp. The topic of received
messages is derived using the unique message ID.

For the system performance parameters, the client periodically queries the
utilization of CPU (total and per core) and RAM as well as the numbers of
sent packets, received packets, sent bytes, and received bytes from the operating
system’s network interface. This measurement is repeated every 1000 ms, and
the measured values and timestamps are logged into a file. The measured values
are stored on each client to avoid additional network traffic during each run.
The benchmark controller collects all clients’ measurements after the runs, as
described in Section 2.3.

3 https://pypi.org/project/asyncio-mqtt/
4 https://pika.readthedocs.io/
5 https://github.com/chrysn/aiocoap
6 https://hub.docker.com/r/descartesresearch/iot-pubsub-benchmark-controller
7 https://hub.docker.com/r/descartesresearch/iot-pubsub-benchmark-client



ComBench: IoT Publish/Subscribe Benchmarking Framework 9

3 Case Study

ComBench addresses multiple evaluation objectives related to performance, scal-
ability, reliability, and security, which can be investigated with different network
conditions. The captured measurement data and derived metrics introduced in
Section 2.1 enable a wide range of investigations and comparisons. This section
presents the universal applicability of ComBench in a case study consisting of
five exemplary IoT scenarios. We show how ComBench contributes to analyzing
specific concerns for each of those scenarios, such as broker resilience, protocol ef-
ficiency, and the impact of network limitations on communication. Each scenario
includes a short motivation, the associated study objectives (SO), a description
of the benchmarking experiment, and a brief interpretation of results.We like to
emphasize that the focus of this case study is to demonstrate the capabilities of
ComBench and how it can be applied and not the discussion of the observations
itself. Hence, we do not present a detailed description and interpretation of the
concrete measurement results.

The experiments are executed on a node with a four-core Intel Core i7-
4710HQ processor and 8 GB RAM using Ubuntu 18.04.2 LTS with Docker
version 19.03.11. The benchmark configuration and the detailed measurement
results are available at our GitHub repository [29] and on Zenodo [14].

3.1 Broker Resilience

Motivation Many publish/subscribe protocols like MQTT or AMQP use a cen-
tral message broker that manages the subscribed topics and distributes the pub-
lished messages. An increasing number of clients and messages can overload the
broker, resulting in higher latencies or message loss. When selecting an appro-
priate broker or for configuration tuning the resilience can be a crucial criterion.

Study objectives A first study objective that can be analyzed using ComBench
is the load level at which the broker start to delay messages (SO 1.1). As bro-
kers are implemented in different programming languages and might operate less
or more performant, their resilience may differ. Identifying performance varia-
tions between the brokers at different load levels is a further objective of our
study (SO 1.2).

Scenario To compare the resilience of different brokers, we stress the broker
by horizontal scaling, i.e., by increasing the number of clients and messages.
We analyze the captured latency of the message transmission of all clients (ref.
Section 2.1: Equation (4)) and compare different load levels of different broker
implementations. We apply a supermarket company’s supply chain load profile
as introduced by the SPECjms2007 benchmark [25]. Due to space limitations, we
refer to the SPECjms2007 documentation for a detailed workload description.
We perform measurement runs of 60 seconds, each with three repetitions at the
scaling factors one, five, ten, 15, 20, 30, 40, 45, 50, and 55.

Conclusions Figure 3 depcits the average latency per scaling factor for each
broker . The x-axis shows the different scaling levels, while the y-axis represents



10 S. Herrnleben et al.

0 10 20 30 40 50
scaling factor

0

50

100

150

200

250

la
te

nc
y 

(m
s)

RabbitMQ
Mosquitto
EMQ X

Fig. 3: Average latency for message transmission for different scaling factors and
MQTT broker implementations.

the measured average latency in milliseconds. The analysis indicates no notice-
able increase in latency until a scaling factor of 30 for RabbitMQ and up to
45 for Mosquitto and EMQ X (SO 1.1). All brokers perform similar until a scal-
ing factor of 45, at which the latency of RabbitMQ increases rapidly (SO 1.1).
EMQ X and Mosquitto show only a slight latency increase starting at a scaling
factor of 50 (SO 1.2).

3.2 Protocol Efficiency

Motivation In addition to the message payload, the protocol headers of the
protocol stack also affect the actual number of transmitted bytes at the network
interface. Various publish/subscribe protocols generate different overheads due
to their headers and the underlying protocols. Especially for low data rates, as
often present in Wireless Sensor Networks (WSNs), low overhead is crucial. The
protocol efficiency (ref. Section 2.2: Equation (5)) indicates the proportion of the
payload, i.e., the message content, compared to the transferred bytes observed
at the network interface.

Study objectives A first study analyzes and compares the protocol efficiency
of AMQP, MQTT, and CoAP at different payload sizes (SO 2.1). The objective
is to identify which of the protocols is best suited for low-bandwidth networks
due to its efficiency (SO 2.2). Furthermore, the study compares the protocol
efficiency of MQTT at the three quality of service (QoS) levels, which differs
through additional control messages (SO 2.3).

Scenario To investigate protocol efficiency, we deploy a simple setup con-
sisting of one publisher and one subscriber, without any configured restrictions
related to the network conditions. The publisher sends ten messages per sec-
ond over 60 seconds with a fixed payload via the broker to the subscriber. The
measurements are repeated for payload sizes between 100 and 1000 bytes in step
sizes of 100 bytes for the protocols MQTT, AMQP, and CoAP. To compare the
protocol efficiency of MQTT at the QoS levels 0 (default), 1, and 2, we executed
the measurement series with payload sizes between 200 and 10000 bytes in step
sizes of 200 bytes.



ComBench: IoT Publish/Subscribe Benchmarking Framework 11

200 400 600 800 1000
payload size (bytes)

0.4

0.6

0.8
ra

tio
 b

et
we

en
 p

ay
lo

ad
 a

nd
 

 tr
an

sf
er

re
d 

by
te

s

MQTT
AMQP
CoAP

Fig. 4: Ratio between payload and
transmitted bytes for different proto-
cols.

0 2000 4000 6000 8000 10000
payload size (bytes)

0.4

0.6

0.8

1.0

ra
tio

 b
et

we
en

 p
ay

lo
ad

 a
nd

 
 tr

an
sf

er
re

d 
by

te
s

QoS0
QoS1
QoS2

Fig. 5: Ratio between payload and
transmitted bytes for different MQTT
QoS levels.

Conclusions Figure 4 shows the protocol efficiency of the protocols MQTT,
AMQP, and CoAP. The x-axis depicts the size of the payload in bytes, while
the y-axis indicates the ratio between the payload and the transferred bytes
observed at the network interface. The graph shows that AMQP has a lower
efficiency than MQTT and CoAP, i.e., it has a higher overhead due to, e.g.,
protocol headers (SO 2.1). MQTT and CoAP have similar efficiency; therefore,
both protocols are well suitable for low bandwidth networks from the protocol
overhead perspective (SO 2.2). As expected, the efficiency increases with the
payload size since the payload takes a higher proportion of the transferred bytes
than the header. Figure 5 depicts the efficiency of MQTT at different QoS levels,
with an identical axis interpretation to Figure 4. This measurement complies
with the expectations that with an increasing QoS level, the efficiency decreases
due to the additional control traffic (SO 2.3).

3.3 Effect of packet loss

Motivation Packets can get lost during data transmission, especially in unstable
wireless networks. A few lost packets are usually compensated by the protocols or
the underlying protocol layers through re-transmissions so that messages on ap-
plication layer still arrive (usually delayed). For applications running on unstable
networks, a protocol with adequate compensation mechanisms should be chosen.
The message loss rate can be determined by Equation (1) (see Section 2.2).

Study objectives One objective of this study is to determine at which packet
loss rate messages get lost (SO 3.1). Based on this, we test at which packet loss
rate the communication is no longer possible (SO 3.2). For particularly lossy
connections, a comparison of the message loss rates of protocols would support
identifying particularly robust protocols (SO 3.3).

Scenario To investigate the packet loss, we again use a setup consisting of
one publisher and one subscriber. The publisher sends ten messages per second
with 20 repetitions. The network interface of the publisher is configured with
a constant packet loss rate, increasing along with a measurement series from
0 to 100 percent in steps of 5 percent. Further traffic and network disturbances



12 S. Herrnleben et al.

0.0 0.2 0.4 0.6 0.8 1.0
configured packet loss rate

0.0

0.2

0.4

0.6

0.8

1.0

m
ea

su
re

d 
m

es
sa

ge
lo

ss
 ra

te

MQTT
AMQP

Fig. 6: Message loss rate at artificially
configured packet loss.

20 40 60 80 100
messages per second

0.05

0.10

0.15

0.20

0.25

CP
U 

ut
iliz

at
io

n

without TLS
TLS

Fig. 7: Impact of TLS on client’s CPU
load on an increasing number of mes-
sages.

are not configured. Lost messages are determined by matching the IDs of the
messages sent by the publisher and the messages received by the subscriber. This
study is performed for MQTT and AMQP.

Conclusions Figure 6 depicts the message loss rate for different configured
packet loss rates for the protocols MQTT and AMQP. The x-axis shows the
measured message loss rate, as indicated by Equation (1). The y-axis depicts the
configured packet loss rate at the subscriber’s network interface. The results show
that the first message losses occur at a packet loss rate of 10 percent for MQTT
and 15 percent for AMQP (SO 3.1). Communication is impossible, i.e., almost
all messages are lost, for both protocols at a packet loss rate of approximately
85 percent (SO 3.2). The two considered protocols behave similarly in terms of
robustness against packet loss (SO 3.3). Further measurements are necessary to
identify significant differences between these protocols related to the sensitivity
to packet loss.

3.4 Impact of TLS on Client CPU Utilization

Motivation TLS enables encrypted communication for MQTT on the transport
layer (Layer 4 on ISO OSI model). However, the handshake, encryption, and
decryption of TLS may introduce additional load on the client’s CPU. Especially
for resource-constrained IoT devices, the influence of encryption mechanisms on
the system load should be taken into account.

Study objectives The first objective of this study is to quantify the addi-
tional load on the CPU by enabling TLS (SO 4.1). Furthermore, the effect of
an increased number of encrypted messages on the client’s CPU utilization is
analyzed (SO 4.2).

Scenario For this scenario, we use a setup consisting of one publisher and
one subscriber. The publisher sends messages with a fixed rate for 60 seconds
with a payload of 100 bytes, which the subscriber will receive. This message
rate is increased at rates between 20 and 100 messages per second within a
measurement series. No encryption is used for a first measurement series, while
in a second series all measurements are repeated with TLS enabled.



ComBench: IoT Publish/Subscribe Benchmarking Framework 13

0 20 40 60 80 100 120
experiment runtime (sec.)

0

1000

2000
m

es
sa

ge
s p

en
di

ng
MQTT
AMQP
CoAP

Fig. 8: Delayed messages during the ex-
ecution of the experiment.

0 20 40 60 80 100 120
experiment runtime (sec.)

0

100

200

300

400

500

kb
ps

bandwidth limit

Fig. 9: Artificially configured band-
width during the experiment.

Conclusions For the evaluation, we use the reported CPU utilization on the
publisher. Figure 7 shows the impact of TLS on the client’s CPU utilization.
The x-axis depicts the number of sent messages, and the y-axis shows the ratio
of utilized CPU. The graph shows that TLS introduces approximately 2 percent
more CPU utilization compared to the scenario without encryption (SO 4.1). It
can moreover be seen that the influence of TLS introduces an almost constant
overhead regardless of the number of messages (SO 4.2).

3.5 Influence of Fluctuating Bandwidth

Motivation IoT applications in wireless networks often face fluctuating network
quality, like limited bandwidths. Fluctuating bandwidths occur particularly often
for moving devices. The communication behavior at such fluctuating bandwidths
is of particular interest in mobile applications. Besides the behavior in case of
a static bandwidth limitation, it is especially relevant how the protocol behaves
at bandwidth variations.

Study objectives When considering varying bandwidths, it can be essential to
know the bandwidth limit to which packets can be sent without any delay for the
protocols MQTT, AMQP, and CoAP (SO 5.1). In contrast, it could further be
relevant how fast queued packets are sent after bandwidth limitation (SO 5.2).
It is also essential if packets were lost during this time (SO 5.3).

Scenario To analyze the influence of fluctuating bandwidth, we use a setup
with one publisher and one subscriber. The publisher sends 67 messages per
second for 120 seconds with a payload of 1000 bytes each. The bandwidth is not
set with a static value. Instead, different bandwidth limits are specified as time
series, which are applied automatically by the client. The bandwidth is set to
100 kbps initially, limited to 30 kbps from second 20, and reduced to 2 kbps from
second 50 to imitate a decreasing signal quality, as depicted in Figure 9. From
second 80, it is assumed that the mobile network is available again, and the
bandwidth limitation is increased to 500 kbps. The experiment is performed for
MQTT, AMQP, and CoAP.

Conclusion Figure 8 shows the number of delayed messages during the ex-
periment for MQTT, AMQP, and CoAP. The x-axis depicts the runtime of the



14 S. Herrnleben et al.

experiment, while the y-axis indicates the number of messages that were not
delivered at the respective time. The first delay for the three protocols occurs in
second 20, when the bandwidth is limited to 30 kbps (ref. Figure 9), which means
that transmission at the previous 100 kbps was possible without delay (SO 5.1).
The graph follows the expectation that from second 50 on, more messages are
delayed due to the further decreased bandwidth, which is similar for all used
protocols. After pushing the bandwidth limit to 500 kbps in second 80, MQTT
and AMQP send the delayed messages in about 8 seconds, while CoAP takes
about 35 seconds (SO 5.2). Since no delayed messages remain at the end of the
experiment, all messages were delivered without loss (SO 5.3).

4 Threats to Validity

The previous section has shown the wide variety of use cases in which ComBench
can be used. Nevertheless, there are a few weaknesses that a benchmark operator
should be aware of. This section discusses these vulnerabilities and provides some
approaches to remedy or mitigate them.

ComBench offers several advantages in usability, verifiability, and metrics
due to its unified, multi-protocol client and its instrumentation. However, the
protocol adapters contained in the client create a small performance overhead
that must be considered compared to a single-protocol implementation. Also,
the client’s instrumentation for logging the messages and recording CPU, RAM,
and network utilization introduces additional load on the client. We assume that
this overhead can be neglected; however, a detailed analysis of the overhead is
part of our future work. If the pure client performance needs to be measured, a
single-protocol client and another instrumentation should be used, which is out
of this work’s scope. By implementing the REST interface against our controller,
alternative clients — also if necessary with alternative protocol implementations
— can be integrated transparently.

Another possible vulnerability of our benchmarking framework is time syn-
chronization. Latency measurements determine the delta between the times-
tamps from sending the message to receiving it. An accurate calculation re-
quires exact time synchronization between all participants. Some previous work
implements a request/reply pattern, i.e., the subscriber responds to the sender,
to measure the round trip time [23]. However, we deliberately decided against
this procedure because we do not consider request/reply very practical in pub-
lish/subscribe environments. Instead, we rely on the Precision-Time-Protocol
(PTP), and the benchmark verifies before each run that the participants’ times
are synchronized. Studies show a deviation of less than 1µs when using PTP [21],
which we assume is satisfiable in practice. Please note that in small setups, where
all clients are running on a single host, the issue of possible time deviation is
irrelevant as all guest systems use the host’s clock.



ComBench: IoT Publish/Subscribe Benchmarking Framework 15

5 Related Work

Testing the performance of communication protocols is not a new field in academia.
Therefore, tools dealing with load generation and measurements related to com-
munication systems are especially important for this paper. Section 5.1 presents
some work that deals with the comparison of IoT network protocols. While Sec-
tion 5.2 presents tools that focus on load testing and measurements, Section 5.3
identifies benchmarks providing predefined load scenarios in addition to load
generation and measurement instrumentation. Section 5.4 summarizes the re-
lated work by listing all the works with their primary focus and characteristics.

5.1 Protocol Comparisons

A large number of papers deal with the comparison of different communication
protocols, which emphasizes the relevance of a benchmarking framework. In the
following, we provide a possible categorization of related comparisons of IoT
application layer protocols. We have assigned the studies to their primary focus,
but some can also be well suited in multiple categories.

The first category is the theoretical comparison of protocols [10,20]. Header
structure, payload size, and security features are discussed and compared. Fur-
thermore, related protocol comparisons deal with scalability and analyzing the
resource consumption of clients or brokers [28,17]. Another category of related
studies focuses on network performance and network load of protocols [15,3,22].
More specialized studies in this area analyze and compare the performance of
protocols under constraint networks [5,6,23] and different topologies [12].

The studies provide valuable insights into the protocols, some of them also
with artificially restricted network communication [5,6,23]. Although some au-
thors make their developed test tools publicly available, they are usually tar-
geted to the specific test and do not allow free configuration as we expect from
a benchmarking framework.

5.2 Load Testing Frameworks

Tools and benchmarking frameworks for load testing are most related to our
work. These artifacts are characterized by their accessibility as a tool that can
both generate loads and perform measurements. In the following, we present a
selection of some well-known load testing frameworks.

JMeter [13] is a Java-based open-source application designed to load test
functional behavior and measure performance. While it was originally designed
to test web applications, extensions add other features and communication pro-
tocols such as MQTT. LoadRunner [31] is a commercial testing solution sup-
porting a wide range of technologies and protocols in the industry with focus
on testing applications and measuring system behaviour and performance under
load. It supports the IoT protocols MQTT and CoAP and provides a IDE for
scripting and running unit tests. Gatling [9] is an open-source load testing frame-
work written in Scala for analyzing and measuring the performance of different



16 S. Herrnleben et al.

services, focusing on web applications. Community plugins can be used to add
protocol support for, e.g., MQTT, and AMQP. MZBench [8] is a community-
driven open-source benchmarking framework written in Erlang and focusing on
testing software products. Among others the communication protocols XMPP,
and AMQP are supported by MZBench, furthermore can be added as extension.
LOCUST [7] is another community-driven open source load testing tool focusing
on load testing of web applications. Although the common protocols for web ap-
plications (HTTP, Websocket, ...) are supported, there are currently no clients
for IoT communication protocols. Although load test tools usually have a wide
range of configuration options and measurement methods, to the best of our
knowledge there are no tools that support comprehensive network connectivity
constraints.

5.3 Benchmarks

In this section, we discuss existing IoT benchmarks using publish/subscribe pro-
tocols and show that already some research effort was made on a static analysis
and comparison of publish/subscribe protocols. Benchmarks differ from load test
frameworks primarily in that one or more predefined load profiles are provided
in addition to the tooling.

Sachs et al. propose their SPECjms2007 benchmark [25], focusing on eval-
uating the performance of message-oriented middleware (MOM), i.e., the Java
message service (JMS). As a follow-up work, Sachs et al. proposed the jms-
2009-PS benchmark [24], focusing on publish/subscribe patterns. Afterward,
Appel et al. add another use case by changing the used protocol to AMQP in
the jms2009-PS benchmark to analyze the MOM [2]. Zhang et al. presented in
2014 PSBench, a benchmark for content- and topic-based publish/subscribe sys-
tems [32]. Under the name IoTBench a research initiative pursues the vision of a
generic IoT benchmark [4]. Their goal is to test and compare low-power wireless
network protocols. This initiative collaborates on the vision of this benchmark
and already published first steps toward a methodology in [16]. RIoTBench is
a real-time IoT benchmark suite for distributed stream processing systems [26].
The covered performance metrics include latency, throughput, jitter, and CPU
and memory utilization.

The presented benchmarks are a valuable contribution to the investigation of
the performance of communication protocols including competitive workloads.
However, we could not identify a fluctuating network quality in any of the bench-
marks, which is an inherent issue for IoT systems.

5.4 Summary

As our review for related work shows, the evaluation of IoT communication
protocols has a significant relevance in current research [10,20]. While individual
evaluations usually focus on one or multiple specific aspects [22,3], load test
frameworks or benchmarks typically offer a more universal applicability due to
their configurable workload and included reporting [13,26]. Most evaluations and



ComBench: IoT Publish/Subscribe Benchmarking Framework 17

A
p
p
ro

a
ch

T
y
p

e

Io
T

P
ro

to
c
o
l

S
u
p
p

o
rt

C
li
e
n
t

P
e
rf

.
M

e
a
su

re
m

e
n
t

N
e
tw

o
rk

P
e
rf

.
M

e
a
su

re
m

e
n
t

In
fl
u
e
n
c
e

N
e
tw

.
C

o
n
d
it

io
n
s

R
e
le

a
se

d
T

o
o
l

in
c
.

R
e
p

o
rt

in
g

Dizdarević et al. [10] Survey X
Naik et al. [20] Survey X
Talaminos-Barroso et al. [28] Evaluation X X X X
Kayal et al. [17] Evaluation X X
Iglesias-Urkia et al. [15] Evaluation X X
Bansal et al. [3] Evaluation X X X
Pohl et al. [22] Evaluation X X X
Chen et al. [5] Evaluation X X X
Collina et al. [6] Evaluation X X X
Profanter et al. [23] Evaluation X X X
JMeter [13] LT Tool X X X X
LoadRunner [31] LT Tool X X ? X
Gatling [9] LT Tool X X X
MZBench [8] LT Tool X X X
LOCUST [7] LT Tool X X X
SPECjms2007 [25] Benchmark X X X
jms2000-PS [24] Benchmark X X X
Appel et al. [2] Evaluation X X
PSBench [32] Benchmark X X
IoTBench [4,16] Benchmark X
RIoTBench [26] Benchmark X X X X

ComBench LT Tool X X X X X

Table 1: Matrix summarizing the scope and characteristics of related work com-
pared to our ComBench benchmarking framework.

tools assume a lossless connectivity, while some work shows the demand to study
the protocols also under connections with constrained network quality [5,23].
However, to the best of our knowledge, no benchmarking framework currently
exists that focuses on the evaluation of IoT communication protocols under
constrained network quality, such as packet loss or a temporary link failure.

Table 1 summarizes our considered related works. The first column names
the approach, while the second column classifies it according to the category of
its main purpose. We distinguish between surveys providing a theoretical com-
parison but no measurements, evaluations comparing different protocols through
measurements, load test tools (“LT tool”) focusing particularly on the reuse of
measurement tools, and benchmarks providing additional predefined competitive
workload scenarios. The subsequent columns indicate by ‘X’ whether certain
properties are met by the approach. An ‘?’ indicates that we have been unable



18 S. Herrnleben et al.

to determine this property. Note that we only consider the primary focus of the
approach, and for tools, we only check properties that can be enabled through
official plugins and settings within the tool. IoT protocol support is fulfilled if
at least one of the protocols MQTT, AMQP, XMQP, CoAP, ZeroMQ, DDS, or
OPC UA is supported. Client performance measurements specifies whether the
approach observes client resource consumption such as CPU or RAM, while net-
work performance measurements targets aspects such as latency or bandwidth
consumption. The aspect influence network conditions is fulfilled if at least one
of the configurations packet loss, transmission delay or link failure is present or
examined. If an official tool is provided as an artifact including a reporting, the
requirement for the last column is met.

The summary shows that so far there is no specific load test tool or bench-
marking framework for the evaluation of IoT communication protocols under
network constraints, which motivates us for the developing ComBench.

6 Conclusion

In this paper, we presented ComBench, our publish/subscribe benchmarking
framework for IoT systems. The framework is designed to analyze and compare
different application layer protocols and includes three key features. Firstly,
ComBench can be useful to investigate the effects of varying network qual-
ity on communication behavior. Second, due to its multi-protocol capability,
ComBench can compare different protocols and their features. At third, our
benchmarking framework supports designers, developers, and operators of IoT
systems, analyzing the scalability, robustness, and reliability of clients, networks,
and brokers. For all these areas, ComBench offers the appropriate instrumenta-
tion for collecting and analyzing measurement data. Section 3 presented some
exemplary benchmarking scenarios and pointed out some briefly answered ob-
jectives during the case study. During the development of ComBench, we paid
attention to high usability, which is especially characterized by the multi-protocol
client, the central benchmark controller, the deployment in a containerized en-
vironment, and the included generation of reports. ComBench is published as
open-source under the Apache License 2.0 on GitHub [29] and is accessible to
other researchers, system designers, software engineers, and developers.

In the future, we want to continue developing ComBench and add additional
technical features. One goal is to implement additional publish/subscribe proto-
col adapters for, e.g., ZeroMQ, DDS, and OPC UA pub/sub. Furthermore, we
plan to add request/response patterns as used in REST applications. A graphi-
cal, interactive web interface can present the results in a more comfortable and
user-friendly way, especially for users from the industry. Last, we aim to add
representative workloads and establish a standardized benchmark from these.

Acknowledgement – This project is funded by the Bavarian State Ministry
of Science and the Arts and coordinated by the Bavarian Research Institute for
Digital Transformation (bidt).



ComBench: IoT Publish/Subscribe Benchmarking Framework 19

References

1. Al-Fuqaha, A., Guizani, M., Mohammadi, M., Aledhari, M., Ayyash, M.: In-
ternet of Things: A Survey on Enabling Technologies, Protocols, and Ap-
plications. IEEE Communications Surveys Tutorials 17(4), 2347–2376 (2015).
https://doi.org/10.1109/COMST.2015.2444095

2. Appel, S., Sachs, K., Buchmann, A.: Towards benchmarking of AMQP. In: Pro-
ceedings of the Fourth ACM International Conference on Distributed Event-Based
Systems. pp. 99–100 (2010)

3. Bansal, S., Kumar, D.: IoT application layer protocols: performance analysis and
significance in smart city. In: 2019 10th International Conference on Computing,
Communication and Networking Technologies (ICCCNT). pp. 1–6. IEEE (2019)

4. Boano, C.A., Duquennoy, S., Förster, A., Gnawali, O., Jacob, R., Kim, H.S., Land-
siedel, O., Marfievici, R., Mottola, L., Picco, G.P., et al.: IoTBench: Towards a
benchmark for low-power wireless networking. In: 2018 IEEE Workshop on Bench-
marking Cyber-Physical Networks and Systems (CPSBench). IEEE (2018)

5. Chen, Y., Kunz, T.: Performance evaluation of IoT protocols under a constrained
wireless access network. In: 2016 International Conference on Selected Topics in
Mobile & Wireless Networking (MoWNeT). pp. 1–7. IEEE (2016)

6. Collina, M., Bartolucci, M., Vanelli-Coralli, A., Corazza, G.E.: Internet of Things
application layer protocol analysis over error and delay prone links. In: 2014 7th
Advanced Satellite Multimedia Systems Conference and the 13th Signal Processing
for Space Communications Workshop (ASMS/SPSC). pp. 398–404. IEEE (2014)

7. Community: Locust Website. https://locust.io/ (2021), online; visited 2021-04-15

8. Community: MZBench Website. https://github.com/satori-com/mzbench (2021),
online; visited 2021-04-13

9. Corp, G.: Gatling Website. https://gatling.io/ (2021), online; visited 2021-04-13

10. Dizdarević, J., Carpio, F., Jukan, A., Masip-Bruin, X.: A survey of communication
protocols for internet of things and related challenges of fog and cloud computing
integration. ACM Computing Surveys (CSUR) (2019)

11. Eugster, P.T., Felber, P.A., Guerraoui, R., Kermarrec, A.M.: The many faces of
publish/subscribe. ACM computing surveys (CSUR) 35(2), 114–131 (2003)

12. Gündoğran, C., Kietzmann, P., Lenders, M., Petersen, H., Schmidt, T.C.,
Wählisch, M.: NDN, CoAP, and MQTT: a comparative measurement study in
the IoT. In: Proceedings of the 5th ACM Conference on Information-Centric Net-
working. pp. 159–171 (2018)

13. Halili, E.: Apache JMeter. Packt Publishing (2008)

14. Herrnleben, S., Leidinger, M., Lesch, V., Prantl, T., Grohmann, J., Krupitzer, C.,
Kounev, S.: Evaluation Results of ComBench as Open Data. Tech. rep., University
of Wuerzburg (2021), online, https://doi.org/10.5281/zenodo.4723344; published
30. April 2021

15. Iglesias-Urkia, M., Orive, A., Barcelo, M., Moran, A., Bilbao, J., Urbieta, A.: To-
wards a lightweight protocol for Industry 4.0: An implementation based bench-
mark. In: 2017 IEEE International Workshop of Electronics, Control, Measure-
ment, Signals and their Application to Mechatronics (ECMSM) (2017)

16. Jacob, R., Boano, C.A., Raza, U., Zimmerling, M., Thiele, L.: Towards a methodol-
ogy for experimental evaluation in low-power wireless networking. In: Proceedings
of the 2nd Workshop on Benchmarking Cyber-Physical Systems and Internet of
Things. pp. 18–23 (2019)



20 S. Herrnleben et al.

17. Kayal, P., Perros, H.: A comparison of IoT application layer protocols through a
smart parking implementation. In: 2017 20th Conference on Innovations in Clouds,
Internet and Networks (ICIN). pp. 331–336. IEEE (2017)

18. von Kistowski, J., Arnold, J.A., Huppler, K., Lange, K.D., Henning, J.L., Cao, P.:
How to Build a Benchmark. In: Proceedings of the 6th ACM/SPEC International
Conference on Performance Engineering (ICPE 2015). ICPE ’15, ACM, New York,
NY, USA (February 2015)

19. Kounev, S., Lange, K.D., von Kistowski, J.: Systems Benchmarking. Springer In-
ternational Publishing, 1 edn. (2020). https://doi.org/10.1007/978-3-030-41705-5

20. Naik, N.: Choice of effective messaging protocols for IoT systems: MQTT, CoAP,
AMQP and HTTP. In: 2017 IEEE international systems engineering symposium
(ISSE). pp. 1–7. IEEE (2017)

21. Neagoe, T., Cristea, V., Banica, L.: NTP versus PTP in Computer Networks Clock
Synchronization. In: 2006 IEEE International Symposium on Industrial Electron-
ics. vol. 1, pp. 317–362. IEEE (2006)

22. Pohl, M., Kubela, J., Bosse, S., Turowski, K.: Performance Evaluation of Ap-
plication Layer Protocols for the Internet-of-Things. In: 2018 Sixth International
Conference on Enterprise Systems (ES). pp. 180–187. IEEE (2018)

23. Profanter, S., Tekat, A., Dorofeev, K., Rickert, M., Knoll, A.: OPC UA versus
ROS, DDS, and MQTT: Performance Evaluation of Industry 4.0 Protocols. In:
Proceedings of the IEEE International Conference on Industrial Technology (ICIT)
(2019)

24. Sachs, K., Appel, S., Kounev, S., Buchmann, A.: Benchmarking publish/subscribe-
based messaging systems. In: International Conference on Database Systems for
Advanced Applications. pp. 203–214. Springer (2010)

25. Sachs, K., Kounev, S., Bacon, J., Buchmann, A.: Performance evaluation of
message-oriented middleware using the SPECjms2007 benchmark. Performance
Evaluation 66(8), 410–434 (2009)

26. Shukla, A., Chaturvedi, S., Simmhan, Y.: RIoTBench: An IoT Benchmark for
Distributed Stream Processing Systems. Concurrency and Computation: Practice
and Experience 29(21), e4257 (2017)

27. Statista, IHS: Internet of Things - number of connected devices world-
wide 2015-2025 (2018), https://www.statista.com/statistics/471264/iot-number-
of-connected-devices-worldwide/

28. Talaminos-Barroso, A., Estudillo-Valderrama, M.A., Roa, L.M., Reina-Tosina, J.,
Ortega-Ruiz, F.: A Machine-to-Machine protocol benchmark for eHealth applica-
tions – Use case: Respiratory rehabilitation. Computer methods and programs in
biomedicine 129, 1–11 (2016)

29. University of Wuerzburg, Institute of Computer Science, Germany,
Chair of Software Engineering: Git repository of ComBench (2021),
https://github.com/DescartesResearch/ComBench

30. Wirawan, I.M., Wahyono, I.D., Idfi, G., Kusumo, G.R.: Iot communication sys-
tem using publish-subscribe. In: 2018 International Seminar on Application for
Technology of Information and Communication. pp. 61–65. IEEE (2018)

31. Zhang, H.l., Zhang, S., Li, X.j., Zhang, P., Liu, S.b.: Research of load testing
and result application based on LoadRunner. In: 2012 National Conference on
Information Technology and Computer Science. Atlantis Press (2012)

32. Zhang, K., Rabl, T., Sun, Y.P., Kumar, R., Zen, N., Jacobsen, H.A.: PSBench: a
benchmark for content-and topic-based publish/subscribe systems. In: Proceedings
of the Posters & Demos Session, pp. 17–18. Association for Computing Machinery
(2014)


