piwik-script

Intern
    Chair of Computer Science II - Software Engineering

    Publications

    Publications of Software-Engineering Group / Descartes Research Group

    This list contains dynamically generated, up-to-date list of publications with filtering possibilities.
    Show publications grouped by research areas.

    [ 2021 ] [ 2020 ] [ 2019 ] [ 2018 ] [ 2017 ] [ 2016 ] [ 2015 ] [ 2014 ] [ 2013 ] [ 2012 ] [ 2011 ] [ 2010 ] [ 2009 ] [ 2008 ] [ 2007 ] [ 2006 ] [ 2005 ] [ 2004 ] [ 2003 ] [ 2002 ] [ 2001 ] [ 1999 ]

    2021 [ nach oben ]

    • Sizeless: Predicting the ... - Download
      Sizeless: Predicting the Optimal Size of Serverless Functions. S. Eismann; L. Bui; J. Grohmann; C. Abad; N. Herbst; S. Kounev; in Proceedings of the 22nd International MIDDLEWARE Conference (2021).
       
    • SARDE: A Framework for Co... - Download
      SARDE: A Framework for Continuous and Self-Adaptive Resource Demand Estimation. J. Grohmann; S. Eismann; A. Bauer; S. Spinner; J. Blum; N. Herbst; S. Kounev; in ACM Transactions on Autonomous and Adaptive Systems (2021). 15(2)
       
    • Towards Situation-Aware M... - Download
      Towards Situation-Aware Meta-Optimization of Adaptation Planning Strategies. V. Lesch; T. Noack; J. Hefter; S. Kounev; C. Krupitzer; in Proceedings of the 2nd IEEE International Conference on Autonomic Computing and Self-Organizing Systems - ACSOS 2021 (2021).
      Best Paper Award Runner Up, Full Paper Acceptance Ratio: 25%
       
    • A Machine Learning-based Workflow for Automatic Detection of Anomalies in Machine Tools. M. Züfle; F. Moog; V. Lesch; C. Krupitzer; S. Kounev; in ISA Transactions: The Journal of Automation (2021).
      (in press)
       
    • Performance Evaluation of a Post-Quantum Public-Key Cryptosystem. T. Prantl; D. Prantl; L. Beierlieb; L. Iffländer; A. Dmitrienko; C. Krupitzer; S. Kounev; in 2021 IEEE 40th International Performance Computing and Communications Conference (IPCCC) (2021).
       
    • Benchmarking of Pre- and Post-Quantum Group Encryption Schemes with Focus on IoT. T. Prantl; D. Prantl; A. Bauer; L. Iffländer; A. Dmitrenko; C. Krupitzer; S. Kounev; in 2021 IEEE 40th International Performance Computing and Communications Conference (IPCCC) (2021).
       
    • The integration of training and off-training activities substantially alters training volume and load analysis in elite rowers. G. Treff; R. Leppich; K. Winkert; J. M. Steinacker; B. Mayer; B. Sperlich; in Scientific reports (2021). 11(1) 1–10.
       
    • The State of Serverless A... - Download
      The State of Serverless Applications: Collection, Characterization, and Community Consensus. S. Eismann; J. Scheuner; E. van Eyk; M. Schwinger; J. Grohmann; N. Herbst; C. Abad; A. Iosup; in Transactions on Software Engineering (2021).
       
    • Recommendations for Data-Driven Degradation Estimation with Case Studies from Manufacturing and Dry-Bulk Shipping. N. Finke; M. Mohr; A. Lontke; M. Züfle; S. Kounev; R. Möller; in Research Challenges in Information Science (RCIS) (2021). 189–204.
       
    • Serverless Computing (Dagstuhl Seminar 21201). C. Abad; I. T. Foster; N. Herbst; A. Iosup; in Dagstuhl Reports, (C. Abad; I. T. Foster; N. Herbst; A. Iosup, Hrsg.) (2021). 11(4) 34–93.
       
    • Establishing a cardiac training group for patients with heart failure: the “HIP-in-Würzburg” study. G. Güder; J. Wilkesmann; N. Scholz; R. Leppich; P. Düking; B. Sperlich; C. Rost; S. Frantz; C. Morbach; F. Sahiti; others; in Clinical Research in Cardiology (2021). 1–10.
       
    • Utility-based Vehicle Rou... - Download
      Utility-based Vehicle Routing Integrating User Preferences. V. Lesch; M. Hadry; S. Kounev; C. Krupitzer; in Proceedings of 3rd International Workshop on Pervasive Computing for Vehicular Systems (PerVehicle), 2021 (2021).
       
    • Auswirkungen der COVID-19-Pandemie auf Sportlerinnen und Sportler in Deutschland. C. Zinner; M. Matzka; R. Leppich; S. Kounev; H.-C. Holmberg; B. Sperlich; in 53. asp Jahrestagung (2021).
       
    • A Predictive Maintenance Methodology: Predicting the Time-to-Failure of Machines in Industry 4.0. M. Züfle; J. Agne; J. Grohmann; I. Dörtoluk; S. Kounev; in Proceedings of the 21st IEEE IES International Conference on Industrial Informatics (2021).
      (to appear)
       
    • SPEC Research Group Newsl... - Download
      SPEC Research Group Newsletter, vol. 3 no. 2. S. Kounev; A. van Hoorn; A. Bauer; (2021, April).
      Published by Standard Performance Evaluation Corporation (SPEC)
       
    • Buzzy: Towards Realistic ... - Download
      Buzzy: Towards Realistic DBMS Benchmarking via Tailored, Representative, Synthetic Workloads. J. Domaschka; S. Eismann; M. Leznik; J. Grohmann; S. Kounev; D. Seybold; in Companion of the ACM/SPEC International Conference on Performance Engineering (2021). (Bd. ICPE ’21) 175–178.
       
    • SuanMing: Explainable Pre... - Download
      SuanMing: Explainable Prediction of Performance Degradations in Microservice Applications. J. Grohmann; M. Straesser; A. Chalbani; S. Eismann; Y. Arian; N. Herbst; N. Peretz; S. Kounev; in Proceedings of the 12th ACM/SPEC International Conference on Performance Engineering (ICPE) (2021).
      Acceptance Rate: 29%
       
    • A Simulation-based Optimi... - Download
      A Simulation-based Optimization Framework for Online Adaptation of Networks. S. Herrnleben; J. Grohmann; P. Rygielski; V. Lesch; C. Krupitzer; S. Kounev; in Proceedings of the 12th EAI International Conference on Simulation Tools and Techniques (SIMUtools), H. Song, D. Jiang (Hrsg.) (2021). 513–532.
       
    • Towards a Group Encryption Scheme Benchmark: A View on Centralized Schemes with focus on IoT. T. Prantl; P. Ten; L. Iffländer; S. Herrnleben; A. Dmitrenko; S. Kounev; C. Krupitzer; in 2021 ACM/SPEC International Conference on Performance Engineering (ICPE) (2021).
       
    • Performance Impact Analysis of Securing MQTT Using TLS. T. Prantl; L. Iffländer; S. Herrnleben; S. Engel; S. Kounev; C. Krupitzer; in 2021 ACM/SPEC International Conference on Performance Engineering (ICPE) (2021).
       
    • Libra: A Benchmark for Ti... - Download
      Libra: A Benchmark for Time Series Forecasting Methods. A. Bauer; M. Züfle; S. Eismann; J. Grohmann; N. Herbst; S. Kounev; in Proceedings of the 12th ACM/SPEC International Conference on Performance Engineering (ICPE) (2021).
       
    • A Comparison of Mechanism... - Download
      A Comparison of Mechanisms for Compensating Negative Impacts of System Integration. V. Lesch; C. Krupitzer; K. Stubenrauch; N. Keil; C. Becker; S. Kounev; M. Segata; in Future Generation Computer Systems (2021). 116 117–131.
       
    • Machine Learning Model Update Strategies for Hard Disk Drive Failure Prediction. M. Züfle; F. Erhard; S. Kounev; in 20th IEEE International Conference on Machine Learning and Applications (ICMLA) (2021).
      (to appear)
       
    • Serverless Applications:W... - Download
      Serverless Applications:Why, When, and How?. S. Eismann; S. Joel; E. van Eyk; M. Schwinger; J. Grohmann; N. Herbst; C. Abad; A. Iosup; in IEEE Software (2021). 38(1) 32–39.
       
    • An Overview on Approaches... - Download
      An Overview on Approaches for Coordination of Platoons. V. Lesch; M. Breitbach; M. Segata; C. Becker; S. Kounev; C. Krupitzer; in IEEE Transactions on Intelligent Transportation Systems (2021).
      Early Access on IEEE Xplore
       

    2020 [ nach oben ]

    • A Review of Serverless Us... - Download
      A Review of Serverless Use Cases and their Characteristics S. Eismann; J. Scheuner; E. van Eyk; M. Schwinger; J. Grohmann; N. Herbst; C. Abad; A. Iosup; (2020).
       
    • Predicting Performance De... - Download
      Predicting Performance Degradations of Black-box Microservice Applications M. Straesser; (2020).
       
    • Learning to Learn in Coll... - Download
      Learning to Learn in Collective Adaptive Systems: Mining Design Pattern for Data-driven Reasoning. M. D’Angelo; S. Ghahremani; S. Gerasimou; J. Grohmann; I. Nunes; S. Tomforde; E. Pournaras; in 2020 IEEE International Conference on Autonomic Computing and Self-Organizing Systems Companion (ACSOS-C) (2020). 121–126.
       
    • Optimizing Parametric Dep... - Download
      Optimizing Parametric Dependencies for Incremental Performance Model Extraction. S. Voneva; M. Mazkatli; J. Grohmann; A. Koziolek; in Companion of the 14th European Conference Software Architecture (ECSA 2020), H. Muccini, P. Avgeriou, B. Buhnova, J. Cámara, M. Caporuscio, M. Franzago, A. Koziolek, P. Scandurra, C. Trubiani, D. Weyns, U. Zdun (Hrsg.) (2020). (Bd. 1269) 228–240.
       
    • Evaluating the Performance of a State-of-the-Art Group-oriented Encryption Scheme for Dynamic Groups in an IoT Scenario. T. Prantl; P. Ten; L. Iffländer; A. Dmitrenko; S. Kounev; C. Krupitzer; in 2020 IEEE 28th International Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunication Systems (MASCOTS) (2020).
      Acceptance Rate: 27%
       
    • An Overview of Design Pat... - Download
      An Overview of Design Patterns for Self-Adaptive Systems in the Context of the Internet of Things. C. Krupitzer; T. Temizer; T. Prantl; C. Raibulet; in IEEE Access (2020).
       
    • REACT: A Model-Based Runt... - Download
      REACT: A Model-Based Runtime Environment for Adapting Communication Systems. M. Pfannemüller; M. Breitbach; C. Krupitzer; M. Weckesser; C. Becker; B. Schmerl; A. Schürr; in Proceedings of the IEEE International Conference on Autonomic Computing and Self-Organizing Systems (ACSOS 2020) (2020).
       
    • A Framework for Time Seri... - Download
      A Framework for Time Series Preprocessing and History-based Forecasting Method Recommendation. M. Züfle; S. Kounev; in Proceedings of the 15th Conference on Computer Science and Information Systems (FedCSIS): Data Mining Competition of the International Symposium on Advanced Artificial Intelligence in Applications (2020).
       
    • Survey and Experimental Comparison of RGB-D Indoor Robot Navigation Methods Supported by ROS and Their Expansion via Fusion with Wheel Odometry and IMU Data. F. Spiess; J. Friesslich; K. Tobias; S. Kounev; N. Strobel; in International Journal of Mechanical Engineering and Robotics Research (IJMERR), (P. R. (Chunhui) Yang, Hrsg.) (2020). 9(12) 1532–1540.
       
    • An IoT Network Emulator f... - Download
      An IoT Network Emulator for Analyzing the Influence of Varying Network Quality. S. Herrnleben; R. Ailabouni; J. Grohmann; T. Prantl; C. Krupitzer; S. Kounev; in Proceedings of the 12th EAI International Conference on Simulation Tools and Techniques (SIMUtools) (2020).
       
    • Elasticity of Cloud Platforms. N. Herbst; A. Bauer; S. Kounev; in Systems Benchmarking: For Scientists and Engineers, S. Kounev, K.-D. Lange, J. von Kistowski (Hrsg.) (2020). 319–340.
       
    • Incremental Calibration o... - Download
      Incremental Calibration of Architectural Performance Models with Parametric Dependencies. M. Mazkatli; D. Monschein; J. Grohmann; A. Koziolek; in 2020 IEEE International Conference on Software Architecture (ICSA 2020) (2020). 23–34.
       
    • Baloo: Measuring and Mode... - Download
      Baloo: Measuring and Modeling the Performance Configurations of Distributed DBMS. J. Grohmann; D. Seybold; S. Eismann; M. Leznik; S. Kounev; J. Domaschka; in 2020 28th International Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunication Systems (MASCOTS) (2020). 1–8.
      Acceptance Rate: 27%
       
    • Systems Benchmarking S. Kounev; K.-D. Lange; J. von Kistowski; (2020). (1. Aufl.) Springer International Publishing.
       
    • Quantifying measurement q... - Download
      Quantifying measurement quality and load distribution in Tor. A. Greubel; S. Pohl; S. Kounev; in Proceedings of the 36th Annual Computer Security Applications Conference (ACSAC 2020) (2020).
       
    • SIMPL: Secure IoT Managem... - Download
      SIMPL: Secure IoT Management Platform. T. Prantl; A. E. Ben Yahya; A. Dmitrienko; S. Kounev; F. Lipp; D. Hock; C. Rathfelder; M. Hofherr; in ITG Workshop on IT Security (ITSec) (2020).
       
    • The impact of the German strategy for containment of Coronavirus SARS-CoV-2 on the training characteristics, physical activity, sleep of highly trained kayakers and canoeists: A retrospective observational study. C. Zinner; M. Matzka; R. Leppich; S. Kounev; H. Holmberg; B. Sperlich; in Frontiers in Sports and Active Living (2020). 2 127.
       
    • A Taxonomy of Techniques for SLO Failure Prediction in Software Systems. J. Grohmann; N. Herbst; A. Chalbani; Y. Arian; N. Peretz; S. Kounev; in Computers (2020). 9(1) 10.
       
    • Beyond Microbenchmarks: T... - Download
      Beyond Microbenchmarks: The SPEC-RG Vision for A Comprehensive Serverless Benchmark. E. van Eyk; J. Scheuner; S. Eismann; C. Abad; A. Iosup; in Companion of the 2020 ACM/SPEC International Conference on Performance Engineering (2020).
       
    • Predicting the Costs of S... - Download
      Predicting the Costs of Serverless Workflows. S. Eismann; J. Grohmann; E. van Eyk; N. Herbst; S. Kounev; in Proceedings of the 2020 ACM/SPEC International Conference on Performance Engineering (ICPE) (2020). 265–276.
      Acceptance Rate: 23.4% (15/64)
       
    • Telescope: An Automatic F... - Download
      Telescope: An Automatic Feature Extraction and Transformation Approach for Time Series Forecasting on a Level-Playing Field. A. Bauer; M. Züfle; N. Herbst; S. Kounev; V. Curtef; in Proceedings of the 36th International Conference on Data Engineering (ICDE) (2020).
       
    • SPEC Research Group Newsl... - Download
      SPEC Research Group Newsletter, vol. 3 no. 1. S. Kounev; A. van Hoorn; A. Bauer; N. Herbst; (2020, April).
      Published by Standard Performance Evaluation Corporation (SPEC)
       
    • Towards a Self-Aware Prediction of Critical States. M. Züfle; in Organic Computing: Doctoral Dissertation Colloquium 2020, S. Tomforde, C. Krupitzer (Hrsg.) (2020).
      (to appear)
       
    • Toward a Framework for Self-Learning Adaptation Planning through Optimization. V. Lesch; in Organic Computing: Doctoral Dissertation Colloquium 2020 (2020).
       
    • Predicting Failures by Means of Machine Learning Methods on the Example of an Industrial Press. J. Agne; Thesis; University of Würzburg; Am Hubland, Informatikgebäude, 97074 Würzburg, Germany. (2020, Februar).
       
    • Energy Efficiency Analysi... - Download
      Energy Efficiency Analysis of Compiler Optimizations on the SPEC CPU 2017 Benchmark Suite. N. Schmitt; J. Bucek; K.-D. Lange; S. Kounev; in Proceedings of the 11th ACM/SPEC International Conference on Performance Engineering (ICPE 2020) (2020).
       
    • An Automated Forecasting ... - Download
      An Automated Forecasting Framework based on Method Recommendation for Seasonal Time Series. A. Bauer; M. Züfle; J. Grohmann; N. Schmitt; N. Herbst; S. Kounev; in Proceedings of the ACM/SPEC International Conference on Performance Engineering (2020). 48–55.
       
    • A Concept for Crowd-sensed Prediction of Mobile Network Connectivity. S. Herrnleben; B. Zeidler; M. Züfle; C. Krupitzer; S. Kounev; in GI/ITG Workshop on Machine Learning in the Context of Communication Networks 2020 (2020).
       
    • Model-based Performance P... - Download
      Model-based Performance Predictions for SDN-based Networks: A Case Study. S. Herrnleben; P. Rygielski; J. Grohmann; S. Eismann; T. Hossfeld; S. Kounev; in Proceedings of the 20th International GI/ITG Conference on Measurement, Modelling and Evaluation of Computing Systems (2020).
       
    • Microservices: A Performa... - Download
      Microservices: A Performance Tester’s Dream or Nightmare?. S. Eismann; C.-P. Bezemer; W. Shang; D. Okanovic; A. van Hoorn; in Proceedings of the 2020 ACM/SPEC International Conference on Performance Engineering (ICPE) (2020).
      Acceptance Rate: 23.4% (15/64)
       
    • Towards Self-Aware Multir... - Download
      Towards Self-Aware Multirotor Formations. D. Kaiser; V. Lesch; J. Rothe; M. Strohmeier; F. Spiess; C. Krupitzer; S. Montenegro; S. Kounev; in Computers (2020). 9(7)
      Special Issue on Self-Aware Computing
       
    • A Survey on Human Machine... - Download
      A Survey on Human Machine Interaction in Industry 4.0 C. Krupitzer; S. Müller; V. Lesch; M. Züfle; J. Edinger; A. Lemken; D. Schäfer; S. Kounev; C. Becker; (2020).
       
    • To Fail Or Not To Fail: P... - Download
      To Fail Or Not To Fail: Predicting Hard Disk Drive Failure Time Windows. M. Züfle; C. Krupitzer; F. Erhard; J. Grohmann; S. Kounev; in Proceedings of the 20th International GI/ITG Conference on Measurement, Modelling and Evaluation of Computing Systems (2020). 19–36.
       
    • Time Series Forecasting for Self-Aware Systems. A. Bauer; M. Züfle; N. Herbst; A. Zehe; A. Hotho; S. Kounev; in Proceedings of the IEEE (2020). 108(7) 1068–1093.
       
    • Introduction to the Speci... - Download
      Introduction to the Special Issue ``Applications in Self-Aware Computing Systems and their Evaluation’’. C. Krupitzer; B. Eberhardinger; I. Gerostathopoulos; C. Raibulet; (2020).
       
    • Methodological Principles... - Download
      Methodological Principles for Reproducible Performance Evaluation in Cloud Computing. A. V. Papadopoulos; L. Versluis; A. Bauer; N. Herbst; J. von Kistowski; A. Ali-Eldin; C. L. Abad; J. N. Amaral; P. Tuma; A. Iosup; in Software Engineering 2020, Fachtagung des GI-Fachbereichs Softwaretechnik, 24.-28. Februar 2020, Innsbruck, Austria, M. Felderer, W. Hasselbring, R. Rabiser, R. Jung (Hrsg.) (2020). (Bd. P-300) 93–94.
       
    • A Survey on Predictive Ma... - Download
      A Survey on Predictive Maintenance for Industry 4.0 C. Krupitzer; T. Wagenhals; M. Züfle; V. Lesch; D. Schäfer; A. Mozaffarin; J. Edinger; C. Becker; S. Kounev; (2020).
       
    • Intra-individual physiological response of recreational runners to different training mesocycles: a randomized cross-over study. P. Düking; H.-C. Holmberg; P. Kunz; R. Leppich; B. Sperlich; in European Journal of Applied Physiology (2020). 1–9.
       

    2019 [ nach oben ]

    • A Modular Simulation Fram... - Download
      A Modular Simulation Framework for Analyzing Platooning Coordination. C. Krupitzer; V. Lesch; M. Pfannemüller; C. Becker; M. Segata; in Proceedings of the 1st ACM Workshop on Technologies, mOdels, and Protocols for Cooperative Connected Cars (TOP-Cars), Colocated with ACM MobiHoc 2019 (2019).
       
    • Agile Scalability Engineering: The ScrumScale Method. G. Brataas; G. Hanssen; N. Herbst; A. van Hoorn; in IEEE Software (2019). 37(5) 77–85.
      to appear
       
    • Online Power Consumption ... - Download
      Online Power Consumption Estimation for Functions in Cloud Applications. N. Schmitt; L. Iffländer; A. Bauer; S. Kounev; in Proceedings of the 16th IEEE International Conference on Autonomic Computing (ICAC) (2019).
       
    • Utilizing Clustering to O... - Download
      Utilizing Clustering to Optimize Resource Demand Estimation Approaches. J. Grohmann; S. Eismann; A. Bauer; M. Zuefle; N. Herbst; S. Kounev; in 2019 IEEE 4th International Workshops on Foundations and Applications of Self* Systems (FAS*W) (2019). 134–139.
       
    • Der Weg vom Internet-der-Dinge zum Internet-der-denkenden-Dinge. S. Kounev; (2019, Juni).
       
    • From the Internet-of-Things to the Internet-of-Thinking-Things. S. Kounev; (2019, Juli).
       
    • Die Mehrbelastung der Sicherheit im IoT mit neuen Techniken bewältigen. J. Stoll; L. Iffländer; (2019, April).
       
    • Detecting Parametric Depe... - Download
      Detecting Parametric Dependencies for Performance Models Using Feature Selection Techniques. J. Grohmann; S. Eismann; S. Elflein; M. Mazkatli; J. von Kistowski; S. Kounev; in 2019 IEEE 27th International Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunication Systems (MASCOTS) (2019). 309–322.
      Acceptance Rate: 23.8% (29/122)
       
    • Towards Testing the Softw... - Download
      Towards Testing the Software Aging Behavior of Hypervisor Hypercall Interfaces. L. Beierlieb; L. Iffländer; A. Milenkoski; C. F. Goncalves; N. Antunes; S. Kounev; in 2019 IEEE International Symposium on Software Reliability Engineering Workshops (ISSREW) (2019).
       
    • On Learning Parametric De... - Download
      On Learning Parametric Dependencies from Monitoring Data. J. Grohmann; S. Eismann; S. Kounev; in Proceedings of the 10th Symposium on Software Performance 2019 (SSP’19) (2019).
       
    • Towards Testing the Perfo... - Download
      Towards Testing the Performance Influence of Hypervisor Hypercall Interface Behavior. L. Beierlieb; L. Iffländer; S. Kounev; A. Milenkoski; in Proceedings of the 10th Symposium on Software Performance 2019 (SSP’19) (2019).
       
    • Monitorless: Predicting P... - Download
      Monitorless: Predicting Performance Degradation in Cloud Applications with Machine Learning. J. Grohmann; P. K. Nicholson; J. O. Iglesias; S. Kounev; D. Lugones; in Proceedings of the 20th International Middleware Conference (2019). 149–162.
       
    • How is Performance Addres... - Download
      How is Performance Addressed in DevOps?. C.-P. Bezemer; S. Eismann; V. Ferme; J. Grohmann; R. Heinrich; P. Jamshidi; W. Shang; A. van Hoorn; M. Villavicencio; J. Walter; F. Willnecker; in Proceedings of the 2019 ACM/SPEC International Conference on Performance Engineering (2019). 45–50.
       
    • Methodological Principles... - Download
      Methodological Principles for Reproducible Performance Evaluation in Cloud Computing. A. V. Papadopoulos; L. Versluis; A. Bauer; N. Herbst; J. von Kistowski; A. Ali-Eldin; C. Abad; J. N. Amaral; P. Tuma; A. Iosup; in IEEE Transactions on Software Engineering (2019). 47(8) 1528–1543.
       
    • Methoden und Messverfahre... - Download
      Methoden und Messverfahren für Automatisches Skalieren in Elastischen Cloud Umgebungen. N. Herbst; (2019, Juni).
       
    • Systematic Search for Opt... - Download
      Systematic Search for Optimal Resource Configurations of Distributed Applications. A. Bauer; S. Eismann; J. Grohmann; N. Herbst; S. Kounev; in 2019 IEEE 4th International Workshops on Foundations and Applications of Self* Systems (FAS*W) (2019). 120–125.
       
    • Kaa: Evaluating Elasticit... - Download
      Kaa: Evaluating Elasticity of Cloud-hosted DBMS. D. Seybold; S. Volpert; S. Wesner; A. Bauer; N. Herbst; J. Domaschka; in Proceedings of the 11th IEEE International Conference on Cloud Computing (CloudCom) (2019).
       
    • TeaStore - A Micro-Servic... - Download
      TeaStore - A Micro-Service Application for Benchmarking, Modeling and Resource Management Research. S. Eismann; (2019, Februar).
       
    • Performance Influence of ... - Download
      Performance Influence of Security Function Chain Ordering. L. Iffländer; N. Fella; in Companion of the 2019 ACM/SPEC International Conference on Performance Engineering (2019). 45–46.
       
    • Integrating Statistical R... - Download
      Integrating Statistical Response Time Models in Architectural Performance Models. S. Eismann; J. Grohmann; J. Walter; J. von Kistowski; S. Kounev; in Proceedings of the 2019 IEEE International Conference on Software Architecture (ICSA) (2019). 71–80.
      Acceptance Rate: 21,9% (21/96)
       
    • Towards Edge Benchmarking: A Methodology for Characterizing Edge Workloads. K. Tocze; N. Schmitt; I. Brandic; A. Aral; S. Nadjm-Tehrani; in Proceedings of Workshop on Hot Topics in Cloud Computing Performance (HotCloudPerf) as part of FAS*(IEEE ICAC/SASO) conferences companion (2019).
       
    • Artificial Intelligence in Medicine - From Data Collection to Prediction. M. Züfle; R. Leppich; (2019, November).
       
    • Performance-feedback auto... - Download
      Performance-feedback autoscaling with budget constraints for cloud-based workloads of workflows. A. Ilyushkin; A. Bauer; A. V. Papadopoulos; E. Deelman; A. Iosup; in arXiv preprint arXiv:1905.10270 (2019).
       
    • Exploring the Limitations of Statistical Response Time Models in Architectural Performance Models. S. Trapp; Thesis; University of Würzburg; Am Hubland, Informatikgebäude, 97074 Würzburg, Germany. (2019, Dezember).
       
    • Erweiterung von Komponenten-basierten Performance Modellen für Micro-service Architekturen. L. Hick; Thesis; University of Würzburg; Am Hubland, Informatikgebäude, 97074 Würzburg, Germany. (2019, Februar).
       
    • Designing a Generic Workflow for Frequency-based Feature Engineering of Sports Data Using Symbolic Fourier Approximation. F. Erhard; Thesis; University of Würzburg; Am Hubland, Informatikgebäude, 97074 Würzburg, Germany. (2019, September).
       
    • Online model learning for... - Download
      Online model learning for self-aware computing infrastructures. S. Spinner; J. Grohmann; S. Eismann; S. Kounev; in Journal of Systems and Software (2019). 147 1–16.
       
    • An Approach for Domain-specific Data Extraction and Feature Engineering for Sports Data Analytics. T. Dreher; Thesis; University of Würzburg; Am Hubland, Informatikgebäude, 97074 Würzburg, Germany. (2019, Oktober).
       
    • Autonomic Forecasting Met... - Download
      Autonomic Forecasting Method Selection: Examination and Ways Ahead. M. Züfle; A. Bauer; V. Lesch; C. Krupitzer; N. Herbst; S. Kounev; V. Curtef; in Proceedings of the 16th IEEE International Conference on Autonomic Computing (ICAC) (2019).
       
    • Chamulteon: Coordinated A... - Download
      Chamulteon: Coordinated Auto-Scaling of Micro-Services. A. Bauer; V. Lesch; L. Versluis; A. Ilyushkin; N. Herbst; S. Kounev; in Proceedings of the 39th IEEE International Conference on Distributed Computing Systems (ICDCS) (2019).
       
    • Measuring the Energy Effi... - Download
      Measuring the Energy Efficiency of Transactional Loads on GPGPU. J. von Kistowski; J. Pais; T. Wahl; K.-D. Lange; H. Block; J. Beckett; S. Kounev; in Proceedings of the 19th ACM/SPEC International Conference on Performance Engineering (2019).
      Best Industry Paper Award
       
    • Chameleon: A Hybrid, Proa... - Download
      Chameleon: A Hybrid, Proactive Auto-Scaling Mechanism on a Level-Playing Field. A. Bauer; (2019, Juni).
       
    • On Learning in Collective... - Download
      On Learning in Collective Self-Adaptive Systems: State of Practice and a 3D Framework. M. D’Angelo; S. Gerasimou; S. Ghahremani; J. Grohmann; I. Nunes; E. Pournaras; S. Tomforde; in Proceedings of the 14th International Symposium on Software Engineering for Adaptive and Self-Managing Systems (2019). 13–24.
       
    • A Concept for an Adaptive... - Download
      A Concept for an Adaptive Communication Middleware for Car-2-Cloud Applications. S. Herrnleben; (2019, April).
       
    • Multi-objective Optimisat... - Download
      Multi-objective Optimisation in Hybrid Collaborating Adaptive Systems. V. Lesch; C. Krupitzer; S. Tomforde; in Proceedings of the 7th edition in the Series on Autonomously Learning and Optimising Systems (SAOS), co-located with 32nd GI/ITG ARCS 2019 (2019).